Electronic Supplementary Information

Encapsulation of Ionic Liquids inside Cucurbiturils

Khaleel I. Assaf,^a Husam Abed alfattah,^b Ala'a F. Eftaiha,^b Sanaa K. Bardaweel,^c Mohammad A. Alnajjar,^d Fatima A. Alsoubani,^b Abdussalam K. Qaroush,^e Musa I. El-Barghouthi,^b Werner M. Nau^d

^a Department of Chemistry, Faculty of Science, Al-Balqa Applied University, Al-Salt 19117, Jordan.

^b Department of Chemistry, The Hashemite University, P. O. Box 150459, Zarqa 13115, Jordan.

^c Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan.

^d Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany.

^e Department of Chemistry, Faculty of Science, The University of Jordan, Amman 11942, Jordan.

1. NMR Experiments:

Fig. S1 ¹H NMR spectra of C_6 mim with CB*n* (1:1 molar ratio), measured in unbuffered D₂O at 25 °C.

Fig. S2 ¹H NMR spectra of C₈mim with CB*n* (1:1 molar ratio), measured in unbuffered D₂O at 25 °C.

Fig. S3 ¹H NMR spectra of C_{16} mim with CB*n* (1:1 molar ratio), measured in unbuffered D₂O at 25 °C.

Fig. S4 ¹H NMR spectra of Phmim with CB*n* (1:1 molar ratio), measured in unbuffered D₂O at 25 °C.

2. ITC Experiments:

Fig. S5 ITC isotherms for the complexation of selected ILs with CB*n*, as measured in unbuffered water at 25 °C; association constants (K_a) given in M⁻¹ and thermodynamic data (ΔG , ΔH , and T ΔS) in kcal mol⁻¹.

3. Dye Displacement Experiments

Fig. S6 A) Fluorescence titration of berberine $(1 \ \mu M)$ with CB7 in aqueous solution. B and C) Fluorescence displacement titration of CB7• berberine $(1.5 \ \mu M : 1 \ \mu M)$ with C₆mim and C₈mim. The samples were excited at 345 nm.

Table S1 Association constants (K_a) for the complexation of ILs and CB7, measured by fluorescence displacement titration, see Figure S6.

Host-guest	$K_{\rm a}/10^6{ m M}^{-1}$
CB7•C ₄ mim	4.5 [1.3] ^a
CB7•C ₆ mim	90 [2.2] ^a
CB7•C8mim	35 [1.2] ^a
CB7•C ₁₀ mim	$7.5 [0.9]^{a}$
CB7•C ₁₆ mim	1.5 [0.3] ^a
CB7•Phmim	420 [2.3] ^a

^a Values in square brackets refer to the ITC values, see Table 2 in the main text.

4. Computational Results

	C ₄ mim	C ₅ mim	C ₆ mim	C ₇ mim	C ₈ mim	C ₁₀ mim	C ₁₆ mim	Phmim
BOND	0.24	0.04	0.08	0.16	0.29	0.02	-0.14	0.75
ANGLE	0.06	-0.76	-1.10	-0.76	-0.45	-0.91	-1.41	1.01
DIHED	1.50	1.79	2.21	2.60	2.78	3.21	3.64	4.64
VDWAALS	-19.63	-22.51	-22.39	-23.27	-23.14	-23.74	-25.68	-20.06
EEL	-51.90	-50.99	-46.10	-39.62	-32.53	-36.72	-56.12	-56.62
1-4 VDW	-0.28	-0.22	-0.22	-0.28	-0.25	-0.40	-0.57	-0.39
1-4 EEL	1.78	2.12	2.55	2.93	2.84	3.30	4.24	3.47
EPB	56.20	55.33	50.88	45.77	39.16	43.66	62.53	60.58
ENPOLAR	-2.48	-2.65	-2.64	-2.76	-2.74	-2.83	-3.18	-2.71
$\Delta G_{ m gas}$	-68.24	-70.53	-64.97	-58.24	-50.46	-55.24	-76.05	-67.20
ΔG_{solv}	53.72	52.68	48.24	43.01	36.42	40.83	59.35	57.87
ΔG	-14.52	-17.86	-16.73	-15.23	-14.04	-14.41	-16.70	-9.33
$\Delta G = \Delta G - T \Delta S$	-1.77	-3.51	-0.62	-2.25	-0.55	1.88	14.75	1.39
$T\Delta S$	-12.75	-14.35	-16.11	-12.98	-13.49	-16.30	-31.44	-10.72

Table S2 Binding Free Energies (kcal/mol) Resulting from MM-PBSA Analysis of the CB6Complexes.

	C ₄ mim	C ₅ mim	C ₆ mim	C ₇ mim	C ₈ mim	C ₁₀ mim	C ₁₆ mim	Phmim
BOND	-0.26	-0.21	-0.17	-0.15	-0.11	-0.02	-0.46	-0.26
ANGLE	0.53	0.74	0.76	0.56	0.30	0.35	-0.76	-0.12
DIHED	0.27	0.71	1.14	1.77	1.93	1.60	1.20	0.16
VDWAALS	-21.86	-23.37	-25.36	-26.89	-27.15	-28.93	-30.01	-23.55
EEL	-53.06	-51.56	-51.75	-48.97	-45.16	-48.03	-49.69	-54.01
1-4 VDW	0.05	0.05	0.01	-0.01	0.01	-0.03	-0.03	0.12
1-4 EEL	0.71	-0.29	0.79	0.88	0.95	1.10	1.02	0.22
EPB	62.02	61.76	61.27	58.47	55.00	61.17	64.07	64.54
ENPOLAR	-2.98	-3.17	-3.34	-3.46	-3.54	-3.79	-3.90	-3.17
$\Delta G_{ m gas}$	-73.61	-73.92	-74.57	-72.81	-69.22	-73.97	-78.74	-77.44
ΔG_{solv}	59.04	58.59	57.93	55.01	51.47	57.38	60.17	61.37
ΔG	-14.57	-15.33	-16.64	-17.79	-17.75	-16.59	-18.57	-16.07
$\Delta G' = \Delta G - T \Delta S$	-12.39	-14.54	-15.40	-17.53	-17.61	-12.82	-12.58	-10.40
$T\Delta S$	-2.18	-0.79	-1.23	-0.26	-0.14	-3.78	-5.99	-5.67

Table S3 Binding Free Energies (kcal/mol) Resulting from MM-PBSA Analysis of the CB7Complexes.

	C ₄ mim	C ₅ mim	C ₆ mim	C ₇ mim	C ₈ mim	C ₁₀ mim	C ₁₆ mim	Phmim
BOND	-0.08	0.01	0.13	0.08	0.38	0.19	0.06	-0.03
ANGLE	0.63	0.97	0.74	1.17	1.26	1.16	0.43	-0.18
DIHED	0.74	0.92	1.00	1.88	2.36	4.20	5.14	0.24
VDWAALS	-26.96	-29.13	-32.30	-35.64	-35.53	-37.68	-39.34	-21.08
EEL	-49.16	-48.86	-50.36	-49.84	-54.26	-52.17	-26.93	-54.58
1-4 VDW	-0.13	-0.05	-0.26	-0.29	-0.43	-0.17	-0.33	0.01
1-4 EEL	0.52	0.07	0.62	0.94	0.59	0.99	1.76	0.23
EPB	58.59	59.43	61.12	60.75	64.01	61.86	36.60	62.12
ENPOLAR	-3.22	-3.47	-3.76	-3.99	-4.23	-4.53	-4.89	-3.10
$\Delta G_{ m gas}$	-74.45	-76.07	-80.43	-81.70	-85.64	-83.48	-59.21	-75.39
ΔG_{solv}	55.37	55.96	57.36	56.76	59.78	57.34	31.71	59.02
ΔG	-19.08	-20.10	-23.07	-24.94	-25.86	-26.14	-27.50	-16.38
$\Delta G' = \Delta G - T \Delta S$	-19.55	-16.73	-15.52	-23.53	-18.32	-20.21	-27.36	-15.43
$T\Delta S$	0.47	-3.37	-7.55	-1.42	-7.53	-5.93	-0.14	-0.94

Table S4 Binding Free Energies (kcal/mol) Resulting from MM-PBSA Analysis of the CB8Complexes.

Fig. S7 Dynamics of 1:1 complexes, shown as a clustered molecular display for $CBn \cdot IL$ complexes.

5. Conductivity Experiments

In order to investigate the effect of complexation on the conductivity of ILs in aqueous solution, the change in conductivity of an aqueous solution of $[C_4mim]Cl$ and $[C_{16}mim]Cl$ was measured as a function of IL concentration in the absence and presence of CB7 (1.0 mM) (Figure S8). We anticipated that the conductivity of ILs decreased in the presence of CB7 due to the formation of inclusion complexes, which should lower the mobility of the IL. Indeed, CB7 resulted in a reduction of conductivity of the solution, as shown in Figure 8, green data points.

Fig. S8 Change in conductivity of an aqueous solution of $[C_4 \text{mim}]Cl$ (left) and $[C_{16}\text{mim}]Cl$ (right) in the absence (\blacksquare) and presence (\bullet) of 1.0 mM CB7, at pH 7.0 ± 0.1 and 25.0 ± 0.2 °C. The difference is show as green triangles (\blacktriangle).

6. Anti-cancer Activity

Three human breast cancer cell lines (MCF-7, T74D, MDA-231) and one human liver cancer cell line (Hep G2) were maintained in DMEM culture medium (Dulbecco's modified essential medium, Gibco), supplemented with 5% (v/v) fetal calf serum (JS Bioscience, Australia), and 1% (v/v) antibiotic (2 mM L-glutamine, 100 U/mL Penicillin and 0.1 mg/mL Streptomycin; Gibco). Cells were cultured at 37°C in a humidified 5% CO₂ incubator. Enzymatic detachment of the confluent cell layers was carried out using Trypsin/EDTA (Gibco, USA). Trypan blue vital staining (0.4% (w/v); Sigma, USA) was used to assess cell viability with cell number counting done with a regular microscope. All cells were plated at a density of 8 × 10^3 cells per well in 96-well plates and incubated to allow attachment for 24 h. The *In vitro* evaluation of the antiproliferative activities of the examined series was accomplished by using the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl tetrazolium bromide (MTT) colorimetric assay, as previously described.¹ In brief, compounds were diluted in culture media to yield the required concentration and applied to test wells for 48 h at 37 °C in a 5% CO₂ incubator. Three triplicates of each concentration for all tested compounds were evaluated in three independent assays (n = 9). DMEM samples were employed as negative controls, and

Doxorubicin as a positive control. At the end of the exposure period, $20 \ \mu L$ of 0.5 mg/mL of MTT was added to each well and incubated for 4 h. Afterward, its reduction to formazan by metabolically active cells was calculated by measuring the absorbance at 570 nm. Cell viability was calculated based on the measured absorbance relative to the absorbance of cells exposed to the negative control, which represented 100% cell viability.

The anti-cancer activity of the investigated ILs and their corresponding complexes with CB7 were examined against three different human breast cancer cell lines, namely MCF-7, T74D, and MDA-231, as well as one human liver cancer cell line. CBn are known to have a sufficiently low toxicity towards normal cells to allow potential pharmaceutical applications.²⁻ ⁴ In general, the toxicity of C_n mim in aqueous solution was found to increase with increasing chain length (Table S5), in accordance with previous reports, which also revealed that the toxicity of ILs depends mainly on their alkyl chain.⁵ Interestingly, the activity of ILs against all human cancer cell lines was much higher in the presence of CB7 with small ILs, as revealed by the lower IC₅₀ values (Table S5). For example, the anti-cancer activity of C₄mim was found to be enhanced in the presence of CB7 by a factor of eight. However, the activity remained unaffected for the longer ILs (n > 6). The complexation of ILs with short alkyl chains (n < 8) with CB7 allowed for the full shielding of the hydrophobic part as revealed by the NMR experiments and the simulated structures (Fig. 2 and 3), which is anticipated to improve the IC_{50} values. However, longer alkyl chains can be partially encapsulated inside the cavity of CB7 and, therefore, showed similar IC_{50} values as the free ILs. The complexation of ILs with CB7 is thought to facilitate the uptake in breast cancer cells and, most important, the ILs can be released from the cavity to eventually find their intracellular target. Similar observations were reported by Li et al., namely, the anticancer activity of nitidine chloride was found to be improved upon complexation with CB7, which was attributed to a different cellular uptake behavior.⁶

Table S5. IC_{50} values (in μ M) of the examined ILs in the absence and presence of CB7^[a] towards human cancer cell lines. Values are expressed as mean; statistical error in data (n = 9) is 5%.

	MCF-7	T47D	MDA-231	Hep G2
CB7	>1000	>1000	>1000	>1000
C ₄ mim	1700	1600	2000	1500
CB7•C4mim	200	250	370	230
Phmim	1020	950	2900	960
CB7•Phmim	190	160	240	190
C ₆ mim	780	700	2800	840
CB7•C ₆ mim	200	280	380	160
C ₈ mim	120	69	340	190
CB7•C8mim	130	74	250	150
C ₁₀ mim	28	29	44	27
CB7•C ₁₀ mim	28	28	42	27
C ₁₆ mim	<1	<1	<1	<1
CB7•C ₁₆ mim	NA ^[b]	NA ^[b]	NA ^[b]	NA ^[b]

^[a] A 1:1 molar ratio was used. ^[b] Not applicable due to the low IC_{50} of free C₁₆mim.

7. References

- 1 S. K. Bardaweel, R. Abu-Dahab and N. F. Almomani, Acta Pharm., 2013, 63, 467.
- 2 V. D. Uzunova, C. Cullinane, K. Brix, W. M. Nau and A. I. Day, *Org. Biomol. Chem.*, 2010, **8**, 2037-2042.
- 3 G. Hettiarachchi, D. Nguyen, J. Wu, D. Lucas, D. Ma, L. Isaacs and V. Briken, *PLoS One*, 2010, **5**, e10514.
- 4 X. Zhang, X. Xu, S. Li, L.-H. Wang, J. Zhang and R. Wang, *Sci. Rep.*, 2018, **8**, 8819.
- 5 A. Romero, A. Santos, J. Tojo and A. Rodríguez, J. Hazard. Mater., 2008, 151, 268-273.
- 6 W. Li, H. Yin, D. Bardelang, J. Xiao, Y. Zheng and R. Wang, Food Chem. Toxicol., 2017, 109, 923-929.