Homoallylic amines as efficient chiral inducing framework in the conjugated addition of amides to α,βunsaturated esters. An entry to enantio-enriched diversely substituted amines.

Johann Rogier, Lilia Anani, Aurélien Coelho, Fabien Massicot, Carine Machado-Rodrigues, Jean-Bernard Behr, Jean-Luc Vasse

Institut de Chimie Moléculaire de Reims, CNRS-UMR 7312 and Université de Reims, 51687 Reims Cedex 2, France

Supplementary Information

All reactions involving organometallics were conducted under an atmosphere of argon. Prior to use, THF was distilled over sodium-benzophenone ketyl. ¹H and ¹³C NMR spectra were recorded in CDCl₃, unless specified, on a Bruker AC-500. Samples were analyzed by Q-TOF HRMS system. The analysis was performed on a Waters SYNAPT G2-Si High Resolution Mass Spectrometry equipped with electrospray ionization (ESI) source (Waters Corp., Manchester, UK). Mass detection was conducted in positive ion mode, with the source temperature at 120°C, capillary voltage and cone voltage were set at 3 KV and 40 V. The desolvation gas was optimized to 900 L/h, the cone gas flow of 50 L/h and the scan range was from 50 to 2000 m/z. Samples were analyzed in infusion mode and the mass was corrected during acquisition using external reference (Lock-Spray) consisting of a 1 ng/uL solution of leucine encephalin at a flow rate of 5 μ L/min, in order to make sure the accuracy and reproducibility during the MS analysis. All data collected were acquired using MassLynxTM (V4.1) software in centroid mode.

General procedure for the synthesis of racemic secondary amines 1.

A solution of benzylic amine (10 mmol) and aldehyde (10 mmol) in CH_2CI_2 (20 mL) was refluxed for 1h then cooled down to rt. The resulting mixture was dried over Na_2SO_4 , filtered and the solvent was removed under reduced pressure to give the corresponding imine which was used in the next step without purification.

To a solution of imine (10 mmol) in THF (20 mL), was added allylbromide (1.05 mL, 12 mmol) and Zn powder (1.02 g, 15 mmol), and the resulting mixture was stirred at rt for 2 h. Water (10 mL) was added, and the mixture was stirred vigorously for 30 min. Et₂O (20 mL) was added and the stirring was continued for 10 min. The organic layer was discarded and the remaining paste was triturated with Et₂O (2 x 20 mL). The organic phases were combined, dried over Na₂SO₄, filtered and concentrated under reduced pressure to give the secondary amine which was used in the next step without purification.

1-(4-Chlorophenyl)-N-(4-methoxybenzyl)but-3-en-1-amine 1c

¹H NMR (500 MHz, CDCl₃) δ 7.36-7.30 (m, 4 H), 7.18 (d, *J* = 8.5 Hz, 2 H), 6.88 (d, *J* = 8.5 Hz, 2 H), 5.69 (dddd, *J* = 16.9, 10.1, 7.6, 6.4 Hz, 1 H), 5.14-5.03 (m, 2 H), 3.82 (s, 3 H), 3.69 (dd, *J* = 7.5, 6.1 Hz, 1 H), 3.61 (d, *J* = 13.1 Hz, 1 H), 3.47 (d, *J* = 13.1 Hz, 1 H), 2.43-2.34 (m, 2 H), 1.72 (br s, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 158.7, 142.6, 135.2, 132.6, 132.6, 129.3, 128.8, 128.6, 118.0, 113.9, 61.0, 55.4, 50.9, 43.2.

1-(4-Bromophenyl)-N-(4-methoxybenzyl)but-3-en-1-amine 1d¹

¹H NMR (500 MHz, CDCl₃) δ 7.49 (d, *J* = 8.3 Hz, 2 H), 7.27 (d, *J* = 8.4 Hz, 2 H), 7.17 (d, *J* = 8.5 Hz, 2 H), 6.87 (d, *J* = 8.6 Hz, 2 H), 5.69 (dddd, *J* = 16.7, 10.3, 7.9, 6.2 Hz, 1 H), 5.15-4.99 (m, 2 H), 3.82 (s, 3 H), 3.67 (dd, *J* = 7.7, 5.9 Hz, 1 H), 3.61 (d, *J* = 13.1 Hz, 1 H), 3.46 (d, *J* = 13.1 Hz, 1 H), 2.46-2.26 (m, 2 H), 1.71 (br s, 1 H); ¹³C NMR (126 MHz, CDCl₃) δ 158.7, 143.1, 135.1, 132.6, 131.6, 129.4, 129.2, 120.8, 118.0, 113.9, 61.0, 55.4, 50.9, 43.1.

N-Benzyl-1-(furan-2-yl)but-3-en-1-amine 1f²

¹H NMR (500 MHz, CDCl₃) δ 7.36-7.03 (m, 6 H), 6.25 (dd, *J* = 3.2, 1.8 Hz, 1 H), 6.11 (d, *J* = 3.1 Hz, 1 H), 5.64 (ddt, *J* = 17.2, 10.2, 7.1 Hz, 1 H), 5.01 (d, *J* = 17.2 Hz, 1 H), 4.96 (d, *J* = 10.2 Hz, 1 H), 3.73-3.65 (m, 2H), 3.52 (d, *J* = 13.2 Hz, 1 H), 2.50-2.41 (m, 2 H), 1.80 (br s, 1 H); ¹³C NMR (126 MHz, CDCl₃) δ 156.3, 141.7, 140.4, 135.0, 128.5, 128.3, 127.0, 117.6, 110.0, 55.0, 51.2, 39.4.

N-Benzyl-1-(furan-3-yl)but-3-en-1-amine 1g

Bn

¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, *J* = 1.7 Hz, 1 H), 7.40-7.23 (m, 6 H), 6.46 (s, 1 H), 5.75 (ddt, *J* = 17.2, 10.2, 7.1 Hz, 1 H), 5.16-5.05 (m, 2 H), 3.81 (d, *J* = 13.3 Hz, 1 H), 3.73 (t, *J* = 6.7 Hz, 1 H), 3.65 (d, *J* = 13.3 Hz, 1 H), 2.48 (t, *J* = 7.0 Hz, 2 H), 2.01 (br s, 1 H); ¹³C NMR (126 MHz, CDCl₃) δ 143.3, 140.6, 139.9, 135.3, 128.5, 128.3, 127.7, 127.0, 117.7, 109.1, 52.8, 51.2, 41.5.

¹ T. J. Cogswell, C. S. Donald, D.-L. Long, R. Marquez, Org. Biomol. Chem, 2015, 13, 717.

² R. A. Fernandes and J. L. Nallasivam, Org. Biomol. Chem., 2012, **10**, 7789.

(E)-N-Benzyl-2-methyl-1-phenylhexa-1,5-dien-3-amine1j³

¹H NMR (500 MHz, CDCl₃) δ 7.44-7.19 (m, 10 H), 6.50 (s, 1 H), 5.80 (ddt, *J* = 17.2, 10.1, 7.1 Hz, 1 H), 5.16 (d, *J* = 17.2 Hz, 1 H), 5.13 (d, *J* = 10.1 Hz, 1 H), 3.86 (d, *J* = 13.3 Hz, 1 H), 3.68 (d, *J* = 13.3 Hz, 1 H), 3.30 (t, *J* = 7.0 Hz, 1 H), 2.43-2.34 (m, 2 H), 1.93 (s, 4 H); ¹³C NMR (126 MHz, CDCl₃) δ 140.9, 139.2, 138.1, 135.8, 129.1, 128.5, 128.3, 128.2, 127.5, 126.9, 126.3, 117.2, 65.6, 51.5, 39.3, 13.2.

(E)-N-Benzyl-1-phenylhexa-1,5-dien-3-amine 1i²

¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, *J* = 7.8 Hz, 2 H), 7.40-7.26 (m, 8 H), 6.55 (d, *J* = 15.9 Hz, 1 H), 6.14 (dd, *J* = 15.9, 8.2 Hz, 1 H), 5.83 (dddd, J = 17.1, 10.1, 7.5, 6.5 Hz, 1 H), 5.21-5.08 (m, 2 H), 3.93 (d, *J* = 13.4 Hz, 1 H), 3.75 (d, *J* = 13.4 Hz, 1 H), 3.35 (q, *J* = 7.0 Hz, 1 H), 2.47-2.35 (hept, *J* = 6.4 Hz, 2 H), 1.81 (br s, 1 H); ¹³C NMR (126 MHz, CDCl₃) δ 140.6, 137.1, 135.1, 132.7, 131.4, 128.7, 128.5, 128.2, 127.51, 127.0, 126.4, 117.8, 59.6, 51.4, 40.8.

Representative procedure for allylmetallation of tert-butylsulfinimines : Procedure A (*R*)-2-Methyl-*N*-[(*S*,*E*)-2-methyl-1-phenylhexa-1,5-dien-3-yl]propane-2-sulfinamide 5I

To a solution of (*R*,*E*)-2-methyl-*N*-((*E*)-2-methyl-3-phenylallylidene)propane-2-sulfinamide (1.62 g, 6.5 mmol) in CH₂Cl₂ (40 mL) at -50°C, was added a solution of allylmagnesium bromide (1 M in Et₂O, 13 mL, 13 mmol). The resulting mixture was stirred for 1h at -50°C, then 12 h at rt prior to the addition of a saturated aqueous solution of NH₄Cl (20 mL). The organic layer was collected and the aqueous phases was extracted with Et₂O (2 x 20 mL). The organic fractions were combined, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with a 70:30 \rightarrow 50:50 mixture of PE/AcOEt (70:30 \rightarrow 50:50) to give **5I** (1.46 g, 74%) as a white solid. dr 97:3. Mp 80°C. [α]_D -91.4 (*c* 1, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ ¹H NMR (500 MHz, Chloroform-*d*) δ 7.38-7.29 (m, 4 H), 7.26-7.22 (tt, *J* = 7.2, 1.4 Hz, 6.60 (s, 1 H), 5.81 (dddd, *J* = 16.9, 10.1, 8.2, 6.0 Hz, 1 H), 5.26-5.16 (m, 2 H), 4.04 (t, *J* = 7.0 Hz, 1 H), 3.41 (br s, 1 H), 2.52 (dtt, *J* = 13.4, 5.9, 1.3 Hz, 1 H), 2.39 (dt, *J* = 13.9, 8.2 Hz, 1 H), 1.85 (d, *J* = 1.3 Hz, 3 H), 1.24 (s, 9 H); ¹³C NMR (126 MHz, CDCl₃) δ 137.5, 136.6, 134.4, 129.3, 129.2, 128.2, 126.7, 118.9, 61.0, 55.5, 39.5, 22.79, 13.5; HRMS(ES⁺): m/z [M+Na]⁺ calcd for C₁₇H₂₅NOSNa: 314.1555; found : 314.1556.

³ Y. Jiang and S. E. Schaus, Angew. Chem., Int. Ed., 2017, 56, 1544.

(R)-2-Methyl-N-[(S)-1-phenylbut-3-en-1-yl]propane-2-sulfinamide 5a⁴

Yield 78%. White solid dr 98:2 after recrystallization from cyclohexane. Mp 68°C; $[\alpha]_D$ -145 (*c* 0.25, CHCl₃); ¹H NMR (500 MHz, CDCl₃) 7.39-7.29 (m, 5 H), 5.76 (dddd, *J* = 17.0, 10.2, 8.4, 5.8 Hz, 1 H), 5.25-5.16 (m, 2 H), 4.49 (ddd, *J* = 8.0, 5.4, 2.3 Hz, 1 H), 3.69 (br s, 1 H), 2.63 (dtt, *J* = 13.9, 5.7, 1.4 Hz, 1 H), 2.50 (dt, *J* = 14.0, 8.4 Hz, 1 H), 1.22 (s, 9 H); ¹³C NMR (126 MHz, CDCl₃) δ 141.8, 134.3, 128.6, 127.8, 127.6, 119.4, 57.2, 55.8, 43.6, 22.7.

(R)-2-Methyl-N-[(S)-1-(thiophen-2-yl)but-3-en-1-yl]propane-2-sulfinamide 5e^{4c}

Yield 87%. Yellow oil, dr 95:5. $[\alpha]_D$ -117 (*c* 1, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.21 (d, *J* = 5.1 Hz, 1 H), 6.97 (d, *J* = 3.0 Hz, 1 H), 6.93 (m, 1 H), 5.80-5.68 (m, 1 H), 5.21-5.16 (m, 2 H), 4.77 (m, 1 H), 3.78 (br d, *J* = 3.0 Hz, 1 H), 2.67 (dt, *J* = 11.9, 6.0 Hz, 1 H), 2.57 (m, 1 H), 1.19 (s, 9 H); ¹³C NMR (126 MHz, CDCl₃) δ 146.1, 133.5, 126.6, 125.2, 125.0, 119.8, 55.9, 53.6, 43.7, 22.6.

(R)-N-[(S)-1-(4-Methoxyphenyl)but-3-en-1-yl]-2-methylpropane-2-sulfinamide 5k4b

Yield 81%. White solid; dr 98:2. Mp 68°C; $[\alpha]_D$ -128 (*c* 1, CHCl₃); ¹H NMR (500 MHz, CDCl₃) 7.25 (m, 2 H), 6.88(m, 2 H), 5.74 (dddd, *J* = 17.0, 10.2, 8.5, 5.7 Hz, 1 H), 5.22-5.13 (m, 2 H), 4.43 (ddd, *J* = 7.8, 5.5, 1.9 Hz, 1 H), 3.81 (s, 3 H), 3.66 (br s, 1 H), 2.58 (dt, *J* = 12.5, 5.6 Hz, 1 H), 2.47 (dt, *J* = 14.0, 8.4 Hz, 1 H), 1.20 (s, 9 H); ¹³C NMR (126 MHz, CDCl₃) δ 159.2, 134.4, 133.7, 128.7, 119.2, 113.9, 56.6, 55.6, 55.3, 43.6, 22.7.

Representative procedure for the preparation of secondary homoallylilamine: Procedure B

(S,E)-2-Methyl-1-phenylhexa-1,5-dien-3-amonium chloride

 \sim

To a solution of the above sulfinamide (1.23 g, 4.06 mmol) in MeOH (7 mL) was added a solution of HCl (2 M in Et₂O, 3 mL) was added at rt. After 1h30 of stirring the solvent was removed under reduced pressure. The white solid was washed with Et₂O (2 x 5 mL), then dried under high vacuum to give the title compound (831 mg, 87%) as a white solid. $[\alpha]_D$ +9.3 (*c* 1, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 8.76 (br s, 3 H), 7.38-7.16 (m, 5 H), 6.68 (s, 1 H),

⁴ (a) M. Medjahadi, J. C. Gonzalez-Gomez, F. Foubelo and M. Yus, *J. Org. Chem.*, 2009, **74**, 7859; (b) O. Soares do Rego Barros, J. A. Sirvent, F. Foubelo and M. Yus, *Chem. Commun.*, 2014, **50**, 6898; (c) X.-W. Sun, M. Liu, M.-H. Xu, G.-Q. Lin, *Org. Lett.*, 2008, **10**, 1259.

5.75 (ddt, J = 17.1, 10.1, 7.0 Hz, 1 H), 5.23 (d, J = 16.9 Hz, 1 H), 5.17 (d, J = 10.1 Hz, 1 H), 3.88 (m, 1 H), 2.76 (dt, J = 13.4, 6.5 Hz, 1 H), 2.66 (dt, J = 14.6, 7.6 Hz, 1 H), 1.95 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 136.4, 132.1, 131.7, 131.6, 129.2, 128.3, 127.2, 120.0, 59.2, 36.3, 14.2.

(S,E)-N-(4-Methoxybenzyl)-2-methyl-1-phenylhexa-1,5-dien-3-amine 11

The above ammonium salt (533 mg, 2.4 mmol) was dissolved in CH₂Cl₂ (25 mL). The resulting solution was washed with an aqueous solution of NaOH (5%, 10 mL), dried over MgSO₄, filtered and concentrated to give the free primary amine which was used in the next step without purification. A solution of primary amine (0.45 g, 2.4 mmol) and 4-methoxybenzaldehyde (327 mg, 2.4 mmol) in toluene (5 mL) was refluxed for 1 h. The solvent was distilled off under reduced pressure, then, MeOH (5 mL) was added. The resulting solution was cooled down to 0°C, then by NaBH₄ (100 mg, 5.3 mmol) was added in 3 portions. After 1h of stirring, water (5 mL) was added and the mixture was concentrated to half of the volume. The residue was extracted with CH₂Cl₂ (2 x 10 mL) and the organic phases were combined, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with a 7.3 mixture of PE/Et₂O to give **1l** (630 mg, 86%) as a pale yellow oil. [α]₀ -12.2 (*c* 1, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.42-7.31 (m, 4 H), 7.29-7.22 (m, 3 H), 6.90 (d, *J* = 10.1 Hz, 1 H), 3.83 (s, 3H), 3.75 (d, *J* = 13.1 Hz, 1 H), 3.59 (d, *J* = 13.1 Hz, 1 H), 3.26 (t, *J* = 7.0 Hz, 1 H), 2.34 (m, 2 H), 1.90 (s, 3 H), 1.50 (br s, 1 H); ¹³C NMR (126 MHz, CDCl₃) δ 158.7, 139.3, 138.1, 135.8, 133.0, 129.5, 129.1, 128.2, 127.4, 126.3, 117.1, 113.9, 65.5, 55.4, 50.9, 39.3, 13.2; HRMS(ES⁺): m/z [M+H]⁺ calcd for C₂₁H₂₆NO: 308.2014; found : 308.2017.

(S)-N-benzyl-1-phenylbut-3-en-1-amine⁵ 1a

Prepared according to procedure **B**. Colorless oil overall yield 48%. $[\alpha]_D$ -52.2 (*c* 1, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.45-7.17 (m, 10 H), 5.75 (dddd, *J* = 16.6, 10.1, 8.0, 6.2 Hz, 1H), 5.19-4.99 (m, 2 H), 3.73 (dd, *J* = 7.9, 5.8 Hz, 1 H), 3.71 (d, *J* = 13.3 Hz, 1 H), 3.56 (d, *J* = 13.3 Hz, 1 H), 2.52-2.36 (m, 2 H), 1.78 (br s, 1 H); ¹³C NMR (126 MHz, CDCl₃) δ 143.9, 140.8, 135.6, 128.5, 128.5, 128.2, 127.4, 127.2, 126.9, 117.7, 61.7, 51.6, 43.2.

⁵ R. A. Fernandes and Y. Yamamoto, J. Org. Chem., 2004, 69, 735

(S)-N-Benzyl-1-(4-methoxyphenyl)but-3-en-1-amine1k⁶

Prepared according to procedure **B**, pale yellow oil, yield 87%. $[\alpha]_D$ -58.5 (*c* 1, CH₂Cl₂). for er > 95:5 ¹H NMR (500 MHz, CDCl₃) δ 7.41-7.17 (m, 7 H), 6.93 (d, *J* = 8.7 Hz, 2 H), 5.74 (dddd, *J* = 16.8, 10.2, 7.7, 6.4 Hz, 1 H), 5.16-5.01 (m, 2 H), 3.85 (s, 3 H), 3.70 (d, *J* = 13.3 Hz, 1 H), 3.73 (dd, *J* = 7.0, 6.6 Hz, 1 H), 3.55 (d, *J* = 13.3 Hz, 1 H), 2.50-2.35 (m, 2 H), 1.77 (br s, 1 H); ¹³C NMR (126 MHz, CDCl₃) δ 158.8, 140.7, 135.8, 135.7, 128.5, 128.4, 128.3, 126.9, 113.9, 61.0, 55.4, 51.4, 43.2.

(S)-N-(4-Methoxybenzyl)-1-phenylbut-3-en-1-amine1b⁷

Prepared according to procedure **B**, pale yellow oil, yield 93%. $[\alpha]_D$ -45.0 (*c* 1, CH₂Cl₂) for er > 95:5; ¹H NMR (500 MHz, CDCl₃) δ 7.39 (d, *J* = 6.1 Hz, 4 H), 7.32-7.29 (m, 1 H), 7.21 (d, *J* = 8.6 Hz, 2 H), 6.89 (d, *J* = 8.6 Hz, 2 H), 5.74 (dddd, *J* = 17.1, 10.2, 8.0, 6.3 Hz, 1 H), 5.13-5.06 (m, 2 H), 3.83 (s, 3 H), 3.72 (dd, *J* = 7.6, 6.0 Hz, 1 H), 3.65 (d, *J* = 13.1 Hz, 1 H), 3.51 (d, *J* = 13.1 Hz, 1 H), 2.49-2.40 (m, 2 H), 1.74 (br s, 1 H); ¹³C NMR (126 MHz, CDCl₃) δ 158.6, 144.0, 135.6, 132.9, 129.4, 128.5, 127.4, 127.1, 117.6, 113.8, 61.6, 55.4, 50.9, 43.2.

(S)-N-Benzyl-1-(thiophen-2-yl)but-3-en-1-amine 1e⁸

Prepared according to procedure **B**, colorless oil, yield 85%. $[\alpha]_D$ -35.1 (*c* 1, CH₂Cl₂) for er = 95:5; ¹H NMR (500 MHz, CDCl₃) δ 7.38-7.25 (m, 6 H), 7.00 (dd, *J* = 5.0, 3.5 Hz, 1 H), 6.96 (m, 1 H), 5.77 (dddd, *J* = 17.3, 10.2, 7.7, 6.6 Hz, 1 H), 5.14 d, *J* = 17.3, Hz, 1 H) 5.11 (d, *J* = 10.2 Hz, 1 H), 4.04 (t, *J* = 6.8 Hz, 1 H), 3.84 (d, *J* = 13.2 Hz, 1 H), 3.65 (d, *J* = 13.2 Hz, 1 H), 2.59-2.48 (m, 2 H), 1.83 (br s, 1 H); ¹³C NMR (126 MHz, CDCl₃) δ 149.2, 140.4, 135.0, 128.5, 128.3, 127.0, 126.5, 124.3, 124.1, 118.1, 57.2, 51.4, 43.6.

⁶ A. K. Jha and R. A. Fernandes, *Eur. J. Org. Chem.*, 2019, 2857.

⁷ T. J. Cogswell, C. S. Donald, D.-L. Long and R. Marquez, Org. Biomol. Chem., 2015, 13, 717.

⁸ K.-H. Shen and C.-F. Yao, J. Org. Chem., 2006, **71**, 3980.

(R)-2-Phenyl-2-{[(R)-1-(pyridin-3-yl)but-3-en-1-yl]amino}ethanol 5h

A mixture of (*R*)-phenylglycinol (0.93 g, 6.8 mmol) and 3-pyridylcarboxaldehyde (835 g, 6.8 mmol) in CH_2CI_2 (20 mL) was refluxed for 1 h then cooled down to rt. The resulting mixture was dried over Na_2SO_4 , filtered and the solvent was removed under reduced pressure to quantitatively give the corresponding imine which was used in the next step without purification.

To a solution of the above imine in MeOH (20 mL), was added allylbromide (0.78 mL, 8.9 mmol) and In (0.77 g, 6.8 mmol) and the resulting mixture was stirred for 2 h at rt. A saturated aqueous solution of NaHCO₃ (30 mL) was added. The precipitate was filtered off and rinsed with MeOH (30 mL). The filtrate was concentrated under reduced pressure and partitioned with AcOEt (60 mL) and water (30 mL). The organic layer was dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with PE/AcOEt (90:10) to give **5h** (1.41 g, 77%) as a yellow oil. [α]_D -16.9 (*c* 1, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 8.40 (s, 1 H), 8.38 (m, 1 H), 7.52 (dt, *J* = 7.9, 2.0 Hz, 1 H), 7.27-7.16 (m, 5 H), 7.13 (dd, *J* = 7.8, 4.8 Hz, 1 H), 5.66 (ddt, *J* = 16.4, 10.6, 7.1 Hz, 1 H), 5.13-5.00 (m, 2 H), 3.86 (dd, *J* = 7.6, 4.4 Hz, 1 H), 3.80-3.71 (m, 2 H), 3.60 (dd, *J* = 10.8, 7.7 Hz, 1 H), 3.28 (s, 1 H), 2.55 (dt, *J* = 13.8, 6.9 Hz, 1 H), 2.47 (dt, *J* = 13.9, 6.8 Hz, 1 H), 2.15 (s, 1 H); ¹³C NMR (126 MHz, CDCl₃) δ 149.1, 148.3, 148.3, 140.9, 140.9, 139.4, 134.9, 134.9, 134.1, 128.6, 127.5, 127.4, 123.3, 118.4, 66.3, 62.7, 58.2, 41.3, HRMS(ES⁺): m/z [M+H]⁺ calcd for C₁₇H₂₁N₂O: 269.1654; found : 269.1649.

(R)-N-benzyl-1-(pyridin-3-yl)but-3-en-1-amine 1h⁵

To a solution of the above amino-alcohol (1.4 g, 5.2 mmol) in $CH_2Cl_2/MeOH$ (1:2, 30 mL), was added Pb(OAc)₄ (2.78 g, 6.3 mmol) in one portion at 0°C. The resulting mixture was stirred for 20 min at 0°C, and NH₂OH.HCl (6.95 g, 100 mmol) was added. After 45 min of stirring the solvent was removed under reduced pressure. The residue was taken up with CH_2Cl_2 (40 mL), and the solid was filtered off. The filtrate was washed with an aqueous solution of NaOH (10%, 4 x 10 mL), dried with MgSO₄, filtered and concentrated under reduced pressure to give the corresponding primary amine (0.41 g, 53%).

A solution of primary amine (0.40 g, 2.7 mmol) and benzaldehyde (286 mg, 2.7 mmol) in toluene (5 mL) was refluxed for 1 h. The solvent was removed under reduced pressure, then MeOH (5 mL) was added. The resulting solution was cooled down to 0°C, then NaBH₄ (106 mg, 2.8 mmol) was added in 3 portions. After 1 h of stirring, water (5 mL) was added and the mixture was concentrated to half of the volume. The residue was extracted with

CH₂Cl₂ (2 x 10 mL). The organic phases were combined, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with PE/AcOEt (2:1) to give **1h** (0.58 g, 88%) as a colorless oil. [α]_D +50.6 (*c* 1, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 8.59 (d, *J* = 1.6 Hz, 1 H), 8.54 (dd, *J* = 4.7, 1.4 Hz, 1 H), 7.76 (d, *J* = 7.8 Hz, 1 H), 7.38-7.23 (m, 6 H), 5.71 (dddd, *J* = 17.6, 9.6, 7.9, 6.4 Hz, 1 H), 5.14-5.05 (m, 2 H), 3.76 (dd, *J* = 7.6, 6.0 Hz, 1 H), 3.68 (d, *J* = 13.3 Hz, 1 H), 3.55 (d, *J* = 13.3 Hz, 1 H), 2.51-2.36 (m, 2 H), 1.82 (br s, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 149.6, 148.7, 140.2, 139.1, 134.8, 134.6, 128.5, 128.1, 127.0, 123.6, 118.4, 59.2, 51.5, 42.9; HRMS(ES⁺): m/z [M+H]⁺ calcd for C₁₆H₁₉N₂: 239.1548; found : 239.1551.

(R)-2-Phenyl-2-{[(R)-1-phenylbut-3-en-1-yl]amino}ethanol⁹

Dr 98 :2, $[\alpha]_D$ -40.4 (*c* 1.1, CHCl₃);¹H NMR (500 MHz, CDCl₃) δ 7.34-7.17 (m, 10 H), 5.68 (ddt, *J* = 17.2, 10.2, 7.1 Hz, 1 H), 5.11-4.98 (m, 2 H), 3.86 (dd, *J* = 6.9, 4.6 Hz, 1 H), 3.80-3.70 (m, 2 H), 3.54 (dd, *J* = 10.8, 7.0 Hz, 1 H), 2.77 (br s, 1 H), 2.55 (dt, *J* = 13.6, 6.7 Hz, 1 H), 2.47 (dt, *J* = 13.9, 6.9 Hz, 1 H), 1.87 (br s, 1 H); ¹³C NMR (126 MHz, CDCl₃) δ 143.7, 141.3, 135.1, 128.6, 128.5, 127.5, 127.2, 127.2, 127.2, 117.5, 65.7, 61.4, 59.8, 41.5.

General procedure for conjugated 1,4-addition of lithium amide onto α , β -unsaturated esters

To a solution of amine **1** (3 mmol) in THF (15 mL) was slowly added a solution of *n*-BuLi (2.5 M in hexanes, 1.2 mL, 3 mmol) at -70°C. The resulting solution was stirred for 10 min at -70°C, then, a solution of ester (2 mmol) in THF (2 mL) was added dropwise. The stirring was continued for 1h30 at -70°C, then a saturated aqueous solution of NH₄Cl (10 mL) was added. The layers were separated and the aqueous phase was extracted with Et₂O (2 x 10 mL). The organic phases were combined, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with a PE/Et₂O mixture to give the corresponding aminoester.

(±)-(S)-Tert-Butyl 3-{benzyl[(R)-1-phenylbut-3-en-1-yl]amino}-3-phenylpropanoate 3a

Yield 82%, dr >95:5. Pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, *J* = 7.5 Hz, 2 H), 7.40-7.33 (m, 6 H), 7.32-7.19 (m, 7 H), 5.54 (ddd, *J* = 17.1, 10.3, 6.7 Hz, 1 H), 5.04-4.81 (m, 2 H), 4.51 (dd, *J* = 10.6, 4.1 Hz, 1 H), 3.86 (dd, *J* = 9.1, 6.0 Hz, 1 H), 3.82 (d, *J* = 14.5 Hz, 1 H), 3.71 (d, *J* = 14.5 Hz, 1 H), 2.65-2.52 (m, 3 H), 2.40 (dd, *J* = 14.9, 4.2 Hz, 1

⁹ (a) T. Vilaivan, C. Winotapan, V. Banphavichit, T. Shinada and Y. Ohfune, J. Org. Chem., 2005, **70**, 3464, (b) M. Ahari, A. Joosten, J.-L. Vasse and J. Szymoniak, Synthesis, 2008, 61.

H), 1.27 (s, 9 H); ¹³C NMR (126 MHz, CDCl₃) δ 171.3, 141.9, 141.3, 141.1, 136.4, 128.9, 128.5, 128.4, 128.3, 128.3, 128.2, 127.2, 127.2, 126.8, 116.3, 80.3, 62.3, 58.7, 50.7, 37.3, 36.0, 28.0.

(±)-(S)-Tert-Butyl 3-{benzyl[(R)-1-phenylbut-3-en-1-yl]amino}octanoate 3b

N^{Bn} _CO₂tBu

Yield 73%, dr >95:5. Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.45 (d, *J* = 7.4 Hz, 2 H), 7.41-7.23 (m, 8 H), 5.53 (ddt, *J* = 17.1, 10.0, 6.8 Hz, 1 H), 4.98-4.80 (m, 2 H), 3.84 (d, *J* = 14.7 Hz, 1 H), 3.69 (dd, *J* = 9.0, 6.4 Hz, 1 H), 3.48 (d, *J* = 14.7 Hz, 1 H), 3.38 (m, 1 H), 2.69-2.55 (m, 2 H), 1.82 (dd, *J* = 14.8, 9.3 Hz, 1 H), 1.76 (dd, *J* = 14.8, 3.5 Hz, 1 H), 1.63 (m, 1 H), 1.42 (s, 9 H), 1.40-1.19 (m, 7 H), 0.92 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 172.3, 141.4, 140.3, 136.6, 128.9, 128.6, 128.4, 128.2, 127.2, 126.8, 116.2, 80.0, 63.0, 53.8, 50.1, 38.3, 38.2, 34.0, 32.0, 28.2, 26.8, 22.8, 14.2; HRMS(ES⁺): m/z [M+H]⁺ calcd for C₂₉H₄₂NO₂: 436.3216; found : 436.3219.

(±)-(S,E)-Tert-Butyl 3-{(4-methoxybenzyl)[(R)-1-phenylbut-3-en-1-yl)amino}-5-phenylpent-4-enoate 3c

Yield 60%, dr >95:5. Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.36-7.22 (m, 12 H), 6.88 (d, *J* = 8.6 Hz, 2 H), 6.48 (dd, *J* = 16.1, 1.3 Hz, 1 H), 6.23 (dd, *J* = 16.1, 6.6 Hz, 1 H), 5.68 (ddt, *J* = 17.1, 10.2, 6.8 Hz, 1 H), 5.01 (dd, *J* = 17.1, 1.6 Hz, 1 H), 4.95 (dd, *J* = 10.1, 1.7 Hz, 1 H), 4.12 (m, 1 H), 3.91 (dd, *J* = 8.9, 6.2 Hz, 1 H), 3.83 (s, 3 H), 3.81 (d, *J* = 14.3 Hz, 1 H) 3.62 (d, *J* = 14.2 Hz, 1 H), 2.78 (m, 1 H), 2.61 (m, 1 H), 2.29 (dd, *J* = 14.5, 9.3 Hz, 1 H), 2.21 (dd, *J* = 14.5, 4.9 Hz, 1 H), 1.39 (s, 9 H); ¹³C NMR (126 MHz, CDCl₃) δ 171.3, 158.6, 141.1, 137.4, 136.7, 133.0, 130.9, 130.7, 129.7, 128.8, 128.7, 128.3, 127.4, 127.2, 126.4, 116.3, 113.7, 80.4, 62.9, 56.6, 55.4, 49.8, 38.8, 36.6, 28.2.

(±)-(S)-Tert-Butyl 3-{benzyl[(R)-1-phenylbut-3-en-1-yl]amino}-3-(furan-2-yl)propanoate 3d

.CO₂tBu

Yield 92%, dr >95:5. Orange oil. ¹H NMR (500 MHz, CDCl₃) δ 7.43 (dd, *J* = 1.9, 0.8 Hz, 1 H), 7.40-7.21 (m, 10 H), 6.36 (dd, *J* = 3.3, 1.8 Hz, 1 H), 6.22 (d, *J* = 3.3 Hz, 1 H), 5.62 (ddt, *J* = 17.1, 10.2, 6.9 Hz, 1 H), 4.94 (dq, *J* = 17.1, 1.6 Hz, 1 H), 4.89 (m, 1 H), 4.58 (dd, *J* = 9.5, 5.4 Hz, 1 H), 3.89 (dd, *J* = 9.6, 5.3 Hz, 1 H), 3.80 (d, *J* = 14.4 Hz, 1 H), 3.70 (d, *J* = 14.3 Hz, 1 H), 2.65-2.54 (m, 2 H), 2.44-2.39 (m, 2 H), 1.35 (s, 9 H); ¹³C NMR (126 MHz, CDCl₃) δ 170.6, 155.4, 141.6, 141.3, 140.6, 136.6, 128.9, 128.8, 128.2, 128.2, 127.1, 126.9, 116.2, 110.2, 107.3, 80.4, 62.4, 52.3, 50.9, 37.8, 35.3, 28.0; HRMS(ES⁺): m/z [M+H]⁺ calcd for C₂₈H₃₄NO₃: 432.2539; found : 432.2535.

(±)-(S)-Tert-Butyl 3-{benzyl[(R)-1-phenylbut-3-en-1-yl]amino}-3-(pyridin-3-yl)propanoate 3e

CO₂tBu

Yield 89%, dr 96:4. Orange oil. ¹H NMR (500 MHz, CDCl₃) δ 8.68 (d, *J* = 2.3 Hz, 1 H), 8.51 (dd, *J* = 4.8, 1.6 Hz, 1 H), 7.73 (dt, *J* = 8.0, 2.0 Hz, 1 H), 7.41-7.20 (m, 11 H), 5.52 (ddt, *J* = 17.0, 10.2, 6.8 Hz, 1 H), 4.99-4.88 (m, 2 H), 4.57 (dd, *J* = 10.8, 3.7 Hz, 1 H), 3.86-3.77 (m, 2 H), 3.66 (d, *J* = 14.4 Hz, 1 H), 2.67 (dt, *J* = 13.6, 6.8 Hz, 1 H), 2.61-2.49 (m, 2 H), 2.33 (dd, *J* = 15.2, 3.7 Hz, 1 H), 1.28 (s, 9 H); ¹³C NMR (126 MHz, CDCl₃) δ 170.9, 150.2, 148.4, 140.7, 140.3, 137.5, 136.1, 135.5, 128.7, 128.5, 128.4, 128.4, 127.5, 127.1, 123.0, 116.7, 80.8, 62.6, 56.1, 50.7, 36.9, 36.0, 28.0; HRMS(ES⁺): m/z [M+H]⁺ calcd for C₂₉H₃₅N₂O₂: 443.2699; found : 443.2698.

(±)-(S)-Tert-Butyl 3-{[(R)-1-(4-chlorophenyl)but-3-en-1-yl](4-methoxybenzyl)amino}-3-phenylpropanoate 3f

Yield 71%, dr 95:5. Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.41 (d, *J* = 8.3 Hz, 2 H), 7.39-7.25 (m, 8 H), 7.18 (d, *J* = 8.6 Hz, 2 H), 6.85 (d, *J* = 8.6 Hz, 2 H), 5.49 (ddt, *J* = 17.0, 10.2, 6.7 Hz, 1 H), 5.01-4.82 (m, 2 H), 4.47 (dd, *J* = 10.2, 4.5 Hz, 1 H), 3.84 (dd, *J* = 9.5, 5.3 Hz, 1 H), 3.82 (s, 3 H), 3.73 (d, *J* = 14.2 Hz, 1 H), 3.63 (d, *J* = 14.3 Hz, 1 H), 2.61-2.46 (m, 3 H), 2.43 (dd, *J* = 14.9, 4.5 Hz, 1 H), 1.28 (s, 9 H); ¹³C NMR (126 MHz, CDCl₃) δ 171.2, 158.7, 141.7, 140.1, 136.0, 132.8, 132.7, 130.2, 129.5, 128.4, 128.3, 128.2, 127.3, 116.6, 113.8, 80.4, 61.4, 58.6, 55.4, 50.1, 37.6, 35.7, 28.0; HRMS(ES⁺): m/z [M+H]⁺ calcd for C₃₁H₃₈NO₃Cl: 506.2462; found : 506.2461.

(±)-(S)-Tert-Butyl 3-{[(R)-1-(4-bromophenyl)but-3-en-1-yl](4-methoxybenzyl)amino}-3-phenylpropanoate 3g

Yield 74%, dr 95:5. Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.47 (d, *J* = 8.5 Hz, 2 H), 7.40 (d, *J* = 8.2 Hz, 2 H), 7.35 (t, *J* = 7.6 Hz, 2 H), 7.26 (t, *J* = 7.2 Hz, 1 H), 7.22 (d, *J* = 8.4 Hz, 2 H), 7.16 (d, *J* = 8.6 Hz, 2 H), 6.83 (d, *J* = 8.6 Hz, 2 H), 5.47 (ddt, *J* = 17.0, 10.2, 6.8 Hz, 1 H), 4.93-4.84 (m, 2 H), 4.45 (dd, *J* = 10.2, 4.5 Hz, 1 H), 4.15 (q, *J* = 7.1 Hz, 1 H),

3.81 (m, 4 H), 3.71 (d, J = 14.2 Hz, 1 H), 3.61 (d, J = 14.3 Hz, 1 H), 2.57-2.44 (m, 3 H), 2.42 (dd, J = 14.9, 4.5 Hz, 1 H), 1.27 (s, 9 H); ¹³C NMR (126 MHz, CDCl₃) δ 171.2, 158.7, 141.7, 140.6, 136.0, 132.7, 131.4, 130.6, 129.5, 128.3, 128.3, 127.3, 121.0, 116.7, 113.8, 80.5, 61.5, 58.7, 55.4, 50.1, 37.6, 35.7, 28.0; HRMS(ES⁺): m/z [M+H]⁺ calcd for C₃₁H₃₇NO₃Br: 550.1957; found : 550.1956.

(±)-(S)-Tert-Butyl 3-{benzyl[(R)-1-(thiophen-2-yl)but-3-en-1-yl]amino}-3-phenylpropanoate 3h

Yield 83%, dr >95:5. Pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.34-10 (m, 11 H), 6.87 (m, 2 H), 5.52 (ddt, *J* = 17.0, 10.2, 6.8 Hz, 1H), 4.92-4.74 (m, 2 H), 4.35 (dd, *J* = 10.7, 4.3 Hz, 1 H), 4.02 (dd, *J* = 7.9, 6.4 Hz, 1 H), 3.72 (d, *J* = 14.4 Hz, 1 H), 3.70 (d, *J* = 14.4 Hz, 1 H), 2.52 (dd, *J* = 14.8, 10.7 Hz, 1 H), 2.48-2.41 (m, 2 H), 2.36 (dd, *J* = 14.8, 4.3 Hz, 1 H), 1.13 (s, 9 H); ¹³C NMR (126 MHz, CDCl₃) δ 171.16, 146.43, 141.33, 140.52, 136.21, 128.71, 128.48, 128.35, 128.24, 127.31, 126.99, 126.56, 125.11, 124.47, 116.55, 80.30, 59.01, 57.39, 50.85, 38.08, 37.42, 27.93; HRMS(ES⁺): m/z [M+H]⁺ calcd for C₂₈H₃₄NO₂S: 448.2310; found : 448.2309.

(±)-(*S*,*E*)-*Tert*-Butyl 3-{benzyl[(*R*)-1-(thiophen-2-yl)but-3-en-1-yl]amino}-5-phenylpent-4-enoate 3i

Yield 92%, dr >95:5. Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.48 (d, *J* = 7.3 Hz, 2 H), 7.42-7.23 (m, 9 H), 7.09-6.97 (m, 2 H), 6.53 (d, *J* = 16.1 Hz, 1 H), 6.25 (dd, *J* = 16.0, 7.0 Hz, 1 H), 5.83 (ddt, *J* = 17.1, 10.2, 6.8 Hz, 1 H), 5.10 (dq, *J* = 17.1, 1.8 Hz, 1 H), 5.05 (dq, *J* = 10.2, 1.7 Hz, 1H), 4.23 (dd, *J* = 8.5, 5.9 Hz, 1H), 4.11 (dddd, *J* = 8.3, 6.6, 4.7, 1.3 Hz, 1 H), 3.92 (d, *J* = 14.5 Hz, 1 H), 3.82 (d, *J* = 14.4 Hz, 1 H), 2.84 (dt, *J* = 13.0, 6.0 Hz, 1 H), 2.66 (dt, *J* = 14.7, 7.0 Hz, 1 H), 2.45 (dd, *J* = 14.5, 9.5 Hz, 1 H), 2.38 (dd, *J* = 14.5, 4.8 Hz, 1 H), 1.42 (s, 9 H); ¹³C NMR (126 MHz, CDCl₃) δ 171.2, 146.0, 140.5, 137.2, 136.3, 131.2, 130.1, 128.8, 128.6, 128.4, 127.5, 127.0, 126.6, 126.4, 125.2, 124.4, 116.6, 80.4, 58.4, 57.1, 50.4, 39.3, 38.4, 28.2; HRMS(ES⁺): m/z [M+H]⁺ calcd for C₃₀H₃₆NO₂S: 474.2467; found : 474.2473.

(±)-Tert-Butyl 3-{benzyl[-1-(furan-2-yl)but-3-en-1-yl]amino}-3-phenylpropanoate 3j

Yield 90%, dr 55:45. Orange oil. ¹H NMR (500 MHz, CDCl₃) δ 7.45-7.25 (m, 11 H), 6.39 (dd, *J* = 3.2, 1.9 Hz, 0.54 H), 6.33 (dd, *J* = 3.2, 1.8 Hz, 0.46 H), 6.22 (d, *J* = 3.2 Hz, 0.54 H), 6.05 (d, *J* = 3.2 Hz, 0.46 H), 5.71 (ddt, *J* = 17.1, 10.2, 6.8 Hz, 0.46 H), 5.58 (ddt, *J* = 17.0, 10.2, 6.8 Hz, 0.54 H), 5.04-4.93 (m, 2 H), 4.52 (dd, *J* = 10.8, 3.8 Hz, 0.54 H), 4.40 (dd, *J* = 10.5, 5.2 Hz, 0.46 H), 4.13 (d, *J* = 15.9 Hz, 0.46 H), 3.96-3.90 (m, 1 H), 3.86 (d, *J* = 14.2 Hz, 0.54 H), 3.71 (d, *J* = 10.5, 5.2 Hz, 0.46 H), 4.13 (d, *J* = 15.9 Hz, 0.46 H), 3.96-3.90 (m, 1 H), 3.86 (d, *J* = 14.2 Hz, 0.54 H), 3.71 (d, *J* = 10.5, 5.2 Hz, 0.46 H), 4.13 (d, *J* = 15.9 Hz, 0.46 H), 3.96-3.90 (m, 1 H), 3.86 (d, *J* = 14.2 Hz, 0.54 H), 3.71 (d, *J* = 10.5, 5.2 Hz, 0.46 H), 4.13 (d, *J* = 15.9 Hz, 0.46 H), 3.96-3.90 (m, 1 H), 3.86 (d, *J* = 14.2 Hz, 0.54 H), 3.71 (d, *J* = 10.5, 5.2 Hz, 0.46 H), 4.13 (d, *J* = 15.9 Hz, 0.46 H), 3.96-3.90 (m, 1 H), 3.86 (d, *J* = 14.2 Hz, 0.54 H), 3.71 (d, *J* = 10.5, 5.2 Hz, 0.46 H), 4.13 (d, *J* = 15.9 Hz, 0.46 H), 3.96-3.90 (m, 1 H), 3.86 (d, *J* = 14.2 Hz, 0.54 H), 3.71 (d, *J* = 10.5, 5.2 Hz, 0.46 H), 4.13 (d, *J* = 15.9 Hz, 0.46 H), 3.96-3.90 (m, 1 H), 3.86 (d, *J* = 14.2 Hz, 0.54 H), 3.71 (d, *J* = 10.5, 5.2 Hz, 0.46 H), 4.13 (d, *J* = 15.9 Hz, 0.46 H), 3.96-3.90 (m, 1 H), 3.86 (d, *J* = 14.2 Hz, 0.54 H), 3.71 (d, *J* = 10.5, 5.2 Hz, 0.46 H), 4.13 (d, *J* = 15.9 Hz, 0.46 H), 3.96-3.90 (m, 1 H), 3.86 (d, *J* = 14.2 Hz, 0.54 H), 3.71 (d, *J* = 10.5, 5.5 Hz, 0.54 Hz, 0.55 Hz,

14.1 Hz, 0.54 H), 3.56 (d, *J* = 15.9 Hz, 0.46 H), 2.76 (dd, *J* = 14.1, 5.2 Hz, 0.46 H), 2.69 (dd, *J* = 15.1, 10.8 Hz, 0.54 H), 2.65-2.57 (m, 2 H), 2.49 (dd, *J* = 14.1, 10.5 Hz, 0.46 H), 2.26 (dd, *J* = 15.1, 3.9 Hz, 0.54H), 1.32 (s, 4.9 H), 1.24 (s, 4.1 H); ¹³C NMR (126 MHz, CDCl₃) δ 171.5, 171.0, 115.4, 155.3, 142.3, 141.7, 141.5, 141.5, 141.4, 140.5, 136.1, 135.9, 128.9, 128.4, 128.3, 128.2, 128.10, 128.07, 127.8, 127.3, 127.1, 127.0, 126.6, 116.45, 116.39, 110.3, 109.8, 108.1, 107.7, 80.3, 80.2, 63.1, 58.1, 56.7, 54.8, 51.6, 50.8, 42.2, 36.7, 36.2, 35.9, 28.0, 27.9.

(±)-(S)-Tert-Butyl 3-{benzyl[(R)-1-(furan-3-yl)but-3-en-1-yl]amino}-3-phenylpropanoate 3k

Yield 80%, dr 95:5. Orange oil. ¹H NMR (500 MHz, CDCl₃) δ 7.44-7.40 (m, 3 H), 7.37-7.23 (m, 9 H), 6.48 (s, 1 H), 5.61 (ddt, *J* = 13.7, 10.2, 6.8 Hz, 1 H), 5.01-4.87 (m, 2 H), 4.47 (dd, *J* = 9.5, 5.3 Hz, 1 H), 3.84 (dd, *J* = 9.0, 5.5 Hz, 1 H), 3.75 (d, *J* = 3.9 Hz, 2 H), 2.65 (dd, *J* = 14.7, 5.4 Hz, 1 H), 2.61 (dd, *J* = 14.7, 10.0 Hz, 1 H), 2.49 (m, 1 H), 2.39 (m, 1 H), 1.28 (s, 9 H); ¹³C NMR (126 MHz, CDCl₃) δ 171.3, 142.9, 141.7, 140.9, 140.4, 136.5, 128.5, 128.4, 128.3, 128.2, 127.3, 126.9, 125.6, 116.3, 111.0, 80.4, 59.1, 53.8, 50.7, 38.3, 36.6, 28.0; HRMS(ES⁺): m/z [M+H]⁺ calcd for C₂₈H₃₄NO₃: 432.2539; found : 432.2542.

(±)-(R)-Tert-Butyl 3-{benzyl[(R)-1-(furan-3-yl)but-3-en-1-yl]amino}octanoate 3I

Yield 78%, dr 94:6. Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.46-7.22 (m, 7 H), 6.46 (d, *J* = 0.9 Hz, 1 H), 5.62 (ddt, *J* = 17.0, 10.2, 6.8 Hz, 1 H), 4.97 (dd, *J* = 17.1, 1.8 Hz, 1 H), 4.91 (dd, *J* = 10.2, 1.8 Hz, 1 H), 3.83 (d, *J* = 14.3 Hz, 1 H), 3.65 (dd, *J* = 8.9, 6.4 Hz, 1 H), 3.44 (d, *J* = 14.4 Hz, 1 H), 3.34 (m, 1H), 2.59 (dt, *J* = 13.2, 6.6 Hz, 1H), 2.51 (m, 1 H), 2.16 (dd, *J* = 14.8, 2.9 Hz, 1 H), 1.93 (dd, *J* = 14.8, 9.9 Hz, 1 H), 1.62 (m, 1 H), 1.52 (m, 1 H), 1.44 (s, 9 H), 1.40-1.22 (m, 6 H), 0.92 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 172.5, 142.9, 141.0, 140.3, 136.5, 128.8, 128.4, 126.9, 123.8, 116.2, 110.6, 80.1, 53.9, 53.5, 50.3, 38.8, 38.5, 34.2, 32.0, 28.2, 26.8, 22.8, 14.2; HRMS(ES⁺): m/z [M+H]⁺ calcd for C₂₇H₄₀NO₃: 426.3008; found : 426.3008.

(±)-(S)-Tert-Butyl 3-{benzyl[(R)-1-(pyridin-3-yl)but-3-en-1-yl]amino}-3-phenylpropanoate 3m

Yield 92%, dr >95:5. Orange oil. ¹H NMR (500 MHz, CDCl₃) δ 8.48 (d, *J* = 2.2 Hz, 1 H), 8.41 (dd, *J* = 4.8, 1.6 Hz, 1 H), 7.60 (d, *J* = 7.9 Hz, 1 H), 7.34-7.23 (m, 4 H), 7.22-7.09 (m, 7 H), 5.38 (ddt, *J* = 17.2, 10.4, 6.8 Hz, 1 H), 4.84-4.78 (m, 2 H), 4.35 (dd, *J* = 9.0, 6.0 Hz, 1 H), 3.83 (dd, *J* = 9.8, 5.1 Hz, 1 H), 3.69 (d, *J* = 14.6 Hz, 1 H), 3.66 (d, *J* = 14.6 Hz, 1 H), 2.52-2.37 (m, 4 H), 1.16 (s, 9 H); ¹³C NMR (126 MHz, CDCl₃) δ 170.9, 150.4, 148.2, 141.1, 140.6, 137.1, 136.3, 135.4, 128.41 (2C), 128.36, 128.30, 127.5, 127.0, 123.3, 117.2, 80.6, 60.1, 59.6, 50.8, 38.5, 34.6; HRMS(ES⁺): m/z [M+H]⁺ calcd for C₂₉H₃₅N₂O₂: 443.2699; found : 443.2701.

(±)-(S)-Tert-Butyl 3-{benzyl[(R)-1-(pyridin-3-yl)but-3-en-1-yl]amino}-4-methylpentanoate 3n

Yield 90%, dr >95:5. Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.51 (d, *J* = 3.9 Hz, 1 H), 8.43 (s, 1 H), 7.74 (d, *J* = 7.8 Hz, 1 H), 7.47 (d, *J* = 7.5 Hz, 2 H), 7.38 (t, *J* = 7.1 Hz, 2 H), 7.29 (d, *J* = 8.0 Hz, 1 H), 7.23 (dd, *J* = 7.2, 5.2 Hz, 1 H), 5.44 (ddt, *J* = 17.0, 10.1, 6.8 Hz, 1 H), 4.90 (d, *J* = 17.1 Hz, 1 H), 4.84 (d, *J* = 10.2 Hz, 1 H), 3.80 (d, *J* = 14.8 Hz, 1 H), 3.69 (dd, *J* = 8.4, 7.2 Hz, 1 H), 3.45 (d, *J* = 14.9 Hz, 1 H), 3.25 (t, *J* = 8.5 Hz, 1 H), 2.69 (t, *J* = 7.2 Hz, 2 H), 1.98 (dd, *J* = 16.3, 9.5 Hz, 1 H), 1.75 (m, 1 H), 1.69 (d, *J* = 16.3 Hz, 1 H), 1.42 (s, 9 H), 1.14 (d, *J* = 6.6 Hz, 3 H), 0.89 (d, *J* = 6.7 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 172.2, 150.6, 148.7, 140.5, 134.8, 128.6, 128.5, 127.0, 123.3, 117.0, 80.3, 60.3, 58.5, 51.3, 37.8, 36.6, 33.2, 28.1, 21.3, 19.6; HRMS(ES⁺): m/z [M+H]⁺ calcd for C₂₆H₃₇N₂O₂: 409.2855; found : 409.2852.

(±)-(S)-Tert-Butyl 3-{benzyl[(R,E)-1-phenylhexa-1,5-dien-3-yl]amino}-3-phenylpropanoate 30

Yield 83%, dr 80:20. Yellow oil.¹H NMR (500 MHz, CDCl₃) δ 7.45 (m, 2 H), 7.43-7.25 (m, 13 H), 6.45 (d, *J* = 15.9 Hz, 1 H), 6.28 (dd, *J* = 16.0, 8.2 Hz, 1 H), 5.66 (ddt, *J* = 17.1, 10.2, 6.9 Hz, 1 H), 5.03-4.93 (m, 2 H), 4.57 (dd, *J* = 9.9, 4.5 Hz, 1 H), 3.82 (d, *J* = 14.4 Hz, 1 H), 3.78 (d, *J* = 14.4 Hz, 1 H), 3.46 (m, 1 H), 2.95 (dd, *J* = 14.8, 4.6 Hz, 1 H), 2.80 (dd, *J* = 14.9, 10.0 Hz, 1H), 2.45 (m, 1 H), 2.32 (m, 1 H), 1.35 (s, 9 H); ¹³C NMR (126 MHz, CDCl₃) δ 171.6, 141.7, 140.9, 137.3, 136.4, 131.6, 130.5, 128.7, 128.7, 128.4, 128.3, 128.1, 127.5, 127.2, 126.9, 126.5, 116.2, 80.5, 60.3, 58.8, 50.6, 38.3, 37.7, 28.0; HRMS(ES⁺): m/z [M+H]⁺ calcd for C₃₂H₃₈NO₂: 468.2903; found : 468.2903.

(±)-(S)-Tert-Butyl 3-{benzyl[(R,E)-2-methyl-1-phenylhexa-1,5-dien-3-yl]amino}-3-phenylpropanoate 3p

Yield 75%, dr 96:4. Yellow oil.¹H NMR (500 MHz, CDCl₃) δ 7.46 (d, *J* = 7.8 Hz, 2 H), 7.31 (m, 13 H), 6.49 (s, 1 H), 5.64 (m, 1 H), 4.98-4.94 (m, 2 H), 4.59 (dd, *J* = 9.7, 4.4 Hz, 1 H), 3.88 (d, *J* = 15.0 Hz, 1 H), 3.83 (d, *J* = 15.0 Hz, 1 H), 3.40 (dd, *J* = 9.8, 4.0 Hz, 1 H), 2.95 (dd, *J* = 15.1, 4.3 Hz, 1 H), 2.81 (dd, *J* = 14.0, 11.0 Hz, 1 H), 2.35-2.22 (m, 2 H), 1.98 (s, 3 H), 1.30 (s, 9 H); ¹³C NMR (126 MHz, CDCl₃) δ 171.2, 142.0, 141.2, 138.1, 138.1, 136.5, 129.1, 128.7, 128.2, 128.2,

128.2, 128.1, 127.3, 126.6, 126.4, 115.9, 80.4, 67.6, 59.9, 51.2, 37.6, 33.7, 27.9, 16.4; HRMS(ES⁺): m/z [M+H]⁺ calcd for C₃₃H₄₀NO₂: 482.3059; found : 482.3061.

(S,E)-Tert-Butyl 3-{benzyl[(R)-1-phenylbut-3-en-1-yl]amino}oct-4-enoate 3q

Yield 69%, dr >95:5. Pale yellow oil. $[\alpha]_D$ -22.7 (*c* 0.6, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.40-7.20 (m, 10 H), 5.64 (ddt, *J* = 17.1, 10.2, 6.9 Hz, 1 H), 5.59-5.46 (m, 2 H), 4.98 (dd, *J* = 17.1, 1.8 Hz, 1 H), 4.92 (dd, *J* = 10.2, 1.8 Hz, 1 H), 3.94-3.88 (m, 1H), 3.84 (dd, *J* = 9.1, 6.0 Hz, 1 H), 3.79 (d, *J* = 14.6 Hz, 1 H), 3.61 (d, *J* = 14.6 Hz, 1 H), 2.80-2.70 (m, 1 H), 2.61-2.51 (m, 1 H), 2.20-2.10 (m, 2 H), 2.02 (q, *J* = 6.7 Hz, 2 H), 1.39 (s, 9 H), 0.91 (t, *J* = 7.4 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 171.5, 141.5, 141.3, 136.7, 132.0, 130.6, 128.8, 128.6, 128.2, 128.1, 127.1, 126.7, 116.2, 80.1, 63.0, 56.5, 50.3, 38.8, 36.6, 34.8, 28.2, 22.6, 13.8; HRMS(ES⁺): m/z [M+H]⁺ calcd for C₂₉H₄₀NO₂: 434.3059; found : 434.3061.

(S)-Tert-Butyl 3-{benzyl[(S)-1-phenylbut-3-en-1-yl]amino}-7-(benzyloxy)heptanoate 3r

N^{∕Bn} CO₂tBu BnO

Yield 66%, dr >95:5. Colorless oil. $[\alpha]_D$ -10.2 (*c* 1, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.45 (d, *J* = 7.2 Hz, 2 H), 7.40-7.25 (m, 13 H), 5.53 (ddt, *J* = 17.0, 10.2, 6.8 Hz, 1 H), 4.92 (dd, *J* = 17.1, 1.8 Hz, 1 H), 4.85 (m, 1 H), 4.54 (s, 2 H), 3.84 (d, *J* = 14.7 Hz, 1 H), 3.69 (dd, *J* = 9.0, 6.5 Hz, 1 H), 3.51 (t, *J* = 6.6 Hz, 2 H), 3.48 (d, *J* = 14.8 Hz, 1H), 3.40 (tt, *J* = 9.3, 3.7 Hz, 1 H), 2.69-2.56 (m, 2 H), 1.82 (dd, *J* = 14.9, 9.5 Hz, 1 H), 1.76 (m), 1.68-1.45 (m, 4 H), 1.42 (s, 9 H), 1.32 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 172.2, 141.3, 140.2, 138.9, 136.5, 128.8, 128.6, 128.5, 128.4, 128.2, 127.7, 127.6, 127.2, 126.9, 116.2, 80.1, 73.0, 70.6, 62.9, 53.7, 50.1, 38.2, 38.1, 33.8, 29.9, 28.2, 23.8; HRMS(ES⁺): m/z [M+H]⁺ calcd for C₃₅H₄₆NO₃: 528.3478; found : 528.3483.

(R)-Tert-Butyl 3-{(4-methoxybenzyl)[(S)-1-phenylbut-3-en-1-yl]amino]-4-methylpentanoate 3s

Ph^wN^{PMB} iPr^wCO₂tBu Yield 89%, dr >95:5. Colorless oil. $[\alpha]_D$ -26.7 (*c* 1, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.28 (d, *J* = 8.6 Hz, 2 H), 7.17 (m, 5 H), 6.83 (d, *J* = 8.6 Hz, 2 H), 5.41 (ddt, *J* = 17.0, 10.2, 6.8 Hz, 1 H), 4.82 (dd, *J* = 17.1, 1.9 Hz, 1 H), 4.71 (dm, *J* = 10.2, Hz, 1 H), 3.74 (s, 3 H), 3.61 (d, *J* = 14.5 Hz, 1 H), 3.55 (dd, *J* = 9.6, 5.9 Hz, 1 H), 3.30 (d, *J* = 14.5 Hz, 1 H), 3.18 (m, 1 H), 2.65 (m, 1 H), 2.54 (m, 1 H), 1.80 (dd, *J* = 16.4, 9.8 Hz, 1H), 1.63 (m, 1 H), 1.56 (dd, *J* = 16.3, 1.7 Hz, 1 H), 1.31 (s, 9 H), 1.04 (d, *J* = 6.6 Hz, 3 H), 0.79 (d, *J* = 6.8 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 172.5, 158.6, 139.4, 136.6, 132.9, 129.6, 129.1, 128.0, 127.1, 116.2, 113.9, 79.9, 62.0, 58.0, 55.4, 50.4, 38.0, 36.5, 33.1, 28.1, 21.4, 19.7; HRMS(ES⁺): m/z [M+H]⁺ calcd for C₂₈H₄₀NO₃: 438.3008; found : 438.3013.

(S)-Tert-Butyl 3-{(4-methoxybenzyl)[(S)-1-phenylbut-3-en-1-yl]amino}octanoate 3t

Yield 80%, dr >95:5. Colorless oil. $[\alpha]_D$ -23.8 (*c* 1, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 7.38-7.24 (m, 7 H), 6.92 (d, *J* = 8.5 Hz, 2 H), 5.54 (ddt, *J* = 17.0, 10.1, 6.8 Hz, 1 H), 4.93 (dd, *J* = 17.2, 1.9 Hz, 1 H), 4.86 (dd, *J* = 10.2, 1.9 Hz, 1 H), 3.85 (s, 3 H), 3.77 (d, *J* = 14.4 Hz, 1 H), 3.68 (dd, *J* = 8.7, 6.7 Hz, 1 H), 3.40 (d, J = 14.4 Hz, 1 H), 3.37 (m, 1 H), 2.66-2.57 (m, 2 H), 1.79 (dd, *J* = 14.8, 9.8 Hz, 1 H), 1.71 (dd, *J* = 14.8, 2.8 Hz, 1 H), 1.61 (m, 1 H), 1.48 (m, 1 H), 1.40-1.18 (m, 6 H), 0.92 (t, *J* = 7.3 Hz, 3 H). ¹³C NMR (151 MHz, CDCl₃) δ 172.4, 158.5, 140.3, 136.7, 133.2, 129.7, 128.8, 128.2, 127.1, 116.1, 113.7, 80.0, 62.4, 55.4, 53.5, 49.3, 38.2, 38.1, 33.9, 32.0, 28.2, 26.8, 22.8, 14.3; HRMS(ESI⁺): m/z [M+H]⁺ calcd for C₃₀H₄₄NO₃: 466.3321; found : 466.3325.

(R)-Tert-Butyl 3-{benzyl[(S)-1-(4-methoxyphenyl)but-3-en-1-yl]amino}-3-phenylpropanoate 3u

Yield 56%, dr 96:4. Pale yellow oil. $[\alpha]_D$ -0.7 (*c* 1, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, *J* = 7.4 Hz, 2 H), 7.36 (t, *J* = 7.6 Hz, 2 H), 7.31-7.21 (m, 8 H), 6.91 (d, *J* = 8.7 Hz, 2 H), 5.54 (ddt, *J* = 17.0, 10.2, 6.8 Hz, 1 H), 4.93 (dd, *J* = 17.2, 1.7 Hz, 1 H), 4.89 (dd, *J* = 10.2, 1.7 Hz, 1 H), 4.51 (dd, *J* = 10.5, 4.2 Hz, 1 H), 3.84 (s, 3 H), 3.82 (dd, *J* = 9.6, 5.9 Hz, 1 H), 3.79 (d, *J* = 14.5 Hz, 1 H), 3.69 (d, *J* = 14.5 Hz, 1 H), 2.65-2.50 (m, 3 H), 2.42 (dd, *J* = 14.9, 4.2 Hz, 1 H), 1.28 (s, 9 H); ¹³C NMR (126 MHz, CDCl₃) δ 171.4, 158.7, 142.0, 141.2, 136.5, 133.3, 129.8, 128.4, 128.4, 128.2, 128.1, 127.1, 126.8, 116.2, 113.6, 80.2, 61.5, 58.6, 55.3, 50.6, 37.3, 36.1, 27.9; HRMS(ES⁺): m/z [M+H]⁺ calcd for C₃₁H₃₈NO₃: 472.2852; found : 472.2851.

(S)-Tert-Butyl 3-{benzyl[(S)-1-(4-methoxyphenyl)but-3-en-1-yl]amino}octanoate 3v

Yield 46%, dr 96:4. Colorless oil. [α]_D -23.8 (*c* 1.4, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.46 (d, *J* = 7.5 Hz, 2 H), 7.38 (t, *J* = 7.6 Hz, 2 H), 7.29 (t, *J* = 7.3 Hz, 1 H), 7.22 (d, *J* = 8.5 Hz, 2 H), 5.55 (ddt, *J* = 17.1, 10.2, 6.8 Hz, 1 H), 4.93 (dt, *J* = 17.2, 1.8 Hz, 1 H), 4.86 (dd, *J* = 10.2, 1.8 Hz, 1 H), 3.84 (d, *J* = 14.7 Hz, 1 H), 3.83 (s, 3 H), 3.66 (dd, *J* = 9.1, 6.4 Hz, 1 H), 3.47 (d, *J* = 14.7 Hz, 1 H), 3.39 (dq, *J* = 10.4, 6.4, 5.2 Hz, 1H), 2.62 (ddt, *J* = 22.6, 14.2, 6.4 Hz, 2H), 1.83 (d, *J* = 6.4 Hz, 2 H), 1.68-1.60 (m, 1 H), 1.55-1.46 (m, 1 H), 1.44 (s, 9 H), 1.41-1.15 (m, 6 H), 0.94 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 172.4, 158.7, 141.5, 136.7, 132.3, 129.8, 128.61, 128.3, 126.8, 116.0, 113.5, 78.0, 62.2, 55.3, 53.7, 50.1, 38.4, 38.2, 34.0, 32.0, 28.2, 26.78, 22.8, 14.2 HRMS(ES⁺): m/z [M+H]⁺ calcd for C₃₀H₄₄NO₃: 466.3321; found : 466.3324.

(R)-Tert-Butyl 3-{(4-methoxybenzyl)[(S,E)-2-methyl-1-phenylhexa-1,5-dien-3-yl]amino}-3-phenylpropano ate 3w

Yield 70%, dr 95:5. Pale yellow oil. $[\alpha]_D$ +45.1 (*c* 1, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.41 (d, *J* = 7.6 Hz, 2 H), 7.34 (m, 4 H), 7.31-7.18 (m, 7 H), 6.83 (d, *J* = 8.4 Hz, 2 H), 6.44 (s, 1 H), 5.62 (ddt, *J* = 16.6, 9.6, 7.0 Hz, 1 H), 4.97-4.87 (m, 2 H), 4.54 (dd, *J* = 10.3, 5.0 Hz, 1 H), 3.81 (s, 3 H), 3.79 (d, *J* = 14.7 Hz, 1 H), 3.74 (d, *J* = 14.7 Hz, 1 H), 3.34 (dd, *J* = 9.8, 5.1 Hz, 1 H), 2.90 (dd, *J* = 14.7, 5.1 Hz, 1 H), 2.77 (dd, *J* = 14.6, 10.2 Hz, 1 H), 2.29-2.09 (m, 2 H), 1.94 (s, 3 H), 1.26 (s, 9 H); ¹³C NMR (126 MHz, CDCl₃) δ 171.3, 158.4, 141.4, 138.2, 136.6, 133.9, 129.2, 129.2, 128.6, 128.2, 128.1, 128.0, 127.2, 126.3, 115.9, 113.6, 80.4, 67.3, 59.7, 55.4, 50.5, 37.6, 33.7, 28.0, 16.5; HRMS(ES⁺): m/z [M+H]⁺ calcd for C₃₄H₄₂NO₃: 512.3165; found : 512.3167.

(S,E)-Tert-Butyl 3-{benzyl[(R)-1-(pyridin-3-yl)but-3-en-1-yl]amino}-5-phenylpent-4-enoate 3x

CO₂tBu

Yield 68%, dr >95:5. Yellow oil. $[\alpha]_D$ -66.5 (*c* 1, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 8.54 (d, *J* = 2.0 Hz, 1 H), 8.50 (dd, *J* = 4.8, 1.6 Hz, 1 H), 7.65 (dt, *J* = 7.9, 1.8 Hz, 1 H), 7.40-7.19 (m, 11 H), 6.50 (d, *J* = 16.1 Hz, 1 H), 6.25 (dd, *J* = 16.0, 7.1 Hz, 1 H), 5.61 (ddt, *J* = 17.0, 10.2, 6.8 Hz, 1 H), 5.04-4.91 (m, 2 H), 4.06 (q, *J* = 7.1 Hz, 1 H), 3.96 (dd, *J* = 9.5, 5.4 Hz, 1 H), 3.83 (d, *J* = 14.5 Hz, 1 H), 3.74 (d, *J* = 14.5 Hz, 1 H), 2.80 (m, 1 H), 2.62 (m, 1 H), 2.36 (d, *J* = 7.2 Hz, 2 H), 1.37 (s, 9 H); ¹³C NMR (126 MHz, CDCl₃) δ 170.8, 150.7, 148.5, 140.5, 137.0, 136.6, 135.9, 135.6, 131.5, 129.7, 128.7, 128.6, 128.4, 127.7, 127.1, 126.4, 123.2, 117.2, 80.6, 61.0, 57.2, 50.6, 39.5, 35.7, 28.2; HRMS(ES⁺): m/z [M+H]⁺ calcd for C₃₁H₃₇N₂O₂: 469.2855; found : 469.2859.

(R)-Tert-Butyl 3-{Benzyl[(S)-1-(thiophen-2-yl)but-3-en-1-yl]amino}-3-(furan-2-yl)propanoate 3y

Yield 69%, dr 94:6. Yellow oil. $[\alpha]_D$ +40.1 (*c* 1, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.43-7.41 (m, 1 H), 7.39 (d, *J* = 7.4 Hz, 2 H), 7.33 (t, *J* = 7.5 Hz, 2 H), 7.27-7.23 (m, 2 H), 7.01 (d, *J* = 2.8 Hz, 1 H), 6.98 (dd, *J* = 5.0, 3.6 Hz, 1 H), 6.36 (dd, *J* = 3.2, 1.8 Hz, 1 H), 6.21 (d, *J* = 2.7 Hz, 1 H), 5.72 (ddt, *J* = 16.9, 10.1, 5.0 Hz, 1 H), 4.99 (m, 1 H), 4.96 (d, *J* = 10.3 Hz, 1 H), 4.48 (dd, *J* = 9.6, 4.8 Hz, 1 H), 4.16 (dd, *J* = 8.8, 4.5 Hz, 1 H), 3.82 (d, *J* = 14.5 Hz, 1 H), 3.78 (d, *J* = 14.5 Hz, 1 H), 2.74 (dd, *J* = 15.0, 10.0 Hz, 1 H), 2.55-2.46 (m, 2 H), 2.29 (m, 1 H), 1.33 (s, 9 H); ¹³C NMR (126 MHz, CDCl₃) δ 170.5, 154.8, 147.0, 141.6, 139.9, 136.5, 129.0, 128.3, 127.1, 126.5, 125.0, 124.4, 116.4, 110.3, 107.5, 80.4, 57.5, 52.0, 50.8, 38.12, 36.9, 28.0; HRMS(ES⁺): m/z [M+H]⁺ calcd for C₂₆H₃₂NO₃S: 438.2103; found : 438.2104.

(±)-(S)-Tert-Butyl 3-{benzyl[(R)-1-phenylallyl]amino}-3-phenylpropanoate 4

Yield 81%, dr 87:13. Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.20 (m, 15 H), 5.90 (dt, *J* = 17.2, 9.6 Hz, 1 H), 5.11 (d, *J* = 10.2 Hz, 1 H), 4.99 (d, *J* = 17.2 Hz, 1 H), 4.36 (dd, *J* = 9.9, 5.5 Hz, 1 H), 4.21 (d, *J* = 8.9 Hz, 1 H), 3.72 (d, *J* = 14.9 Hz, 1 H), 3.54 (d, *J* = 14.9 Hz, 1 H), 2.59 (dd, *J* = 14.3, 5.5 Hz, 1 H), 2.34 (dd, *J* = 14.3, 9.9 Hz, 1 H), 1.14 (s, 10 H); ¹³C NMR (126 MHz, CDCl₃) δ 171.1, 142.8, 141.8, 141.4, 137.5, 128.7, 128.4, 128.3, 128.24, 128.23, 128.19, 128.15, 128.12, 127.3, 127.1, 126.5, 118.2, 80.3, 68.1, 60.9, 51.7, 39.8, 27.9; HRMS(ES⁺): m/z [M+H]⁺ calcd for C₂₉H₃₄NO₂: 428.2590; found : 428.2589.

(R)-Tert-Butyl 4-methyl-3-{[(S)-1-phenylbut-3-en-1-yl]amino}pentanoate 6s

Ph^{win}NH iPr^{win}CO₂tBu

To a solution of **3s** (353 mg, 0.8 mmol) in a 4:1 mixture of CH₃CN/H₂O (7.5 mL) at 0°C was added CAN (1.32 g, 2.42 mmol) in one portion and the resulting solution was stirred for 30 min at 0°C. A solution of NaOH (5%, 5 mL) and the mixture was stirred for 15 min. The heterogeneous media was extracted with CH₂Cl₂ (4 x 10 mL). The organic phases were combined, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica eluting with PE/Et₂O (95:5) to give **6s** (210 mg, 83%) as a colorless oil. [α]_D -71.4 (*c* 0.4, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.37-7.29 (m, 4 H), 7.24 (m, 1 H), 5.72 (dddd, *J* = 17.1, 10.1, 8.0, 6.1 Hz, 1 H), 5.08 (dq, *J* = 17.1, 1.6 Hz, 1 H), 5.03 (dm, *J* = 10.1 Hz, 1 H), 3.77 (dd, *J* = 7.5, 6.2 Hz, 1 H), 2.56 (q, *J* = 5.7 Hz, 1 H), 2.46-2.28 (m, 4 H), 1.65 (m, 1 H), 1.47 (s, 9 H), 1.44 (br s, 1 H), 0.88 (d, *J* = 6.8 Hz, 3 H), 0.81 (d, *J* = 6.8 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 172.4, 144.6, 135.8, 128.2, 127.7, 127.0, 117.4, 80.3, 60.0, 57.6, 43.6, 37.1, 31.7, 28.3, 19.0, 18.7; HRMS(ES⁺): m/z [M+H]⁺ calcd for C₂₀H₃₂NO₂: 318.2433; found : 318.2435.

(S)-Tert-Butyl 3-{[(S)-1-phenylbut-3-en-1-yl]amino}octanoate 5t

∠CO₂tBu

Prepared according to the above procedure in 80% yield as a colorless oil. $[\alpha]_D$ -42.1 (*c* 1, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 7.33 (m, 4 H), 7.25 (t, *J* = 6.7 Hz, 1 H), 5.62 (dddd, *J* = 17.1, 10.1, 8.0, 6.0 Hz, 1 H), 5.08 (d, *J* = 17.1 Hz, 1 H), 5.04 (d, *J* = 10.1 Hz, 1 H), 3.79 (dd, *J* = 7.6, 6.1 Hz, 1 H), 2.69 (quint, *J* = 5.8 Hz, 1 H), 2.44-2.34 (m, 2 H), 2.32 (d, *J* = 5.4 Hz, 2 H), 1.55 (br s, 1 H), 1.46 (s, 9 H), 1.40-1.29 (m, 3 H), 1.28-1.19 (m, 3 H), 1.12 (m, 2 H), 0.85 (t, *J* = 7.3 Hz, 3 H); ¹³C NMR (151 MHz, CDCl₃) δ 171.9, 144.4, 135.7, 128.3, 127.5, 127.1, 117.5, 80.4, 59.7, 52.1, 43.6, 39.5, 35.5, 31.8, 28.3, 25.7, 22.7, 14.2; HRMS(ES⁺): m/z [M+H]⁺ calcd for C₂₂H₃₆NO₂: 346.2746; found : 346.2747.

(R)-4-Methyl-3-{[(S)-1-phenylbut-3-en-1-yl]amino}pentan-1-ol 7

To a solution of **6s** (187 mg, 0.59 mmol) in THF (6 mL) was added a solution of LiAlH4 (2.2 M in THF, 0.7 mmol) at 0°C and the resulting solution was stirred at rt for 16 h. Water was carefully added at 0°C until the gas evolution ceased. A solution of Rochelle salt (3 mL) and Et_2O (10 mL) were added and the stirring was continued for 15 min. The organic phase was isolated and the white paste was triturated with Et_2O (2 x 10 mL). The organic phases were

combined, dried over Na₂SO₄, filtered and concentrated under reduced pressure to give **7** (145 mg, 99%) as a colorless oil. $[\alpha]_D$ +13.9 (*c* 1, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.34 (t, *J* = 7.6 Hz, 2 H), 7.30-7.22 (m, 3 H), 5.64 (ddt, *J* = 17.2, 10.2, 7.1 Hz, 1H), 5.07-4.97 (m, 2 H), 3.91 (ddd, *J* = 10.4, 6.7, 3.5 Hz, 1 H), 3.85 (dd, *J* = 7.7, 6.0 Hz, 1 H), 3.81 (ddd, *J* = 11.0, 7.8, 3.3 Hz, 1 H), 2.56 (m, 2 H), 2.47 (m, 1 H), 1.91 (m, 1 H), 1.76 (ddt, *J* = 13.9, 6.7, 3.3 Hz, 1 H), 1.45 (dtd, *J* = 14.7, 7.8, 3.5 Hz, 1 H), 0.89 (d, *J* = 6.8 Hz, 3 H), 0.77 (d, *J* = 6.8 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 143.5, 135.0, 128.6, 127.5, 127.3, 117.5, 62.5, 61.3, 60.0, 41.7, 29.5, 29.0, 20.1, 17.2; HRMS(ES⁺): m/z [M+H]⁺ calcd for C₁₆H₂₆NO: 248.2014; found : 248.2012.

(S)-Tert-Butyl 3-{(methoxycarbonyl)[(S)-1-phenylbut-3-en-1-yl]amino}octanoate 8

To a solution of **6t** (470 mg, 1.36 mmol) in acetone (5 mL) was added K_2CO_3 (1.13 g, 8.2 mmol) and methylchloroformate (0.41 mL, 5.4 mmol) and the mixture was refluxed for 16 h. CH_2Cl_2 (10 mL) and Et_2O (10 mL) were added, and the solid was filtered off. The filtrate was concentrated under reduced pressure. The residue was dissolved in CH_2Cl_2 (30 mL), and the resulting organic phase was washed with an aquous solution of HCl (1 M, 10 mL), dried over Na_2SO_4 , filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica eluting with PE/Et₂O (90:10) to give **7t** (440 mg, 80%) as a colorless oil. [α]_D -9.0 (*c* 1, CH_2Cl_2); ¹H NMR (500 MHz, CDCl₃) δ 7.39 (d, *J* = 7.2 Hz, 2 H), 7.32 (t, *J* = 7.5 Hz, 2 H), 7.26 (t, *J* = 7.2 Hz, 1 H), 5.77 (ddt, *J* = 17.0, 10.2, 6.7 Hz, 1 H), 5.22 (br s, 1 H), 5.15 (dd, *J* = 17.1, 1.5 Hz, 1 H), 5.05 (dd, *J* = 10.3, 1.4 Hz, 1 H), 3.74 (s, 3H), 3.67 (br s, 1 H), 2.86 (dt, *J* = 14.5, 7.4 Hz, 1H), 2.76 (dt, *J* = 14.3, 7.0 Hz, 1H), 2.49 (br s, 1H), 1.79 (brs, 1 H), 1.74 (br d, *J* = 16.2 Hz, 1 H), 1.61 (br s, 1 H), 1.40-1.16 (m, 15 H), 0.89 (t, *J* = 6.9 Hz, 3 H);¹³C NMR (126 MHz, CDCl₃) δ 171.0, 139.8, 135.3, 128.5, 127.7, 117.4, 80.3, 59.8, 52.3, 41.1 (br), 36.4 (br), 33.9 (br), 32.1, 28.1, 27.0, 22.7, 14.1, 1 C is missing; HRMS(ES⁺): m/z [M+Na]⁺ calcd for C₂₄H₃₇NO₄Na: 426.2620; found : 426.2618.

(S)-3-{[(S)-1-(Tert-Butoxy)-1-oxooctan-3-yl](methoxycarbonyl)amino}-3-phenylpropanoic acid 9

To a solution of **8** (156 mg, 0.39 mmol) in a 2/2/3 mixture of CCl₄/CH₃CN/H₂O (8.75 mL) at 0°C was added NalO₄ (334 mg, 1.56 mmol) and RuCl₃ (4 mg, 0.02 mmol) and the resulting mixture was stirred for 4 h at rt. Water (10 mL) and CH₂Cl₂ (10 mL) were added. The organic layer was isolated and the aqueous layer was extracted with CH₂Cl₂ (2 x 10 mL). The organic phases were combined, washed with an aqueous solution of HCl (1 M, 10 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica eluting with a mixture of PE/Et₂O (90:10→50:50) to give **9** (128 mg, 78%) as a colorless oil. [α]_D -4.5 (*c* 1, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.35 (br s, 2 H), 7.29 (t, *J* = 7.4 Hz, 2 H), 7.24 (t, *J* = 7.2 Hz, 1

H), 5.43 (br s, 1 H), 3.79 (br s, 1H), 3.70 (s, 3 H), 3.21 (br s, 1 H), 3.04 (br d, J = 12.4 Hz, 1 H), 2.44 (br s, 1 H), 1.93 (br d, J = 14.7 Hz, 1 H), 1.73 (br s, 1 H), 1.55 (br m, 1 H), 1.32 (s, 9 H), 1.28-1.17 (m, 7 H), 0.85 (t, J = 6.8 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 176.2, 170.9, 139.5, 128.7, 127.9, 127.6, 80.5, 56.0, 53.8, 52.5, 40.7, 38.4, 33.5, 31.9, 28.1, 26.8, 22.6, 14.1; 1 C is missing; HRMS(ES⁺): m/z [M+Na]⁺ calcd for C₂₃H₃₅NO₆Na: 444.2362; found : 444.2361.

(±)-(R)-Tert-Butyl 3-{benzyl[(R)-3-hydroxy-1-phenylpropyl]amino}octanoate 10

To a solution of **3b** (515 mg, 1.18 mmol) in a 1:1:1 mixture of tBuOH/THF/H₂O (12 mL) was added NMO (415 mg, 3.55 mmol) and a solution of OsO₄ (2.5% in tBuOH, 0.8 mL) and the resulting mixture was stirred for 1h30 at rt. A saturated solution of Na₂SO₃ (2 mL) and a saturated solution of Na₂CO₃ (2 mL) were added. The mixture was extracted with AcOEt (3 x 10 mL). The residue was diluted in a 2:1 mixture of THF/H₂O (12 mL), then NalO₄ (303 mg, 1.4 mmol) was added at rt. After 1h30 of stirring, MeOH (5 mL) NaBH₄ (90 mg, 2.4 mmol) were added at 0°C. After 30 min of stirring, water (5 mL) was added and the mixture was reduced to half of the volume under reduced pressure. The aqueous phase was extracted with CH₂Cl₂ (3 x 10 mL), the organic phases were combined, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica eluting with a mixture of PE/AcOEt (80:20) to give **10** (365 mg, 70%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.46 (d, *J* = 7.4 Hz, 2 H), 7.40 (t, *J* = 7.6 Hz, 2 H), 7.35-7.28 (m, 6 H), 3.88-3.79 (m, 2 H), 3.67-3.57 (m, 1 H), 3.53-3.39 (m, 3 H), 2.24 (m, 1 H), 1.92 (br s, 1 H), 1.87-1.79 (m, 2 H), 1.66 (dd, *J* = 15.3, 2.9 Hz, 1 H), 1.60-1.48 (m, 2 H), 1.43 (s, 9 H), 1.37-1.22 (m, 6 H), 0.92 (t, *J* = 7.1 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 172.2, 141.0, 140.2, 129.0, 128.7, 128.4, 127.4, 127.1, 80.1, 60.8, 60.0, 53.9, 50.0, 38.2, 35.8, 34.2, 32.0, 28.1, 26.7, 22.8, 14.2.

(±)-(R)-Tert-Butyl 3-{benzyl[(R)-1-phenyl-3-(tosyloxy)propyl]amino}octanoate

To a solution of the above alcohol (243 mg, 0.56 mmol), Et₃N (0.09 mL, 0.66 mmol), and DMAP (16 mg, 0.13 mmol) in CH₂Cl₂ (5 mL) was added in one portion TsCl (126 mg, 0.66 mmol), and the resulting mixture was stirred at rt for 5 h. Water (2 mL) was added, and the organic layer was washed with a saturated aqueous solution of Na₂CO₃ (2 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with PE/AcOEt (80:20) to give the title compound as a colorless oil (201 mg, 60%). ¹H NMR (500 MHz, CDCl₃) δ 7.62 (d, *J* = 8.2 Hz, 2 H), 7.38 (d, *J* = 4.0 Hz, 4 H), 7.29 (m, 7 H), 7.14 (dd, *J* = 7.0, 2.0 Hz, 2 H), 3.89 (dt, *J* = 9.9, 6.0 Hz, 1 H), 3.81 (m, 1 H), 3.77 (d, *J* = 14.5 Hz, 1 H), 3.64 (t, *J* = 7.5 Hz, 1 H), 3.38 (d, *J* = 14.5 Hz, 1 H), 3.38 (m, 1H), 2.46 (s, 3 H), 2.27 (dq, *J* = 14.1, 7.1 Hz, 1 H), 2.00 (dq, *J* = 13.8, 6.2 Hz, 1 H),

1.78 (dd, *J* = 14.9, 9.9 Hz, 1 H), 1.68 (dd, *J* = 14.9, 2.5 Hz, 1 H), 1.58-1.12 (m, 10 H), 1.40 (s, 9H), 0.91 (t, *J* = 7.1 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 172.1, 144.6, 140.9, 139.2, 133.3, 129.8, 128.7, 128.6 (2 C), 128.5, 128.0, 127.6, 127.1, 80.1, 68.7, 59.1, 53.8, 50.1, 34.0, 33.0, 32.0, 28.2, 26.8, 22.8, 21.8, 14.3.

(±)-(2R,3S,6R)-Tert-Butyl 1-benzyl-2-pentyl-6-phenylpiperidine-3-carboxylate 11

To a solution of the above compound (201 mg, 0.34 mmol) in THF (4 mL) was added at -70°C a solution of LiHMDS (1M in THF, 1.36 mL, 1.36 mmol) and the resulting mixture was stirred at -70°C for 30 min then 4 h at rt. Water (2 mL) and Et₂O (4 mL) were added. The organic layer was collected, and the aqueous layer was extracted with Et₂O (4 mL). The organic phases were combined, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with a 9:1 mixture of PE/Et₂O to give **11** as a white solid (103 mg, 72%). Mp 78°C; ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, *J* = 7.6 Hz, 2 H), 7.32 (t, *J* = 7.6 Hz, 2 H), 7.23-7.19 (m, 3 H), 7.18-7.12 (m, 3 H), 3.83 (d, *J* = 15.6 Hz, 1 H), 3.51 (dd, *J* = 10.6, 2.8 Hz, 1 H), 3.46 (d, *J* = 15.6 Hz, 1 H), 2.89 (d, *J* = 10.3 Hz, 1 H), 2.57 (td, *J* = 10.9, 3.5 Hz, 1 H), 1.92 (dt, *J* = 11.7, 5.6 Hz, 1 H), 1.82-1.70 (m, 2 H), 1.68-1.57 (m, 3 H), 1.48 (s, 9 H), 1.40-1.35 (m, 3 H), 1.23-1.15 (m, 2 H), 0.92 (m, 1 H), 0.84 (t, *J* = 7.4 Hz, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 174.8, 145.5, 139.8, 128.9, 128.4, 128.1, 127.8, 127.0, 126.3, 80.2, 66.7, 62.7, 54.0, 47.2, 34.3, 32.2, 31.2, 28.5, 28.2, 23.0, 22.8, 14.3; HRMS(ES⁺): m/z [M+H]⁺ calcd for C₂₈H₄₀NO₂: 422.3059; found : 422.3062.

(±)-(S)-3-{Benzyl[(R)-1-(furan-3-yl)but-3-en-1-yl]amino}-3-phenylpropan-1-ol

To a solution of **3b** (703 mg, 1.63 mmol) in THF (12 mL) at 0°C was added dropwise a solution of LiAlH₄ (2 M in THF, 1 mL, 2 mmol), and the resulting solution was stirred for 14 h at rt. The reaction mixture was cooled to 0°C prior to careful addition of a solution of Rochelle salt (10%, 5 mL). After 15 min of stirring Et₂O (10 mL) was added and the organic layer was collected. The remaining white paste was triturated with AcOEt (2x 5 mL). The organic phases were combined, dried over Na₂SO₄, filtered and concentrated under reduced pressure to give the title compound (480 mg, 81%) which was used in the next step without purification. ¹H NMR (500 MHz, CDCl₃) δ 7.46-7.22 (m, 14 H), 6.47 (s, 1 H), 5.52 (ddt, *J* = 17.1, 10.2, 6.9 Hz, 1 H), 4.87 (d, *J* = 10.2 Hz, 1 H), 4.81 (d, *J* = 17.2 Hz, 1 H), 4.05-3.98 (m, 2H), 3.96 (dd, *J* = 10.5, 3.5 Hz, 1H), 3.69 (d, *J* = 13.9 Hz, 1H), 3.64 (dt, *J* = 10.9, 5.5 Hz, 1H), 3.46 (ddd, *J* = 10.8, 7.7, 4.7 Hz, 1H), 2.32 (dtd, *J* = 14.0, 8.0, 5.1 Hz, 1H), 2.26 (br s, 1 H), 1.93 (m, 1H), 1.77 (dtd, *J* = 14.3, 6.0, 4.7 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 143.1, 141.5, 140.7, 140.6, 136.4, 129.0, 128.7, 128.6 (2 C), 127.5, 127.2, 126.6, 116.3, 111.1, 61.4, 59.9, 53.7, 50.5, 35.1, 34.7.

(±)-(S)-3-{Benzyl[(R)-1-(furan-3-yl)but-3-en-1-yl]amino}-3-phenylpropanal

To a solution of oxalylchloride (0.21 mL, 2.39 mmol) in CH₂Cl₂ (15 mL) at -78°C was added dropwise a solution of DMSO (0.42 mL, 5.85 mmol) in CH₂Cl₂ (5 mL). After 15 min of stirring at -78°C, a solution of the above alcohol (480 mg, 1.38 mmol) in CH₂Cl₂ (5 mL) was slowly added. After 30 min of stirring at -78°C, Et₃N (1.15 mL, 8.3 mmol) was added dropwise. The resulting mixture was stirred for 15 min at -78°C, and the reaction mixture was slowly warmed to rt. Water (10 mL) was added and the organic layer was collected. The organic phase was washed with a saturated solution of Na₂CO₃ (5 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure to give 450 mg of material which contains the aldehyde as the major compound which was used directly in the next step without purification. ¹H NMR (500 MHz, CDCl₃) δ 9.42 (dd, *J* = 3.4, 1.4 Hz, 1 H), 7.48-7.31 (m, 12 H), 6.44 (s, 1 H), 5.59 (ddt, *J* = 17.0, 10.3, 6.8 Hz, 1 H), 4.96-4.84 (m, 2H), 4.56 (dd, *J* = 8.3, 6.9 Hz, 1 H), 3.90 (m, 1 H), 3.86 (d, *J* = 13.9 Hz, 1 H), 3.70 (d, *J* = 13.9 Hz, 1 H), 2.99 (ddd, *J* = 16.2, 8.3, 3.5 Hz, 1 H), 2.68 (ddd, J = 16.2, 7.0, 1.4 Hz, 1 H), 2.26 (m, 1 H), 2.10 (m, 1 H).

(±)-(S)-N-Benzyl-N-[(R)-1-(furan-3-yl)but-3-en-1-yl]-1-phenylpent-3-en-1-amine 12

To a suspension of ethyltriphenylphosphonium bromide (1.62 g, 4.3 mmol) in THF (20 mL), was added dropwise a solution of LiHMDS (1 M, in THF, 2.8 mL, 2.8 mmol) at 0°C. After 15 min of stirring, a solution of the above aldehyde (450 mg, 1.25 mmol) in THF (2 mL) was added and the resulting mixture was stirred for 12 h at rt, then filtrated through a plug of celite and rinsed with Et_2O (20 mL). A saturated aqueous solution of NH_4Cl (10 mL) was added to the filtrate. The organic phase was washed with brine (10 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with PE/Et₂O (98:2) to give **12** as a colorless oil (260 mg, 58%). Major Z isomer : ¹H NMR (500 MHz, CDCl₃) δ 7.42-7.22 (m, 12 H), 6.48 (s, 1 H), 5.59 (ddt, *J* = 16.9, 9.0, 6.8 Hz, 1H), 5.36 (tq, *J* = 10.9, 6.6 Hz, 1 H), 5.20-5.09 (m, 1 H), 4.90 (d, *J* = 10.0 Hz, 1 H), 4.89 (d, *J* = 16.9 Hz, 1 H), 3.95-3.87 (m, 2 H), 3.85 (dd, *J* = 9.3, 5.5 Hz, 1 H), 3.74 (d, *J* = 14.4 Hz, 1 H), 2.62 (dt, *J* = 13.6, 6.3 Hz, 1 H), 2.43 (dt, *J* = 15.5, 8.1 Hz, 1 H), 2.22 (t, *J* = 6.8 Hz, 2 H), 1.56 (dd, *J* = 6.3, 1.5 Hz, 1 H), 1.50 (d, *J* = 6.7 Hz, 2 H); HRMS(ES⁺): m/z [M+H]⁺ calcd for C₂₆H₃₀NO: 372.2327; found : 372.2327.

(±)-(2R,7S)-1-Benzyl-2-(furan-3-yl)-7-phenyl-2,3,6,7-tetrahydro-1H-azepine 13

To a solution of **11** (181 mg, 0.5 mmol) in degassed CH₂Cl₂ (12 mL) was added Grubbs II catalyst (37 mg, 0.04 mmol). The resulting mixture was refluxed for 2 h under an atmosphere of Ar. The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel eluting with PE/Et₂O (98:2) to give **13** (133 mg, 81%) as a pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.60 (d, *J* = 7.2 Hz, 2 H), 7.49 (s, 1 H), 7.40-7.33 (m, 5 H), 7.30-7.24 (m, 3 H), 7.20 (t, *J* = 7.3 Hz, 1 H), 6.54 (s, 1 H), 5.73 (ddt, *J* = 11.2, 5.7, 2.7 Hz, 1 H), 5.66 (ddt, *J* = 11.2, 7.0, 2.4 Hz, 1 H), 4.04 (d, *J* = 9.8 Hz, 1 H), 4.01 (d, *J* = 5.8 Hz, 1 H), 3.74 (d, *J* = 13.8 Hz, 1 H), 3.55 (d, *J* = 13.8 Hz, 1 H), 2.93 (d, *J* = 18.1 Hz, 1 H), 2.57 (m, 1 H), 2.41 (dt, *J* = 18.2, 6.0 Hz, 1 H), 2.18 (dd, *J* = 17.7, 6.8 Hz, 1 H);¹³C NMR (126 MHz, CDCl₃) δ 147.3, 142.0, 140.4, 139.0, 131.2, 130.0, 128.8, 128.5, 128.3, 127.4, 127.1, 127.0, 126.8, 110.6, 68.7, 58.1, 55.3, 34.7, 26.9; HRMS(ES⁺): m/z [M+H]⁺ calcd for C₂₃H₂₄NO: 330.1858; found : 330.1860.

Tert-Butyl 2-[(2S,6R)-1-Benzyl-6-phenyl-1,2,5,6-tetrahydropyridin-2-yl]acetate 14

To a solution of **3q** (91 mg, 0.21 mmol) in degassed CH₂Cl₂ (12 mL) was added Grubbs II catalyst (15 mg, 0.017 mmol). The resulting mixture was refluxed for 2 h under an atmosphere of Ar. The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel eluting with PE/Et₂O (9:1) to give **14** (72 mg, 94%) as a pale yellow solid. Mp 60°C; $[\alpha]_D$ +76.2 (*c* 1, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.58 (d, *J* = 7.5 Hz, 2 H), 7.39 (t, *J* = 7.6 Hz, 2 H), 7.24 (tt, *J* = 14.9, 5.4 Hz, 6 H), 6.06 (m, 1 H), 5.82 (m, 1 H), 4.29 (dd, *J* = 11.0, 4.3 Hz, 1 H), 3.62 (m, 1 H), 3.46 (d, *J* = 13.6 Hz, 1 H), 3.40 (d, *J* = 13.6 Hz, 1 H), 2.67 (dd, *J* = 14.3, 7.9 Hz, 1 H), 2.60 (ddq, *J* = 17.4, 11.0, 2.2 Hz, 1 H), 2.48 (dd, *J* = 14.4, 7.0 Hz, 1 H), 2.36 (dt, *J* = 17.5, 4.4 Hz, 1 H), 1.44 (s, 9 H); ¹³C NMR (126 MHz, CDCl₃) δ 171.1, 142.5, 139.9, 128.9, 128.4, 128.2, 128.1, 127.9, 127.0, 126.8 126.2, 80.3, 54.4, 50.5, 41.14, 28.2, 24.2; HRMS(ES⁺): m/z [M+H]⁺ calcd for C₂₄H₃₀NO₂: 364.2277; found : 364.2277.

Tert-Butyl 2-[(2R,6R)-6-phenylpiperidin-2-yl]acetate

Ph NH CO₂tBu

A solution of **14** (67 mg, 0.18 mmol), HCl (6M, 0.05 mL) and Pd/C (10%, 30 mg) in MeOH (4 mL) and stirred under an atmosphere of H_2 for 14h. The crude mixture was filtered through a pad of celite and the filtrate was concentrated under reduced pressure. The residue was diluted in CH_2CI_2 (8 mL) then washed with an aqueous solution of NaOH (5%, 5 mL). The organic phases was dried over MgSO₄, filtered and concentrated under reduced pressure to give the title compound (42 mg, 84 %) as a pale yellow oil. [α]_D 0 (*c* 0.7, CHCI₃); ¹H NMR (500 MHz, CDCI₃) δ 7.42 (d, *J* = 7.4 Hz, 2 H), 7.35 (t, *J* = 7.6 Hz, 2 H), 7.25 (t, *J* = 7.3 Hz, 1 H), 4.03 (dd, *J* = 8.8, 3.3 Hz, 1 H), 3.58 (dq, *J* = 9.2, 4.6 Hz, 1 H), 2.76 (dd, *J* = 15.1, 9.4 Hz, 1 H), 2.40 (dd, *J* = 15.1, 4.9 Hz, 1 H), 1.90-1.63 (m, 5 H), 1.54-1.49 (m, 1 H), 1.46 (s, 9 H); ¹H NMR (126 MHz, CDCI₃) δ 172.1, 144.8, 128.5, 126.9, 126.9, 80.7, 54.4, 49.5, 38.8, 33.3, 29.9, 28.3, 20.3.

Literature data for analogous *Cis* methyl ester¹⁰

¹H NMR (400 MHz, CDCl₃) δ 7.39-7.35 (2 H, m,), 7.34-7.28 (2 H, m), 7.27-7.21 (1 H, m), 3.69 (1 H, dd, *J* = 10.8, 2.5 Hz), 3.66 (3 H, s), 3.17-3.10 (1 H, m), 2.51-2.42 (2 H, m), 1.94-1.85 (1 H, m), 1.81-1.73 (1 H, m), 1.69-1.62 (1 H, m), 1.61-1.41 (2 H, m), 1.32-1.20 (1 H, m); ¹H NMR (100 MHz, CDCl₃) δ 172.9, 145.1, 128.3, 127.1, 126.8, 61.9, 53.9, 51.6, 41.3, 34.1, 31.8, 25.0;

Literature data for analogous *Trans* methyl ester¹⁰

¹H NMR (400 MHz, CDCl₃) δ 7.42-7.38 (2 H, m), 7.36-7.30 (2 H, m), 7.27-7.21 (1 H, m), 4.00 (1 H, dd, *J* = 8.7, 3.4 Hz), 3.69 (3 H, s), 3.63-3.56 (1 H, m), 2.86 (1 H, dd, *J* = 15.5, 9.4 Hz), 2.47 (1 H, dd, *J* = 15.5, 4.8 Hz), 1.89-1.61 (5 H, m), 1.55-1.46 (1 H, m); ¹H NMR (100 MHz, CDCl₃) δ 173.0, 144.2, 128.4, 126.9, 126.7, 54.2, 51.7, 49.1, 37.0, 32.9, 29.7, 20.0;

¹⁰ J. D. Cuthbertson and R. J. K. Taylor, *Angew. Chem., Int. Ed.* 2013, **52**, 1490.