Homoallylic amines as efficient chiral inducing framework in the conjugated addition of amides to α, β unsaturated esters. An entry to enantio-enriched diversely substituted amines.

Johann Rogier, Lilia Anani, Aurélien Coelho, Fabien Massicot, Carine Machado-Rodrigues, Jean-Bernard Behr, Jean-Luc Vasse

Institut de Chimie Moléculaire de Reims, CNRS-UMR 7312 and Université de Reims, 51687 Reims Cedex 2, France

Supplementary Information

All reactions involving organometallics were conducted under an atmosphere of argon. Prior to use, THF was distilled over sodium-benzophenone ketyl. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3}, unless specified, on a Bruker AC-500. Samples were analyzed by Q-TOF HRMS system. The analysis was performed on a Waters SYNAPT G2-Si High Resolution Mass Spectrometry equipped with electrospray ionization (ESI) source (Waters Corp., Manchester, UK). Mass detection was conducted in positive ion mode, with the source temperature at $120^{\circ} \mathrm{C}$, capillary voltage and cone voltage were set at 3 KV and 40 V . The desolvation gas was optimized to $900 \mathrm{~L} / \mathrm{h}$, the cone gas flow of $50 \mathrm{~L} / \mathrm{h}$ and the scan range was from 50 to $2000 \mathrm{~m} / \mathrm{z}$. Samples were analyzed in infusion mode and the mass was corrected during acquisition using external reference (Lock-Spray) consisting of a $1 \mathrm{ng} / \mathrm{uL}$ solution of leucine encephalin at a flow rate of $5 \mu \mathrm{~L} / \mathrm{min}$, in order to make sure the accuracy and reproducibility during the MS analysis. All data collected were acquired using MassLynxTM (V4.1) software in centroid mode.

General procedure for the synthesis of racemic secondary amines 1.

A solution of benzylic amine (10 mmol) and aldehyde (10 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was refluxed for 1 h then cooled down to rt. The resulting mixture was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure to give the corresponding imine which was used in the next step without purification.

To a solution of imine (10 mmol) in THF (20 mL), was added allylbromide ($1.05 \mathrm{~mL}, 12 \mathrm{mmol}$) and Zn powder (1.02 $\mathrm{g}, 15 \mathrm{mmol})$, and the resulting mixture was stirred at rt for 2 h . Water (10 mL) was added, and the mixture was stirred vigorously for 30 min . $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added and the stirring was continued for 10 min . The organic layer was discarded and the remaining paste was triturated with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$. The organic phases were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to give the secondary amine which was used in the next step without purification.

1-(4-Chlorophenyl)-N-(4-methoxybenzyl)but-3-en-1-amine 1c

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.18(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.69(\mathrm{dddd}, \mathrm{J}=$ $16.9,10.1,7.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.14-5.03(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{dd}, J=7.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1$ $\mathrm{H}), 3.47(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.34(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.7,142.6,135.2$, $132.6,132.6,129.3,128.8,128.6,118.0,113.9,61.0,55.4,50.9,43.2$.

1-(4-Bromophenyl)-N-(4-methoxybenzyl)but-3-en-1-amine 1d ${ }^{1}$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 5.69$ (dddd, $J=16.7,10.3,7.9,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.15-4.99(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{dd}, J=7.7,5.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.61(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.26(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 158.7, 143.1, 135.1, 132.6, 131.6, 129.4, 129.2, 120.8, 118.0, 113.9, 61.0, 55.4, 50.9, 43.1.

N-Benzyl-1-(furan-2-yl)but-3-en-1-amine $1 \mathbf{f}^{2}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.03(\mathrm{~m}, 6 \mathrm{H}), 6.25(\mathrm{dd}, \mathrm{J}=3.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{ddt}, \mathrm{J}=$ $17.2,10.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{~d}, J=13.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.50-2.41(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.3,141.7,140.4,135.0,128.5,128.3$, $127.0,117.6,110.0,55.0,51.2,39.4$.

N-Benzyl-1-(furan-3-yl)but-3-en-1-amine 1g

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.40-7.23(\mathrm{~m}, 6 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 5.75(\mathrm{ddt}, J=17.2,10.2,7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.16-5.05(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~d}, \mathrm{~J}=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, \mathrm{~J}=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{t}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.01 (br s, 1 H); ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 143.3,140.6,139.9,135.3,128.5,128.3,127.7,127.0$, 117.7, 109.1, 52.8, 51.2, 41.5.

[^0]
(E)-N-Benzyl-2-methyl-1-phenylhexa-1,5-dien-3-amine1j ${ }^{3}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.19(\mathrm{~m}, 10 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 5.80(\mathrm{ddt}, J=17.2,10.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=17.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-$ $2.34(\mathrm{~m}, 2 \mathrm{H}), 1.93(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 140.9, 139.2, 138.1, 135.8, 129.1, 128.5, 128.3, 128.2, 127.5, 126.9, 126.3, 117.2, 65.6, 51.5, 39.3, 13.2.

(E)-N-Benzyl-1-phenylhexa-1,5-dien-3-amine $1 i^{\mathbf{2}}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.26(\mathrm{~m}, 8 \mathrm{H}), 6.55(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{dd}, J=15.9$, $8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.83 (dddd, J = 17.1, 10.1, $7.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.21-5.08 (m, 2 H), $3.93(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, \mathrm{~J}=$ $13.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.35\left(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$), 2.47-2.35 (hept, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}$), $1.81(\mathrm{br} \mathrm{s} 1 \mathrm{H},) ;{ }^{13} \mathrm{CNMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $140.6,137.1,135.1,132.7,131.4,128.7,128.5,128.2,127.51,127.0,126.4,117.8,59.6,51.4,40.8$.

Representative procedure for allylmetallation of tert-butylsulfinimines : Procedure A

(R)-2-Methyl-N-[(S,E)-2-methyl-1-phenylhexa-1,5-dien-3-yl]propane-2-sulfinamide 51

To a solution of (R, E)-2-methyl-N-((E)-2-methyl-3-phenylallylidene)propane-2-sulfinamide ($1.62 \mathrm{~g}, 6.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ at $-50^{\circ} \mathrm{C}$, was added a solution of allylmagnesium bromide (1 M in $\mathrm{Et}_{2} \mathrm{O}, 13 \mathrm{~mL}, 13 \mathrm{mmol}$). The resulting mixture was stirred for 1 h at $-50^{\circ} \mathrm{C}$, then 12 h at rt prior to the addition of a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. The organic layer was collected and the aqueous phases was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$. The organic fractions were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with a $70: 30 \rightarrow 50: 50$ mixture of $\mathrm{PE} / \mathrm{AcOEt}$ ($70: 30 \rightarrow 50: 50$) to give $5 \mathrm{I}\left(1.46 \mathrm{~g}, 74 \%\right.$) as a white solid. dr 97:3. $\mathrm{Mp} 80^{\circ} \mathrm{C}$. $[\alpha]_{\mathrm{D}}-91.4$ (c $1, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta{ }^{1} \mathrm{H}$ NMR (500 MHz, Chloroform-d) $\delta 7.38-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.22(\mathrm{tt}, \mathrm{J}=7.2,1.4 \mathrm{~Hz}, 6.60(\mathrm{~s}, 1 \mathrm{H})$, 5.81 (dddd, $J=16.9,10.1,8.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.26-5.16(\mathrm{~m}, 2 \mathrm{H}), 4.04(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.52(\mathrm{dtt}, J=$ 13.4, 5.9, 1.3 Hz, 1 H), 2.39 (dt, J = 13.9, $8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $1.85(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 137.5,136.6,134.4,129.3,129.2,128.2,126.7,118.9,61.0,55.5,39.5,22.79,13.5 ; \mathrm{HRMS}\left(E S^{+}\right): \mathrm{m} / \mathrm{z}$ $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NOSNa}$: 314.1555; found : 314.1556.

[^1]
(R)-2-Methyl-N-[(S)-1-phenylbut-3-en-1-yl]propane-2-sulfinamide 5a ${ }^{4}$

Yield 78%. White solid dr 98:2 after recrystallization from cyclohexane. $\mathrm{Mp} 68^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-145\left(c 0.25, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.39-7.29 (m, 5 H), 5.76 (dddd, $J=17.0,10.2,8.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.25-5.16 (m, 2 H), 4.49 (ddd, $J=$ 8.0, 5.4, 2.3 Hz, 1 H), 3.69 (br s, 1 H), 2.63 ($\mathrm{dtt}, J=13.9,5.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $2.50(\mathrm{dt}, J=14.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 9$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 141.8,134.3,128.6,127.8,127.6,119.4,57.2,55.8,43.6,22.7$.

(R)-2-Methyl-N-[(S)-1-(thiophen-2-yl)but-3-en-1-yl]propane-2-sulfinamide 5e ${ }^{4 c}$

Yield 87\%. Yellow oil, dr 95:5. [$\alpha]_{\mathrm{D}}-117\left(c 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl ${ }_{3}$) $\delta 7.21(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}$ $=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~m}, 1 \mathrm{H}), 5.80-5.68(\mathrm{~m}, 1 \mathrm{H}), 5.21-5.16(\mathrm{~m}, 2 \mathrm{H}), 4.77(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{brd}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.67$ ($\mathrm{dt}, J=11.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.57(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right)$ ס 146.1, 133.5, 126.6, 125.2, 125.0, 119.8, 55.9, 53.6, 43.7, 22.6.
(R)-N-[(S)-1-(4-Methoxyphenyl)but-3-en-1-yl]-2-methylpropane-2-sulfinamide $5 \mathbf{k}^{4 \mathrm{~b}}$

Yield 81\%. White solid; dr 98:2. Mp $68^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-128\left(c 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.25(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{~m}, 2$ H), 5.74 (dddd, J = 17.0, 10.2, $8.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.22-5.13 (m, 2 H), 4.43 (ddd, J = 7.8, 5.5, 1.9 Hz, 1 H), $3.81(\mathrm{~s}, 3 \mathrm{H})$, 3.66 (br s, 1 H), 2.58 (dt, J = 12.5, $5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.47 (dt, J = 14.0, $8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $1.20(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right)$ (159.2, 134.4, 133.7, 128.7, 119.2, 113.9, 56.6, 55.6, 55.3, 43.6, 22.7.

Representative procedure for the preparation of secondary homoallylilamine: Procedure B

(S,E)-2-Methyl-1-phenylhexa-1,5-dien-3-amonium chloride

To a solution of the above sulfinamide ($1.23 \mathrm{~g}, 4.06 \mathrm{mmol}$) in $\mathrm{MeOH}(7 \mathrm{~mL})$ was added a solution of $\mathrm{HCl}(2 \mathrm{M}$ in $\mathrm{Et}_{2} \mathrm{O}, 3 \mathrm{~mL}$) was added at rt . After 1 h 30 of stirring the solvent was removed under reduced pressure. The white solid was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$, then dried under high vacuum to give the title compound ($831 \mathrm{mg}, 87 \%$) as a white solid. $[\alpha]_{\mathrm{D}}+9.3\left(\mathrm{c} 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.76(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 7.38-7.16(\mathrm{~m}, 5 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H})$,

[^2]5.75 (ddt, $J=17.1,10.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{dt}, J=$ $13.4,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.66(\mathrm{dt}, J=14.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} N \mathrm{NR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.4,132.1,131.7$, $131.6,129.2,128.3,127.2,120.0,59.2,36.3,14.2$.
(S,E)-N-(4-Methoxybenzyl)-2-methyl-1-phenylhexa-1,5-dien-3-amine 1 I

The above ammonium salt ($533 \mathrm{mg}, 2.4 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$. The resulting solution was washed with an aqueous solution of $\mathrm{NaOH}(5 \%, 10 \mathrm{~mL})$, dried over MgSO_{4}, filtered and concentrated to give the free primary amine which was used in the next step without purification. A solution of primary amine ($0.45 \mathrm{~g}, 2.4$ mmol) and 4-methoxybenzaldehyde ($327 \mathrm{mg}, 2.4 \mathrm{mmol}$) in toluene (5 mL) was refluxed for 1 h . The solvent was distilled off under reduced pressure, then, $\mathrm{MeOH}(5 \mathrm{~mL})$ was added. The resulting solution was cooled down to $0^{\circ} \mathrm{C}$, then by $\mathrm{NaBH}_{4}(100 \mathrm{mg}, 5.3 \mathrm{mmol})$ was added in 3 portions. After 1 h of stirring, water (5 mL) was added and the mixture was concentrated to half of the volume. The residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$ and the organic phases were combined, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with a 7.3 mixture of $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}$ to give $11(630 \mathrm{mg}, 86 \%$) as a pale yellow oil. $[\alpha]_{\mathrm{D}}-12.2\left(c 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 3 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $6.48(\mathrm{~s}, 1 \mathrm{H}), 5.78$ (dddd, $J=17.1,10.0,7.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{dd}, J=17.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=$ $10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~m}, 2 \mathrm{H})$, 1.90 (s, 3 H), $1.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.7,139.3,138.1,135.8,133.0,129.5,129.1,128.2$,
 found: 308.2017.

(S)-N-benzyl-1-phenylbut-3-en-1-amine ${ }^{5}$ 1a

Prepared according to procedure B. Colorless oil overall yield 48\%. $[\alpha]_{\mathrm{D}}-52.2$ (c 1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.45-7.17(\mathrm{~m}, 10 \mathrm{H}), 5.75(\mathrm{dddd}, J=16.6,10.1,8.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.19-4.99(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{dd}, \mathrm{J}=7.9,5.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, \mathrm{~J}=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.36(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{br} s, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right)$ (143.9, 140.8, 135.6, 128.5, 128.5, 128.2, 127.4, 127.2, 126.9, 117.7, 61.7, 51.6, 43.2.

[^3]
(S)-N-Benzyl-1-(4-methoxyphenyl)but-3-en-1-amine1k ${ }^{6}$

Prepared according to procedure B, pale yellow oil, yield 87\%. [$\alpha]_{\mathrm{D}}-58.5$ (c 1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). for er $>95: 5{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.17(\mathrm{~m}, 7 \mathrm{H}), 6.93(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.74(\mathrm{dddd}, \mathrm{J}=16.8,10.2,7.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.16-5.01(\mathrm{~m}$, 2 H), $3.85(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=7.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.35(\mathrm{~m}, 2$ H), 1.77 (br s, 1 H); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.8,140.7,135.8,135.7,128.5,128.4,128.3,126.9,113.9,61.0$, 55.4, 51.4, 43.2.
(S)-N-(4-Methoxybenzyl)-1-phenylbut-3-en-1-amine1b ${ }^{7}$

Prepared according to procedure B, pale yellow oil, yield 93\%. $[\alpha]_{\mathrm{D}}-45.0$ (c 1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) for er $>95: 5$; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.74$ (dddd, $J=17.1,10.2,8.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.13-5.06(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{dd}, J=7.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, \mathrm{~J}=$ $13.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.51(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.40(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} N \mathrm{NR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.6$, 144.0, 135.6, 132.9, 129.4, 128.5, 127.4, 127.1, 117.6, 113.8, 61.6, 55.4, 50.9, 43.2.

(S)-N-Benzyl-1-(thiophen-2-yl)but-3-en-1-amine 1e ${ }^{8}$

Prepared according to procedure B, colorless oil, yield 85\%. [$\alpha]_{\mathrm{D}}-35.1$ (c 1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) for er $=95: 5$; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.25(\mathrm{~m}, 6 \mathrm{H}), 7.00(\mathrm{dd}, J=5.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~m}, 1 \mathrm{H}), 5.77$ (dddd, J=17.3,10.2, 7.7, 6.6 $\mathrm{Hz}, 1 \mathrm{H}), 5.14 \mathrm{~d}, J=17.3, \mathrm{~Hz}, 1 \mathrm{H}) 5.11(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.65$ ($\mathrm{d}, \mathrm{J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.59-2.48 (m, 2 H), $1.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.2,140.4,135.0,128.5$, $128.3,127.0,126.5,124.3,124.1,118.1,57.2,51.4,43.6$.

[^4]
(R)-2-Phenyl-2-\{[(R)-1-(pyridin-3-yl)but-3-en-1-yl]amino\}ethanol 5h

A mixture of (R)-phenylglycinol ($0.93 \mathrm{~g}, 6.8 \mathrm{mmol}$) and 3-pyridylcarboxaldehyde ($835 \mathrm{~g}, 6.8 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20$ mL) was refluxed for 1 h then cooled down to rt . The resulting mixture was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure to quantitatively give the corresponding imine which was used in the next step without purification.

To a solution of the above imine in $\mathrm{MeOH}(20 \mathrm{~mL})$, was added allylbromide ($0.78 \mathrm{~mL}, 8.9 \mathrm{mmol}$) and $\ln (0.77 \mathrm{~g}, 6.8$ mmol) and the resulting mixture was stirred for 2 h at rt . A saturated aqueous solution of $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ was added. The precipitate was filtered off and rinsed with $\mathrm{MeOH}(30 \mathrm{~mL})$. The filtrate was concentrated under reduced pressure and partitioned with AcOEt $(60 \mathrm{~mL})$ and water (30 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with $\mathrm{PE} / \mathrm{AcOEt}(90: 10)$ to give $5 \mathrm{~h}(1.41 \mathrm{~g}, 77 \%)$ as a yellow oil. $[\alpha]_{\mathrm{D}}-16.9$ (c $1, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{~s}, 1 \mathrm{H}), 8.38(\mathrm{~m}, 1 \mathrm{H}), 7.52(\mathrm{dt}, J=7.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.16(\mathrm{~m}, 5 \mathrm{H}), 7.13(\mathrm{dd}, J=7.8,4.8 \mathrm{~Hz}$, 1 H), 5.66 (ddt, $J=16.4,10.6,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.13-5.00(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{dd}, J=7.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.71(\mathrm{~m}, 2 \mathrm{H})$, $3.60(\mathrm{dd}, J=10.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~s}, 1 \mathrm{H}), 2.55(\mathrm{dt}, J=13.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{dt}, J=13.9,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 1$ H); ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 149.1,148.3,148.3,140.9,140.9,139.4,134.9,134.9,134.1,128.6,127.5,127.4$, 123.3, 118.4, 66.3, 62.7, 58.2, 41.3, HRMS(ES $\left.{ }^{+}\right): m / z[M+H]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}: 269.1654$; found : 269.1649.

(R)- N-benzyl-1-(pyridin-3-yl)but-3-en-1-amine $1 h^{5}$

To a solution of the above amino-alcohol ($1.4 \mathrm{~g}, 5.2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(1: 2,30 \mathrm{~mL})$, was added $\mathrm{Pb}(\mathrm{OAc})_{4}$ $(2.78 \mathrm{~g}, 6.3 \mathrm{mmol})$ in one portion at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 20 min at $0^{\circ} \mathrm{C}$, and $\mathrm{NH}_{2} \mathrm{OH} . \mathrm{HCl}(6.95$ $\mathrm{g}, 100 \mathrm{mmol}$) was added. After 45 min of stirring the solvent was removed under reduced pressure. The residue was taken up with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$, and the solid was filtered off. The filtrate was washed with an aqueous solution of $\mathrm{NaOH}(10 \%, 4 \times 10 \mathrm{~mL})$, dried with MgSO_{4}, filtered and concentrated under reduced pressure to give the corresponding primary amine ($0.41 \mathrm{~g}, 53 \%$).

A solution of primary amine ($0.40 \mathrm{~g}, 2.7 \mathrm{mmol}$) and benzaldehyde ($286 \mathrm{mg}, 2.7 \mathrm{mmol}$) in toluene (5 mL) was refluxed for 1 h . The solvent was removed under reduced pressure, then $\mathrm{MeOH}(5 \mathrm{~mL})$ was added. The resulting solution was cooled down to $0^{\circ} \mathrm{C}$, then $\mathrm{NaBH}_{4}(106 \mathrm{mg}, 2.8 \mathrm{mmol})$ was added in 3 portions. After 1 h of stirring, water (5 mL) was added and the mixture was concentrated to half of the volume. The residue was extracted with
$\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The organic phases were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with PE/AcOEt (2:1) to give $1 \mathrm{~h}(0.58 \mathrm{~g}, 88 \%)$ as a colorless oil. $[\alpha]_{\mathrm{D}}+50.6\left(c 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.59(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.54(\mathrm{dd}, J=4.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.23(\mathrm{~m}, 6 \mathrm{H}), 5.71$ (dddd, J=17.6, 9.6, 7.9, 6.4 Hz, 1 H), 5.14-5.05 (m, 2 H), $3.76(\mathrm{dd}, J=7.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.36(\mathrm{~m}, 2$ $\mathrm{H}), 1.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 149.6,148.7,140.2,139.1,134.8,134.6,128.5,128.1,127.0$, 123.6, 118.4, 59.2, 51.5, 42.9; HRMS(ES $\left.{ }^{+}\right): m / z[M+H]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{2}$: 239.1548; found : 239.1551 .

(R)-2-Phenyl-2-\{[(R)-1-phenylbut-3-en-1-yl]amino\}ethanol ${ }^{9}$

$\operatorname{Dr} 98: 2,[\alpha]_{\mathrm{D}}-40.4\left(c 1.1, \mathrm{CHCl}_{3}\right){ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.17(\mathrm{~m}, 10 \mathrm{H}), 5.68(\mathrm{ddt}, J=17.2,10.2,7.1 \mathrm{~Hz}$, 1 H), 5.11-4.98 (m, 2 H), 3.86 (dd, $J=6.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.80-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.54(\mathrm{dd}, J=10.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.77$ (br s, 1 H), $2.55(\mathrm{dt}, J=13.6,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{dt}, J=13.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $143.7,141.3,135.1,128.6,128.5,127.5,127.2,127.2,127.2,117.5,65.7,61.4,59.8,41.5$.

General procedure for conjugated 1,4-addition of lithium amide onto α, β-unsaturated esters

To a solution of amine $1(3 \mathrm{mmol})$ in THF (15 mL) was slowly added a solution of n-BuLi (2.5 M in hexanes, 1.2 mL , 3 mmol) at $-70^{\circ} \mathrm{C}$. The resulting solution was stirred for 10 min at $-70^{\circ} \mathrm{C}$, then, a solution of ester (2 mmol) in THF $(2 \mathrm{~mL})$ was added dropwise. The stirring was continued for 1 h 30 at $-70^{\circ} \mathrm{C}$, then a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ was added. The layers were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. The organic phases were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with a $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}$ mixture to give the corresponding aminoester.

$(\pm)-(S)$-Tert-Butyl 3-\{benzyl[(R)-1-phenylbut-3-en-1-yl]amino\}-3-phenylpropanoate 3a

Yield 82%, dr $>95: 5$. Pale yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.33(\mathrm{~m}, 6 \mathrm{H}), 7.32-$ $7.19(\mathrm{~m}, 7 \mathrm{H}), 5.54$ (ddd, $J=17.1,10.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}$), $5.04-4.81(\mathrm{~m}, 2 \mathrm{H}), 4.51(\mathrm{dd}, J=10.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=$ 9.1, $6.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.82(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.52(\mathrm{~m}, 3 \mathrm{H}), 2.40(\mathrm{dd}, J=14.9,4.2 \mathrm{~Hz}, 1$

[^5]H), 1.27 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 171.3,141.9,141.3,141.1,136.4,128.9,128.5,128.4,128.3,128.3$, $128.2,127.2,127.2,126.8,116.3,80.3,62.3,58.7,50.7,37.3,36.0,28.0$.

(\pm)-(S)-Tert-Butyl 3-\{benzyl[(R)-1-phenylbut-3-en-1-yl]amino\}octanoate 3b

Yield 73\%, dr >95:5. Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.23(\mathrm{~m}, 8 \mathrm{H}), 5.53$ (ddt, J = 17.1, 10.0, 6.8 Hz, 1 H), 4.98-4.80 (m, 2 H), 3.84 (d, J = 14.7 Hz, 1 H), 3.69 (dd, J=9.0, 6.4 Hz, 1 H), 3.48 (d, $J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.55(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{dd}, J=14.8,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{dd}, J=14.8,3.5 \mathrm{~Hz}, 1 \mathrm{H})$, 1.63 ($\mathrm{m}, 1 \mathrm{H}$), $1.42(\mathrm{~s}, 9 \mathrm{H}), 1.40-1.19(\mathrm{~m}, 7 \mathrm{H}), 0.92(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl $)^{2}$) 172.3, 141.4, $140.3,136.6,128.9,128.6,128.4,128.2,127.2,126.8,116.2,80.0,63.0,53.8,50.1,38.3,38.2,34.0,32.0,28.2$, 26.8, 22.8, 14.2; HRMS(ES $\left.{ }^{+}\right): \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{NO}_{2}$: 436.3216; found : 436.3219 .
$(\pm)-(S, E)$-Tert-Butyl 3-\{(4-methoxybenzyl)[(R)-1-phenylbut-3-en-1-yl)amino\}-5-phenylpent-4-enoate 3c

Yield 60\%, dr >95:5. Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.22(\mathrm{~m}, 12 \mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.48$ (dd, J $=16.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.23$ (dd, J = 16.1, $6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.68 ($\mathrm{ddt}, J=17.1,10.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $5.01(\mathrm{dd}, J=17.1,1.6 \mathrm{~Hz}$, 1 H), 4.95 (dd, $J=10.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $4.12(\mathrm{~m}, 1 \mathrm{H}), 3.91$ (dd, J = 8.9, $6.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.83(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}, 1$ H) 3.62 (d, J = $14.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.78 (m, 1 H), 2.61 ($\mathrm{m}, 1 \mathrm{H}$), 2.29 (dd, J = 14.5, 9.3 Hz, 1 H), 2.21 (dd, J = 14.5, $4.9 \mathrm{~Hz}, 1$ H), 1.39 (s, 9 H); ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 171.3,158.6,141.1,137.4,136.7,133.0,130.9,130.7,129.7,128.8$, $128.7,128.3,127.4,127.2,126.4,116.3,113.7,80.4,62.9,56.6,55.4,49.8,38.8,36.6,28.2$.

(\pm)-(S)-Tert-Butyl 3-\{benzyl[(R)-1-phenylbut-3-en-1-yl]amino\}-3-(furan-2-yl)propanoate 3d

Yield 92%, dr $>95: 5$. Orange oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43(\mathrm{dd}, J=1.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.40-7.21(m, 10 H$)$, 6.36 (dd, J = 3.3, 1.8 Hz, 1 H), 6.22 (d, J = $3.3 \mathrm{~Hz}, 1 \mathrm{H}$), $5.62(\mathrm{ddt}, J=17.1,10.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}$), $4.94(\mathrm{dq}, J=17.1,1.6$ Hz, 1 H), 4.89 (m, 1 H), 4.58 (dd, J = 9.5, $5.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.89 (dd, J = 9.6, $5.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.80(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.70 ($\mathrm{d}, \mathrm{J}=14.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.65-2.54 (m, 2 H), 2.44-2.39 (m, 2 H), $1.35(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl ${ }_{3}$) $\delta 170.6,155.4$,
$141.6,141.3,140.6,136.6,128.9,128.8,128.2,128.2,127.1,126.9,116.2,110.2,107.3,80.4,62.4,52.3,50.9$, 37.8, 35.3, 28.0; $\mathrm{HRMS}\left(E S^{+}\right): \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{NO}_{3}$: 432.2539; found : 432.2535 .
(\pm)-(S)-Tert-Butyl 3-\{benzyl[(R)-1-phenylbut-3-en-1-yl]amino\}-3-(pyridin-3-yl)propanoate 3e

Yield 89%, dr 96:4. Orange oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.68(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.51(\mathrm{dd}, J=4.8,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.73 (dt, J = 8.0, 2.0 Hz, 1 H), 7.41-7.20 (m, 11 H), 5.52 (ddt, J = 17.0, 10.2, $6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.99-4.88 (m, 2 H), 4.57 (dd, $J=10.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.86-3.77 (m, 2 H), $3.66(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dt}, J=13.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-2.49(\mathrm{~m}$, 2 H), 2.33 (dd, J = 15.2, $3.7 \mathrm{~Hz}, 1 \mathrm{H}$), $1.28(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.9,150.2,148.4,140.7,140.3$, $137.5,136.1,135.5,128.7,128.5,128.4,128.4,127.5,127.1,123.0,116.7,80.8,62.6,56.1,50.7,36.9,36.0,28.0$; HRMS(ES ${ }^{+}$): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{2}$: 443.2699; found : 443.2698.
$(\pm)-(S)$-Tert-Butyl 3-\{[(R)-1-(4-chlorophenyl)but-3-en-1-yl](4-methoxybenzyl)amino\}-3-phenylpropanoate 3f

Yield 71\%, dr 95:5. Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.25(\mathrm{~m}, 8 \mathrm{H}), 7.18(\mathrm{~d}, \mathrm{~J}$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.49(\mathrm{ddt}, J=17.0,10.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.01-4.82(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{dd}, J=10.2$, $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=9.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}, 1 \mathrm{H})$, 2.61$2.46(\mathrm{~m}, 3 \mathrm{H}), 2.43(\mathrm{dd}, J=14.9,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.2,158.7,141.7,140.1$, $136.0,132.8,132.7,130.2,129.5,128.4,128.3,128.2,127.3,116.6,113.8,80.4,61.4,58.6,55.4,50.1,37.6,35.7$, 28.0; $\mathrm{HRMS}\left(E S^{+}\right): \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{NO}_{3} \mathrm{Cl}$: 506.2462; found : 506.2461.
(\pm)-(S)-Tert-Butyl 3-\{[(R)-1-(4-bromophenyl)but-3-en-1-yl](4-methoxybenzyl)amino\}-3-phenylpropanoate 3g

Yield 74\%, dr 95:5. Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.40(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.35$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, 5.47 (ddt, $J=17.0,10.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.93-4.84(\mathrm{~m}, 2 \mathrm{H}), 4.45(\mathrm{dd}, J=10.2,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$,
$3.81(\mathrm{~m}, 4 \mathrm{H}), 3.71(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.44(\mathrm{~m}, 3 \mathrm{H}), 2.42(\mathrm{dd}, J=14.9,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, 1.27 (s, 9 H); ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 171.2,158.7,141.7,140.6,136.0,132.7,131.4,130.6,129.5,128.3$, 128.3, 127.3, 121.0, 116.7, 113.8, 80.5, 61.5, 58.7, 55.4, 50.1, 37.6, 35.7, 28.0; HRMS(ES $\left.{ }^{+}\right): \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{NO}_{3} \mathrm{Br}: 550.1957$; found : 550.1956.
(\pm)-(S)-Tert-Butyl 3-\{benzyl[(R)-1-(thiophen-2-yl)but-3-en-1-yl]amino\}-3-phenylpropanoate 3h

Yield 83%, dr $>95: 5$. Pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-10(\mathrm{~m}, 11 \mathrm{H}), 6.87(\mathrm{~m}, 2 \mathrm{H}), 5.52(\mathrm{ddt}, \mathrm{J}=$ $17.0,10.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.92-4.74(\mathrm{~m}, 2 \mathrm{H}), 4.35(\mathrm{dd}, J=10.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=7.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, \mathrm{~J}=$ $14.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.70(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}$), $2.52(\mathrm{dd}, J=14.8,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{dd}, J=14.8,4.3$ $\mathrm{Hz}, 1 \mathrm{H}), 1.13(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 171.16, 146.43, 141.33, 140.52, 136.21, 128.71, 128.48, $128.35,128.24,127.31,126.99,126.56,125.11,124.47,116.55,80.30,59.01,57.39,50.85,38.08,37.42,27.93$; HRMS(ES $\left.{ }^{+}\right): m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{NO}_{2} \mathrm{~S}: 448.2310$; found : 448.2309.

(\pm)-(S,E)-Tert-Butyl 3-\{benzyl[(R)-1-(thiophen-2-yl)but-3-en-1-yl]amino\}-5-phenylpent-4-enoate 3i

Yield 92\%, dr >95:5. Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.42-7.23 (m, 9 H$)$, 7.09-6.97 $(\mathrm{m}, 2 \mathrm{H}), 6.53(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{dd}, J=16.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{ddt}, J=17.1,10.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{dq}, J=$ $17.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{dq}, J=10.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=8.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.11$ (dddd, $J=8.3,6.6,4.7,1.3 \mathrm{~Hz}, 1$ $\mathrm{H}), 3.92(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dt}, J=13.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dt}, J=14.7,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.45(\mathrm{dd}, J=14.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{dd}, J=14.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} N \mathrm{NR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.2$, $146.0,140.5,137.2,136.3,131.2,130.1,128.8,128.6,128.4,127.5,127.0,126.6,126.4,125.2,124.4,116.6,80.4$, 58.4, 57.1, 50.4, 39.3, 38.4, 28.2; HRMS(ES ${ }^{+}$: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{NO}_{2} \mathrm{~S}: 474.2467$; found : 474.2473.
(\pm)-Tert-Butyl 3-\{benzyl[-1-(furan-2-yl)but-3-en-1-yl]amino\}-3-phenylpropanoate 3j

Yield 90%, dr 55:45. Orange oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.25(\mathrm{~m}, 11 \mathrm{H}), 6.39(\mathrm{dd}, \mathrm{J}=3.2,1.9 \mathrm{~Hz}, 0.54 \mathrm{H})$, 6.33 ($\mathrm{dd}, J=3.2,1.8 \mathrm{~Hz}, 0.46 \mathrm{H}$), $6.22(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 0.54 \mathrm{H}), 6.05(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 0.46 \mathrm{H}), 5.71$ (ddt, $J=17.1,10.2,6.8$ $\mathrm{Hz}, 0.46 \mathrm{H}$), 5.58 (ddt, $J=17.0,10.2,6.8 \mathrm{~Hz}, 0.54 \mathrm{H}$), $5.04-4.93(\mathrm{~m}, 2 \mathrm{H}), 4.52(\mathrm{dd}, J=10.8,3.8 \mathrm{~Hz}, 0.54 \mathrm{H}), 4.40(\mathrm{dd}$, $J=10.5,5.2 \mathrm{~Hz}, 0.46 \mathrm{H}), 4.13(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 0.46 \mathrm{H}), 3.96-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 0.54 \mathrm{H}), 3.71(\mathrm{~d}, J=$
$14.1 \mathrm{~Hz}, 0.54 \mathrm{H}), 3.56$ (d, $J=15.9 \mathrm{~Hz}, 0.46 \mathrm{H}), 2.76$ (dd, $J=14.1,5.2 \mathrm{~Hz}, 0.46 \mathrm{H}), 2.69(\mathrm{dd}, J=15.1,10.8 \mathrm{~Hz}, 0.54 \mathrm{H})$, 2.65-2.57 (m, 2 H), 2.49 (dd, J = 14.1, 10.5 Hz, 0.46 H), 2.26 (dd, J = 15.1, 3.9 Hz, 0.54H), 1.32 (s, 4.9 H), 1.24 (s, 4.1 $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 171.5,171.0,115.4,155.3,142.3,141.7,141.5,141.5,141.4,140.5,136.1,135.9$, $128.9,128.4,128.3,128.2,128.10,128.07,127.8,127.3,127.1,127.0,126.6,116.45,116.39,110.3,109.8,108.1$, $107.7,80.3,80.2,63.1,58.1,56.7,54.8,51.6,50.8,42.2,36.7,36.2,35.9,28.0,27.9$.
(\pm)-(S)-Tert-Butyl 3-\{benzyl[(R)-1-(furan-3-yl)but-3-en-1-yl]amino\}-3-phenylpropanoate 3k

Yield 80%, dr 95:5. Orange oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.23(\mathrm{~m}, 9 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H})$, 5.61 (ddt, $J=13.7,10.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $5.01-4.87(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{dd}, J=9.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=9.0,5.5 \mathrm{~Hz}, 1$ H), 3.75 (d, J = $3.9 \mathrm{~Hz}, 2 \mathrm{H}$), 2.65 (dd, J = 14.7, $5.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.61 ($\mathrm{dd}, J=14.7,10.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.49(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~m}, 1$ H), 1.28 (s, 9 H); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.3,142.9,141.7,140.9,140.4,136.5,128.5,128.4,128.3,128.2$, 127.3, 126.9, 125.6, 116.3, 111.0, 80.4, 59.1, 53.8, 50.7, 38.3, 36.6, 28.0; HRMS(ES ${ }^{+}$): m/z [M+H] ${ }^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{NO}_{3}: 432.2539$; found : 432.2542.

(\pm)-(R)-Tert-Butyl 3-\{benzyl[(R)-1-(furan-3-yl)but-3-en-1-yl]amino\}octanoate 3I

Yield 78\%, dr 94:6. Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.22(\mathrm{~m}, 7 \mathrm{H}), 6.46(\mathrm{~d}, \mathrm{~J}=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.62$ (ddt, $\mathrm{J}=$ $17.0,10.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $4.97(\mathrm{dd}, J=17.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{dd}, J=10.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}, 1 \mathrm{H})$, 3.65 (dd, J = 8.9, $6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.44 (d, J = $14.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.34(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{dt}, J=13.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~m}, 1 \mathrm{H})$, 2.16 (dd, J = 14.8, 2.9 Hz, 1 H), 1.93 (dd, J = 14.8, $9.9 \mathrm{~Hz}, 1 \mathrm{H}$), $1.62(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~m}, 1 \mathrm{H}), 1.44$ (s, 9 H), 1.40-1.22 ($\mathrm{m}, 6 \mathrm{H}$), $0.92(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.5,142.9,141.0,140.3,136.5,128.8,128.4$, 126.9, 123.8, 116.2, 110.6, 80.1, 53.9, 53.5, 50.3, 38.8, 38.5, 34.2, 32.0, 28.2, 26.8, 22.8, 14.2; HRMS(ES+): m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{NO}_{3}$: 426.3008; found : 426.3008.

(\pm)-(S)-Tert-Butyl 3-\{benzyl[(R)-1-(pyridin-3-yl)but-3-en-1-yl]amino\}-3-phenylpropanoate 3m

Yield 92\%, dr >95:5. Orange oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.48(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{dd}, J=4.8,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.60(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.09(\mathrm{~m}, 7 \mathrm{H}), 5.38(\mathrm{ddt}, J=17.2,10.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.84-4.78(\mathrm{~m}$, $2 \mathrm{H}), 4.35(\mathrm{dd}, \mathrm{J}=9.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dd}, J=9.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H})$,
2.52-2.37 (m, 4 H), $1.16(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.9,150.4,148.2,141.1,140.6,137.1,136.3$, $135.4,128.41$ (2C), 128.36, 128.30, 127.5, 127.0, 123.3, 117.2, 80.6, 60.1, 59.6, 50.8, 38.5, 34.6; HRMS(ES ${ }^{+}$): m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{2}$: 443.2699; found : 443.2701.

(\pm)-(S)-Tert-Butyl 3-\{benzyl[(R)-1-(pyridin-3-yl)but-3-en-1-yl]amino\}-4-methylpentanoate 3n

Yield 90%, dr $>95: 5$. Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.51(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.47(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=7.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.44$ ($\mathrm{ddt}, J=17.0,10.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $4.90(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.69$ (dd, J = 8.4, 7.2 Hz, 1 H), 3.45 (d, J=14.9 Hz, 1 H), 3.25 (t, J=8.5 Hz, 1 H), 2.69 (t, J = $7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.98 (dd, J = 16.3, $9.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~d}, \mathrm{~J}=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.14(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 172.2,150.6,148.7,140.5,134.8,128.6,128.5,127.0,123.3,117.0,80.3,60.3,58.5$, 51.3, 37.8, 36.6, 33.2, 28.1, 21.3, 19.6; HRMS(ES $\left.{ }^{+}\right): m / z[M+H]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{2}$: 409.2855; found : 409.2852.

$(\pm)-(S)$-Tert-Butyl 3-\{benzyl[(R,E)-1-phenylhexa-1,5-dien-3-yl]amino\}-3-phenylpropanoate 3o

Yield 83%, dr 80:20. Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.25(\mathrm{~m}, 13 \mathrm{H}), 6.45(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 1$ H), 6.28 (dd, $J=16.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $5.66(\mathrm{ddt}, J=17.1,10.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.03-4.93 (m, 2 H), $4.57(\mathrm{dd}, J=9.9,4.5 \mathrm{~Hz}$, 1 H), $3.82(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=14.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=$ $14.9,10.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.45(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} N \mathrm{NR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.6,141.7,140.9$, $137.3,136.4,131.6,130.5,128.7,128.7,128.4,128.3,128.1,127.5,127.2,126.9,126.5,116.2,80.5,60.3,58.8$, 50.6, 38.3, 37.7, 28.0; HRMS(ES $\left.{ }^{+}\right): m / z[M+H]^{+}$calcd for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{NO}_{2}$: 468.2903; found : 468.2903.
$(\pm)-(S)$-Tert-Butyl 3-\{benzyl[(R,E)-2-methyl-1-phenylhexa-1,5-dien-3-yl]amino\}-3-phenylpropanoate 3p

Yield 75\%, dr 96:4. Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46$ (d, J = $7.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.31(\mathrm{~m}, 13 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 5.64$ (m, 1 H), 4.98-4.94 (m, 2 H), 4.59 ($\mathrm{dd}, J=9.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.40$ (dd, J = 9.8, 4.0 Hz, 1 H), 2.95 (dd, J = 15.1, 4.3 Hz, 1 H), 2.81 (dd, J = 14.0, 11.0 Hz, 1 H), 2.35-2.22 (m, 2 H), 1.98 (s, $3 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right)$ (171.2, 142.0, 141.2, 138.1, 138.1, 136.5, 129.1, 128.7, 128.2, 128.2,
128.2, 128.1, 127.3, 126.6, 126.4, 115.9, 80.4, 67.6, 59.9, 51.2, 37.6, 33.7, 27.9, 16.4; HRMS(ES+ $): m / z[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{NO}_{2}$: 482.3059; found : 482.3061 .

(S,E)-Tert-Butyl 3-\{benzyl[(R)-1-phenylbut-3-en-1-yl]amino\}oct-4-enoate 3q

Yield 69\%, dr >95:5. Pale yellow oil. [$\alpha]_{\mathrm{D}}-22.7\left(c 0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.20(\mathrm{~m}, 10 \mathrm{H}), 5.64$ ($\mathrm{ddt}, J=17.1,10.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.59-5.46 (m, 2 H), $4.98(\mathrm{dd}, J=17.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{dd}, J=10.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.94-3.88 (m, 1H), 3.84 (dd, J = 9.1, 6.0 Hz, 1 H), $3.79(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.61 ($\mathrm{d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.80-2.70 ($\mathrm{m}, 1$ $\mathrm{H}), 2.61-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.5,141.5,141.3,136.7,132.0,130.6,128.8,128.6,128.2,128.1,127.1,126.7,116.2,80.1$, 63.0, 56.5, $50.3,38.8,36.6,34.8,28.2,22.6,13.8 ; \mathrm{HRMS}\left(\mathrm{ES}^{+}\right): \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{NO}_{2}: 434.3059$; found : 434.3061.
(S)-Tert-Butyl 3-\{benzyl[(S)-1-phenylbut-3-en-1-yl]amino\}-7-(benzyloxy)heptanoate 3r

Yield 66\%, dr >95:5. Colorless oil. [$\alpha]_{\mathrm{D}}-10.2\left(c \quad 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-$ $7.25(\mathrm{~m}, 13 \mathrm{H}), 5.53(\mathrm{ddt}, J=17.0,10.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{dd}, J=17.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~m}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H})$, $3.84(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=9.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{tt}, J=$ 9.3, $3.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.69-2.56 (m, 2 H), $1.82(\mathrm{dd}, \mathrm{J}=14.9,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{~m}), 1.68-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.32$ ($\mathrm{m}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.2,141.3,140.2,138.9,136.5,128.8,128.6,128.5,128.4,128.2,127.7$, $127.6,127.2,126.9,116.2,80.1,73.0,70.6,62.9,53.7,50.1,38.2,38.1,33.8,29.9,28.2,23.8 ; \mathrm{HRMS}^{2}\left(\mathrm{ES}^{+}\right): \mathrm{m} / \mathrm{z}$ $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{35} \mathrm{H}_{46} \mathrm{NO}_{3}$: 528.3478; found : 528.3483.
(R)-Tert-Butyl 3-\{(4-methoxybenzyl)[(S)-1-phenylbut-3-en-1-yl]amino]-4-methylpentanoate 3s

Yield 89\%, dr >95:5. Colorless oil. [$\alpha]_{\mathrm{D}}-26.7\left(c 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.17 $(\mathrm{m}, 5 \mathrm{H}), 6.83(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.41(\mathrm{ddt}, J=17.0,10.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{dd}, J=17.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{dm}, J=$ $10.2, \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=9.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.18$ ($\mathrm{m}, 1 \mathrm{H}$), $2.65(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{dd}, J=16.4,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{dd}, J=16.3,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.31(\mathrm{~s}, 9 \mathrm{H}), 1.04(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl $\left.{ }_{3}\right) \delta 172.5,158.6,139.4$, $136.6,132.9,129.6,129.1,128.0,127.1,116.2,113.9,79.9,62.0,58.0,55.4,50.4,38.0,36.5,33.1,28.1,21.4$, 19.7; $\mathrm{HRMS}\left(E S^{+}\right): \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{NO}_{3}$: 438.3008; found : 438.3013.
(S)-Tert-Butyl 3-\{(4-methoxybenzyl)[(S)-1-phenylbut-3-en-1-yl]amino\}octanoate 3t

Yield 80\%, dr >95:5. Colorless oil. [$\alpha]_{\mathrm{D}}-23.8\left(c 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.24(\mathrm{~m}, 7 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}$ $=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 5.54 (ddt, J = 17.0, 10.1, $6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.93 (dd, J = 17.2, 1.9 Hz, 1 H), 4.86 (dd, J = 10.2, $1.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.85(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=8.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~m}, 1 \mathrm{H}), 2.66-$ $2.57(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{dd}, \mathrm{J}=14.8,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{dd}, J=14.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.18$ ($\mathrm{m}, 6 \mathrm{H}$), $0.92(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.4,158.5,140.3,136.7,133.2,129.7,128.8$, $128.2,127.1,116.1,113.7,80.0,62.4,55.4,53.5,49.3,38.2,38.1,33.9,32.0,28.2,26.8,22.8,14.3 ; \mathrm{HRMS}^{2}(\mathrm{ESI}+)$: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{NO}_{3}$: 466.3321; found : 466.3325.

(R)-Tert-Butyl 3-\{benzyl[(S)-1-(4-methoxyphenyl)but-3-en-1-yl]amino\}-3-phenylpropanoate 3u

Yield 56%, dr 96:4. Pale yellow oil. $[\alpha]_{D}-0.7\left(c 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.36$ $(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.21(\mathrm{~m}, 8 \mathrm{H}), 6.91(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.54(\mathrm{ddt}, J=17.0,10.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{dd}, J=$ $17.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $4.89(\mathrm{dd}, J=10.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{dd}, J=10.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{dd}, J=9.6,5.9$ $\mathrm{Hz}, 1 \mathrm{H}$), $3.79(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.50(\mathrm{~m}, 3 \mathrm{H}), 2.42(\mathrm{dd}, J=14.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.28$ ($\mathrm{s}, 9 \mathrm{H}$) ; ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 171.4,158.7,142.0,141.2,136.5,133.3,129.8,128.4,128.4,128.2,128.1$, 127.1, 126.8, 116.2, 113.6, 80.2, 61.5, 58.6, 55.3, 50.6, 37.3, 36.1, 27.9; HRMS(ES ${ }^{+}$): m/z [M+H] ${ }^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{NO}_{3}$: 472.2852; found : 472.2851.

(S)-Tert-Butyl 3-\{benzyl[(S)-1-(4-methoxyphenyl)but-3-en-1-yl]amino\}octanoate 3v

Yield 46\%, dr 96:4. Colorless oil. [$\alpha]_{\mathrm{D}}-23.8\left(c\right.$ 1.4, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1 \mathrm{H}} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.55(\mathrm{ddt}, J=17.1,10.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{dt}, J$ $=17.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{dd}, J=10.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{dd}, J=9.1,6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.47(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dq}, J=10.4,6.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{ddt}, J=22.6,14.2,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.83(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.41-1.15(\mathrm{~m}, 6 \mathrm{H}), 0.94(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.4,158.7,141.5,136.7,132.3,129.8,128.61,128.3,126.8,116.0,113.5,78.0,62.2$, 55.3, 53.7, $50.1,38.4,38.2,34.0,32.0,28.2,26.78,22.8,14.2 \mathrm{HRMS}\left(E S^{+}\right): \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{NO}_{3}$: 466.3321; found : 466.3324.
(R)-Tert-Butyl 3-\{(4-methoxybenzyl)[(S,E)-2-methyl-1-phenylhexa-1,5-dien-3-yl]amino\}-3-phenylpropano ate 3w

Yield 70%, dr 95:5. Pale yellow oil. $[\alpha]_{\mathrm{D}}+45.1\left(\mathrm{c} 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.34(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.18(\mathrm{~m}, 7 \mathrm{H}), 6.83(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 5.62(\mathrm{ddt}, J=16.6,9.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.97-$ $4.87(\mathrm{~m}, 2 \mathrm{H}), 4.54(\mathrm{dd}, \mathrm{J}=10.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.34$ ($\mathrm{dd}, J=9.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.90(\mathrm{dd}, J=14.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=14.6,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{~s}$, $\left.3 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(126} \mathrm{MHz} \mathrm{CDCl} 3,\right) ~ \delta ~ 171.3, ~ 158.4, ~ 141.4, ~ 138.2, ~ 136.6, ~ 133.9, ~ 129.2, ~ 129.2, ~ 128.6, ~ 128.2, ~$ $128.1,128.0,127.2,126.3,115.9,113.6,80.4,67.3,59.7,55.4,50.5,37.6,33.7,28.0,16.5 ;$ HRMS (ES $\left.^{+}\right): m / z[M+H]^{+}$ calcd for $\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{NO}_{3}$: 512.3165; found : 512.3167.
(S, E)-Tert-Butyl 3-\{benzyl[(R)-1-(pyridin-3-yl)but-3-en-1-yl]amino\}-5-phenylpent-4-enoate 3x

Yield 68%, dr $>95: 5$. Yellow oil. [$\alpha]_{\mathrm{D}}-66.5\left(c 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.54(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.50$ (dd, $J=4.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.65(\mathrm{dt}, J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.19(\mathrm{~m}, 11 \mathrm{H}), 6.50(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{dd}, \mathrm{J}=$ $16.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.61 (ddt, $J=17.0,10.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-4.91(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, \mathrm{J}=$ 9.5, $5.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.83(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, 2 H), 1.37 (s, 9 H); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.8,150.7,148.5,140.5,137.0,136.6,135.9,135.6,131.5,129.7$, $128.7,128.6,128.4,127.7,127.1,126.4,123.2,117.2,80.6,61.0,57.2,50.6,39.5,35.7,28.2 ; \mathrm{HRMS}^{2}\left(E S^{+}\right): \mathrm{m} / \mathrm{z}$ $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{2}$: 469.2855; found : 469.2859.
(R)-Tert-Butyl 3-\{Benzyl[(S)-1-(thiophen-2-yl)but-3-en-1-yl]amino\}-3-(furan-2-yl)propanoate 3y

Yield 69\%, dr 94:6. Yellow oil. $[\alpha]_{\mathrm{D}}+40.1\left(\mathrm{c} 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{~d}, \mathrm{~J}=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dd}, J=5.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.36$ (dd, J = 3.2, 1.8 Hz, 1 H), $6.21(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{ddt}, J=16.9,10.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~m}, 1 \mathrm{H}), 4.96(\mathrm{~d}, \mathrm{~J}=$ $10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{dd}, J=9.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=8.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=14.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=15.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl$\left.)_{3}\right)$ $\delta 170.5,154.8,147.0,141.6,139.9,136.5,129.0,128.3,127.1,126.5,125.0,124.4,116.4,110.3,107.5,80.4,57.5$, 52.0, 50.8, 38.12, 36.9, 28.0; $\mathrm{HRMS}\left(E S^{+}\right): \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{~S}: 438.2103$; found : 438.2104 .

(\pm)-(S)-Tert-Butyl 3-\{benzyl[(R)-1-phenylallyl]amino\}-3-phenylpropanoate 4

Yield 81\%, dr 87:13. Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.20(\mathrm{~m}, 15 \mathrm{H}), 5.90(\mathrm{dt}, \mathrm{J}=17.2,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.11$ $(\mathrm{d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{dd}, J=9.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=$ $14.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.54(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=14.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{dd}, J=14.3,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{~s}, 10 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 171.1,142.8,141.8,141.4,137.5,128.7,128.4,128.3,128.24,128.23,128.19$, $\left.128.15,128.12,127.3,127.1,126.5,118.2,80.3,68.1,60.9,51.7,39.8,27.9 ; \mathrm{HRMS}_{(E S}{ }^{+}\right): \mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{H}^{+}\right.$calcd for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{NO}_{2}$: 428.2590; found : 428.2589.

(R)-Tert-Butyl 4-methyl-3-\{[(S)-1-phenylbut-3-en-1-yl]amino\}pentanoate 6s

To a solution of $3 \mathrm{~s}(353 \mathrm{mg}, 0.8 \mathrm{mmol})$ in a $4: 1$ mixture of $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(7.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{CAN}(1.32 \mathrm{~g}, 2.42$ mmol) in one portion and the resulting solution was stirred for 30 min at $0^{\circ} \mathrm{C}$. A solution of $\mathrm{NaOH}(5 \%, 5 \mathrm{~mL})$ and the mixture was stirred for 15 min . The heterogeneous media was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 10 \mathrm{~mL})$. The organic phases were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica eluting with $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}$ (95:5) to give 6 s ($210 \mathrm{mg}, 83 \%$) as a colorless oil. $[\alpha]_{\mathrm{D}}-71.4\left(c 0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{~m}, 1 \mathrm{H}), 5.72(\mathrm{dddd}, \mathrm{J}=$ $17.1,10.1,8.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{dq}, J=17.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{dm}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=7.5,6.2 \mathrm{~Hz}, 1$ H), $2.56(\mathrm{q}, ~ J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.28(\mathrm{~m}, 4 \mathrm{H}), 1.65(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 0.88(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $0.81(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.4,144.6,135.8,128.2,127.7,127.0,117.4,80.3,60.0$, 57.6, 43.6, 37.1, 31.7, 28.3, 19.0, 18.7; HRMS(ES $\left.{ }^{+}\right): ~ m / z[M+H]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{NO}_{2}$: 318.2433; found : 318.2435.
(S)-Tert-Butyl 3-\{[(S)-1-phenylbut-3-en-1-yl]amino\}octanoate 5t

Prepared according to the above procedure in 80% yield as a colorless oil. $[\alpha]_{\mathrm{D}}-42.1$ (c $1, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{~m}, 4 \mathrm{H}), 7.25(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{dddd}, \mathrm{J}=17.1,10.1,8.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, \mathrm{~J}=17.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=7.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.69$ (quint, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.44-2.34(m,2H), 2.32 (d, J = $5.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.55(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.40-1.29(\mathrm{~m}, 3 \mathrm{H}), 1.28-1.19(\mathrm{~m}, 3 \mathrm{H}), 1.12(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{t}, \mathrm{J}$ $=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 171.9,144.4,135.7,128.3,127.5,127.1,117.5,80.4,59.7,52.1,43.6$, 39.5, 35.5, 31.8, 28.3, 25.7, 22.7, 14.2; HRMS(ES $\left.{ }^{+}\right): ~ m / z[M+H]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{NO}_{2}: 346.2746$; found : 346.2747.

(R)-4-Methyl-3-\{[(S)-1-phenylbut-3-en-1-yl]amino\}pentan-1-ol 7

To a solution of $\mathbf{6 s}(187 \mathrm{mg}, 0.59 \mathrm{mmol})$ in THF (6 mL) was added a solution of LiAlH4 (2.2 M in THF, 0.7 mmol) at $0^{\circ} \mathrm{C}$ and the resulting solution was stirred at rt for 16 h . Water was carefully added at $0^{\circ} \mathrm{C}$ until the gas evolution ceased. A solution of Rochelle salt (3 mL) and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ were added and the stirring was continued for 15 min . The organic phase was isolated and the white paste was triturated with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. The organic phases were
combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to give 7 (145 $\mathrm{mg}, 99 \%$) as a colorless oil. $[\alpha]_{\mathrm{D}}+13.9\left(c 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 3 \mathrm{H}), 5.64$ (ddt, $J=17.2,10.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}$), $5.07-4.97(\mathrm{~m}, 2 \mathrm{H}), 3.91$ (ddd, $J=10.4,6.7,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.85(\mathrm{dd}, J=7.7,6.0 \mathrm{~Hz}, 1$ H), 3.81 (ddd, J = 11.0, $7.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.56 (m, 2 H), $2.47(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{~m}, 1 \mathrm{H}), 1.76$ (ddt, J = 13.9, 6.7, $3.3 \mathrm{~Hz}, 1$ H), 1.45 (dtd, $J=14.7,7.8,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), $0.89(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.77(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 143.5,135.0,128.6,127.5,127.3,117.5,62.5,61.3,60.0,41.7,29.5,29.0,20.1,17.2 ; \mathrm{HRMS}^{2}\left(\mathrm{ES}{ }^{+}\right): \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NO}: 248.2014$; found : 248.2012 .

(S)-Tert-Butyl 3-\{(methoxycarbonyl)[(S)-1-phenylbut-3-en-1-yl]amino\}octanoate 8

To a solution of $6 \mathbf{t}(470 \mathrm{mg}, 1.36 \mathrm{mmol})$ in acetone (5 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(1.13 \mathrm{~g}, 8.2 \mathrm{mmol})$ and methylchloroformate ($0.41 \mathrm{~mL}, 5.4 \mathrm{mmol}$) and the mixture was refluxed for $16 \mathrm{~h} . \mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ were added, and the solid was filtered off. The filtrate was concentrated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$, and the resulting organic phase was washed with an aquous solution of $\mathrm{HCl}(1 \mathrm{M}$, 10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica eluting with $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}(90: 10)$ to give $7 \mathrm{t}\left(440 \mathrm{mg}, 80 \%\right.$) as a colorless oil. $[\alpha]_{\mathrm{D}}-9.0$ (c 1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 5.77 (ddt, $J=17.0,10.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.15(\mathrm{dd}, J=17.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{dd}, J=10.3,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.74(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.86(\mathrm{dt}, J=14.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dt}, J=14.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.79(\mathrm{brs}, 1$ H), 1.74 (br d, J = $16.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.61 (br s, 1 H), $1.40-1.16(\mathrm{~m}, 15 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , CDCl_{3}) $\delta 171.0,139.8,135.3,128.5,127.7,117.4,80.3,59.8,52.3,41.1$ (br), 36.4 (br), 33.9 (br), 32.1, 28.1, 27.0, 22.7, 14.1, 1 C is missing; $\mathrm{HRMS}\left(E S^{+}\right): \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{NO}_{4} \mathrm{Na}: 426.2620$; found : 426.2618 .
(S)-3-\{[(S)-1-(Tert-Butoxy)-1-oxooctan-3-y]](methoxycarbonyl)amino\}-3-phenylpropanoic acid 9

To a solution of $8(156 \mathrm{mg}, 0.39 \mathrm{mmol})$ in a $2 / 2 / 3$ mixture of $\mathrm{CCl}_{4} / \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(8.75 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added NalO_{4} ($334 \mathrm{mg}, 1.56 \mathrm{mmol}$) and $\mathrm{RuCl}_{3}(4 \mathrm{mg}, 0.02 \mathrm{mmol})$ and the resulting mixture was stirred for 4 h at rt . Water (10 $\mathrm{mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were added. The organic layer was isolated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The organic phases were combined, washed with an aqueous solution of $\mathrm{HCl}(1 \mathrm{M}, 10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica eluting with a mixture of $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}(90: 10 \rightarrow 50: 50)$ to give $9(128 \mathrm{mg}, 78 \%)$ as a colorless oil. $[\alpha]_{\mathrm{D}}-4.5\left(c 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.29(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1$
H), 5.43 (br s, 1 H), 3.79 (br s, 1H), $3.70(\mathrm{~s}, 3 \mathrm{H}), 3.21$ (br s, 1 H$), 3.04(\mathrm{br} \mathrm{d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.93$ (br d, J = 14.7 Hz, 1 H), 1.73 (br s, 1 H), $1.55(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}), 1.28-1.17(\mathrm{~m}, 7 \mathrm{H}), 0.85(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 176.2,170.9,139.5,128.7,127.9,127.6,80.5,56.0,53.8,52.5,40.7,38.4,33.5,31.9$, 28.1, 26.8, 22.6, 14.1; 1 C is missing; $\mathrm{HRMS}\left(\mathrm{ES}^{+}\right): \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{NO}_{6} \mathrm{Na}: 444.2362$; found : 444.2361 .
(\pm)-(R)-Tert-Butyl 3-\{benzyl[(R)-3-hydroxy-1-phenylpropyl]amino\}octanoate 10

To a solution of $\mathbf{3 b}(515 \mathrm{mg}, 1.18 \mathrm{mmol})$ in a 1:1:1 mixture of $\mathrm{tBuOH} / \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(12 \mathrm{~mL})$ was added $\mathrm{NMO}(415 \mathrm{mg}$, $3.55 \mathrm{mmol})$ and a solution of $\mathrm{OsO}_{4}(2.5 \%$ in $\mathrm{tBuOH}, 0.8 \mathrm{~mL})$ and the resulting mixture was stirred for 1 h 30 at rt . A saturated solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}(2 \mathrm{~mL})$ and a saturated solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(2 \mathrm{~mL})$ were added. The mixture was extracted with AcOEt ($3 \times 10 \mathrm{~mL}$). The residue was diluted in a 2:1 mixture of THF/ $\mathrm{H}_{2} \mathrm{O}(12 \mathrm{~mL})$, then $\mathrm{NaIO}_{4}(303$ $\mathrm{mg}, 1.4 \mathrm{mmol})$ was added at rt . After 1 h 30 of stirring, $\mathrm{MeOH}(5 \mathrm{~mL}) \mathrm{NaBH}_{4}(90 \mathrm{mg}, 2.4 \mathrm{mmol})$ were added at $0^{\circ} \mathrm{C}$. After 30 min of stirring, water (5 mL) was added and the mixture was reduced to half of the volume under reduced pressure. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, the organic phases were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica eluting with a mixture of PE/AcOEt (80:20) to give $\mathbf{1 0 (3 6 5 ~ m g , 7 0 \%) ~ a s ~ a ~ c o l o r l e s s ~ o i l . ~}{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 6 \mathrm{H}), 3.88-3.79(\mathrm{~m}, 2 \mathrm{H})$, 3.67-3.57 (m, 1 H), 3.53-3.39 (m, 3 H), 2.24 (m, 1 H), $1.92(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.87-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{dd}, J=15.3,2.9 \mathrm{~Hz}, 1$ H), 1.60-1.48 (m, 2 H), 1.43 ($\mathrm{s}, 9 \mathrm{H}), 1.37-1.22(\mathrm{~m}, 6 \mathrm{H}), 0.92(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.2$, $141.0,140.2,129.0,128.7,128.5,128.4,127.4,127.1,80.1,60.8,60.0,53.9,50.0,38.2,35.8,34.2,32.0,28.1$, 26.7, 22.8, 14.2.
(\pm)-(R)-Tert-Butyl 3-\{benzyl[(R)-1-phenyl-3-(tosyloxy)propyl]amino\}octanoate

To a solution of the above alcohol ($243 \mathrm{mg}, 0.56 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(0.09 \mathrm{~mL}, 0.66 \mathrm{mmol})$, and DMAP ($16 \mathrm{mg}, 0.13$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) was added in one portion $\mathrm{TsCl}(126 \mathrm{mg}, 0.66 \mathrm{mmol}$), and the resulting mixture was stirred at rt for 5 h . Water (2 mL) was added, and the organic layer was washed with a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(2 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with PE/AcOEt ($80: 20$) to give the title compound as a colorless oil (201 mg, 60\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.38(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.29(\mathrm{~m}, 7 \mathrm{H}), 7.14$ (dd, $J=7.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{dt}, J=9.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.38(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{dq}, J=14.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{dq}, J=13.8,6.2 \mathrm{~Hz}, 1 \mathrm{H})$,
1.78 (dd, $J=14.9,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{dd}, J=14.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.58-1.12(\mathrm{~m}, 10 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) δ 172.1, 144.6, 140.9, 139.2, 133.3, 129.8, 128.7, 128.6 (2 C), 128.5, 128.0, 127.6, $127.1,80.1,68.7,59.1,53.8,50.1,34.0,33.0,32.0,28.2,26.8,22.8,21.8,14.3$.
(\pm)-(2R,3S,6R)-Tert-Butyl 1-benzyl-2-pentyl-6-phenylpiperidine-3-carboxylate 11

To a solution of the above compound ($201 \mathrm{mg}, 0.34 \mathrm{mmol}$) in THF (4 mL) was added at $-70^{\circ} \mathrm{C}$ a solution of LiHMDS (1 M in THF, $1.36 \mathrm{~mL}, 1.36 \mathrm{mmol}$) and the resulting mixture was stirred at $-70^{\circ} \mathrm{C}$ for 30 min then 4 h at rt . Water (2 $\mathrm{mL})$ and $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{~mL})$ were added. The organic layer was collected, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (4 mL). The organic phases were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with a 9:1 mixture of $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}$ to give 11 as a white solid (103 mg, 72\%). Mp $78{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2$ H), 7.23-7.19 (m, 3 H), 7.18-7.12 (m, 3H), $3.83(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.51(\mathrm{dd}, J=10.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, \mathrm{~J}=15.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.89(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{td}, J=10.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{dt}, J=11.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.70(\mathrm{~m}, 2 \mathrm{H})$, $1.68-1.57(\mathrm{~m}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.40-1.35(\mathrm{~m}, 3 \mathrm{H}), 1.23-1.15(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{~m}, 1 \mathrm{H}), 0.84(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 174.8,145.5,139.8,128.9,128.4,128.1,127.8,127.0,126.3,80.2,66.7,62.7,54.0,47.2$, 34.3, 32.2, 31.2, 28.5, 28.2, 23.0, 22.8, 14.3; $\mathrm{HRMS}\left(\mathrm{ES}^{+}\right): \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{NO}_{2}$: 422.3059; found : 422.3062.

(\pm)-(S)-3-\{Benzyl[(R)-1-(furan-3-yl)but-3-en-1-yl]amino\}-3-phenylpropan-1-ol

To a solution of $\mathbf{3 b}(703 \mathrm{mg}, 1.63 \mathrm{mmol})$ in THF (12 mL) at $0^{\circ} \mathrm{C}$ was added dropwise a solution of $\mathrm{LiAlH}_{4}(2 \mathrm{M}$ in THF, $1 \mathrm{~mL}, 2 \mathrm{mmol}$), and the resulting solution was stirred for 14 h at rt . The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ prior to careful addition of a solution of Rochelle salt ($10 \%, 5 \mathrm{~mL}$). After 15 min of stirring $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added and the organic layer was collected. The remaining white paste was triturated with AcOEt ($2 \times 5 \mathrm{~mL}$). The organic phases were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to give the title compound ($480 \mathrm{mg}, 81 \%$) which was used in the next step without purification. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46-$ $7.22(\mathrm{~m}, 14 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{ddt}, J=17.1,10.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1$ H), 4.05-3.98 (m, 2H), $3.96(\mathrm{dd}, J=10.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dt}, J=10.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.46$ (ddd, J = 10.8, 7.7, 4.7 Hz, 1H), $2.32(\mathrm{dtd}, J=14.0,8.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.93(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{dtd}, J=14.3$, 6.0, 4.7 Hz, 1H); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.1,141.5,140.7,140.6,136.4,129.0,128.7,128.6$ (2 C), 127.5, $127.2,126.6,116.3,111.1,61.4,59.9,53.7,50.5,35.1,34.7$.

$(\pm)-(S)-3-\{B e n z y l[(R)-1-(f u r a n-3-y l) b u t-3-e n-1-y l] a m i n o\}-3-p h e n y l p r o p a n a l$

To a solution of oxalylchloride ($0.21 \mathrm{~mL}, 2.39 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added dropwise a solution of DMSO ($0.42 \mathrm{~mL}, 5.85 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. After 15 min of stirring at $-78^{\circ} \mathrm{C}$, a solution of the above alcohol (480 $\mathrm{mg}, 1.38 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was slowly added. After 30 min of stirring at $-78^{\circ} \mathrm{C}, \mathrm{Et}_{3} \mathrm{~N}(1.15 \mathrm{~mL}, 8.3 \mathrm{mmol})$ was added dropwise. The resulting mixture was stirred for 15 min at $-78^{\circ} \mathrm{C}$, and the reaction mixture was slowly warmed to rt . Water (10 mL) was added and the organic layer was collected. The organic phase was washed with a saturated solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(5 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to give 450 mg of material which contains the aldehyde as the major compound which was used directly in the next step without purification. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.42(\mathrm{dd}, J=3.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.31(\mathrm{~m}, 12 \mathrm{H}), 6.44(\mathrm{~s}, 1$ H), 5.59 (ddt, J = 17.0, 10.3, 6.8 Hz, 1 H), 4.96-4.84 (m, 2H), 4.56 (dd, J=8.3, 6.9 Hz, 1 H), $3.90(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=$ $13.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.70 (d, J = $13.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.99 (ddd, J = 16.2, 8.3, 3.5 Hz, 1 H), 2.68 (ddd, J=16.2, 7.0, $1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.26 (m, 1 H), 2.10 ($\mathrm{m}, 1 \mathrm{H}$).

(\pm)-(S)-N-Benzyl-N-[(R)-1-(furan-3-yl)but-3-en-1-yl]-1-phenylpent-3-en-1-amine 12

To a suspension of ethyltriphenylphosphonium bromide ($1.62 \mathrm{~g}, 4.3 \mathrm{mmol}$) in THF (20 mL), was added dropwise a solution of LiHMDS (1 M , in THF, $2.8 \mathrm{~mL}, 2.8 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After 15 min of stirring, a solution of the above aldehyde ($450 \mathrm{mg}, 1.25 \mathrm{mmol}$) in THF (2 mL) was added and the resulting mixture was stirred for 12 h at rt , then filtrated through a plug of celite and rinsed with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. A saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ was added to the filtrate. The organic phase was washed with brine (10 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}$ (98:2) to give 12 as a colorless oil ($260 \mathrm{mg}, 58 \%$). Major Z isomer : ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 7.42-7.22(\mathrm{~m}, 12 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 5.59(\mathrm{ddt}, J=16.9,9.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{tq}, J=10.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.20-5.09(\mathrm{~m}$, $1 \mathrm{H}), 4.90(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{dd}, J=9.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J$ $=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dt}, J=13.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dt}, J=15.5,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.56(\mathrm{dd}, \mathrm{J}=$ $6.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $1.50(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H})$; HRMS(ES ${ }^{+}$): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{NO}: 372.2327$; found : 372.2327.

(\pm)-(2R,7S)-1-Benzyl-2-(furan-3-yl)-7-phenyl-2,3,6,7-tetrahydro-1H-azepine 13

To a solution of $11(181 \mathrm{mg}, 0.5 \mathrm{mmol})$ in degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ was added Grubbs II catalyst ($37 \mathrm{mg}, 0.04$ $\mathrm{mmol})$. The resulting mixture was refluxed for 2 h under an atmosphere of Ar. The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel eluting with $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}$ (98:2) to give 13 ($133 \mathrm{mg}, 81 \%$) as a pale yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H})$, 7.40-7.33 (m, 5 H), 7.30-7.24 (m, 3 H), $7.20(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 5.73(\mathrm{ddt}, J=11.2,5.7,2.7 \mathrm{~Hz}, 1 \mathrm{H})$, 5.66 (ddt, $J=11.2,7.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.55$ $(\mathrm{d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=18.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{dt}, J=18.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{dd}, J=17.7,6.8$ $\mathrm{Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 147.3,142.0,140.4,139.0,131.2,130.0,128.8,128.5,128.3,127.4,127.1$, 127.0, 126.8, 110.6, 68.7, 58.1, 55.3, 34.7, 26.9; HRMS(ES +): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}: 330.1858$; found : 330.1860.

Tert-Butyl 2-[(2S,6R)-1-Benzyl-6-phenyl-1,2,5,6-tetrahydropyridin-2-yl]acetate 14

To a solution of $\mathbf{3 q}(91 \mathrm{mg}, 0.21 \mathrm{mmol})$ in degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ was added Grubbs II catalyst (15 mg, 0.017 $\mathrm{mmol})$. The resulting mixture was refluxed for 2 h under an atmosphere of Ar. The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel eluting with $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}(9: 1)$ to give 14 ($72 \mathrm{mg}, 94 \%$) as a pale yellow solid. $\mathrm{Mp} 60^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+76.2\left(c 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58$ ($\mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.39(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{tt}, J=14.9,5.4 \mathrm{~Hz}, 6 \mathrm{H}), 6.06(\mathrm{~m}, 1 \mathrm{H}), 5.82(\mathrm{~m}, 1 \mathrm{H}), 4.29(\mathrm{dd}, J=$ $11.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=14.3,7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.60 (ddq, J = 17.4, 11.0, 2.2 Hz, 1 H), 2.48 (dd, J = 14.4, 7.0 Hz, 1 H), $2.36(\mathrm{dt}, J=17.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 171.1,142.5,139.9,128.9,128.4,128.2,128.1,127.9,127.0,126.8126 .2,80.3,54.4$, 50.5, 41.14, 28.2, 24.2; HRMS(ES $\left.{ }^{+}\right): m / z[M+H]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{NO}_{2}: 364.2277$; found : 364.2277.

Tert-Butyl 2-[(2R,6R)-6-phenylpiperidin-2-yl]acetate

A solution of $14(67 \mathrm{mg}, 0.18 \mathrm{mmol}), \mathrm{HCl}(6 \mathrm{M}, 0.05 \mathrm{~mL})$ and $\mathrm{Pd} / \mathrm{C}(10 \%, 30 \mathrm{mg})$ in $\mathrm{MeOH}(4 \mathrm{~mL})$ and stirred under an atmosphere of H_{2} for 14 h . The crude mixture was filtered through a pad of celite and the filtrate was
concentrated under reduced pressure. The residue was diluted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ then washed with an aqueous solution of $\mathrm{NaOH}(5 \%, 5 \mathrm{~mL})$. The organic phases was dried over MgSO_{4}, filtered and concentrated under reduced pressure to give the title compound ($42 \mathrm{mg}, 84 \%$) as a pale yellow oil. $[\alpha]_{\mathrm{D}} 0\left(c 0.7, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{dd}, J=8.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.58$ (dq, J = 9.2, 4.6 Hz, 1 H), 2.76 (dd, $J=15.1,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dd}, J=15.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.63(\mathrm{~m}, 5 \mathrm{H}), 1.54-$ $1.49(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.1,144.8,128.5,126.9,126.9,80.7,54.4,49.5,38.8$, 33.3, 29.9, 28.3, 20.3.

Literature data for analogous Cis methyl ester ${ }^{10}$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.35(2 \mathrm{H}, \mathrm{m}),, 7.34-7.28(2 \mathrm{H}, \mathrm{m}), 7.27-7.21(1 \mathrm{H}, \mathrm{m}), 3.69(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.8,2.5$ $\mathrm{Hz})$, $3.66(3 \mathrm{H}, \mathrm{s}), 3.17-3.10(1 \mathrm{H}, \mathrm{m}), 2.51-2.42(2 \mathrm{H}, \mathrm{m}), 1.94-1.85(1 \mathrm{H}, \mathrm{m}), 1.81-1.73(1 \mathrm{H}, \mathrm{m}), 1.69-1.62(1 \mathrm{H}, \mathrm{m})$, 1.61-1.41 ($2 \mathrm{H}, \mathrm{m}$), 1.32-1.20 ($1 \mathrm{H}, \mathrm{m}$); ${ }^{1} \mathrm{H}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.9,145.1,128.3$, 127.1, 126.8, 61.9, 53.9, 51.6, 41.3, 34.1, 31.8, 25.0;

Literature data for analogous Trans methyl ester ${ }^{10}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.38(2 \mathrm{H}, \mathrm{m}), 7.36-7.30(2 \mathrm{H}, \mathrm{m}), 7.27-7.21(1 \mathrm{H}, \mathrm{m}), 4.00(1 \mathrm{H}, \mathrm{dd}, J=8.7,3.4$ $\mathrm{Hz}), 3.69(3 \mathrm{H}, \mathrm{s}), 3.63-3.56(1 \mathrm{H}, \mathrm{m}), 2.86(1 \mathrm{H}, \mathrm{dd}, J=15.5,9.4 \mathrm{~Hz}), 2.47(1 \mathrm{H}, \mathrm{dd}, J=15.5,4.8 \mathrm{~Hz}), 1.89-1.61(5 \mathrm{H}$, m), 1.55-1.46 (1 H, m); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 173.0, 144.2, 128.4, 126.9, 126.7, 54.2, 51.7, 49.1, 37.0, 32.9, 29.7, 20.0;

[^6]
[^0]: ${ }^{1}$ T. J. Cogswell, C. S. Donald, D.-L. Long, R. Marquez, Org. Biomol. Chem, 2015, 13, 717.
 ${ }^{2}$ R. A. Fernandes and J. L. Nallasivam, Org. Biomol. Chem., 2012, 10, 7789.

[^1]: ${ }^{3}$ Y. Jiang and S. E. Schaus, Angew. Chem., Int. Ed., 2017, 56, 1544.

[^2]: ${ }^{4}$ (a) M. Medjahadi, J. C. Gonzalez-Gomez, F. Foubelo and M. Yus, J. Org. Chem., 2009, 74, 7859; (b) O. Soares do Rego Barros, J. A. Sirvent, F. Foubelo and M. Yus, Chem. Commun., 2014, 50, 6898 ; (c) X.-W. Sun, M. Liu, M.-H. Xu, G.-Q. Lin, Org. Lett., 2008, $10,1259$.

[^3]: ${ }^{5}$ R. A. Fernandes and Y. Yamamoto, J. Org. Chem., 2004, 69, 735

[^4]: ${ }^{6}$ A. K. Jha and R. A. Fernandes, Eur. J. Org. Chem., 2019, 2857.
 ${ }^{7}$ T. J. Cogswell, C. S. Donald, D.-L. Long and R. Marquez, Org. Biomol. Chem., 2015, 13, 717.
 ${ }^{8}$ K.-H. Shen and C.-F. Yao, J. Org. Chem., 2006, 71, 3980.

[^5]: ${ }^{9}$ (a) T. Vilaivan, C. Winotapan, V. Banphavichit, T. Shinada and Y. Ohfune, J. Org. Chem., 2005, 70, 3464, (b) M. Ahari, A. Joosten, J.-L. Vasse and J. Szymoniak, Synthesis, 2008, 61.

[^6]: ${ }^{10}$ J. D. Cuthbertson and R. J. K. Taylor, Angew. Chem., Int. Ed. 2013, 52, 1490.

