Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

Supporting information

Cobalt-catalyzed regioselective hydrohydrazination of

epoxides

Xiangyu Liu,^a Heng Song,^b Chen-Ho Tung^a and Wenguang Wang^{*a}

^{*a*}Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No.27 South Shanda Road, Jinan, 250100, P. R. China

Email: <u>wwg@sdu.edu.cn</u>

^bSchool of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China

Table of Contents

1. General procedure	S2
2. Experimental section	S3-S14
2.1 Synthesis of [Cp*Co(1,2-Ph ₂ PC ₆ H ₄ S)(NCMe)][BF ₄],1	S3-S5
2.2 Reaction of 1 with phenylhydrazine	S6-S8
2.3 Reaction of 1' with styrene oxide	
2.4 Survey of reaction conditions	S11
2.5 The gram scale reaction	S12
2.6 Synthetic applications of 1,1-hydrazinoalcohol	S13-S14
3. Experimental details and characterization data of the products	S15-S31
4. ¹ H-NMR, ¹⁹ F-NMR and ¹³ C-NMR spectra	S32-S71
5. Crystal data and structure refinement parameters	
6. References	S75

1. General procedure.

All reagents were purchased from commercial suppliers, unless specified otherwise, or prepared as described in the literature. The epoxides were purchased from commercial suppliers or prepared according to reported methods.¹ Acetonitrile, hexane, 1,2-dichloroethane and tetrahydrofuran were dried and degassed by Solvent Purification Systems. All solid heteroarenes were dried under vacuum and liquid heteroarenes were distilled prior to use. The [Cp*Co(1,2-Ph₂PC₆H₄S)] were prepared according to published procedures.² NMR spectra were recorded on Bruker 500 (500 MHz for ¹H, 126 MHz for ¹³C, 471 MHz for ¹⁹F) spectrometers. Chemical shifts for ¹H and ¹³C spectra were referenced to residual solvent resonances and are reported relative to tetramethylsilane. High resolution mass spectra (MS) were obtained using a LC/MSD TOF spectrometer system with electrospray ionization (ESI).

2. Experimental section.

2.1 Synthesis of [Cp*Co(1,2-Ph₂PC₆H₄S)(NCMe)]BF₄, 1.

Scheme S1. Synthesis of [Cp*Co(1,2-Ph₂PC₆H₄S)(NCMe)]BF₄, 1.

[Cp*Co(1,2-Ph₂PC₆H₄S)(NCMe)]BF₄, 1. In a glovebox under nitrogen atmosphere, [Cp*Co(Ph₂PC₆H₄S)] (487 mg, 1.0 mmol) was added to the solution of [Cp₂Fe]BF₄ (273 mg, 1.0 mmol) in 30 mL of MeCN, the solution color turned from red to black immediately. After stirring for 3 h at room temperature, the solution was concentrated to 5 mL. Then the solution was diluted with 50 mL of ether. The product was precipitated and isolated as black solid by filtration (556 mg, 92% yield). [Cp*Co(1,2-Ph₂PC₆H₄S)(NCMe)]BF₄, 1, ¹H NMR (500 MHz, CD₂Cl₂) δ 7.89 – 7.42 (m, 11H), 7.10 (t, *J* = 6.8 Hz, 1H), 6.92 – 6.65 (m, 2H), 1.96 (s, 3H), 1.34 (s, 15H). ³¹P NMR (202 MHz, CD₂Cl₂) δ 66.58 (s). ¹³C NMR (126 MHz, CD₂Cl₂) δ 155.05, 154.86, 134.27, 134.19, 133.77, 132.65, 131.58 (d, *J* = 2.6 Hz), 131.25 (d, *J* = 2.3 Hz), 129.83, 129.75, 129.08, 129.00, 128.55, 123.74, 123.68, 98.15, 9.09, 3.30. MS (ESI) Calcd for C₂₈H₂₉PSCo [M⁺–MeCN]: 487.1060; Found: 487.1036.

Figure S1. The ¹H-NMR spectral copy of compound 1.

Figure S2. The ³¹P-NMR spectral copy of compound **1**.

Figure S3. The ¹³C-NMR spectral copy of compound 1.

2.2 Reaction of 1 with phenylhydrazine.

Scheme S2. Reaction of 1 with phenylhydrazine.

In a glovebox under nitrogen atmosphere, a scintillation vial (with a magnetic stir bar) was charged with phenylhydrazine (108 mg, 1.0 mmol) and a stoichiometric amount of **1** (615 mg, 1.0 mmol) in 20 mL of DCM solution. The color turned from black to brown immediately. After stirring for 2 h at room temperature, the volatile was removed under vacuum. The product was washed with hexane (50 mL) and collected by filtration to give brown solid (686 mg, 0.095 mmol, 95% yield). **[Cp*Co(1,2-Ph_2PC_6H_4S)(NH_2NHPh)]BF4**, **1'**, ¹H NMR (500 MHz, CD₂Cl₂) δ 7.95 – 7.31(m, 12H), 7.28 – 6.53 (m, 10H), 1.41 (s, 15H). ³¹P NMR (202 MHz, CD₂Cl₂) δ 65.00 (s). ¹³C NMR (126 MHz, CD₂Cl₂) δ 152.43, 149.13, 137.16 (d, *J* = 9.8 Hz), 135.79, 133.90, 133.42, 132.92, 132.24 (d, *J* = 7.4 Hz), 129.86, 129.79, 129.51, 124.56 (d, *J* = 6.5 Hz), 123.00, 115.55, 115.24, 99.31, 97.15, 94.42, 92.90, 9.50. MS (ESI) Calcd for C₃₄H₃₇CoN₂PS [M⁺]: 595.1747; Found: 595.1674.

Figure S4. The ¹H-NMR spectral copy of compound 1'.

Figure S5. The ³¹P-NMR spectral copy of compound 1'.

Figure S6. The ¹³C-NMR spectral copy of compound **1**'.

2.3 Reaction of 1' with styrene oxide.

Scheme S3. Reaction of 1' with styrene oxide.

In a glovebox under nitrogen atmosphere, a scintillation vial (with a magnetic stir bar) was charged with **1'** (68 mg, 0.1 mmol) and a stoichiometric amount of styrene oxide (12 mg, 0.1 mmol) in 5 mL of mixed solvent DCE/MeCN (v/v = 1:1). After stirring for 2 h at 50 °C, the volatile was removed under vacuum. The residue was extracted extracted with MeCN (5 mL) in vacuo to give product **1** and **4a**.

Figure S7. The ³¹P NMR spectrum for the reaction of **1**' with styrene oxide.

Figure S8. The MS (ESI) analysis for 4a in the reaction of 1' with styrene oxide.

2.4 Survey of reaction conditions.

	Ph + Ph ^N NH;	1 (3 mol%) 50 °C, 12h DCE	Ph ^N Ph 4a	
Entry	Cat	Temperature	Solvent	Yield/% ^b
1	NO	25 °C	MeCN	0%
2	NO	50 °C	MeCN	0%
3	1	50 °C	MeCN	61%
4	1	50 °C	THF	43%
5	1	50 °C	CHCI ₃	67%
6	1	50 °C	Tol	35%
7	1	50 °C	DCE	81%
8 ^c	1	50 °C	DCE	92%
9	Co(acac) ₃	50 °C	DCE	0%
10	[Cp ₂ Co]PF ₆	50 °C	DCE	0%
11	[Co(NH ₃) ₆]Cl ₃	50 °C	DCE	0%
12	1'	50 °C	DCE	90%

Table S1. Optimization of reaction conditions.^a

^{*a*}Reaction conditions: styrene oxide (0.2 mmol), phenylhydrazine (0.2 mmol), cat (3 mol%), DCE (2 mL), 50 °C for 12 h under N₂. ^{*b*}Isolated yield. ^{*c*}phenylhydrazine (0.24 mmol).

2.5 The gram scale reaction.

Scheme S4. The gram scale reaction for the synthesis of 4a.

According to optimized conditions, **2a** styrene oxide (720 mg, 6.0 mmol, 1 equiv), phenylhydrazine (780 mg, 7.2 mmol, 1.2 equiv), **1** (110 mg, 0.18 mmol, 3 mol%), were added into 20 mL DCE. After stirring for 12 h at 50 °C under N₂, the reaction mixture was concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel to afford the desired product **4a** (1.204 g, 88%) as yellow solid. The product should be protected from light to avoid decomposition.

2.6 Synthetic applications of hydrazinoalcohol product.

Scheme S5. Procedure for the synthesis of 6a.

In an oven-dried Schlenk tube, **4a** (69 mg, 0.3 mmol) and a stoichiometric amount of cyclohexanone (30 mg, 0.3 mmol) was dissolved in THF (4 mL). Then *p*-toluenesulphonic acid (103 mg, 0.6 mmol) was added and the reaction mixture was stirred at 60 $^{\circ}$ C under nitrogen atmosphere for 12 h. Then, the solvent was concentrated by vacuo and the crude product was purified by flash column chromatography to give the title compound as yellow oil (60 mg, 67% yield).³

Scheme S6. Procedure for the synthesis of 6b.

Dimethyl carbonate (135 mg, 1.5 mmol) and **4a** (69 mg, 0.3 mmol) were added to an oven-dried Schlenk tube containing THF (5 mL) and K_2CO_3 (83 mg, 0.6 mmol). The reaction mixture was refluxed for 12 h and then the mixture was concentrated. The crude product was purified by flash column chromatography, affording the title compound as white solid (67 mg, 88% yield).⁴

Scheme S7. Procedure for the synthesis of 6c.

To an oven-dried Schlenk tube containing DCM (5 mL), trimethylamine (122 mg, 1.2 mmol) and **4a** (69 mg, 0.3 mmol) and were added under air. Subsequently, benzoyl chloride (42 mg, 0.3 mmol) in DCM (2 mL) was added dropwise. The reaction mixture was stirred for 3 h at room temperature and then the mixture was concentrated. Purification of the resulting residue by flash column chromatography on silica gel afforded product as yellow solid (85 mg, 85% yield).

Scheme S8. Procedure for the synthesis of 6d.

To a round bottom flask, **4a** (69 mg, 0.3 mmol) and trimethylamine (122 mg, 1.2 mmol) were added under nitrogen atmosphere. Then sulfonychloride (50 mg, 0.36 mmol) in DCM (5 mL) was added subsequently. After stirring the mixture at -60 °C temperature for 5 h, the mixture was diluted with DCM (5 mL) and washed with water (3×10 mL). The organic layer was separated and dried over anhydrous Na₂SO₄. Then the crude product was purified by flash column chromatography to give the desired compound as red solid (36 mg, 58% yield).

3. Experimental details and characterization data of the products.

2-phenyl-2-(1-phenylhydrazinyl)ethan-1-ol (4a).

Yellow solid, 42 mg, 92% yield. ¹H NMR (500 MHz, CD₃CN) δ 7.36 – 7.26 (m, 4H), 7.25 – 7.22 (m, 1H), 7.19 – 7.14 (m, 2H), 6.98 – 6.89 (m, 2H), 6.73 – 6.61 (m, 1H), 4.89 (dd, *J* = 8.1, 4.3 Hz, 1H), 4.18 (dd, *J* = 11.3, 8.2 Hz, 1H), 3.98 – 3.77 (m, 3H), 3.50 (s, 1H). ¹³C NMR (126 MHz, CD₃CN) δ 152.86, 140.44, 129.83, 129.26, 128.66, 118.42, 128.15, 113.57, 66.16, 64.58. HRMS (ESI) Calcd for C₁₄H₁₇N₂O [M+H⁺]: 229.1341; Found: 229.1334.

2-(4-fluorophenyl)-2-(1-phenylhydrazinyl)ethan-1-ol (4b)

Yellow oil, 47 mg, 95% yield. ¹H NMR (500 MHz, CD₃CN) δ 7.40 – 7.26 (m, 2H), 7.22 – 7.15 (m, 2H), 7.08 – 6.99 (m, 2H), 6.97 – 6.91 (m, 2H), 6.74 – 6.66 (m, 1H), 4.89 (dd, *J* = 8.0, 4.5 Hz, 1H), 4.16 (dd, *J* = 11.3, 8.0 Hz, 1H), 3.91 – 3.87 (dd, 11.3Hz, 4.5Hz, 1H), 3.84 (s, 2H). ¹⁹F {1H} NMR (471 MHz, CD₃CN) δ -116.83 (s). ¹³C NMR (126 MHz, CD₃CN) δ 162.85 (d, *J* = 243.1 Hz), 152.74, 136.41 (d, *J* = 3.1 Hz), 130.55 (d, *J* = 8.0 Hz), 129.86, 118.60, 115.80 (d, *J* = 21.3 Hz), 113.63, 65.44, 64.45. HRMS (ESI) Calcd for C₁₄H₁₆FN₂O [M+H⁺]: 247.1247; Found: 247.1251.

Yellow oil, 49 mg, 94% yield. ¹H NMR (500 MHz, CD₃CN) δ 7.36 – 7.26 (m, 4H), 7.22 – 7.11 (m, 2H), 6.98 – 6.86 (m, 2H), 6.75 – 6.62 (m, 1H), 4.88 (dd, *J* = 7.8, 4.4 Hz, 1H), 4.15 (dd, *J* = 11.3, 7.8 Hz, 1H), 3.90 (dd, *J* = 11.4, 4.4 Hz, 1H), 3.82 (s, 2H).. ¹³C NMR (126 MHz, CD₃CN) δ 152.59, 139.36, 133.25, 130.37, 129.86, 129.15, 118.59, 113.51, 65.43, 64.38. HRMS (ESI) Calcd for C₁₄H₁₆ClN₂O [M+H⁺]: 263.0951; Found: 263.0949.

2-(4-bromophenyl)-2-(1-phenylhydrazinyl)ethan-1-ol (4d)

Yellow solid, 56 mg, 92% yield. ¹H NMR (500 MHz, CD₃CN) δ 7.46 – 7.43 (m, 2H), 7.27 – 7.22 (m, 2H), 7.21 – 7.16 (m, 2H), 6.97 – 6.88 (m, 2H), 6.75 – 6.66 (m, 1H), 4.86 (dd, *J* = 7.8, 4.4 Hz, 1H), 4.15 (dd, *J* = 11.4, 7.8 Hz, 1H), 3.90 (dd, *J* = 11.4, 4.4 Hz, 1H), 3.81 (s, 2H). ¹³C NMR (126 MHz, CD₃CN) δ 152.58, 139.84, 132.16, 130.74, 129.88, 121.40, 118.64, 113.55, 65.51, 64.36. HRMS (ESI) Calcd for C₁₄H₁₆BrN₂O [M+H⁺]: 307.0446; Found: 307.0448.

White solid, 51 mg, 90% yield. ¹H NMR (500 MHz, CD₃CN) δ 7.38 – 7.32 (m, 2H), 7.27 – 7.13 (m, 4H), 6.99 – 6.93 (m, 2H), 6.69 (t, *J* = 7.2 Hz, 1H), 4.90 (dd, *J* = 8.1, 4.3 Hz, 1H), 4.19 (dd, *J* = 11.0, 8.4 Hz, 1H), 4.05 – 3.82 (m, 3H), 3.47 (s, 1H), 1.28 (s, 9H). ¹³C NMR (126 MHz, CD₃CN) δ 152.93, 151.02, 137.27, 129.85, 128.44, 126.19, 118.37, 113.53, 65.67, 64.58, 35.06, 31.58. HRMS (ESI) Calcd for C₁₈H₂₅N₂O [M+H⁺]: 285.1967; Found: 285.1961.

2-(1-phenylhydrazinyl)-2-(o-tolyl)ethan-1-ol (4f)

White solid, 43 mg, 88% yield. ¹H NMR (500 MHz, CD₃CN) δ 7.36 – 7.27 (m, 1H), 7.23 – 7.07 (m, 5H), 6.89 – 6.78 (m, 2H), 6.69 – 6.62 (m, 1H), 4.96 (dd, *J* = 7.8, 4.0 Hz, 1H), 4.11 (dd, *J* = 11.6, 7.9 Hz, 1H), 3.97 (s, 2H), 3.84 (dd, *J* = 11.6, 4.1 Hz, 1H), 2.38 (s, 3H). ¹³C NMR (126 MHz, CD₃CN) δ 152.42, 139.21, 136.91, 131.49, 129.80, 128.07, 128.04, 126.79, 118.13, 113.06, 63.61, 63.28, 19.58. HRMS (ESI) Calcd for C₁₅H₁₉N₂O [M+H⁺]: 243.1497; Found: 243.1490.

White solid, 49 mg, 93% yield. ¹H NMR (500 MHz, CD₃CN) δ 7.48 – 7.44 (m, 1H), 7.43 – 7.39 (m, 1H), 7.25 – 7.19 (m, 2H), 7.19 – 7.09 (m, 2H), 6.86 – 6.76 (m, 2H), 6.73 – 6.63 (m, 1H), 5.16 (dd, *J* = 7.5, 3.9 Hz, 1H), 4.25 – 4.00 (m, 3H), 3.91 (dd, *J* = 11.6, 3.9 Hz, 1H), 3.76 (s, 1H). ¹³C NMR (126 MHz, CD₃CN) δ 152.02, 138.86, 133.83, 130.44, 130.15, 129.91, 129.73, 128.03, 118.40, 112.77, 63.52, 63.23. HRMS (ESI) Calcd for C₁₄H₁₆ClN₂O [M+H⁺]: 263.0951; Found: 263.0997.

2-phenyl-2-(1-phenylhydrazinyl)propan-1-ol (4h)

White solid, 39 mg, 81% yield. ¹H NMR (500 MHz, CD₃CN) δ 7.53 – 7.39 (m, 2H), 7.38 – 7.27 (m, 2H), 7.26 – 7.16 (m, 1H), 7.05 – 6.91 (m, 2H), 6.75 – 6.46 (m, 3H), 4.38 (s, 2H), 3.83 (d, *J* = 11.7 Hz, 1H), 3.43 (d, *J* = 11.6 Hz, 1H), 1.64 (s, 3H). ¹³C NMR (126 MHz, CD₃CN) δ 151.23, 146.24, 129.37, 128.94, 127.60, 127.04, 119.32, 117.49, 74.02, 67.64, 16.74. HRMS (ESI) Calcd for C₁₅H₁₉N₂O [M+H⁺]: 243.1497; Found: 243.1500.

White solid, 35 mg, 73% yield. ¹H NMR (500 MHz, CD₃CN) δ 7.46 – 7.36 (m, 2H), 7.33 – 7.21 (m, 3H), 7.20 – 7.07 (m, 2H), 6.94 – 6.83 (m, 2H), 6.70 – 6.64 (t, *J* = 7.3 Hz, 1H), 4.60 – 4.52 (m, 2H), 4.24 (s, 1H), 3.95 (s, 2H), 1.19 (d, *J* = 6.1 Hz, 3H). ¹³C NMR (126 MHz, CD₃CN) δ 152.29, 139.68, 130.33, 129.81, 128.72, 128.03, 118.58, 113.54, 69.59, 69.44, 21.22. HRMS (ESI) Calcd for C₁₅H₁₉N₂O [M+H⁺]: 243.1497; Found: 243.1498.

1,2-diphenyl-2-(1-phenylhydrazinyl)ethan-1-ol (4j)

White solid, 41 mg, 67% yield. ¹H NMR (500 MHz, CD₃CN) δ 7.42 (d, *J* = 7.3 Hz, 2H), 7.34 – 7.26 (m, 4H), 7.22 (m 4H), 7.15 – 7.07 (m, 2H), 6.86 – 6.81 (m, 2H), 6.68 – 6.61 (m, 1H), 5.56 (d, *J* = 6.3 Hz, 1H), 4.97 (d, *J* = 6.3 Hz, 1H), 4.68 (s, 1H), 3.89 (s, 2H). ¹³C NMR (126 MHz, CD₃CN) δ 152.02, 144.24, 138.95, 130.25, 129.78, 128.82, 128.60, 128.13, 128.10, 127.88, 118.71, 113.49, 75.81, 69.97. HRMS (ESI) Calcd for C₂₀H₂₁N₂O [M+H⁺]: 305.1654; Found: 305.1645.

White solid, 41 mg, 80% yield. ¹H NMR (500 MHz, CD₃CN) δ 7.26 – 7.18 (m, 2H), 7.16 – 7.07 (m, 4H), 7.05 – 7.01 (m, 1H), 6.92 (d, *J* = 8.0 Hz, 1H), 6.73 – 6.66 (m, 1H), 4.93 (d, *J* = 8.7 Hz, 1H), 4.18 (ddd, *J* = 12.2, 8.7, 3.7 Hz, 1H), 3.52 (s, 2H), 3.23 (s, 1H), 3.02 – 2.76 (m, 2H), 2.14 (m, 1H), 1.99 – 1.78 (m, 1H). ¹³C NMR (126 MHz, CD₃CN) δ 154.56, 139.00, 136.53, 130.01, 129.88, 127.71, 127.34, 126.91, 117.89, 113.16, 68.61, 68.36, 31.36, 28.99. HRMS (ESI) Calcd for C₁₆H₁₉N₂O [M+H⁺]: 255.1497; Found: 255.1500.

Trans-2-(1-phenylhydrazinyl)cyclopentan-1-ol (4l)

White solid, 32 mg, 82% yield. ¹H NMR (500 MHz, CD₃CN) δ 7.31 – 7.11 (m, 2H), 7.10 – 6.96 (m, 2H), 6.72 – 6.64 (m, 1H), 4.32 (ddd, J = 12.8, 6.7, 2.5 Hz, 1H), 3.91 (ddd, J = 11.3, 8.2, 3.1 Hz, 1H), 3.50 (s, 2H), 3.01 (s, 1H), 1.93 – 1.78 (m, 2H), 1.77 – 1.62 (m, 2H), 1.62 – 1.47 (m, 2H). ¹³C NMR (126 MHz, CD₃CN) δ 154.00, 129.82, 118.70, 114.79, 75.05, 69.49, 33.53, 25.04, 21.46. HRMS (ESI) Calcd for C₁₁H₁₇N₂O [M+H⁺]: 193.1341; Found: 193.1346.

White solid, 35 mg, 84% yield. ¹H NMR (500 MHz, CD₃CN) δ 7.27 – 7.11 (m, 2H), 7.07 – 6.96 (m, 2H), 6.73 – 6.63 (m, 1H), 3.84 (ddd, J = 10.6, 9.4, 4.4 Hz, 1H), 3.53 (s, 2H), 3.39 (ddd, J = 11.7, 9.2, 3.9 Hz, 1H), 2.99 (s, 1H), 2.04 – 1.97 (m, 1H), 1.73 – 1.65 (m, 2H), 1.56 (dd, J = 8.7, 5.9 Hz, 1H), 1.51 – 1.40 (m, 1H), 1.38 – 1.23 (m, 3H). ¹³C NMR (126 MHz, CD₃CN) δ 153.58, 129.81, 118.31, 114.11, 70.53, 66.71, 34.67, 25.83, 25.64, 25.32. HRMS (ESI) Calcd for C₁₂H₁₉N₂O [M+H⁺]: 207.1497; Found: 207.1498.

3-phenoxy-2-(1-phenylhydrazinyl)propan-1-ol (4n)

Yellow solid, 45 mg, 86% yield. ¹H NMR (500 MHz, CD₃CN) δ 7.34 – 7.27 (m, 2H), 7.26 – 7.13 (m, 2H), 7.10 – 6.85 (m, 5H), 6.78 – 6.69 (m, 1H), 4.33 – 4.27 (m, 1H), 4.15 – 3.90 (m, 4H), 3.58 (dd, *J* = 14.1, 4.2 Hz, 1H), 3.48 (dd, *J* = 14.1, 6.9 Hz, 1H). ¹³C NMR (126 MHz, CD₃CN) δ 159.91, 153.61, 130.50, 129.80, 121.73, 118.94, 115.49, 114.03, 70.88, 69.63, 58.41. HRMS (ESI) Calcd for C₁₅H₁₉N₂O₂ [M+H⁺]: 259.1447; Found: 259.1446.

Yellow solid, 47 mg, 84% yield. ¹H NMR (500 MHz, CD₃CN) δ 7.40 – 7.35(m, 4H), 7.31 (m, 1H), 7.25 – 7.17 (m, 2H), 7.06 – 6.94 (m, 2H), 6.80 – 6.60 (m, 1H), 4.55 (s, 2H), 4.15 – 4.10 (m, 1H), 3.95 (s, 2H), 3.58 – 3.48 (m, 3H), 3.37 (dd, *J* = 14.2, 7.2 Hz, 1H).¹³C NMR (126 MHz, CD₃CN) δ 153.63, 139.79, 129.78, 129.32, 128.70, 128.50, 118.71, 113.99, 73.88, 73.49, 70.02, 58.93. HRMS (ESI) Calcd for C₁₆H₂₀N₂O₂ [M+H⁺]: 273.1603; Found: 273.1593.

3-butoxy-2-(1-phenylhydrazinyl)propan-1-ol(4p)

Yellow oil, 38 mg, 79% yield. ¹H NMR (500 MHz, CD₃CN) δ 7.28 – 7.14 (m, 2H), 7.06 – 6.91 (m, 2H), 6.77 – 6.64 (m, 1H), 4.09 – 4.02 (m, 1H), 3.90 (s, 2H), 3.51 – 3.37 (m, 5H), 3.33 (dd, *J* = 14.2, 7.2 Hz, 1H), 1.58 – 1.52 (m, 2H), 1.42 – 1.34 (m, 2H), 0.92 (t, *J* = 7.4 Hz, 3H).¹³C NMR (126 MHz, CD₃CN) δ 153.64, 129.76, 118.65, 113.94, 73.72, 71.79, 70.00, 58.96, 32.62, 20.10, 14.25. HRMS (ESI) Calcd for C₁₃H₂₃N₂O₂ [M+H⁺]: 239.1760; Found: 239.1755.

Yellow oil, 46 mg, 92% yield. ¹H NMR (500 MHz, CD₃CN) δ 7.37 –7.30 (m, 4H), 7.28 – 7.22 (m, 1H), 7.09 – 6.80 (m, 4H), 4.84 (dd, J = 8.2, 4.4 Hz, 1H), 4.20 (dd, J = 11.3, 8.3 Hz, 1H), 3.90 (dd, J = 11.4, 4.4 Hz, 1H), 3.76 (s, 2H). ¹⁹F {1H} NMR (471 MHz, CD₃CN) δ -129.36. ¹³C NMR (126 MHz, CD₃CN) δ 156.82 (d, J = 234.2 Hz), 149.73, 139.81, 129.31, 128.76, 128.31, 115.97 (d, J = 22.2 Hz), 115.43 (d, J = 7.4 Hz), 67.15, 64.39. HRMS (ESI) Calcd for C₁₄H₁₆FN₂O [M+H⁺]: 247.1247; Found: 247.1248.

2-(1-(4-chlorophenyl)hydrazinyl)-2-phenylethan-1-ol (5b)

Yellow oil, 47 mg, 90% yield. ¹H NMR (500 MHz, CD₃CN) δ 7.37 – 7.28 (m, 4H), 7.28 – 7.22 (m, 1H), 7.17 – 7.11 (m, 2H), 7.04 – 6.84 (m, 2H), 4.87 (dd, *J* = 8.3, 4.4 Hz, 1H), 4.18 (dd, *J* = 11.4, 8.3 Hz, 1H), 4.15 – 3.75 (m, 3H), 3.56 (s, 1H). ¹³C NMR (126 MHz, CD₃CN) δ 151.72, 139.84, 129.43, 129.36, 128.55, 128.30, 122.37, 114.92, 66.31, 64.21. Calcd for C₁₄H₁₆ClN₂O [M+H⁺]: 263.0951; Found: 263.0944.

Yellow solid, 54 mg, 87% yield. ¹H NMR (500 MHz, CD₃CN) δ 7.41 – 7.12 (m, 7H), 6.95 – 6.78 (m, 2H), 4.87 (dd, J = 8.3, 4.4 Hz, 1H), 4.17 (dd, J = 11.4, 8.3 Hz, 1H), 3.90 (dd, J = 11.4, 4.4 Hz, 1H), 3.75 (s, 2H). ¹³C NMR (126 MHz, CD₃CN) δ 152.11, 139.85, 132.34, 129.37, 128.53, 128.31, 115.38, 109.46, 66.22, 64.20. HRMS (ESI) Calcd for C₁₄H₁₆BrN₂O [M+H⁺]: 307.0446; Found: 307.0448.

2-(1-(4-methoxyphenyl)hydrazinyl)-2-phenylethan-1-ol (5d)

Yellow oil, 42 mg, 81% yield. ¹H NMR (500 MHz, CD₃CN) δ 7.35 – 7.26 (m, 4H), 7.25 – 7.20 (m, 1H), 6.98 – 6.87 (m, 2H), 6.83 – 6.73 (m, 2H), 4.75 (dd, *J* = 8.1, 4.3 Hz, 1H), 4.17 (dd, *J* = 11.2, 8.2 Hz, 1H), 3.85 (dd, *J* = 11.2, 4.3 Hz, 1H), 3.72 (s, 2H), 3.69 (s, 5H). ¹³C NMR (126 MHz, CD₃CN) δ 153.86, 147.42, 140.00, 129.17, 128.99, 128.21, 116.68, 115.19, 67.75, 64.84, 56.10. HRMS (ESI) Calcd for C₁₅H₁₉N₂O₂ [M+H⁺]: 259.1447; Found: 259.1448.

Yellow oil, 43 mg, 84% yield. ¹H NMR (500 MHz, CD₃CN) δ 7.35 – 7.30 (m, 4H), 7.29 – 7.22 (m, 1H), 7.17 – 7.11 (m, 1H), 6.78 – 6.64 (m, 2H), 6.48 – 6.27 (m, 1H), 4.91 (dd, *J* = 8.3, 4.4 Hz, 1H), 4.20 (dd, *J* = 11.4, 8.3 Hz, 1H), 3.93 (dd, *J* = 11.4, 4.4 Hz, 1H), 3.80 (s, 2H). ¹⁹F {1H} NMR (471 MHz, CD₃CN) δ -114.19 (s). ¹³C NMR (126 MHz, CD₃CN) δ 164.79 (d, *J* = 239.6 Hz), 154.79 (d, *J* = 10.3 Hz), 139.90, 131.06 (d, *J* = 10.3 Hz), 129.33, 128.41, 128.25, 108.97 (d, *J* = 2.0 Hz), 104.04 (d, *J* = 21.8 Hz), 100.00 (d, *J* = 27.0 Hz), 66.00, 64.16. HRMS (ESI) Calcd for C₁₄H₁FN₂O [M+H⁺]: 247.1247; Found: 247.1253.

2-(1-(3-chlorophenyl)hydrazinyl)-2-phenylethan-1-ol (5f)

Yellow oil, 42 mg, 80% yield. ¹H NMR (500 MHz, CD₃CN) δ 7.36 – 7.29 (m, 4H), 7.29 – 7.20 (m, 1H), 7.12 (t, *J* = 8.2 Hz, 1H), 7.00 (t, *J* = 2.2 Hz, 1H), 6.73 – 6.55 (m, 1H), 6.66 (dd, *J* = 7.8, 1.3 Hz, 1H), 4.90 (dd, *J* = 8.3, 4.4 Hz, 1H), 4.17 (dd, *J* = 11.4, 8.3 Hz, 1H), 3.91 (dd, *J* = 11.5, 4.4 Hz, 1H), 3.78 (s, 2H). ¹³C NMR (126 MHz, CD₃CN) δ 154.18, 139.91, 135.35, 131.08, 129.42, 128.48, 128.34, 117.59, 112.97, 111.72, 66.07, 64.18. HRMS (ESI) Calcd for C₁₄H₁₆ClN₂O [M+H⁺]: 263.0951; Found: 263.0944.

White solid, 38 mg, 78% yield. ¹H NMR (500 MHz, CD₃CN) δ 7.34 – 7.27 (m, 4H), 7.26 – 7.19 (m, 1H), 7.07 – 7.04 (m, 1H), 6.82 (s, 1H), 6.74 (dd, *J* = 8.3, 2.4 Hz, 1H), 6.53 (d, *J* = 7.4 Hz, 1H), 4.90 (dd, *J* = 8.1, 4.4 Hz, 1H), 4.19 (dd, *J* = 11.3, 8.1 Hz, 1H), 3.90 (dd, *J* = 11.3, 4.4 Hz, 1H), 3.74 (s, 3H), 2.25 (s, 3H). ¹³C NMR (126 MHz, CD₃CN) δ 153.03, 140.49, 139.53, 129.74, 129.25, 128.71, 128.14, 119.42, 114.37, 110.93, 66.19, 64.57, 21.92. HRMS (ESI) Calcd for C₁₅H₁₉N₂O [M+H⁺]: 243.1497; Found: 243.1494.

2-(1-(2-fluorophenyl)hydrazinyl)-2-phenylethan-1-ol (5h)

Yellow oil, 47 mg, 83% yield. ¹H NMR (500 MHz, CD₃CN) δ 7.33 – 7.19 (m, 5H), 7.10 – 7.02 (m, 2H), 7.00 – 6.96 (m, 1H), 6.95 – 6.89 (m, 1H), 4.65 (dd, *J* = 8.1, 4.8 Hz, 1H), 4.20 (ddd, *J* = 11.0, 8.2, 1.2 Hz, 1H), 3.83 (dd, *J* = 11.2, 4.8 Hz, 1H), 3.72 (s, 3H). ¹⁹F{¹H} NMR (471 MHz, CD₃CN) δ -123.02 (s). ¹³C NMR (126 MHz, CD₃CN) δ 155.36 (d, *J* = 243.0 Hz), 141.99 (d, *J* = 8.2 Hz), 138.69, 129.31, 129.14, 128.55, 125.16 (d, *J* = 3.4 Hz), 123.85 (d, *J* = 7.9 Hz), 121.97 (d, *J* = 2.6 Hz), 116.88 (d, *J* = 21.1 Hz), 69.65 (d, *J* = 5.0 Hz), 64.37. HRMS (ESI) Calcd for C₁₄H₁₆FN₂O [M+H⁺]: 247.1247; Found: 247.1255.

White solid, 48 mg, 86% yield. ¹H NMR (500 MHz, CD₃CN) δ 7.36 – 7.20 (m, 5H), 7.14 (dd, *J* = 12.5, 2.1 Hz, 1H), 7.08 – 6.95 (m, 2H), 4.64 (dd, *J* = 8.1, 5.0 Hz, 1H), 4.26 – 4.15 (m, 1H), 3.85 (dd, *J* = 11.3, 4.8 Hz, 1H), 3.77 (s, 2H), 3.44 (s, 1H). ¹⁹F{¹H} NMR (471 MHz, CD₃CN) δ -120.02 (s). ¹³C NMR (126 MHz, CD₃CN) δ 154.56 (d, *J* = 246.9 Hz), 141.28 (d, *J* = 8.2 Hz), 138.22, 129.24 (d, *J* = 5.7 Hz), 128.67, 126.87 (d, *J* = 10.0 Hz), 125.11 (d, *J* = 3.4 Hz), 122.73 (d, *J* = 3.5 Hz), 117.47, 117.27, 69.61 (d, *J* = 5.4 Hz), 63.70. HRMS (ESI) Calcd for C₁₄H₁₄ClFN₂O [M+H⁺]: 281.0857; Found: 281.0852.

2-(1-(2,4-difluorophenyl)hydrazinyl)-2-phenylethan-1-ol (5j)

Yellow solid, 48 mg, 90% yield. ¹H NMR (500 MHz, CD₃CN) δ 7.31 – 7.17 (m, 5H), 7.08 – 7.01 (m, 1H), 6.94 – 6.88 (m, 1H), 6.83 – 6.72 (m, 1H), 4.52 (dd, *J* = 8.1, 4.8 Hz, 1H), 4.16 (ddd, *J* = 11.3, 8.1, 1.2 Hz, 1H), 3.79 (dd, *J* = 11.3, 4.8 Hz, 1H), 3.72 (s, 2H). ¹⁹F{¹H} NMR (471 MHz, CD₃CN) δ -118.78 (d, *J* = 5.0 Hz), -120.10 (d, *J* = 5.1 Hz). ¹³C NMR (126 MHz, CD₃CN) δ 159.07 (dd, *J* = 241.4, 11.7 Hz), 155.62 (dd, *J* = 247.1, 12.1 Hz), 138.68 (dd, *J* = 8.9, 3.5 Hz), 138.38, 129.40, 129.18, 128.65, 123.71 (dd, *J* = 9.4, 3.9 Hz), 111.36 (dd, *J* = 21.7, 3.6 Hz), 105.14 (dd, *J* = 26.5, 25.3 Hz), 70.23 (d, *J* = 4.1 Hz), 64.50. HRMS (ESI) Calcd for C₁₄H₁₅F₂N₂O [M+H⁺]: 265.1152; Found: 265.1153.

White solid, 30 mg, 58% yield. ¹H NMR (500 MHz, CD₃CN) δ 7.36 – 7.15 (m, 5H), 6.92 (d, *J* = 8.3 Hz, 1H), 6.80 (d, *J* = 2.2 Hz, 1H), 6.66 (dd, *J* = 8.3, 2.5 Hz, 1H), 4.84 (dd, *J* = 8.0, 4.3 Hz, 1H), 4.17 (dd, *J* = 11.2, 8.2 Hz, 1H), 3.87 (dd, *J* = 11.2, 4.2 Hz, 1H), 3.79 (s, 2H), 3.54 (s, 1H), 2.17 (s, 3H), 2.12 (s, 3H). ¹³C NMR (126 MHz, CD₃CN) δ 151.32, 140.46, 137.78, 130.85, 129.17, 128.82, 128.10, 126.78, 115.75, 111.75, 66.50, 64.69, 20.35, 18.65. HRMS (ESI) Calcd for C₁₆H₂₁N₂O [M+H⁺]: 257.1654; Found: 257.1649.

2-(1-(3,4-dichlorophenyl)hydrazinyl)-2-phenylethan-1-ol (5l)

White solid, 55 mg, 92% yield. ¹H NMR (500 MHz, CD₃CN) δ 7.34 – 7.21 (m, 6H), 7.14 (d, *J* = 2.9 Hz, 1H), 6.85 (dd, *J* = 9.1, 2.9 Hz, 1H), 4.88 (dd, *J* = 8.5, 4.4 Hz, 1H), 4.16 (dd, *J* = 11.5, 8.5 Hz, 1H), 3.97 (s, 2H), 3.91 (dd, *J* = 11.5, 4.4 Hz, 1H), 3.42 (s, 1H). ¹³C NMR (126 MHz, CD₃CN) δ 152.73, 139.41, 132.87, 131.14, 129.47, 128.45, 128.40, 119.56, 114.61, 113.27, 66.07, 63.87. HRMS (ESI) Calcd for C₁₄H₁₅Cl₂N₂O [M+H⁺]: 297.0561; Found: 297.0560.

White solid, 48 mg, 87% yield. ¹H NMR (500 MHz, CD₃CN) δ 7.35 – 7.29 (m, 4H), 7.28 – 7.24 (m, 1H), 7.06 (d, *J* = 8.5 Hz, 1H), 7.03 (d, *J* = 2.6 Hz, 1H), 6.81 (dd, *J* = 8.5, 2.6 Hz, 1H), 4.87 (dd, *J* = 11.4, 2.6 Hz, 1H), 4.20 (dd, *J* = 11.4, 8.3 Hz, 1H), 4.05 – 3.75 (m, 3H), 3.58 (s, 1H), 2.23 (s, 3H). ¹³C NMR (126 MHz, CD₃CN) δ 152.32, 139.88, 135.18, 132.07, 129.34, 128.57, 128.28, 124.87, 113.92, 112.55, 66.31, 64.26, 18.88. HRMS (ESI) Calcd for C₁₅H₁₈ClN₂O [M+H⁺]: 277.1108; Found: 277.1097.

2-(1-(3,5-dimethylphenyl)hydrazinyl)-2-phenylethan-1-ol (5n)

White solid, 32 mg, 62% yield. ¹H NMR (500 MHz, CD₃CN) δ 7.36 – 7.26 (m, 4H), 7.26 – 7.20 (m, 1H), 6.60 (s, 2H), 6.37 (s, 1H), 4.89 (dd, J = 8.1, 4.3 Hz, 1H), 4.18 (dd, J = 11.2, 8.2 Hz, 1H), 3.88 (dd, J = 11.2, 4.3 Hz, 1H), 3.78 (s, 2H), 3.46 (s, 1H), 2.20 (s, 6H). ¹³C NMR (126 MHz, CD₃CN) δ 153.16, 140.54, 139.35, 129.21, 128.72, 128.11, 120.47, 111.67, 66.12, 64.54, 21.80. HRMS (ESI) Calcd for C₁₆H₂₁NO [M+H⁺]: 257.1654; Found: 257.1646.

Yellow oil, 60 mg, 67% yield. ¹H NMR (500 MHz, CD₃CN) δ 7.41 – 7.36 (m, 1H), 7.29 – 7.26 (m, 2H), 7.24 – 7.19 (m, 1H), 7.18 – 7.12 (m, 2H), 7.06 (d, *J* = 8.0 Hz, 1H), 6.96 – 6.87 (m, 2H), 5.59 (dd, *J* = 8.5, 6.0 Hz, 1H), 4.41 (dd, *J* = 11.0, 5.9 Hz, 1H), 4.35 – 4.26 (m, 1H), 3.10 (s, 1H), 2.78 – 2.61 (m, 4H), 1.90 – 1.76 (m, 4H). ¹³C NMR (126 MHz, CD₃CN) δ 140.13, 137.58, 136.75, 129.41, 129.29, 128.27, 127.85, 121.11, 119.42, 118.51, 111.76, 110.48, 62.89, 60.07, 24.28, 24.00, 23.87, 21.86. HRMS (ESI) Calcd for C₂₀H₁₂NO [M+H⁺]: 292.1701; Found: 292.1697.

4,5-diphenyl-1,3,4-oxadiazinan-2-one (6b)

White solid, 67 mg, 88% yield. ¹H NMR (500 MHz, CD₃CN) δ 7.65 (d, J = 8.0 Hz, 2H), 7.48 (m, 3H), 7.43 – 7.32 (m, 3H), 7.22 (d, J = 7.8 Hz, 2H), 7.08 (t, J = 7.3 Hz, 1H), 5.04 (d, J = 2.5 Hz, 1H), 4.75 (dd, J = 11.8, 1.2 Hz, 1H), 4.47 (dd, J = 11.8, 3.5 Hz, 1H). ¹³C NMR (126 MHz, CD₃CN) δ 152.18, 151.20, 137.60, 130.44, 129.76, 129.00, 128.20, 123.90, 118.65, 66.67, 60.62. HRMS (ESI) Calcd for C₁₅H₁₅N₂O₂ [M+H⁺]: 255.1134; Found: 255.1130.

Yellow solid, 85 mg, 85% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, *J* = 7.5 Hz, 2H), 7.52 – 7.46 (m, 1H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.39 – 7.15 (m, 8H), 7.02 (d, *J* = 7.7 Hz, 2H), 6.89 (t, *J* = 7.2 Hz, 1H), 5.29 (s, 1H), 4.73 (s, 1H), 4.09 – 3.96 (m, 1H), 3.95 – 3.85 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 168.70, 148.41, 135.66, 132.68, 131.64, 129.44, 128.98, 128.97, 128.37, 127.54, 127.23, 120.53, 114.06, 65.35, 61.10. HRMS (ESI) Calcd for C₂₁H₂₁N₂O₂ [M+H⁺]: 333.1603; Found: 316.1601.

(E)-1-phenyl-2-((E)-styryl)diazene (6d)

Red solid, 36 mg, 58% yield. ¹H NMR (500 MHz, CD₃CN) δ 8.03 (d, J = 13.8 Hz, 1H), 7.84 – 7.78 (m, 2H), 7.76 (d, J = 13.8 Hz, 1H), 7.74 – 7.69 (m, 2H), 7.56 – 7.32 (m, 6H). ¹³C NMR (126 MHz, CD₃CN) δ 153.89, 147.41, 143.57, 135.88, 131.97, 130.95, 130.32, 130.04, 129.12, 123.40. HRMS (ESI) Calcd for C₁₄H₁₃N₂ [M+H⁺]: 209.1079; Found: 209.1082.

4. ¹H-NMR, ¹⁹F-NMR and ¹³C NMR spectra.

Figure S9. The ¹H-NMR spectral copy of compound 4a.

Figure S10. The ¹³C-NMR spectral copy of compound 4a.

Figure S11. The ¹H-NMR spectral copy of compound 4b.

Figure S12. The ¹⁹F-NMR spectral copy of compound 4b.

Figure S13. The ¹³C-NMR spectral copy of compound 4b.

Figure S14. The ¹H-NMR spectral copy of compound 4c.

Figure S15. The ¹³C-NMR spectral copy of compound 4c.

A C <thC</th> <thC</th> <thC</th> <thC</th>

Figure S16. The ¹H-NMR spectral copy of compound 4d.

Figure S17. The ¹³C-NMR spectral copy of compound 4d.

Figure S18. The ¹H-NMR spectral copy of compound 4e.

Figure S19. The ¹³C-NMR spectral copy of compound 4e.

Figure S20. The ¹H-NMR spectral copy of compound 4f.

Figure S21. The ¹³C-NMR spectral copy of compound 4f.

Figure S22. The ¹H-NMR spectral copy of compound 4g.

Figure S23. The ¹³C-NMR spectral copy of compound 4g.

Figure S25. The ¹³C-NMR spectral copy of compound 4h.

Figure S26. The ¹H-NMR spectral copy of compound 4i.

Figure S27. The ¹³C-NMR spectral copy of compound 4i.

$\begin{array}{c} 7.43\\ 7.42\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.72\\$

Figure S29. The ¹³C-NMR spectral copy of compound 4j.

Figure S31. The ¹³C-NMR spectral copy of compound 4k.

$\begin{array}{c} 7.7.2\\ 7.$

Figure S33. The ¹³C-NMR spectral copy of compound 4l.

Figure S35. The ¹⁹C-NMR spectral copy of compound 4m.

7.1</td

Figure S37. The ¹³C-NMR spectral copy of compound 4n.

7.7.7.7 7.3.3 7.7.7 7.3.4 7.7.7 7.3.5 7.7.7 7.3.5 7.7.7 7.3.5 7.7.7 7.3.5 7.7.7 7.3.5 7.7.7 7.3.5 7.7.7 7.3.5 7.7.7 7.3.5 7.7.7 7.3.5 7.7.7 7.3.5 7.7.7 7.3.5 7.7.7<

Figure S39. The ¹³C-NMR spectral copy of compound 40.

Construction Construction<

Figure S41. The ¹³C-NMR spectral copy of compound 4p.

Figure S42. The ¹H-NMR spectral copy of compound 5a.

Figure S43. The ¹⁹F-NMR spectral copy of compound 5a.

Figure S44. The ¹³C-NMR spectral copy of compound 5a.

7.1 7.2 7.2 7.3 7.4 7.4 7.3 7.3 7.4 7.4 7.4 7.5 7.6 7.4</td

Figure S45. The ¹H-NMR spectral copy of compound 5b.

Figure S46. The ¹³C-NMR spectral copy of compound 5b.

Figure S47. The ¹H-NMR spectral copy of compound **5**c.

Figure S48. The ¹³C-NMR spectral copy of compound **5c**.

Figure S51. The ¹H-NMR spectral copy of compound **5e**.

Figure S52. The ¹⁹F-NMR spectral copy of compound **5e**.

Figure S53. The ¹³C-NMR spectral copy of compound 5e.

C <thC</th> <thC</th> <thC</th> <thC</th>

Figure S55. The ¹³C-NMR spectral copy of compound 5f.

-0.02

Figure S56. The ¹H-NMR spectral copy of compound 5g.

Figure S57. The ¹³C-NMR spectral copy of compound 5g.

-0.01

Figure S58. The ¹H-NMR spectral copy of compound 5h.

Figure S59. The ¹⁹F-NMR spectral copy of compound 5h.

Figure S60. The ¹³C-NMR spectral copy of compound 5h.

731 731 732 733 734 735 737

Figure S62. The ¹⁹F-NMR spectral copy of compound 5i.

Figure S63. The ¹³C-NMR spectral copy of compound 5i.

$\begin{array}{c} 7.72\\$

Figure S65. The ¹⁹F-NMR spectral copy of compound 5j.

Figure S66. The ¹³C-NMR spectral copy of compound 5j.

$\begin{array}{c} -2.5 \\ -2$

Figure S68. The ¹³C-NMR spectral copy of compound 5k.

Figure S70. The ¹³C-NMR spectral copy of compound 51.

Figure S72. The ¹³C-NMR spectral copy of compound 6m.

Figure S74. The ¹³C-NMR spectral copy of compound 5n.

Figure S76. The ¹³C-NMR spectral copy of compound 6a.

Figure S78. The ¹³C-NMR spectral copy of compound 6b.

Figure S80. The ¹³C-NMR spectral copy of compound 6c.

Figure S82. The ¹³C-NMR spectral copy of compound 6d.

5. Crystal data and structure refinement parameters.

Figure S83. X-ray structure of **1** showing 50% probability ellipsoids. For clarity, hydrogen atoms and counteranions are omitted, and the two phenyl groups at the phosphorus site are drawn as lines.

Identification code	1
Empirical formula	C ₃₀ H ₃₂ BCoF ₄ NPS
Formula weight	615.13
Temperature/K	173.00(10)
Crystal system	orthorhombic
Space group	Pna21
a/Å	18.0169(4)
b/Å	19.1954(5)
c/Å	9.2687(2)
α/ °	90
β/ °	90
γ/ °	90
Volume/Å ³	3205.49(14)
Z	4
ρ calcg/cm ³	1.451
μ / mm- ¹	7.206
F(000)	1440.0
Crystal size/mm ³	0.35 x 0.24 x 0.36
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	6.728 to 134.11
Index ranges	$ \text{-19}\leqslanth\leqslant21,\text{-22}\leqslantk\leqslant22,\text{-11}\leqslantl\leqslant8$
Reflections collected	9625
Independent reflections	4363 [$R_{int} = 0.0496$, $R_{sigma} = 0.0613$]
Data/restraints/parameters	4363/1/385
Goodness-of-fit on F ²	1.107
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0520, wR_2 = 0.1146$
Final R indexes [all data]	$R_1 = 0.0608, wR_2 = 0.1241$
Largest diff. peak/hole / e Å ⁻³	0.47/-0.42
Flack parameter	-0.013(6)

 Table S2. Crystal data and structure refinement for 1.

Figure S84. X-ray structure of 1' showing 50% probability ellipsoids. For clarity, hydrogen atoms and counteranions are omitted, and the two phenyl groups at the phosphorus site are drawn as lines.

Identification code	1'
Empirical formula	C ₃₄ H ₃₇ BCoF ₄ N ₂ PS
Formula weight	682.17
Temperature/K	172.99(10)
Crystal system	orthorhombic
Space group	Pca21
a/Å	17.7390(4)
b/Å	10.70121(19)
c/Å	33.5410(7)
α/ °	90
β/ °	90
γ/ °	90
Volume/Å ³	6367.0(2)
Z	4
pcalcg/cm ³	1.424
µ/mm-1	5.743
F(000)	2832.0
Crystal size/mm ³	0.4 x 0.31 x 0.3
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
20 range for data collection/°	5.27 to 134.16
Index ranges	$-20 \le h \le 21, -12 \le k \le 12, -26 \le l \le 40$
Reflections collected	19264
Independent reflections	8080 [$R_{int} = 0.0609, R_{sigma} = 0.0669$]
Data/restraints/parameters	8080/61/803
Goodness-of-fit on F ²	1.145
Final R indexes [I>=2σ (I)]	$R_1 = 0.0608, wR_2 = 0.1470$
Final R indexes [all data]	$R_1 = 0.0742, wR_2 = 0.1681$
Largest diff. peak/hole / e Å ⁻³	1.23/-0.49
Flack parameter	-0.007(5)

Table S3. Crystal data and structure refinement for 1'

Figure S85. X-ray structure of **4a** showing 50% probability ellipsoids. For clarity, hydrogen atoms are omitted.

Identification code	4a
Empirical formula	C ₁₄ H ₁₆ N ₂ O
Formula weight	228.12
Temperature/K	173.00(10)
Crystal system	trigonal
Space group	R3
a/Å	23.4012(7)
b/Å	23.4012(7)
c/Å	5.73617(17)
α/ °	90
β/ °	90
γ/ °	120
Volume/Å ³	2720.38(18)
Z	9
pcalcg/cm ³	1.182
μ/mm- ¹	0.632
F(000)	981.0
Crystal size/mm ³	0.4 x 0.21 x 0.3mm ³
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
2Θ range for data collection/°	7.556 to 133.524
Index ranges	$-21 \le h \le 27, -27 \le k \le 26, -5 \le l \le 6$
Reflections collected	2191
Independent reflections	1392 [$R_{int} = 0.0537$, $R_{sigma} = 0.0476$]
Data/restraints/parameters	1392/1/156
Goodness-of-fit on F ²	1.102
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0682, wR_2 = 0.1882$
Final R indexes [all data]	$R_1 = 0.0746, wR_2 = 0.2135$
Largest diff. peak/hole / e Å ⁻³	0.41/-0.32
Flack parameter	-0.2(8)

Table S4. Crystal data and structure refinement for 4a.

6. References

- 1. S. A. Murray, M. Z. Liang and S. J. Meek, J. Am. Chem. Soc., 2017, 139, 14061.
- 2. X. Liu, C. Wu, J. Zhang, Y. Shi, S. Zhang, Y. Geng, C.-H. Tung and W. Wang, *Org. Chem. Front.*, 2018. **5**, 2997.
- 3. D. Beher, M. Bettati, G. D. Checksfield, I. Churcher, V. A. Doughty, P. J. Oakley, A. Quddus, M. R.Teall and J. D. Wrigley, US Pat., 0 153 817, 2008.
- 4. S. R. Hitchcock, R. A. Davis, D. M. Richmond, D. D. Dore, S. L. Kuschel, J. F. Vaughn, J. A. Wolfe, C. G. Hamaker, D. M. Casper and J. Dingle, *J. Heterocycl. Chem.*, 2008, **45**, 1265.