Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

Supplementary Information for

Silver-Catalyzed Radical Ring-Opening Reaction of Cyclopropanols with Sulfonyl Oxime Ethers

Xiaobao Zeng*, Xin Wang, Yanan Zhang, Li Zhu, Yu Zhao*

School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong,

Jiangsu Province 226001, People's Republic of China

Email: zengxb@ntu.edu.cn; zhaoyu@ntu.edu.cn

List

1. Structures of Starting Materials 1a-e, 2a-oS2.
2. General informationS3
3. Characterizations of compounds 3aa-w, 7-10S3-18
4. References
5. NMR spectra of compounds 3aa-i, 3am-w, 7-11S19-S48

Structures of Starting Materials 1a-e

Structures of Starting Materials 2a-o

2. General Information

All ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were recorded in CDCl₃. TMS was used as an internal reference and *J* values are given in Hz. HR-MS were obtained on a Bruker micrOTOF-Q II spectrometer. PE is petroleum ether (60–90 °C). All sulfonyl oxime ethers $(1a-e)^1$ and cyclopropanols $(2a-o)^2$ are known compounds. They were purchased directly or were prepared according to the reported procedures. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification.

3. Preparation and characterizations of compounds 3aa-i, 3aj-w

3.1 Preparation and characterizations of compounds 3aa-i

A mixture of CF₃-containing sulfonyl oxime ethers (**1a**) (0.3 mmol, 103 mg), cyclopropanols (**2a-l**) (0.45 mmol), AgNO₃ (0.06 mmol, 10.2 mg) and $K_2S_2O_8$ (0.45 mmol, 122 mg) in acetone:H₂O (1:1, 2 mL) was stirred at 50 °C for 12 h (monitored by TLC). After it was cooled down to room temperature, the mixture was poured into water (15 mL) and was extracted with EtOAc (3 x 15 mL). The combined organic layers were washed with brine (2 x 15 mL) and dried over MgSO₄. The solvent was removed by vacuum and the residue was purified by preparative thin layer

chromatograpy (PTLC) (5% acetone in PE) to give the corresponding products.

E-4-((benzyloxy)imino)-5,5,5-trifluoro-1-(*p*-tolyl)pentan-1-one (3aa). 68 mg (65%); yellow oil; ¹H NMR (400MHz, CDCl₃) δ 7.79 (d, *J* = 8.1 Hz, 2H), 7.34 (s, 5H), 7.22 (d, *J* = 8.0 Hz, 2H), 5.22 (s, 2H), 3.22-3.13 (m, 2H), 2.89 -2.80 (m, 2H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.1, 148.9 (q, *J*_{C-F} = 32 Hz), 144.2, 136.1, 133.7, 129.3, 128.6, 128.5, 128.4, 128.1, 120.8 (q, *J*_{C-F} = 272 Hz), 77.8, 33.8, 21.6, 19.7. ¹⁹F NMR: (376 MHz, CDCl₃) δ -69.3 (s, 3F); HRMS *m/z* (ESI) calcd. for C₁₉H₁₉F₃NO₂ (M + H)⁺ 350.1362, found 350.1365.

E-4-((benzyloxy)imino)-5,5,5-trifluoro-1-phenylpentan-1-one (3ab). 64 mg (63%); yellow oil; ¹H NMR (400MHz, CDCl₃) δ 7.88 (d, *J* = 7.6 Hz, 2H), 7.57-7.53 (m, 1H), 7.44-7.40 (m, 2H), 7.37-7.32 (m, 5H), 5.22 (s, 2H), 3.23-3.17 (m, 2H), 2.89-2.81 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 197.4, 148.8 (q, *J*_{C-F} = 32 Hz), 136.1 (2C), 133.3, 128.6, 128.5, 128.4, 128.3, 127.9, 120.8 (q, *J*_{C-F} = 272 Hz), 77.8, 33.9, 19.6. ¹⁹F NMR: (376 MHz, CDCl₃) δ -69.3 (s, 3F); HRMS *m*/*z* (ESI) calcd. for C₁₈H₁₇F₃NO₂ (M + H)⁺ 336.1206, found 336.1203.

3ac, 46%

E-4-((benzyloxy)imino)-5,5,5-trifluoro-1-(2-methoxyphenyl)pentan-1one (3ac). 51 mg (46%); yellow oil; ¹H NMR (400MHz, CDCl₃) δ 7.72 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.52-7.43 (m, 1H), 7.35-7.30 (m, 5H), 7.03-6.91 (m, 2H), 5.22 (s, 2H), 3.82 (s, 3H), 3.28-3.17 (m, 2H), 2.90-2.78 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 199.4, 158.8, 149.1 (q, *J*_{C-F} = 31 Hz), 136.4, 133.9, 130.5, 128.5, 128.3, 128.2, 127.2, 120.9 (q, *J*_{C-F} = 273 Hz), 120.7, 111.5, 77.6, 55.4, 39.0, 19.8. ¹⁹F NMR: (376 MHz, CDCl₃) δ -69.2 (s, 3F); HRMS *m*/*z* (ESI) calcd. for C₁₉H₁₉F₃NO₃ (M + H)⁺ 366.1312, found 366.1315.

E-4-((benzyloxy)imino)-5,5,5-trifluoro-1-(3-methoxyphenyl)pentan-1one (3ad). 58 mg (53%); yellow oil; ¹H NMR (400MHz, CDCl₃) δ 7.48-7.40 (m, 2H), 7.36-7.30 (m, 6H), 7.12-7.09 (m, 2.7 Hz, 1H), 5.22 (s, 2H), 3.84 (s, 3H), 3.23-3.15 (m, 2H), 2.89-2.80 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 197.3, 159.8, 148.8 (q, *J*_{C-F} = 32 Hz), 137.5, 136.1, 129.6, 128.6, 128.5, 128.4, 120.8 (q, *J*_{C-F} = 272 Hz), 120.6, 119.8, 112.2, 77.9, 55.4, 34.1,

19.6. ¹⁹**F** NMR: (376 MHz, CDCl₃) δ -69.3 (s, 3F); HRMS *m/z* (ESI) calcd. for C₁₉H₁₉F₃NO₃ (M + H)⁺ 366.1312, found 366.1310.

E-4-((benzyloxy)imino)-5,5,5-trifluoro-1-(4-methoxyphenyl)pentan-1one (3ae). 67 mg (61%); yellow oil; ¹H NMR (400MHz, CDCl₃) δ 7.90-7.84 (m, 2H), 7.37-7.33 (m, 5H), 6.91-6.85 (m, 2H), 5.22 (s, 2H), 3.86 (s, 3H), 3.18-3.11 (m, 2H), 2.87-2.80 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 196.0, 163.6, 149.0 (q, *J*_{C-F} = 32 Hz), 136.1, 130.3, 129.2, 128.5 (2C), 128.4, 120.8 (q, *J*_{C-F} = 273 Hz), 113.8, 77.9, 55.5, 33.6, 19.8. ¹⁹F NMR: (376 MHz, CDCl₃) δ -69.3 (s, 3F); HRMS *m*/*z* (ESI) calcd. for C₁₉H₁₉F₃NO₃ (M + H)⁺ 366.1312, found 366.1313.

3af, 45%

E-4-((benzyloxy)imino)-5,5,5-trifluoro-1-(*o*-tolyl)pentan-1-one (3af). 47 mg (45%); yellow oil; ¹H NMR (400MHz, CDCl₃) δ 7.55 (d, *J* = 7.7 Hz, 1H), 7.35 (s, 6H), 7.26-7.17 (m, 2H), 5.23 (s, 2H), 3.23-3.09 (m, 2H), 2.90 -2.77 (m, 2H), 2.48 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 200.9, 148.7 (q, *J*_{C-F} = 32 Hz), 138.6, 136.7, 136.2, 132.1, 131.7, 128.6, 128.5 (2C), 128.4, 125.7, 120.8 (q, *J*_{C-F} = 273 Hz), 77.9, 36.4, 21.5, 19.7. ¹⁹F NMR: (376 MHz, CDCl₃) δ -69.3 (s, 3F); HRMS *m/z* (ESI) calcd. for $C_{19}H_{19}F_3NO_2 (M + H)^+$ 350.1362, found 350.1364.

E-4-((benzyloxy)imino)-5,5,5-trifluoro-1-(4-fluorophenyl)pentan-1one (3ag). 54 mg (51%); yellow oil; ¹H NMR (400MHz, CDCl₃) δ 7.91 (dd, *J* = 8.7, 5.4 Hz, 2H), 7.36-73.4 (m, 5H), 7.10-7.06 (m, 2H), 5.23 (s, 2H), 3.20-3.13 (m, 2H), 2.89-2.80 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 195.9, 165.8 (d, *J*_{C-F} = 254 Hz), 148.7 (q, *J*_{C-F} = 32 Hz), 136.1, 132.6 (d, *J*_{C-F} = 3 Hz), 130.7, 130.6, 128.6, 128.5, 120.8 (q, *J*_{C-F} = 273 Hz), 115.8 (d, *J*_{C-F} = 21 Hz), 78.0, 33.9, 19.6. ¹⁹F NMR: (376 MHz, CDCl₃) δ -69.4 (s, 3F), -104.7(tt, *J* = 8.4, 5.5 Hz, 1F); HRMS *m*/z (ESI) calcd. for C₁₈H₁₆F₄NO₂ (M + H)⁺ 354.1112, found 354.1115.

E-4-((benzyloxy)imino)-1-(4-chlorophenyl)-5,5,5-trifluoropentan-1one (3ah). 60 mg (54%); yellow oil; ¹H NMR (400MHz, CDCl₃) δ 7.81 (d, *J* = 8.5 Hz, 2H), 7.41-7.31 (m, 7H), 5.22 (s, 2H), 3.20-3.12 (m, 2H), 2.87-2.80 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 196.2, 148.6 (q, *J*_{C-F} = 32 Hz), 139.8, 136.0, 134.4, 129.4, 129.0, 128.6 (2C), 128.5, 120.8 (q, *J*_{C-F} *F* = 273 Hz), 78.0, 34.0, 19.6. ¹⁹F NMR: (376 MHz, CDCl₃) δ -69.3 (s, 3F); HRMS m/z (ESI) calcd. for C₁₈H₁₆ClF₃NO₂ (M + H)⁺ 370.0816, found 370.0815.

E-4-((benzyloxy)imino)-1-(4-bromophenyl)-5,5,5-trifluoropentan-1one (3ai). 66 mg (53%); yellow oil; ¹H NMR (400MHz, CDCl₃) δ 7.73 (d, *J* = 8.5 Hz, 2H), 7.55 (d, *J* = 8.5 Hz, 2H), 7.37-7.32 (m, 5H), 5.22 (s, 2H), 3.19-3.12 (m, 2H), 2.87-2.80 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 196.4, 148.6 (q, *J*_{C-F} = 32 Hz), 136.0, 134.8, 131.9, 129.5, 128.6 (2C), 128.5, 128.4, 120.8 (q, *J*_{C-F} = 273 Hz), 78.0, 33.9, 19.5. ¹⁹F NMR: (376 MHz, CDCl₃) δ -69.3 (s, 3F); HRMS *m*/*z* (ESI) calcd. for C₁₈H₁₆BrF₃NO₂ (M + H)⁺ 414.0311, found 414.0313.

3.2 Preparation and characterizations of compounds 3aj-w

A mixture of CN-containing sulfonyl oxime ethers (**1b**) (0.3 mmol, 90 mg), cyclopropanols (**2a-j, 2m-o**) (0.45 mmol), AgNO₃ (0.06 mmol, 10.2 mg) and $K_2S_2O_8$ (0.45 mmol, 122 mg) in acetone:H₂O (1:1, 2 mL) was stirred at 50 °C for 12 h (monitored by TLC). After it was cooled down to room temperature, the mixture was poured into water (15 mL) and was extracted

with EtOAc (3 x 15 mL). The combined organic layers were washed with brine (2 x 15 mL) and dried over MgSO₄. The solvent was removed by vacuum and the residue was purified by preparative thin layer chromatograpy (PTLC) (5% EA in PE) to give the corresponding products.

N-(benzyloxy)-4-oxo-4-(*p*-tolyl)butanimidoyl cyanide (3aj). 65 mg (71%). 1.9:1 of two isomers, colorless oil; ¹H NMR: (400 MHz, CDCl₃) δ 7.85-7.82 (m, 2H), 7.40-7.21 (m, 7H), 5.26 (s, 2H_{minor}), 5.19 (s, 2H_{major}), 3.28-3.24 (m, 2H), 2.89-2.86 (m, 2H), 2.41 (s, 3H_{major}), 2.40 (s, 3H_{minor}). Detectable signals of ¹³C NMR (100 MHz, CDCl₃) δ 196.5, 196.4, 144.4, 144.3, 138.3, 135.8, 135.6, 133.7, 133.5, 131.2, 129.3, 129.2, 128.6, 128.5 (2C), 128.4 (2C), 128.3, 128.1, 114.3, 110.3, 78.5, 77.8, 34.0, 33.7, 26.5, 22.7, 21.6. HRMS *m*/*z* (ESI) calcd. For C₁₉H₁₉N₂O₂ (M + H)⁺ 307.1441, found 307.1443.

N-(benzyloxy)-4-oxo-4-phenylbutanimidoyl cyanide (3ak). 60 mg (68%). 1.8:1 of two isomers, colorless oil; ¹H NMR: (400 MHz, CDCl₃) δ 7.93-7.91 (m, 2H), 7.59-7.55 (m, 1H), 7.47-7.42 (m, 2H), 7.34-7.29 (m, 5H), 5.25 (s, 2H_{minor}), 5.17 (s, 2H_{major}), 3.29-3.25 (m, 2H), 2.88-2.85 (m,

2H). Detectable signals of ¹³C NMR (100 MHz, CDCl₃) δ 196.9, 196.7, 138.2, 136.1, 135.9, 135.8, 135.6, 133.5, 133.4, 131.1, 128.6, 128.5(3C), 128.4, 128.3 (2C), 127.9, 114.3, 110.2, 78.5, 77.8, 34.1, 33.9, 26.4, 22.6. HRMS *m*/*z* (ESI) calcd. For C₁₈H₁₇N₂O₂ (M + H)⁺ 293.1285, found 293.1283.

N-(benzyloxy)-4-(4-methoxyphenyl)-4-oxobutanimidoyl cyanide (3al). 63 mg (65%). 1.9:1 of two isomers, colorless oil; ¹H NMR: (400 MHz, **CDCl₃**) δ 7.96-7.89 (m, 2H), 7.41-7.27 (m, 5H), 6.96-6.90 (m, 2H), 5.27 (s, 2H_{*E*}), 5.20 (s, 2H_{*Z*}), 3.87 (s, 3H_{minor}), 3.86 (s, 3H_{major}) 3.27-3.23 (m, 2H), 2.90-2.86 (m, 2H). **Detectable signals of** ¹³**C NMR (100 MHz, CDCl₃)** δ 195.4, 195.3, 163.7, 163.6, 138.4, 135.9, 135.7, 131.4, 130.3, 129.3, 129.1, 128.6 (3C), 128.5, 128.4, 128.3, 113.8, 113.7, 110.3, 78.5, 77.8, 55.5, 33.9, 33.5, 26.6, 22.8. HRMS *m*/*z* (ESI) calcd. For C₁₉H₁₉N₂O₃ (M + H)⁺ 323.1390, found 323.1393.

3am, 55%

N-(benzyloxy)-4-(4-fluorophenyl)-4-oxobutanimidoyl cyanide (3am). 51 mg (55%). 1.5:1 of two isomers, colorless oil; ¹H NMR: (400 MHz, CDCl₃) δ 7.98-7.95 (m, 2H), 7.43-7.26 (m, 5H), 7.17-7.11 (m, 2H), 5.28 (s, $2H_{minor}$), 5.20 (s, $2H_{major}$), 3.29-3.25 (m, 2H), 2.92-2.87 (m, 2H). **Detectable signals of ¹³C NMR (100 MHz, CDCl₃)** δ 195.3, 195.2, 167.2 (2C), 164.7, 164.6, 138.0, 135.9, 135.6, 132.7, 132.6, 132.5, 132.4, 131.1, 130.7 (2C), 130.6 (2C), 128.7, 128.6, 128.5, 128.4, 116.0, 115.9, 115.8, 115.7, 114.3, 110.3, 78.6, 77.9, 34.1, 33.9, 26.5, 22.6. HRMS *m/z* (ESI) calcd. For C₁₈H₁₆FN₂O₂ (M + H)⁺ 311.1190, found 311.1193.

3an, 57%

N-(benzyloxy)-4-(4-chlorophenyl)-4-oxobutanimidoyl cyanide (3an). 56 mg (57%). 2.3:1 of two isomers, colorless oil; ¹H NMR: (400 MHz, **CDCl₃**) δ 7.88-7.86 (m, 2H), 7.45-7.40 (m, 2H), 7.39-7.27 (m, 5H), 5.27 (s, 2H_{minor}), 5.19 (s, 2H_{major}), 3.28-3.24 (m, 2H), 2.91-2.86 (m, 2H). **Detectable signals of** ¹³**C NMR (100 MHz, CDCl₃)** δ 195.7, 195.6, 140.0, 139.9, 137.9, 135.8, 135.6, 134.5, 134.2, 131.0, 129.4, 129.0 (2C), 128.7, 128.6, 128.4 (3C), 114.3, 110.2, 78.6, 77.9, 34.1, 33.9, 26.4, 22.6. HRMS *m/z* (ESI) calcd. For C₁₈H₁₆ClN₂O₂ (M + H)⁺ 327.0895, found 327.0893.

N-(benzyloxy)-4-(4-bromophenyl)-4-oxobutanimidoyl cyanide (3ao). 57 mg (51%). 2.3:1 of two isomers, colorless oil; ¹H NMR: (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.3 Hz, 2H), 7.63-7.55 (m, 2H), 7.41-7.25 (m, 5H), 5.26 (s, 2H_{minor}), 5.17 (s, 2H_{major}), 3.30-3.19 (m, 2H), 2.89-2.85 (m, 2H).
Detectable signals of ¹³C NMR (100 MHz, CDCl₃) δ 195.9, 195.7, 137.9, 135.8, 135.5, 134.8, 134.6, 131.9, 131.8, 130.9, 129.4, 128.6, 128.5(2C), 128.4, 128.3, 128.2, 114.2, 110.2, 78.5, 77.8, 34.0, 33.8, 26.3, 22.5. HRMS *m/z* (ESI) calcd. For C₁₈H₁₆BrN₂O₂ (M + H)⁺ 371.0390, found 371.0392.

N-(benzyloxy)-4-oxo-4-(4-(trifluoromethyl)phenyl)butanimidoyl cyanide (3ap). 53 mg (49%). 1.9:1 of two isomers, colorless oil; ¹H NMR: (400 MHz, CDCl₃) δ 8.03-8.01 (m, 2H), 7.74-7.71 (m, 2H), 7.41-7.24 (m, 5H), 5.27 (s, 2H_{minor}), 5.18 (s, 2H_{major}), 3.34-3.29 (m, 2H), 2.93-2.89 (m, 2H). Detectable signals of ¹³C NMR (100 MHz, CDCl₃) δ 196.0, 195.9, 138.8, 138.5, 137.8, 135.8, 135.6, 135.1, 134.9, 134.7, 134.5, 134.4, 134.3, 134.1, 130.8, 129.2, 128.9, 128.8, 128.7, 128.6, 128.4 (2C), 128.3 (2C), 125.8 (2C), 125.7 (3C), 114.2, 110.2, 78.6, 77.8, 34.4, 34.3, 26.3, 22.5. ¹⁹F NMR: (376 MHz, CDCl₃) δ -63.1 (s, 3F_{minor}), -63.1(s, 3F_{major}); HRMS *m/z* (ESI) calcd. For C₁₉H₁₆F₃N₂O₂ (M + H)⁺ 361.1158, found 361.1157.

3aq, 46%

N-(benzyloxy)-4-oxo-4-(o-tolyl)butanimidoyl cyanide (3aq). 43 mg

(46%). 2.5:1 of two isomers, colorless oil; ¹H NMR: (400 MHz, CDCl₃)
δ 7.65-7.63 (m, 1H), 7.43-7.22 (m, 8H), 5.28 (s, 2H_{minor}), 5.20 (s, 2H_{major}),
3.25-3.20 (m, 2H), 2.91-2.81 (m, 2H), 2.50 (s, 3H_{minor}), 2.48 (s, 3H_{major}).
Detectable signals of ¹³C NMR (100 MHz, CDCl₃) δ 200.3 (2C), 138.7,
138.5, 138.3, 136.9, 136.4, 135.9, 135.7, 132.2, 132.1, 131.8, 131.7, 131.2,
128.6 (4C), 128.5, 128.4, 128.3, 125.8, 125.7, 114.3, 110.3, 78.6, 77.8,
36.7, 36.3, 26.7, 22.7, 21.5, 21.4. HRMS *m/z* (ESI) calcd. For C₁₉H₁₉N₂O₂ (M + H)⁺ 307.1441, found 307.1443.

N-(benzyloxy)-4-oxo-6-phenylhexanimidoyl cyanide (3ar). 61 mg (63%). 1.9:1 of two isomers, colorless oil; ¹H NMR: (400 MHz, CDCl₃) δ 7.43-7.22 (m, 7H), 7.20-7.14 (m, 3H), 5.23 (s, 2H_{minor}), 5.17 (s, 2H_{major}), 2.91-2.84 (m, 2H), 2.77-2.60 (m, 6H). Detectable signals of ¹³C NMR (100 MHz, CDCl₃) δ 206.7, 206.5, 140.6, 140.5, 137.9, 135.9, 135.6, 131.0, 128.6, 128.5 (2C), 128.4, 128.3 (2C), 128.2 (2C), 126.1, 114.1, 110.1, 78.4, 77.7, 44.1, 44.0, 37.9, 37.7, 29.5, 29.4, 26.0, 22.0. HRMS *m/z* (ESI) calcd. For C₂₀H₂₁N₂O₂ (M + H)⁺ 321.1598, found 321.1596.

N-(benzyloxy)-4-cyclohexyl-4-oxobutanimidoyl cyanide (3as). 47 mg

(52%). 9.6:1 of two isomers, colorless oil; major isomer: ¹H NMR: (400 MHz, CDCl₃) δ 7.38-7.31 (m, 5H), 5.21 (s, 2H), 2.81-2.65 (m, 4H), 1.86-1.63 (m, 5H), 1.41-1.10 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 210.6, 136.0, 131.3, 128.5, 128.4, 128.3, 110.2, 77.8, 50.7, 35.9, 28.4, 26.1, 25.7, 25.5. HRMS *m/z* (ESI) calcd. For C₁₈H₂₃N₂O₂ (M + H)⁺ 299.1754, found 299.1756.

N-(benzyloxy)-4-cyclopropyl-4-oxobutanimidoyl cyanide (3at). 38 mg (49%). 2.2:1 of two isomers, colorless oil; ¹H NMR: (400 MHz, CDCl₃) δ 7.38-7.33 (m, 5H), 5.25 (s, 2H_{minor}), 5.22 (s, 2H_{major}), 2.92-2.87 (m, 2H), 2.74-2.70 (m, 2H), 1.95-1.88 (m, 1H), 1.07-1.00 (m, 2H), 0.92-0.87 (m, 2H). Detectable signals of ¹³C NMR (100 MHz, CDCl₃) δ 207.6, 207.4, 138.2, 135.9, 135.7, 131.2, 128.6, 128.5 (3C), 128.3 (2C), 114.1, 110.2, 78.5, 77.8, 38.6, 38.2, 26.2, 22.2, 20.5, 20.4, 11.1, 10.9. HRMS *m*/*z* (ESI) calcd. For C₁₅H₁₇N₂O₂ (M + H)⁺ 257.1285, found 257.1283.

N-(benzyloxy)-4-oxo-4-(thiophen-3-yl)butanimidoyl cyanide (3au). 38 mg (49%). 2.0:1 of two isomers, colorless oil; ¹H NMR: (400 MHz, CDCl₃) δ 8.05-8.03 (m, 1H), 7.54-7.51 (m, 1H), 7.36-7.30 (m, 6H), 5.27 (s, $2H_{minor}$), 5.19 (s, $2H_{major}$), 3.21-3.18 (m, 2H), 2.88-2.84 (m, 2H). **Detectable signals of ¹³C NMR (100 MHz, CDCl₃)** δ 13C NMR (101 MHz, CDCl3) δ 191.1 (2C), 141.4, 141.2, 138.0, 135.8, 135.6, 132.3, 132.2, 131.1, 128.6 (3C), 128.4 (2C), 128.3, 126.7, 126.6 (3C), 114.3, 110.2, 78.5, 77.8, 35.3, 34.9, 26.3, 22.6. HRMS *m/z* (ESI) calcd. For C₁₆H₁₅N₂O₂S (M + H)⁺ 299.0849, found 299.0846.

N-(benzyloxy)-5-oxo-5-phenylpentanimidoyl cyanide (3av). 43 mg (46%). 1:2.1 of two isomers, colorless oil; ¹H NMR: (400 MHz, CDCl₃) δ 7.91-7.88 (m, 2H), 7.58-7.54 (m, 1H), 7.47-7.43 (m, 2H), 7.35-7.26 (m, 5H), 5.21 (s, $2H_{major}$), 5.18 (s, $2H_{minor}$), 3.00-2.94 (m, 2H), 2.63-2.52 (m, 2H), 2.11-2.04 (m, 2H). Detectable signals of ¹³C NMR (100 MHz, CDCl₃) δ 198.6, 198.4, 138.7, 136.5 (2C), 136.0, 135.6, 133.1, 132.0, 128.6 (2C), 128.5 (4C), 128.4, 128.3, 127.9, 127.8, 114.4, 110.3, 78.3, 77.7, 36.9, 36.5, 31.3, 27.2, 20.2, 19.6. HRMS *m/z* (ESI) calcd. For $C_{19}H_{19}N_2O_2$ (M + H)⁺ 307.1441, found 307.1445.

N-(benzyloxy)-2-methyl-4-oxo-4-(p-tolyl)butanimidoyl cyanide (3aw).
35 mg (36%). colorless oil; Major isomer : ¹H NMR: (400 MHz, CDCl₃)

δ 7.83 (d, J = 8.1 Hz, 2H), 7.37-7.26 (m, 7H), 5.18 (s, 2H), 3.43-3.31 (m, 2H), 3.07-2.98 (m, 1H), 2.42 (s, 3H), 1.30 (d, J = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.4, 144.2, 136.1, 135.9, 134.1, 129.3, 128.4 (2C), 128.3, 128.1, 109.8, 77.8, 41.6, 32.8, 21.7, 18.2. HRMS *m/z* (ESI) calcd. For C₂₀H₂₁N₂O₂ (M + H)⁺ 321.1598, found 321.1596.

3.3 Radical-capturing experiments

A mixture of CF₃-containing sulfonyl oxime ethers (**1a**) (0.3 mmol, 103 mg), cyclopropanols (**2a**) (0.45 mmol, 67 mg), AgNO₃ (0.06 mmol, 10.2 mg) and K₂S₂O₈ (0.45 mmol, 122 mg), TEMPO (4 eq. 187 mg) in acetone:H₂O (1:1, 2 mL) was stirred at 50 °C for 2 h (monitored by TLC). After it was cooled down to room temperature, the mixture was poured into water (15 mL) and was extracted with EtOAc (3 x 15 mL). The combined organic layers were washed with brine (2 x 15 mL) and dried over MgSO4. The solvent was removed by vacuum and the residue was purified by preparative thin layer chromatograpy (PTLC) (5% acetone in PE) to give

the corresponding products.

1-(*p***-tolyl)propan-1-one** (7). colorless oil; The data is in accordance with reported lit. 3. ¹H NMR: (400 MHz, CDCl₃) δ 7.86 (d, J = 8.2 Hz, 2H), 7.27-7.22 (m, 2H), 2.97 (d, J = 7.3 Hz, 2H), 2.40 (s, 3H), 1.21 (t, J = 7.3 Hz, 3H).

1-(*p***-tolyl)prop-2-en-1-one (8)**. colorless oil; The data is in accordance with reported lit. 4. ¹H NMR: (400 MHz, CDCl₃) δ 7.87 (d, J = 8.1 Hz, 2H), 7.32-7.25 (m, 2H), 7.17 (dd, J = 17.1, 10.5 Hz, 1H), 6.43 (dd, J = 17.0, 1.8 Hz, 1H), 5.90 (dd, J = 10.6, 1.8 Hz, 1H), 2.42 (s, 3H).

3-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)-1-(p-tolyl)propan-1-one (9). colorless oil; The data is in accordance with reported lit. 5. ¹H NMR: (400 MHz, CDCl₃) δ 7.90 (d, J = 7.7 Hz, 2H), 7.27 (d, J = 7.8 Hz, 2H), 4.14 (t, J = 6.6 Hz, 2H), 3.14 (t, J = 6.6 Hz, 2H), 2.42 (s, 3H), 1.47-1.1.42 (m, 6H), 1.16-1.01 (m, 12H).

1-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)propan-2-one (**10**). colorless oil; The data is in accordance with reported lit. 6. ¹H NMR: (**400 MHz**, **CDCl₃**) δ 4.38 (s, 2H), 2.21 (s, 3H), 1.47-1.42 (m, 6H), 1.16-1.01 (m, 12H).

4. Reference

- [1] (a) S. Kim and R. Kavali, *Tetrahedron Lett.* 2002, 43, 7189; (b) S. Kim,
 I. Y. Lee, J.-Y. Yoon and D. H. Oh, *J. Am. Chem. Soc.* 1996, 118, 5138;
 (c) S. Kim, N. A. B. Kamaldin, S. Kang and S. Kim, *Chem. Commun.*2010, 46, 7822; (d) B. Gaspar and E. M. Carreira, *J. Am. Chem. Soc.*2009, 131, 13214.
- [2] (a) J. K. Cha and O. G. Kulinkovich, Org. React. 2012, 77, 1; (b)X.-P. He, Y.-J. Shu, J.-J. Dai, W.-M. Zhang, Y.-S. Feng and H.-J. Xu, Org. Biomol. Chem., 2015, 13, 7159; (c) Y. Li, Z. Ye, T. M. Bellman, T. Chi and M. Dai, Org. Lett., 2015, 17, 2186; (d) S. Ren, C. Feng and T.-P. Loh, Org. Biomol. Chem., 2015, 13, 5105; (e) H. Zhao, X. Fan, J. Yu and C. Zhu, J. Am. Chem. Soc., 2015, 137, 3490; (f) B. Xu, D. Wang, Y. Hu and Q. Shen, Org. Chem. Front., 2018, 5, 1462.
- [3] Q. Tong, Y. Liu, X. Gao, Z. Fan, T. Liu, B. Li, D. Su, Q. Wang and M. Cheng, Adv. Synth. Catal., 2019, 361, 3137.
- [4] F. Verma, P. Shukla, S. R. Bhardiya, M. Singh, A. Rai and V. K. Rai, *Adv. Synth. Catal.*, 2019, 361, 1247.
- [5] K. Jia, F. Zhang, H. Huang and Y. Chen. J. Am. Chem. Soc., 2016, 138, 1514.
- [6] Y. Li, M. Pouliot, T. Vogler, P. Renaud and A. Studer, *Org. Lett.*, 2012, 14, 4474.

5. ¹H NMR and ¹³C NMR spectra of compounds 3aa-i, 3am-w

¹H NMR spectrum of 3aa

¹H NMR spectrum of 3ab

¹³C NMR spectrum of 3ab

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -150 -170 -180 -190 -200 f1 (ppm)

¹H NMR spectrum of 3ac

¹⁹F NMR spectrum of 3ac

---69.24

¹⁹F NMR spectrum of 3ad

NOBn

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 fl (ppm)

¹H NMR spectrum of 3ae

¹⁹F NMR spectrum of 3ae

¹³C NMR spectrum of 3af

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

¹H NMR spectrum of 3ag

¹⁹F NMR spectrum of 3ag

¹³C NMR spectrum of 3ah

0 -10 -20 -30 -40 -50 -60 -70 -60 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 fl (ppm)

¹H NMR spectrum of 3ai

¹³C NMR spectrum of 3aj

¹H NMR spectrum of 3ak

¹³C NMR spectrum of 3ak

¹H NMR spectrum of 3al

91 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	85 85 85 85 85 85 85 85 85 85 85 85 85 8	0.0
	12 12 12 12 12 12 12 12 12 12 12 12 12 1	<u> </u>
SV Villing	VVV	1

¹³C NMR spectrum of 3al

¹³C NMR spectrum of 3am

¹H NMR spectrum of 3an

¹H NMR spectrum of 3ao

-000

¹H NMR spectrum of 3ap

---0.00

¹⁹F NMR spectrum of 3ap

¹³C NMR spectrum of 3aq

<-63.06 <-63.09

¹³C NMR spectrum of 3ar

¹H NMR spectrum of 3as

¹³C NMR spectrum of 3as

¹H NMR spectrum of 3at

¹³C NMR spectrum of 3at

¹³C NMR spectrum of 3au

¹³C NMR spectrum of 3av

¹³C NMR spectrum of 3aw

¹H NMR spectrum of 8

¹H NMR spectrum of 9 and 10

7.91
 7.83
 7.25
 7.25

$\begin{array}{c} 438\\ 4,438\\ 4,44\\ 4,438\\ 3,16\\ -2,21\\ -2,22\\ -2,21\\ -2,22\\$

-2.42

---0.00

¹H NMR spectrum of 11

