Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Oxidative Trifluoromethylselenolation of 1,3-Dicarbonyls with [Me₄N][SeCF₃]

Kai-Li Tan, Tao Dong, Xue-Qiong Zhang*, Cheng-Pan Zhang* School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China. E-mail: cpzhang@whut.edu.cn, zhangchengpan1982@hotmail.com, zhangxq@whut.edu.cn

Table of contents

1. General information	S2
2. Screening of the optimal reaction conditions for trifluoromethylselenol	ation of 1a
by [Me ₄ N][SeCF ₃]	S2
3. General procedures for oxidative trifluoromethylchalcogenation	of 1 by
[Me ₄ N][XCF ₃] and NCS	S5
4. The control experiments for mechanistic insights	S17
5. NMR spectra of the products	S28

1. General information

All reactions were carried out under a nitrogen atmosphere. Unless otherwise specified, NMR spectra were recorded in CDCl₃ on a 500 MHz (for ¹H), 471 MHz (for ¹⁹F), and 126 MHz (for ¹³C) spectrometer. All chemical shifts were reported in ppm relative to TMS (0 ppm) for ¹H NMR and PhOCF₃ (-58.0 ppm) for ¹⁹F NMR as an internal or external standard. The HPLC experiments were carried out on a Wufeng LC-100 II instrument (column: Shodex, C18, 5 μ m, 4.6 × 250 mm), and yields of the product were determined by using the corresponding pure compound as the external standard. Melting points of the products were measured and uncorrected. MS experiments were performed on a TOF-Q ESI instrument. [Me₄N][SeCF₃], [Me₄N][SCF₃] and CsOCF₃ were prepared according to the literatures.¹ The starting materials (**1a-h**² and **1o**³) were synthesized according to the literatures. Solvents were all purchased from the commercial sources and used without further purification.

2. Screening of the optimal reaction conditions for trifluoromethylselenolation of 1a by [Me₄N][SeCF₃].

Table S1 The solvent effects on trifluoromethylselenolation of 1a by [Me₄N][SeCF₃] in the presence of NCS.

OMe + 1a (0.2 mmol)	[Me ₄ N][SeCF ₃] <u>NCS (1.3 equiv)</u> (1.3 equiv) solvent, r.t., 12 h, N ₂	SeCF ₃ OMe 2a
Entry ^a	Solvent	Yield (2a, %) ^b
1	CH_2Cl_2	67
2	CH ₃ CN	81
3	THF	72
4	toluene	16
5	DMF	13
6	DMSO	0

^{*a*} Reaction conditions: a sealed tube was charged with **1a** (0.2 mmol), $[Me_4N][SeCF_3]$ (0.26 mmol) and solvent (1 mL), followed by addition of NCS (0.26 mmol) in solvent (1 mL), with vigorous stirring. The mixture was reacted at room temperature under N₂

for 12 h. ^b Yields were determined by HPLC using **2a** as an external standard ($t_R = 5.30 \text{ min}$, $\lambda_{max} = 210 \text{ nm}$, water/methanol (v/v) = 20:80).

O OMe 1a (0.2 mmol)	$[Me_4N][SeCF_3] \xrightarrow{\text{oxidant (1.3 equiv)}} CH_3CN, r.t., 12 h, N_2$ (1.3 equiv)	O SeCF ₃ OMe 2a
Entry ^a	Oxidant	Yield (2a, %) ^b
1	PhI(OAc) ₂	73
2	PhI(OCOCF ₃) ₂	52
3	PhICl ₂	16
4	NCS	81
5	NBS	82
6	NIS	72
7	NFSI	81
8	Selectfluor	55
9 c	TCCA	87
10	t-BuOCl	54
11	DDQ	38
12	NHS	0
13	DMP	0
14	KMnO ₄	0
15	$K_2S_2O_8$	0
16	AgNO ₃	0
17	TBHP	trace
18	H_2O_2	trace
19	<i>m</i> -CPBA	0
20^{d}	O ₂	0

Table S2. Trifluoromethylselenolation of **1a** by $[Me_4N][SeCF_3]$ in the presence of different oxidants.

^{*a*} Reaction conditions: a sealed tube was charged with **1a** (0.2 mmol), $[Me_4N][SeCF_3]$ (0.26 mmol) and CH₃CN (1 mL), followed by addition of oxidant (0.26 mmol) in CH₃CN (1 mL), with vigorous stirring. The mixture was reacted at room temperature

under N₂ for 12 h. ^b Yields were determined by HPLC using **2a** as an external standard ($t_R = 5.30 \text{ min}$, $\lambda_{max} = 210 \text{ nm}$, water/methanol (v/v) = 20:80). ^c TCCA (0.087 mmol). ^d An O₂ balloon (1 atm) was used.

OMe + 1a (0.2 mmol)	[Me ₄ N][SeCF ₃] <u>NCS (y equiv)</u> (x equiv) CH ₃ CN, r.t., 12 h,	N ₂ N ₂ SeCF ₃ OMe
Entry ^a	x/y	Yield (2a, %) ^b
1	1.3/1.3	81
2	1.5/1.5	90
3	1.5/1.3	52
4	1.3/1.5	89
5	1.3/1.7	66
6	1.0/1.0	91
7	1.0/1.3	80
8	1.3/1.0	22
9	1.1/1.1	89

Table S3. Trifluoromethylselenolation of **1a** by $[Me_4N][SeCF_3]$ and NCS with different reactant ratios.

^{*a*} Reaction conditions: a sealed tube was charged with **1a** (0.2 mmol), [Me₄N][SeCF₃] (0.26, 0.3, 0.2 or 0.22 mmol) and CH₃CN (1 mL), followed by addition of NCS (0.26, 0.3, 0.34, 0.2 or 0.22 mmol) in CH₃CN (1 mL), with vigorous stirring. The mixture was reacted at room temperature under N₂ for 12 h. ^{*b*} Yields were determined by HPLC using **2a** as an external standard ($t_R = 5.30 \text{ min}$, $\lambda_{max} = 210 \text{ nm}$, water/methanol (v/v) = 20:80).

Table S4 Trifluoromethylselenolation of 1a by [Me₄N][SeCF₃] and NCS at different reaction times.

Entry ^a	Time	Yield (2a , %) ^b
1	2 min	60
2	5 min	56
3	15 min	83
4	1 h	86 (84)
5	3 h	85
6	6 h	88
7	9 h	85
8	12 h	91
9 c	1 h	(88)

^{*a*} Reaction conditions: a sealed tube was charged with **1a** (0.2 mmol), [Me₄N][SeCF₃] (0.2 mmol) and CH₃CN (1 mL), followed by addition of NCS (0.2 mmol) in CH₃CN (1 mL), with vigorous stirring. The mixture was reacted at room temperature under N₂ for times as described above. ^{*b*} Yields were determined by HPLC using **2a** as an external standard ($t_R = 5.30 \text{ min}$, $\lambda_{max} = 210 \text{ nm}$, water/methanol (v/v) = 20:80). Isolated yields are depicted in the parenthesis. ^{*c*} The reaction was run under an air atmosphere. Besides 88% of **2a**, 4% of methyl 2-chloro-1-oxo-2,3-dihydro-1*H*indene-2-carboxylate (**2a**') was also obtained in this reaction.

3. General procedures for oxidative trifluoromethylchalcogenation of 1 by [Me₄N][XCF₃] and NCS.

Procedure A: In a nitrogen-filled glovebox, a sealed tube was charged with 1 (0.2 mmol), $[Me_4N][SeCF_3]$ (44.4 mg, 0.2 mmol) and CH₃CN (1 mL), followed by addition of NCS (26.7 mg, 0.2 mmol) in CH₃CN (1 mL), with vigorous stirring. The mixture was reacted at room temperature for 1 h and concentrated to dryness under reduced pressure. The residue was purified by flash column chromatography on silica gel using a mixture of petroleum ether/ethyl acetate or hexane/diethyl ether as eluents to give the trifluoromethylselenolated products (2).

Methyl 1-oxo-2-((trifluoromethyl)selanyl)-2,3-dihydro-1*H*-indene-2-carboxylate (2a).

Yellow liquid (56.6 mg, 84% yield), petroleum ether/ethyl acetate = 10:1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.84 (d, *J* = 7.8 Hz, 1H), 7.70 (t, *J* = 7.4 Hz, 1H), 7.50 (d, *J* = 7.7 Hz, 1H), 7.45 (t, *J* = 7.5 Hz, 1H), 4.20 (d, *J* = 18.1 Hz, 1H), 3.78 (s, 3H), 3.78 (d, *J* = 18.1 Hz, 1H). ¹⁹F NMR (471 MHz, CDCl₃) δ -31.6 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 196.2, 168.3, 151.5, 136.3, 133.2, 128.5, 126.2, 125.6, 122.5 (q, *J* = 333.2 Hz), 60.1, 54.2, 40.7. IR (KBr): 3084, 3041, 2958, 2922, 2848, 1732, 1715, 1602, 1588, 1479, 1466, 1330, 1301, 1273, 1261, 1215, 1185, 1158, 1138, 1122, 1102, 1068, 1022, 1004, 962, 941, 883, 876, 846, 818, 784, 752, 738, 691, 684, 623, 596, 558 cm⁻¹. HRMS-ESI (m/z) calcd. for C₁₂H₉F₃NaO₃Se ([M + Na]⁺): 360.9561; found: 360.9568.

Methyl 6-methyl-1-oxo-2-((trifluoromethyl)selanyl)-2,3-dihydro-1*H*-indene-2carboxylate (**2b**). Yellow solid (51.3 mg, 73% yield), petroleum ether/ethyl acetate = 10:1 (v/v) as eluents for column chromatography. M.p.: 85-87 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.63 (s, 1H), 7.52 (d, *J* = 7.9 Hz, 1H), 7.38 (d, *J* = 7.8 Hz, 1H), 4.15 (d, *J* = 18.0 Hz, 1H), 3.78 (s, 3H), 3.73 (d, *J* = 18.0 Hz, 1H), 2.43 (s, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -31.6 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 196.3, 168.4, 148.9, 138.7, 137.7, 133.4, 125.9, 125.4, 122.5 (q, *J* = 333.3 Hz), 60.5, 54.2, 40.4, 21.1. IR (KBr): 3039, 2966, 2941, 2926, 2853, 1733, 1711, 1681, 1614, 1582, 1558, 1493, 1476, 1442, 1432, 1386, 1325, 1281, 1264, 1220, 1187, 1150, 1125, 1102, 1070, 1022, 991, 947, 929, 894, 854, 832, 823, 817, 759, 737, 688, 632, 581 cm⁻¹. HRMS-ESI (m/z) calcd. for C₁₃H₁₂F₃O₃Se ([M + H]⁺): 352.9898; found: 352.9899.

Methyl 6-methoxy-1-oxo-2-((trifluoromethyl)selanyl)-2,3-dihydro-1*H*-indene-2carboxylate (**2c**). Yellow solid (57.2 mg, 75% yield), petroleum ether/ethyl acetate = 10:1 (v/v) as eluents for column chromatography. M.p.: 99-101 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.38 (d, *J* = 8.5 Hz, 1H), 7.29 (dd, *J* = 8.4 Hz, *J* = 2.6 Hz, 1H), 7.24 (d, J = 2.5 Hz, 1H), 4.12 (d, J = 17.8 Hz, 1H), 3.85 (s, 3H), 3.79 (s, 3H), 3.70 (d, J = 17.8 Hz, 1H). ¹⁹F NMR (471 MHz, CDCl₃) δ -31.6 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 196.2, 168.4, 160.2, 144.4, 134.4, 126.9, 126.0, 122.5 (q, J = 333.2 Hz), 106.3, 60.8, 55.7, 54.2, 40.2. IR (KBr): 3096, 3005, 2960, 2923, 2845, 1732, 1707, 1614, 1587, 1495, 1470, 1445, 1442, 1436, 1346, 1300, 1280, 1259, 1229, 1201, 1167, 1147, 1127, 1099, 1062, 1022, 973, 950, 939, 864, 849, 835, 818, 768, 747, 680, 645, 596, 540 cm⁻¹. HRMS-ESI (m/z) calcd. for C₁₃H₁₂F₃O₄Se ([M + H]⁺): 368.9847; found: 368.9845.

Methyl 5-methoxy-1-oxo-2-((trifluoromethyl)selanyl)-2,3-dihydro-1*H*-indene-2carboxylate (**2d**). Yellow solid (59.6 mg, 81% yield), petroleum ether/ethyl acetate = 5:1 (v/v) as eluents for column chromatography. M.p.: 175-177 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.75 (d, J = 8.6 Hz, 1H), 6.97 (d, J = 8.6 Hz, 1H), 6.91 (s, 1H), 4.17 (d, J = 18.1 Hz, 1H), 3.91 (s, 3H), 3.78 (s, 3H), 3.72 (d, J = 18.1 Hz, 1H). ¹⁹F NMR (471 MHz, CDCl₃) δ -31.7 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 194.1, 168.5, 166.7, 154.8, 127.3, 126.2, 122.6 (q, J = 333.5 Hz), 116.7, 109.2, 60.7, 55.9, 54.2, 40.7. IR (KBr): 3018, 3004, 2953, 2844, 1727, 1703, 1595, 1490, 1472, 1348, 1305, 1270, 1261, 1197, 1186, 1138, 1098, 1026, 1017, 927, 878, 855, 738, 659, 551 cm⁻¹. HRMS-ESI (m/z) calcd. for C₁₃H₁₂F₃O₄Se ([M + H]⁺): 368.9847; found: 368.9848.

Methyl 5,6-dimethoxy-1-oxo-2-((trifluoromethyl)selanyl)-2,3-dihydro-1*H*-indene-2carboxylate (**2e**). Yellow solid (59.6 mg, 75% yield), petroleum ether/ethyl acetate = 4:1 (v/v) as eluents for column chromatography. M.p.: 180-182 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.02 (s, 1H), 6.89 (s, 1H), 4.12 (d, *J* = 17.9 Hz, 1H), 3.99 (s, 3H), 3.91 (s, 3H), 3.78 (s, 3H), 3.69 (d, *J* = 17.9 Hz, 1H). ¹⁹F NMR (471 MHz, CDCl₃) δ -31.8 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 194.5, 168.6, 157.0, 150.3, 147.4, 125.9, 122.6 (q, *J* = 333.5 Hz), 106.9, 105.4, 60.7, 56.5, 56.2, 54.2, 40.5. IR (KBr): 3090,

3008, 2956, 2928, 2875, 1740, 1716, 1593, 1506, 1467, 1454, 1442, 1257, 1223, 1197, 1179, 1153, 1145, 1112, 1097, 1025, 959, 875, 856, 800, 760, 748, 738, 654, 591, 561 cm⁻¹. HRMS-ESI (m/z) calcd. for $C_{14}H_{14}F_3O_5Se$ ([M + H]⁺): 398.9953; found: 398.9951.

Methyl 6-chloro-1-oxo-2-((trifluoromethyl)selanyl)-2,3-dihydro-1*H*-indene-2carboxylate (**2f**). Yellowish liquid (49.4 mg, 66% yield), petroleum ether/ethyl acetate = 20:1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.80 (d, *J* = 1.8 Hz, 1H), 7.66 (dd, *J* = 8.2 Hz, *J* = 2.0 Hz, 1H), 7.45 (d, *J* = 8.2 Hz, 1H), 4.16 (d, *J* = 18.3 Hz, 1H), 3.79 (s, 3H), 3.73 (d, *J* = 18.3 Hz, 1H). ¹⁹F NMR (471 MHz, CDCl₃) δ -31.5 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 195.20, 167.9, 149.5, 136.4, 135.0, 134.7, 127.4, 125.2, 122.4 (q, *J* = 333.0 Hz), 60.2, 54.4, 40.3. IR (KBr): 3060, 2960, 2931, 2874, 1728, 1663, 1618, 1595, 1571, 1488, 1444, 1391, 1342, 1288, 1259, 1209, 1197, 1184, 1161, 1127, 1106, 1075, 1040, 1001, 963, 883, 774, 744, 693, 649, 621 cm⁻¹. HRMS-ESI (m/z) calcd. for C₁₂H₈ClF₃NaO₃Se ([M + Na]⁺): 394.9171; found: 394.9172.

Methyl 6-bromo-1-oxo-2-((trifluoromethyl)selanyl)-2,3-dihydro-1*H*-indene-2carboxylate (**2g**). Yellowish liquid (54.5 mg, 66% yield), petroleum ether/ethyl acetate = 20:1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, *J* = 1.6 Hz, 1H), 7.80 (dd, *J* = 8.2 Hz, *J* = 1.9 Hz, 1H), 7.40 (d, *J* = 8.2 Hz, 1H), 4.14 (d, *J* = 18.3 Hz, 1H), 3.79 (s, 3H), 3.71 (d, *J* = 18.3 Hz, 1H). ¹⁹F NMR (471 MHz, CDCl₃) δ -31.5 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 195.0, 167.9, 150.0, 139.1, 135.0, 128.3, 127.7, 122.7, 122.4 (q, *J* = 331.6 Hz), 60.1, 54.4, 40.4. IR (KBr): 3062, 2958, 2931, 2874, 1740, 1727, 1599, 1581, 1531, 1470, 1434, 1416, 1279, 1253, 1198, 1182, 1123, 1100, 1077, 1026, 964, 897, 862, 822, 739, 699 cm⁻¹. HRMS-ESI (m/z) calcd. for C₁₂H₈BrF₃NaO₃Se ([M + Na]⁺): 438.8666; found:

Methyl 1-oxo-6-(trifluoromethyl)-2-((trifluoromethyl)selanyl)-2,3-dihydro-1*H*indene-2-carboxylate (**2h**). Yellowish liquid (51.8 mg, 64% yield), petroleum ether/ethyl acetate = 20:1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 8.11 (s, 1H), 7.95 (d, *J* = 8.0 Hz, 1H), 7.66 (d, *J* = 8.2 Hz, 1H), 4.28 (d, *J* = 18.6 Hz, 1H), 3.85 (m, 1H), 3.81 (m, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -31.4 (s, 3F), -62.8 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 195.3, 167.7, 154.5, 133.7, 132.7 (q, ³*J*_(*C,F*) = 3.3 Hz), 131.5 (q, ²*J*_(*C,F*) = 33.5 Hz), 127.1, 123.4 (q, ¹*J*_(*C,F*) = 273.9 Hz), 122.8 (q, ³*J*_(*C,F*) = 3.9 Hz), 122.4 (q, *J* = 333.0 Hz), 59.9, 54.5, 40.7. IR (KBr): 3066, 2961, 2932, 2874, 1727, 1668, 1626, 1600, 1584, 1486, 1448, 1383, 1328, 1276, 1224, 1201, 1185, 1165, 1132, 1102, 1075, 1059, 1040, 997, 964, 941, 910, 832, 778, 744, 715, 704, 689 cm⁻¹. HRMS-ESI (m/z) calcd. for C₁₃H₈F₆NaO₃Se ([M + Na]⁺): 428.9435; found: 428.9435.

Ethyl 3-oxo-3-phenyl-2-((trifluoromethyl)selanyl)propanoate (**2i**). Yellowish liquid (54.0 mg, 80% yield), petroleum ether/ethyl acetate = 40:1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 8.01 (d, *J* = 8.2 Hz, 2H), 7.66 (t, *J* = 7.5 Hz, 1H), 7.52 (t, *J* = 7.9 Hz, 2H), 5.77 (s, 1H), 4.23 (m, 2H), 1.21 (t, *J* = 7.1 Hz, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -33.6 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 189.7, 167.1, 134.6, 134.0, 129.1, 129.1, 122.8 (q, *J* = 332.4 Hz), 63.1, 51.2, 13.7. IR (KBr): 3066, 2984, 2922, 2851, 1738, 1682, 1598, 1581, 1467, 1450, 1393, 1369, 1339, 1321, 1284, 1269, 1234, 1186, 1136, 1100, 1074, 1025, 1001, 993, 877, 773, 739, 718, 687, 592 cm⁻¹. HRMS-ESI (m/z) calcd. for C₁₂H₁₁F₃NaO₃Se ([M + Na]⁺): 362.9718; found: 362.9718.

Dibenzyl 2-((trifluoromethyl)selanyl)malonate (**2j**). Yellowish liquid (70.8 mg, 82% yield), petroleum ether/ethyl acetate = 20:1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.36-7.35 (m, 6H), 7.31 (m, 4H), 5.22 (m, 4H), 4.89 (s, 1H). ¹⁹F NMR (471 MHz, CDCl₃) δ -33.9 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 165.6, 134.4, 128.7, 128.7, 128.4, 122.2 (q, *J* = 331.9 Hz), 68.8, 44.5. IR (KBr): 3092, 3067, 3035, 2958, 2922, 2851, 1734, 1660, 1663, 1587, 1499, 1469, 1456, 1377, 1292, 1273, 1224, 1137, 1096, 1075, 1002, 906, 740, 696, 644, 583 cm⁻¹. HRMS-ESI (m/z) calcd. for C₁₈H₁₅F₃NaO₄Se ([M + Na]⁺): 454.9980; found: 454.9988.

Diethyl 2-((trifluoromethyl)selanyl)malonate (**2k**). Yellowish liquid (46.8 mg, 76% yield), hexane/diethyl ether = 20:1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, DMSO- d_6) δ 5.39 (s, 1H), 4.21 (q, J = 7.1 Hz, 4H), 1.20 (t, J = 7.1 Hz, 6H). ¹⁹F NMR (471 MHz, DMSO- d_6) δ -32.8 (s, 3F). ¹³C NMR (126 MHz, DMSO- d_6) δ 166.3, 122.8 (q, J = 332.7 Hz), 63.2, 45.7, 14.1. IR (KBr): 2254, 2127, 1726, 1654, 1257, 1051, 1026, 1006, 825, 763, 629 cm⁻¹. HRMS-ESI (m/z) calcd. for C₈H₁₁F₃NaO₄Se ([M + Na]⁺): 330.9667; found: 330.9667.

1,3-Diphenyl-2-((trifluoromethyl)selanyl)propane-1,3-dione (**2l**). Yellowish liquid (52.5 mg, 71% yield), petroleum ether/ethyl acetate = 20:1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, *J* = 7.8 Hz, 4H), 7.59 (t, *J* = 7.4 Hz, 2H), 7.45 (t, *J* = 7.8 Hz, 4H), 6.54 (s, 1H). ¹⁹F NMR (471 MHz, CDCl₃) δ - 33.1 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 191.3, 134.5, 134.3, 129.3, 129.0, 122.8 (q, *J* = 330.9 Hz), 56.2. IR (KBr): 3071, 2960, 2939, 1728, 1677, 1652, 1595, 1576, 1450, 1380, 1321, 1308, 1259, 1234, 1185, 1145, 1131, 1122, 1098, 1057, 1028, 1000,

969, 954, 940, 819, 789, 737, 708, 693, 688, 664, 587 cm⁻¹. HRMS-ESI (m/z) calcd. for C₁₆H₁₁F₃NaO₂Se ([M + Na]⁺): 394.9769; found: 394.9769.

$$Ph$$
 Ph Ph Ph $SeCF_3$

2-Methyl-1,3-diphenyl-2-((trifluoromethyl)selanyl)propane-1,3-dione (2m). Yellowish liquid (61.5 mg, 80% yield), petroleum ether/ethyl acetate = 20:1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.90 (d, *J* = 7.9 Hz, 4H), 7.46 (t, *J* = 7.4 Hz, 2H), 7.33 (t, *J* = 7.9 Hz, 4H), 2.41 (s, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -32.1 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 194.6, 134.0, 134.0, 129.7, 128.8, 122.9 (q, *J* = 335.4 Hz), 70.4, 26.6. IR (KBr): 3069, 2962, 2937, 2874, 1727, 1676, 1652, 1595, 1576, 1449, 1380, 1321, 1306, 1277, 1258, 1233, 1185, 1121, 1099, 1077, 1057, 1028, 1001, 968, 953, 940, 819, 789, 737, 709, 692, 688, 664, 586 cm⁻¹. HRMS-ESI (m/z) calcd. for C₁₇H₁₃F₃NaO₂Se ([M + Na]⁺): 408.9925; found: 408.9925.

4,4-Dimethyl-1-phenyl-2-((trifluoromethyl)selanyl)pentane-1,3-dione (**2n**). Yellowish liquid (56.2 mg, 80% yield), petroleum ether/ethyl acetate = 20:1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, *J* = 7.6 Hz, 2H), 7.65 (t, *J* = 7.4 Hz, 1H), 7.52 (t, *J* = 7.8 Hz, 2H), 6.14 (s, 1H), 1.19 (s, 9H). ¹⁹F NMR (471 MHz, CDCl₃) δ -33.6 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 205.7, 191.0, 134.5, 134.3, 129.1, 129.1, 122.7 (q, *J* = 330.0 Hz), 51.7, 45.7, 26.8. IR (KBr): 3075, 3002, 2971, 2933, 2873, 1702, 1669, 1595, 1581, 1479, 1469, 1450, 1397, 1367, 1325, 1278, 1267, 1215, 1191, 1163, 1144, 1119, 1108, 1073, 1055, 1003, 997, 973, 937, 806, 738, 730, 692, 687, 605, 561 cm⁻¹. HRMS-ESI (m/z) calcd. for C₁₄H₁₅F₃NaO₂Se ([M + Na]⁺): 375.0082; found: 375.0082.

2-Benzyl-1-phenyl-2-((trifluoromethyl)selanyl)pentane-1,3-dione (**20**). Yellowish liquid (49.5 mg, 62% yield), petroleum ether/ethyl acetate = 20:1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.89 (d, *J* = 7.5 Hz, 2H), 7.68 (t, *J* = 7.5 Hz, 1H), 7.53 (t, *J* = 7.7 Hz, 2H), 7.22-7.15 (m, 3H), 6.92 (d, *J* = 7.2 Hz, 2H), 3.87 (m, 2H), 2.43 (s, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -32.1 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 200.6, 193.6, 134.7, 134.5, 134.1, 130.5, 129.4, 129.4, 128.0, 127.4, 122.7 (q, *J* = 334.5 Hz), 80.9, 39.8, 27.7. IR (KBr): 3065, 3033, 2925, 2852, 1716, 1661, 1596, 1579, 1497, 1449, 1438, 1358, 1323, 1254, 1184, 1174, 1122, 1098, 1069, 1030, 1001, 992, 913, 782, 755, 737, 698, 653, 617, 589, 514 cm⁻¹. HRMS-ESI (m/z) calcd. for C₁₈H₁₅F₃NaO₂Se ([M + Na]⁺): 423.0082; found: 423.0081.

6-Methyl-3-((trifluoromethyl)selanyl)heptane-2,4-dione (2p). Yellow liquid (35.8 mg, 62% yield), hexane/diethyl ether = 40:1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, DMSO- d_6) δ 17.74 (s, 0.89H), 5.63 (s, 0.16H, keto), 2.74 (d, J = 7.0 Hz, 2H), 2.63 (m, 0.40H, keto), 2.49 (s, 3H), 2.35 (s, 0.59H, keto), 2.14-2.05 (m, 1.24H), 0.93 (d, J = 6.7 Hz, 6H), 0.88 (d, J = 6.7 Hz, 1.25H, keto). ¹⁹F NMR (471 MHz, DMSO- d_6) δ -32.3 (s, 0.47F, keto), -36.6 (s, 0.02F), -38.5 (s, 3F). ¹³C NMR $(126 \text{ MHz}, \text{DMSO-}d_6) \delta 201.9, 200.6, 200.3, 198.9, 130.6 (q, J = 365.1 \text{ Hz}), 123.0 (q, J = 365.1 \text{ Hz}))$ J = 336.2 Hz), 97.6, 62.1, 49.7, 46.6, 28.8, 26.6, 26.0, 24.0, 22.9, 22.4, 22.4, 14.3, 11.2. IR (KBr): 3396, 3193, 2957, 2923, 2850, 1716, 1662, 1647, 1567, 1469, 1449, 1418, 1401, 1379, 1327, 1257, 1173, 1123, 1100, 1048, 913, 804, 755, 737, 698, 652, 516 cm⁻¹. HRMS-ESI (m/z) calcd. for $C_9H_{13}F_3NaO_2Se$ ([M + Na]⁺): 312.9925; found: 312.9925. *Note*: the characteristic downfield signal at 17.74 ppm (s) in ¹H NMR was assigned to the enol forms which contain OH groups with strong hydrogen bonding interaction with the adjacent C=O groups, while the signal at 5.63 ppm (s) corresponded to the keto form according to the chemical shifts of the active α -proton in other diketone products. Other ¹H NMR signals were assigned on the basis of these two integrals. Since 2p is an asymmetric 1,3-diketone, there are two possible enol forms, which give two different peaks at -36.6 ppm (s) and -38.5 ppm (s) in ¹⁹F NMR and complicated resonances in ¹³C NMR.

4-((Trifluoromethyl)selanyl)heptane-3,5-dione (**2q**). Yellow liquid (40.3 mg, 73% yield), hexane/diethyl ether = 40:1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, DMSO- d_6) δ 17.75 (s, 0.83H), 5.68 (s, 0.39H, keto), 2.87 (q, J = 7.3 Hz, 4H), 2.73 (m, 1.81H, keto), 1.09 (t, J = 7.4 Hz, 6H), 0.97 (t, J = 7.1 Hz, 2.66H, keto). ¹⁹F NMR (471 MHz, DMSO- d_6) δ -32.4 (s, 1.28F, keto), -38.6 (s, 3F). ¹³C NMR (126 MHz, DMSO- d_6) δ 203.1(keto), 201.5, 197.6, 123.1 (q, J = 332.4 Hz, keto), 123.0 (q, J = 336.4 Hz), 96.3, 60.8 (keto), 34.5, 31.6, 30.4 (keto), 9.7, 8.8 (keto), 8.2. IR (KBr): 3420, 2254, 2127, 1653, 1051, 1026, 1005, 825, 763, 629 cm⁻¹. HRMS-ESI (m/z) calcd. for C₈H₁₀F₃O₂Se ([M – H]⁻): 274.9804; found: 274.9809. *Note*: the enol/keto assignment was made in a manner similar to that for **2p**.

3-Oxo-*N*-phenyl-2-((trifluoromethyl)selanyl)butanamide (**2r**). Yellowish liquid (51.8, 80% yield), petroleum ether/ethyl acetate = 20:1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, DMSO-*d*₆) δ 10.73 (s, 1H), 7.57 (d, *J* = 7.8 Hz, 2H), 7.36 (t, *J* = 7.8 Hz, 2H), 7.14 (t, *J* = 7.4 Hz, 1H), 5.45 (s, 1H), 2.37 (s, 3H). ¹⁹F NMR (471 MHz, DMSO-*d*₆) δ -32.6 (s, 3F). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 199.4, 163.9, 138.6, 129.4, 124.9, 123.3 (q, *J* = 331.7 Hz), 120.2, 58.1, 27.3. IR (KBr): 3365, 3140, 3059, 3038, 2959, 2926, 2853, 1716, 1600, 1579, 1544, 1491, 1446, 1379, 1338, 1327, 1314, 1304, 1238, 1213, 1159, 1147, 1128, 1102, 1051, 1029, 983, 969, 904, 855, 795, 758, 735, 689, 628, 602, 509 cm⁻¹. HRMS-ESI (m/z) calcd. for C₁₁H₁₁F₃NO₂Se ([M + H]⁺): 325.9902; found: 325.9901.

Methyl 2-chloro-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate (**2a**').⁵ Yellow liquid, petroleum ether/ethyl acetate = 10:1 (v/v) as eluents for column chromatography. ¹H

NMR (500 MHz, CDCl₃) δ 7.87 (d, J = 7.6 Hz, 1H), 7.71 (t, J = 7.9 Hz, 1H), 7.50-7.46 (m, 2H), 4.12 (d, J = 17.7 Hz, 1H), 3.82 (s, 3H), 3.58 (d, J = 17.7 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 195.0, 167.7, 150.6, 136.5, 132.5, 128.7, 126.3, 126.0, 67.9, 54.1, 43.4.

Procedure B: In a nitrogen-filled glovebox, a sealed tube was charged with $[Me_4N][SCF_3]$ (45.5 mg, 0.26 mmol), NCS (34.7 mg, 0.26 mmol) and CH₃CN (1 mL) with stirring. After 1 h a solution of **1** (0.2 mmol) in CH₃CN (1 mL) was added. The mixture was reacted at room temperature or 60 °C for 1, 24 or 48 h, and concentrated to dryness under reduced pressure. The residue was purified by flash column chromatography on silica gel using a mixture of petroleum ether/ethyl acetate or hexane/dichloromethane as eluents to give the trifluoromethylthiolated products (**3**).

Procedure C: In a nitrogen-filled glovebox, a sealed tube was charged with $[Me_4N][SCF_3]$ (35.0 mg, 0.2 mmol), NCS (26.7 mg, 0.2 mmol) and CH₃CN (1 mL) with stirring. After 5 min a solution of **1** (0.2 mmol) in CH₃CN (1 mL) was added. The mixture was reacted at room temperature or 60 °C for 1, 24 or 48 h, and concentrated to dryness under reduced pressure. The residue was purified by flash column chromatography on silica gel using a mixture of petroleum ether/ethyl acetate or hexane/dichloromethane as eluents to give the trifluoromethylthiolated products (**3**).

Methyl 1-oxo-2-((trifluoromethyl)thio)-2,3-dihydro-1*H*-indene-2-carboxylate (**3a**).⁶ Yellow liquid (36.6 mg, 63% yield (**Procedure B**); 48.2 mg, 83% (**Procedure C**)), petroleum ether/ethyl acetate = 10:1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.83 (d, *J* = 7.7 Hz, 1H), 7.71 (t, *J* = 7.7 Hz, 1H), 7.52 (d, *J* = 7.7 Hz, 1H), 7.46 (t, *J* = 7.5 Hz, 1H), 4.21 (d, *J* = 17.7 Hz, 1H), 3.80 (s, 3H), 3.67 (d, *J* = 17.7 Hz, 1H). ¹⁹F NMR (471 MHz, CDCl₃) δ -37.2 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 194.7, 167.3, 151.7, 136.6, 132.8, 129.8 (q, *J* = 309.1 Hz), 128.5, 126.3, 125.7, 63.4, 54.3, 40.4.

Methyl 6-methyl-1-oxo-2-((trifluoromethyl)thio)-2,3-dihydro-1*H*-indene -2-carboxylate (**3b**).⁶ Yellow liquid (35.9 mg, 59% yield (**Procedure B**); 30.5 mg, 50% (**Procedure C**)), petroleum ether/ethyl acetate = 10:1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.62 (s, 1H), 7.52 (d, *J* = 7.9 Hz, 1H), 7.40 (d, *J* = 7.9 Hz, 1H), 4.14 (d, *J* = 17.5 Hz, 1H), 3.79 (s, 3H), 3.61 (d, *J* = 17.5 Hz, 1H), 2.43 (s, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -37.2 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 194.8, 167.4, 149.2, 138.7, 137.9, 133.0, 129.8 (q, *J* = 309.3 Hz), 125.9, 125.5, 63.7, 54.3, 40.1, 21.1.

Methyl 5,6-dimethoxy-1-oxo-2-((trifluoromethyl)thio)-2,3-dihydro-1*H*-indene-2carboxylate (**3c**).⁶ Yellow solid (26.6 mg, 38% yield (**Procedure B**); 25.2 mg, 36% (**Procedure C**); 23.8 mg, 34% (**Procedure C**)), petroleum ether/ethyl acetate = 4:1 (v/v) as eluents for column chromatography. M.p.: 181-183 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.19 (s, 1H), 6.91 (s, 1H), 4.11 (d, *J* = 17.4 Hz, 1H), 4.00 (s, 3H), 3.91 (s, 3H), 3.80 (s, 3H), 3.58 (d, *J* = 17.4 Hz, 1H). ¹⁹F NMR (471 MHz, CDCl₃) δ -37.4 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 192.9, 167.6, 157.2, 150.3, 147.8, 129.9 (q, *J* = 309.1 Hz), 125.4, 107.0, 105.5, 63.8, 56.5, 56.2, 54.3, 40.2.

Ethyl 3-oxo-3-phenyl-2-((trifluoromethyl)thio)propanoate (**3d**).⁷ Yellow liquid (9.9 mg, 17% yield (**Procedure B**); 9.4 mg, 16% (**Procedure C**)), hexane/dichloromethane = 9:1 (v/v) as eluents for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 14.54 (s, 0.85H), 8.03 (d, *J* = 7.3 Hz, 0.82H, keto), 7.66 (t, *J* = 7.5 Hz, 0.50H, keto), 7.60 (m, 1.98H), 7.48 (m, 4.15H), 5.63 (s, 0.38H, keto), 4.40 (q, *J* = 7.1 Hz, 2.06H), 4.24 (m, 0.88H, keto), 1.40 (t, *J* = 7.1 Hz, 3H), 1.21 (t, *J* = 7.1 Hz, 2.06H), 4.24 (m, 0.88H, keto), 1.40 (t, *J* = 7.1 Hz, 3H), 1.21 (t, *J* = 7.1 Hz, 2.06H), 4.24 (m, 0.88H, keto), 1.40 (t, *J* = 7.1 Hz, 3H), 1.21 (t, *J* = 7.1 Hz, 2.06H), 4.24 (m, 0.88H, keto), 1.40 (t, *J* = 7.1 Hz, 3H), 1.21 (t, *J* = 7.1 Hz, 2.06H), 4.24 (m, 0.88H, keto), 1.40 (t, *J* = 7.1 Hz, 3H), 1.21 (t, *J* = 7.1 Hz), 3H

1.29H, keto). ¹⁹F NMR (471 MHz, CDCl₃) δ -40.5 (s, 1.22F, keto), -45.2 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 188.5 (keto), 184.5, 173.2, 165.9 (keto), 134.7 (keto), 133.9, 133.8 (keto), 130.9, 130.1 (q, *J* = 307.8 Hz, keto), 129.2 (q, *J* = 311.0 Hz), 129.1 (keto), 129.0, 127.9, 86.7 (d, *J* = 1.9 Hz), 63.3 (keto), 62.5, 55.0 (d, *J* = 1.6 Hz, keto), 14.0, 13.7 (keto). *Note*: the NMR data of **3d** including enol/keto assignment were in accordance with the data reported in the literature.²⁰

Procedure D: In a nitrogen-filled glovebox, a sealed tube was charged with **1j** (56.9 mg, 0.2 mmol), $[Me_4N][SeCF_3]$ (133.2 mg, 0.6 mmol) and CH₃CN (2 mL), followed by addition of NCS (80.1 mg, 0.6 mmol) in CH₃CN (2 mL), with vigorous stirring. The mixture was reacted at room temperature for 1 h and concentrated to dryness under reduced pressure. The residue was purified by flash column chromatography on silica gel using a mixture of petroleum ether/ethyl acetate = 20:1 (v/v) as eluents to give the doubly trifluoromethylselenolated product (**4**) as a yellow liquid (75.4 mg, 65% yield).

Dibenzyl 2,2-bis((trifluoromethyl)selanyl)malonate (**4**). ¹H NMR (500 MHz, CDCl₃) δ 7.35-7.31 (m, 6H), 7.25 (m, 4H), 5.19 (s, 4H). ¹⁹F NMR (471 MHz, CDCl₃) δ -33.7 (s, 6F). ¹³C NMR (126 MHz, CDCl₃) δ 165.4, 133.6, 129.0, 128.7, 128.5, 122.3 (q, *J* = 334.4 Hz), 70.2. IR (KBr): 3093, 3069, 3037, 2962, 2917, 2853, 1727, 1608, 1588, 1499, 1457, 1376, 1266, 1204, 1147, 1095, 1023, 970, 907, 845, 825, 740, 696, 613, 582 cm⁻¹. HRMS-ESI (m/z) calcd. for C₁₉H₁₄F₆NaO₄Se₂ ([M + Na]⁺): 602.9019; found: 602.9019.

Procedure E: In a nitrogen-filled glovebox, a sealed tube was charged with $[Me_4N][SCF_3]$ (175 mg, 0.6 mmol), NCS (80.1 mg, 0.6 mmol) and CH₃CN (2 mL) with stirring. After 5 min a solution of **1i** (38.4 mg, 0.2 mmol) in CH₃CN (2 mL) was added. The mixture was reacted at room temperature for 1 h and concentrated to dryness under reduced pressure. The residue was purified by flash column chromatography on silica gel using a mixture of hexane/dichloromethane = 9:1 (v/v) as eluents to give the doubly trifluoromethylthiolated product (**5**) as a yellow liquid (11.8 mg, 15% yield).

Ethyl 3-oxo-3-phenyl-2,2-bis((trifluoromethyl)thio)propanoate (**5**). ¹H NMR (500 MHz, CDCl₃) δ 8.07 (d, *J* = 7.5 Hz, 2H), 7.64 (t, *J* = 7.4 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 2H), 4.25 (q, *J* = 7.2 Hz, 2H), 1.09 (t, *J* = 7.1 Hz, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -37.4 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 186.5, 165.7, 134.7, 131.8, 129.6, 128.9, 128.7 (q, *J* = 309.9 Hz), 73.4, 65.1, 13.3. IR (KBr): 3071, 2987, 2964, 2933, 2852, 1743, 1687, 1597, 1581, 1467, 1449, 1393, 1370, 1300, 1256, 1217, 1154, 1102, 1021, 1005, 936, 908, 841, 822, 808, 782, 758, 744, 701, 686, 653, 609 cm⁻¹. HRMS-ESI (m/z) calcd. for C₁₃H₁₀F₆NaO₃S₂ ([M + Na]⁺): 414.9868; found: 414.9866.

4. The control experiments for mechanistic insights

Table S5. Trifluoromethylselenolation of 1a by $[Me_4N][SeCF_3]$ and NCS at room temperature with different charging sequence.

^{*a*} Isolated yields. ^{*b*} Reaction conditions: a sealed tube was charged with **1a** (0.2 mmol), $[Me_4N][SeCF_3]$ (0.2 mmol) and CH₃CN (1 mL) with stirring, and after 5 minutes a solution of NCS (0.2 mmol) in CH₃CN (1 mL) was added. The mixture was reacted at room temperature under N₂ for 1 h. ^{*c*} Reaction conditions: a sealed tube was charged with **1a** (0.2 mmol), NCS (0.2 mmol) and CH₃CN (1 mL) with stirring, and after 5 minutes a solution of $[Me_4N][SeCF_3]$ (0.2 mmol) in CH₃CN (1 mL) with stirring, and after 5 minutes a solution of $[Me_4N][SeCF_3]$ (0.2 mmol) in CH₃CN (1 mL) was added. The mixture was reacted at room temperature under N₂ for 1 h. ^{*d*} Reaction conditions: a sealed tube was charged with $[Me_4N][SeCF_3]$ (0.2 mmol), NCS (0.2 mmol) in CH₃CN (1 mL) was added. The mixture was charged with $[Me_4N][SeCF_3]$ (0.2 mmol), NCS (0.2 mmol) and CH₃CN (1 mL) with stirring, and after 5 minutes a solution of **1a** (0.2 mmol) in CH₃CN (1 mL) was added. The mixture was reacted at room temperature was reacted at room temperature under N₂ for 1 h.

Table S6. Trifluoromethylselenolation of **1a** by [Me₄N][SeCF₃] and NCS in the presence of different radical inhibitors.

O 1a (0.2 mmol)	radical inhibitor (1.0 equiv) + [Me₄N][SeCF₃]	$\xrightarrow{())} \qquad \bigcirc \qquad 0 \\ \xrightarrow{\text{SeCF}_3} \\ \xrightarrow{\text{OMe}} \\ 2a \\ $
Entry ^a	Radical inhibitor	Yield (2a , %) ^b
1	trans-stilbene	88
2	1,3-dinitrobenzene	90
3	1,4-dinitrobenzene	89
4	BHT	85
5	TEMPO	92

^{*a*} Reaction conditions: a sealed tube was charged with **1a** (0.2 mmol), [Me₄N][SeCF₃] (0.2 mmol), radical inhibitor (0.2 mmol) and CH₃CN (1 mL), followed by addition of NCS (0.2 mmol) in CH₃CN (1 mL), with vigorous stirring. The mixture was reacted at room temperature under N₂ for 1 h. ^{*b*} Yields were determined by HPLC using **2a** as an external standard ($t_R = 5.30 \text{ min}$, $\lambda_{max} = 210 \text{ nm}$, water/methanol (v/v) = 20:80).

Table S7. Chlorination of 1a by NCS in the absence of [Me₄N][SeCF₃].

O OMe 1a (0.2 mmol)	+ NCS $\xrightarrow{CH_3CN}$	CI OMe 2a'
Entry ^a	Time	Yield (2a' , %) ^b
1	5 min	73
2	10 min	92
3	20 min	98

^{*a*} Reaction conditions: a sealed tube was charged with **1a** (0.2 mmol), NCS (0.2 mmol) and CH₃CN (2 mL) with stirring. The mixture was reacted at room temperature under N₂ for times as described above. ^{*b*} Isolated yields.

CI OMe + 2a' (0.2 mmol)	[Me ₄ N][SeCF ₃] CH ₃ CN (1.0 equiv) r.t., time, N ₂	→ SeCF ₃ OMe 2a
Entry ^a	Time	Yield (2a , %) ^b
1	5 min	50
2	10 min	85
3	20 min	87

Table S8. Nucleophilic trifluoromethylselenolation of 2a' by [Me₄N][SeCF₃].

^{*a*} Reaction conditions: a sealed tube was charged with **2a'** (0.2 mmol), $[Me_4N][SeCF_3]$ (0.2 mmol) and CH₃CN (2 mL) with vigorous stirring. The mixture was reacted at room temperature under N₂ for times as described above. ^{*b*} Isolated yields.

Table S9. Trifluoromethylthiolation of **1a** by [Me₄N][SCF₃] and NCS at room temperature with different charging sequence.

O OMe + [Me ₄ N][SCF ₃] (1.0 equiv) 1a (0.2 mmol)	$\frac{\text{NCS (1.0 equiv)}}{\text{CH}_3\text{CN, r.t., N}_2}$	3a $2a'$ O O Cl O
Entry	Yield (3a , %) ^{<i>a</i>}	Yield (2a' , %) ^{<i>a</i>}
1 ^b	64	27
2 ^c	40	20
3 d	83	12

^{*a*} Isolated yields. ^{*b*} Reaction conditions: a sealed tube was charged with **1a** (0.2 mmol), NCS (0.2 mmol) and CH₃CN (1 mL) with stirring, and after 5 minutes a solution of $[Me_4N][SCF_3]$ (0.2 mmol) in CH₃CN (1 mL) was added. The mixture was reacted at room temperature under N₂ for 1 h. ^{*c*} Reaction conditions: a sealed tube was charged with **1a** (0.2 mmol), $[Me_4N][SCF_3]$ (0.2 mmol) and CH₃CN (1 mL) with stirring, and after 5 minutes a solution of NCS (0.2 mmol) in CH₃CN (1 mL) was added. The mixture was reacted at room temperature under N₂ for 1 h. ^{*c*} Reaction conditions: a sealed tube was charged with **1a** (0.2 mmol), $[Me_4N][SCF_3]$ (0.2 mmol) in CH₃CN (1 mL) with stirring, and after 5 minutes a solution of NCS (0.2 mmol) in CH₃CN (1 mL) was added. The mixture was reacted at room temperature under N₂ for 1 h. ^{*d*} Reaction conditions: a sealed tube was charged with [Me₄N][SCF₃] (0.2 mmol), NCS (0.2 mm

mmol) and CH₃CN (1 mL) with stirring, and after 5 minutes a solution of **1a** (0.2 mmol) in CH₃CN (1 mL) was added. The mixture was reacted at room temperature under N_2 for 1 h.

Table S10. Trifluoromethylthiolation of **1a** by a mixture of $[Me_4N][SCF_3]/NCS$ that was already treated at room temperature for times.

O OMe + [Me ₄ N][SCF ₃] (1.3 equiv) 1a (0.2 mmol)	$\frac{\text{NCS (1.3 equiv)}}{\text{CH}_3\text{CN, r.t., N}_2}$	$ \begin{array}{c} 0 \\ SCF_3 \\ OMe \\ 0 \\ 3a \end{array} $
Entry	Yield (3a , %) ^{<i>a</i>}	Yield (2a' , %) ^{<i>a</i>}
1 ^b	70	5
2 ^c	63	-
3 <i>d</i>	65	-

^{*a*} Isolated yields. ^{*b*} Reaction conditions: a sealed tube was charged with $[Me_4N][SCF_3]$ (0.26 mmol), NCS (0.26 mmol) and CH₃CN (1 mL) with stirring, and after 5 minutes a solution of **1a** (0.2 mmol) in CH₃CN (1 mL) was added. The mixture was reacted at room temperature under N₂ for 1 h. ^{*c*} Reaction conditions: a sealed tube was charged with $[Me_4N][SCF_3]$ (0.26 mmol), NCS (0.26 mmol) and CH₃CN (1 mL) was added. The mixture was reacted at room temperature a solution of **1a** (0.2 mmol) in CH₃CN (1 mL) was added. The mixture was reacted at room temperature under N₂ for 1 h. ^{*d*} Reaction conditions: a sealed tube was charged with $[Me_4N][SCF_3]$ (0.26 mmol) in CH₃CN (1 mL) was added. The mixture was reacted at room temperature under N₂ for 1 h. ^{*d*} Reaction conditions: a sealed tube was charged with $[Me_4N][SCF_3]$ (0.26 mmol), NCS (0.26 mmol), NCS (0.26 mmol) and CH₃CN (1 mL) with stirring, and after 2 hours a solution of **1a** (0.2 mmol) in CH₃CN (1 mL) was added. The mixture was reacted at room temperature under N₂ for 1 h. ^{*d*} Reaction conditions: a sealed tube was charged with $[Me_4N][SCF_3]$ (0.26 mmol), NCS (0.26 mmol) and CH₃CN (1 mL) with stirring, and after 2 hours a solution of **1a** (0.2 mmol) in CH₃CN (1 mL) was added. The mixture was reacted at room temperature under N₂ for 1 h.

Entry ^a	Time	Yield (3a , %) ^b
1	5 min	13
2	10 min	18
3	20 min	33

^{*a*} Reaction conditions: a sealed tube was charged with **2a'** (0.2 mmol), $[Me_4N][SCF_3]$ (0.2 mmol), and CH₃CN (2 mL), with vigorous stirring. The mixture was reacted at room temperature under N₂. ^{*b*} Isolated yield.

Figure S1. ¹⁹F NMR spectrum of a mixture of $[Me_4N][SeCF_3]$ (0.2 mmol) and NCS (0.2 mmol) in CD₃CN that was reacted at room temperature for 5 minutes (PhOCF₃ (37.6 mg, 0.23 mmol) as an internal standard)

Figure S2. ¹⁹F NMR spectrum of a mixture of $[Me_4N][SeCF_3]$ (0.2 mmol) and NCS (0.2 mmol) in CD₃CN that was reacted at room temperature for 1 hour (PhOCF₃ (34.9 mg, 0.22 mmol) as an internal standard)

Figure S3. ¹⁹F NMR spectrum of a mixture of **1a** (0.2 mmol), $[Me_4N][SeCF_3]$ (0.2 mmol) and NCS (0.2 mmol) in CH₃CN that was reacted at room temperature for 5 minutes (PhOCF₃ (30.7 mg, 0.19 mmol) as an internal standard)

Figure S4. ¹⁹F NMR spectrum of a mixture of **1a** (0.2 mmol), $[Me_4N][SeCF_3]$ (0.2 mmol) and NCS (0.2 mmol) in CH₃CN that was reacted at room temperature for 1 hour (PhOCF₃ (33.8 mg, 0.21 mmol) as an internal standard)

Figure S5. ¹⁹F NMR spectrum of a mixture of **1a** (0.2 mmol), $[Me_4N][SeCF_3]$ (0.2 mmol) and NCS (0.2 mmol) in CH₃CN that was reacted at room temperature for 12 hours (PhOCF₃ (32.6 mg, 0.20 mmol) as an internal standard)

Figure S6. Combination of the above spectra (Figures 1 and 3-5)

Figure S7. ¹⁹F NMR spectrum of a mixture of $[Me_4N][SCF_3]$ (0.2 mmol) and NCS (0.2 mmol) in CD₃CN that was reacted at room temperature for 5 minutes (PhOCF₃ (28.6 mg, 0.18 mmol) as an internal standard)

Figure S8. ¹⁹F NMR spectrum of a mixture of **1a** (0.2 mmol), $[Me_4N][SCF_3]$ (0.2 mmol) and NCS (0.2 mmol) in CH₃CN that was reacted at room temperature for 5

minutes (PhOCF₃ (29.2 mg, 0.18 mmol) as an internal standard)

Figure S9. ¹⁹F NMR spectrum of a mixture of **1a** (0.2 mmol), $[Me_4N][SCF_3]$ (0.2 mmol) and NCS (0.2 mmol) in CH₃CN that was reacted at room temperature for 1 hour (PhOCF₃ (32.1 mg, 0.20 mmol) as an internal standard)

mmol) and NCS (0.2 mmol) in CH_3CN that was reacted at room temperature for 12 hours (PhOCF₃ (36.9 mg, 0.23 mmol) as an internal standard)

Figure S11. Combination of the above spectra (Figures 7-10)

Reference:

[1] (a) W. Tyrra, D. Naumann, Y. L. Yagupolskii, J. Fluorine Chem. 2003, 123, 183-

187. (b) T. Dong, J. He, Z.-H. Li, C.-P. Zhang, ACS Sustainable Chem. Eng. 2018, 6, 1327-1335. (c) W. Tyrra, D. Naumann, B. Hoge, Y.L. Yagupolskii, J. Fluorine Chem. 2003, 119, 101-107. (d) X.-X. Qi, P.-H. Chen, G.-S. Liu, Angew. Chem. Int. Ed. 2017, 56, 9517-9521.

[2] I. Geibel, J. Christoffers, Eur. J. Org. Chem. 2016, 918-920.

[3] P. Gogoi, T. Kotipalli, K. Indukuri, S. Bondalapati, P. Saha, A. K. Saikia, *Tetrahedron* **2012**, *53*, 2726-2729.

[4] W. L. F. Armarego, C. L. L. Chai, *Purification of Laboratory Chemicals*, 5th ed; Butterworth Heinemann: Oxford, **2003**.

[5] X.-Q. Pu, Q.-W. Li, Z.-H. Lu, X.-J. Yang, Eur. J. Org. Chem. 2016, 5937-5940.

[6] X. Shao, C. Xu, L. Lu, Q. Shen, J. Org. Chem. 2015, 80, 3012-3021.

[7] S. Alazet, L. Zimmer, T. Billard, Chem. Eur. J. 2014, 20, 8589-8593.

5. NMR spectra of the products

S41

S44

