γ -C (sp³)-H bond functionalisation by nucleophilic

phenylation and alkylation of α , β -unsaturated amides

through an umpolung strategy

Erika Futaki,^a Norihiko Takeda,^{*a} Motohiro Yasui,^a Tetsuro Shinada,^b Okiko Miyata,^{a,b} Masafumi Ueda^{*a}

^aKobe pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan
^b Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan

E-mail: <u>masa-u@kobepharma-u.ac.jp</u> (MU); <u>n-takeda@kobepharma-u.ac.jp</u> (NT)

Table of contents

Рада	
I. General Information	2
II. Experimental Section	3-21
III. References	22
IV. NMR Spectral Date	23-152

I. General Information

All reactions were carried out under an argon with dry solvents under anhydrous conditions, unless otherwise noted. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Flash column chromatography were performed using Silicycle silica gel (SiliaFlash[®] F60, 40-63 µm) or performed on Biotage Automated Liquid Chromatography System Isorera One using Biotage SNAP KP-Sil 50g silica gel cartridges. NMR spectra were recorded at 300 MHz/75 MHz (¹H NMR/¹³C NMR), 500 MHz/125 MHz (¹H NMR/¹³C NMR) or 600 MHz/150 MHz (1H NMR/13C NMR) using Varian MERCURY plus 300 (300 MHz), Varian NMR system AS 500 (500 MHz), or Bruker Avance III HD (600 MHz) spectrometers. Chemical shifts are reported in ppm with the solvent resonance or TMS as the internal standard. Multiplicities are indicated by (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sext = sextet, sept = septet, dd = doublet of doublets, dt = doublet of triplets, dq = doublet of quartets, td = triplet of doublets, qd = quartet of doublets, qt =quartet of triplets, qq = quartet of quartets, septd = septet of doublets, ddd = doublet of doublet of doublets, ddt = doublet of doublet of triplets, m = multiplet, br = broad). Infrared (IR) spectra were recorded on a Perkin-Elmer SpectrumOne A spectrometer. The high-resolution mass spectra (HRMS) were obtained using Thermo Fischer Scientific Exactive Orbitrap mass spectrometer by ESI technique. Melting points (uncorrected) were determined on BÜCHI M-565 apparatus. Ph₃Al (1.0 M in n-Bu₂O), Me₃Al (2.0 M in toluene), and *i*-Bu₃Al (1.0 M in *n*-hexane) were purchased from Aldrich. Et₃Al (1.0 M in *n*-hexane) was purchased from Kanto Chemical Co., Inc. Isoxazolidine hydrochloride¹ was prepared by the reported procedure. (2E/Z)-2-(1-Methylethyl)-2-butenoic acid², (2E)-2-(2-propen-1yl)-2-butenoic acid³, (2E)-2-phenyl-2-butenoic acid⁴, and (2Z)-2-bromo-2-butenoic acid⁵ were prepared by the reported procedure.

II. Experimental Section

General procedure for preparation of α , β -unsaturated carboxylic acid methyl esters⁶

$$Me \xrightarrow{OH} OMe \xrightarrow{OH} OMe \xrightarrow{Ar-B(OH)_2, [Rh(cod)Cl]_2 (0.50 \text{ mol}\%)} Me \xrightarrow{O} OMe$$

To a solution of 3-hydroxy-2-methylene-butanoic acid methyl ester (0.61 mL, 5.0 mmol) in MeOH (20 mL) were added arylboronic acid (20 mmol) and $[Rh(cod)Cl]_2$ (12.0 mg, 0.50 mol%) at room temperature. After being stirred at reflux for 16-24 h, the reaction mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (*n*-hexane : EtOAc = 10 : 1) to give α , β -unsaturated carboxylic acid methyl ester **S1-S3** in the yields as described below.

(2*E*)-2-[(3-Methylphenyl)methyl]-2-butenoic acid methyl ester (S1)

87% yield. A colorless oil; E/Z = >20/1; IR (CHCl₃) ν_{max} 1717, 1650 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 7.17-6.97 (m, 5H), 3.69 (s, 3H), 3.66 (s, 2H), 2.31 (s, 3H), 1.89 (d, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 168.0, 139.4, 138.8, 137.8, 131.9, 128.9, 128.1, 126.7, 125.1, 51.6, 31.8, 21.4, 14.6; HRMS (ESI) calcd for C₁₃H₁₆O₂Na [M+Na⁺] 227.1043, found 227.1040.

(2*E*)-2-[(2-Methoxyphenyl)methyl]-2-butenoic acid methyl ester (S2)

88% yield. A pale yellow oil; E/Z = >20/1; IR (CHCl₃) v_{max} 1716, 1649 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 7.16 (br t, J = 7.8 Hz, 1H), 7.08-7.01 (m, 2H), 6.87-6.82 (m, 2H), 3.83 (s, 3H), 3.69 (s, 3H), 3.67 (s, 2H), 1.82 (d, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 168.3, 157.2, 139.3, 131.1, 128.7, 127.5, 127.0, 120.2,

109.9, 55.2, 51.6, 26.2, 14.5; HRMS (ESI) calcd for C₁₃H₁₆O₃Na [M+Na⁺] 243.0992, found 243.0987. (2*E*)-2-[[2-(Trifluoromethyl)phenyl]methyl]-2-butenoic acid methyl ester (S3)

68% yield. A colorless oil; E/Z = >20/1; IR (CHCl₃) ν_{max} 1717, 1650 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ: 7.64 (d, J = 7.8 Hz, 1H), 7.41 (t, J = 7.8 Hz, 1H), 7.30-7.18 (m, 2H), 7.11 (d, J = 7.5 Hz, 1H), 3.90 (s, 2H), 3.69 (s, 3H), 1.80 (d, J = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ: 167.9, 141.0, 137.9, 131.8, 130.3, 128.4 (q, J = 29.6 Hz), 128.2, 126.0, 125.9 (q, J = 5.9 Hz), 124.6 (q, J = 272.1 Hz),

51.8, 28.1, 14.5; HRMS (ESI) calcd for $C_{13}H_{13}O_2F_3Na$ [M+Na⁺] 281.0760, found 281.0758.

General procedure for preparation of α , β -unsaturated carboxylic acids

To a solution of α , β -unsaturated ester (1.0 equiv) in EtOH/H₂O (v/v = 4:3, 0.14 M) was added LiOH·H₂O (3.0 equiv) at room temperature. After being stirred at 100 °C for12-24 h, this reaction mixture was diluted with CHCl₃ and water. The water layer was washed with CHCl₃. Subsequently, the water layer was acidified with an 1 M HCl until pH = 1 and the resulting suspension was extracted

with CHCl₃. The organic phase was dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography (*n*-hexane : EtOAc = 1 : 2) to give α , β -unsaturated carboxylic acid **S4-S17** in the yields as described below.

(2E/Z)-2-Ethyl-2-butenoic acid (S4)

99% yield. A pale yellow oil; An inseparable mixture of *E*/Z isomers. *E*/Z = 4/1; IR (neat) ν_{max} 2972, 1687, 1642 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 6.98 (q, *J* = 7.2 Hz, 4/5 H), 6.17 (br q, *J* = 7.2 Hz, 1/5 H), 2.37-2.25 (m, 2H), 2.04 (br d, *J* = 7.5 Hz, 3/5 H), 1.84 (d, *J* = 7.2 Hz, 12/5 H), 1.06 (t, *J* = 7.5 Hz, 3/5 H), 1.03 (t, *J* = 7.5 Hz, 12/5 H); ¹³C NMR (75 MHz, CDCl₃) δ : 174.0 (*Z*), 173.5, 139.6, 139.0 (*Z*), 134.3, 133.6 (*Z*), 27.3 (*Z*), 19.3, 16.0 (*Z*), 14.2, 13.7 (*Z*), 13.4; HRMS (ESI) calcd for C₆H₉O₂ [M-H⁺] 113.0608, found 113.0598.

(2*E*)-2-(Phenylmethyl)-2-butenoic acid (85)

94% yield. White solid; Mp: 100-101 °C; E/Z = >20/1; IR (CHCl₃) v_{max} 3012, 1691, 1642 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 7.29-7.15 (m, 6H), 3.69 (s, 2H), 1.92 (d, J = 7.5 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 173.4, 141.8, 139.3, 131.4, 128.3, 128.1, 126.0, 31.5, 14.9; HRMS (ESI) calcd for C₁₁H₁₂O₂Na [M+Na⁺] 199.0730, found 199.0726.

(2E)-2-[(4-Methylphenyl)methyl]-2-butenoic acid (S6)

99% yield. White solid; Mp: 110-111 °C; E/Z = >20/1; IR (CHCl₃) v_{max} 3011, 1690, 1642 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 7.16 (q, J = 6.9 Hz, 1H), 7.07 (m, 4H), 3.64 (s, 2H), 2.30 (s, 3H), 1.91 (d, J = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 172.9, 141.4, 136.2, 135.5, 131.6, 129.1, 128.1, 31.1, 21.0, 14.9; HRMS (ESI) calcd for C₁₂H₁₄O₂Na [M+Na⁺] 213.0886, found 213.0887.

(2E)-2-[(4-Methoxyphenyl)methyl]-2-butenoic acid (S7)

77% yield. White solid; Mp: 111-112 °C; E/Z = >20/1; IR (CHCl₃) v_{max} 3012, 1688, 1642 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 7.18-7.08 (m, 3H), 6.80 (br d, J = 8.7 Hz, 2H), 3.77 (s, 3H), 3.62 (s, 2H), 1.92 (d, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 173.2, 157.8, 141.3, 131.8, 131.4, 129.1, 113.7, 55.1, 30.6, 14.8; HRMS (ESI) calcd for C₁₂H₁₄O₃Na [M+Na⁺] 229.0835,

found 229.0836.

(2E)-2-[[4-(Trifluoromethyl)phenyl]methyl]-2-butenoic acid (S8)

84% yield. White solid; Mp: 69-70 °C; E/Z = >20/1; IR (CHCl₃) v_{max} 2944, 1687, 1643 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 7.51 (d, J = 8.1 Hz, 2H), 7.31-7.20 (m, 3H), 3.73 (s, 2H), 1.92 (d, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ : 172.4, 143.4, 142.5, 130.6, 128.47, 128.51 (q, J = 32.0 Hz), 125.3 (q, J = 3.8 Hz), 124.3 (q, J = 270.2 Hz), 31.5, 15.0; HRMS (ESI) calcd for

$C_{12}H_{10}O_2F_3$ [M-H⁺] 243.0638, found 243.0638.

(2*E*)-2-[(4-Bromophenyl)methyl]-2-butenoic acid (S9)

84% yield. White solid; Mp: 131-132 °C; E/Z = >20/1; IR (CHCl₃) ν_{max} 3014, 1687, 1643 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 7.38 (d, J = 8.4 Hz, 2H), 7.18 (q, J = 7.5 Hz, 1H), 7.06 (d, J = 8.1 Hz, 2H), 3.63 (s, 2H), 1.91 (d, J = 7.5 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 173.0, 142.1, 138.3, 131.4, 131.0, 129.9, 119.8, 31.0, 15.0; HRMS (ESI) calcd for C₁₁H₁₀O₂⁷⁹Br [M-H⁺] 252.9870,

found 252.9872.

(2E)-2-[(4-Fluoropheny)methyl]-2-butenoic acid (S10)

92% yield. White solid; Mp: 93-94 °C; An inseparable mixture of *E/Z* isomers. E/Z = 16/1; IR (CHCl₃) v_{max} 2940, 1691, 1642 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 7.21-7.11 (m, 3H), 6.98-6.90 (m, 2H), 3.64 (s, 32/17H), 3.55 (s, 2/17H), 2.07 (d, J = 7.2 Hz, 3/17 H), 1.92 (d, J = 7.2 Hz, 48/17 H); ¹³C NMR (150 MHz, CDCl₃) δ : 172.6, 161.4 (d, J = 240.0 Hz), 142.3 (*Z*), 141.8, 134.9,

131.4, 131.2 (*Z*), 130.4 (*Z*) (d, J = 7.8 Hz), 129.6 (d, J = 7.8 Hz), 115.1 (d, J = 21 Hz), 39.2 (*Z*), 30.8, 16.1 (*Z*), 14.9; HRMS (ESI) calcd for C₁₁H₁₀O₂F [M-H⁺] 193.0670, found 193.0665.

(2E)-2-[(3-Methylphenyl)methyl]-2-butenoic acid (S11)

79% yield. White solid; Mp: 115-116 °C; E/Z = >20/1; IR (CHCl₃) v_{max} 3012, 1687, 1642 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 7.22-7.12 (m, 2H), 6.99-6.98 (m, 3H), 3.65 (s, 2H), 2.31 (s, 3H), 1.91 (d, J = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 173.3, 141.7, 139.2, 137.9, 131.4, 128.9, 128.2, 126.8, 125.1, 31.4, 21.4, 14.9; HRMS (ESI) calcd for C₁₂H₁₄O₂Na [M+Na⁺] 213.0886, found 213.0886.

(2E)-2-[(3-Methoxyphenyl)methyl]-2-butenoic acid (S12)

99% yield. White solid; Mp: 92-93 °C; *E/Z* = >20/1; IR (CHCl₃) ν_{max} 3011, 1687,
1642 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ: 7.22-7.15 (m, 2H), 6.79-6.70 (m, 3H),
3.77 (s, 3H), 3.66 (s, 2H), 1.91 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ:
173.1, 159.6, 141.9, 140.9, 131.2, 129.3, 120.5, 114.1, 111.2, 55.1, 31.5, 14.9;
HRMS (ESI) *m/z*: calcd for C₁₂H₁₄O₃Na [M+Na⁺] 229.0835, found 229.0835.

(2E)-2-[[3-(Trifluoromethyl)phenyl]methyl]-2-butenoic acid (S13)

98% yield. White solid; Mp: 106-107 °C; An inseparable mixture of *E*/Z isomers. *E*/Z = 17/1; IR (CHCl₃) ν_{max} 3032, 1688, 1644 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ: 7.46-7.36 (m, 3H), 7.27-7.20 (m, 2H), 3.74 (s, 34/18H), 3.64 (s, 2/18H), 2.10 (d, *J* = 7.5 Hz, 3/18H), 1.94 (d, *J* = 7.2 Hz, 51/18H); ¹³C NMR (150 MHz, CDCl₃) δ: 172.6, 142.5, 140.3, 131.6, 130.8 (q, *J* = 31.8 Hz), 130.6, 128.8, 124.9 (q, *J* = 3.8

Hz), 124.1 (q, J = 270.3 Hz), 123.0 (q, J = 4.0 Hz), 31.4, 15.0; HRMS (ESI) calcd for C₁₂H₁₀O₂F₃ [M-H⁺] 243.0638, found 243.0637.

(2E)-2-[(2-Methylphenyl)methyl]-2-butenoic acid (S14)

94% yield. White solid; Mp: 119-120 °C; E/Z = >20/1; IR (CHCl₃) v_{max} 3012, 1688, 1643 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 7.30-7.25 (m, 1H), 7.17-7.08 (m, 3H), 6.97-6.94 (m, 1H), 3.62 (s, 2H), 2.35 (s, 3H), 1.84 (d, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 172.9, 142.3, 136.9, 136.2, 130.7, 130.3, 126.6, 126.0, 125.9, 28.7,

19.8, 14.9; HRMS (ESI) m/z: calcd for C₁₂H₁₃O₂ [M-H⁺] 189.0921, found 189.0918.

(2E)-2-[(2-Methoxyphenyl)methyl]-2-butenoic acid (S15)

94% yield. White solid; Mp: 118-121 °C; E/Z = >20/1; IR (CHCl₃) v_{max} 3011, 1691, 1642 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 7.22-7.14 (m, 2H), 7.08 (br d, J = 7.2 Hz, 1H), 6.87-6.82 (m, 2H), 3.82 (s, 3H), 3.65 (s, 2H), 1.85 (d, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 173.6, 157.2, 142.0, 130.7, 128.7, 127.2,

127.1, 120.3, 109.9, 55.1, 25.8, 14.7; HRMS (ESI) calcd for C₁₂H₁₄O₃Na [M+Na⁺] 229.0835, found 229.0832.

(2E)-2-[[2-(Trifluoromethyl)phenyl]methyl]-2-butenoic acid (S16)

86% yield. White solid; Mp: 100-101 °C; E/Z = >20/1; IR (CHCl₃) v_{max} 2990, 1691, 1645 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 7.64 (d, J = 7.8 Hz, 1H), 7.44-7.26 (m, 3H), 7.12 (d, J = 7.5 Hz, 1H), 3.90 (s, 2H), 1.80 (d, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ : 172.8, 143.9, 137.6, 131.9, 129.8, 128.5 (q, J = 29.6 Hz), 128.1, 126.1, 126.0 (q, J = 6.2 Hz), 124.6 (q, J = 272.3 Hz), 27.7, 14.8; HRMS

(ESI) calcd for $C_{12}H_{10}O_2F_3$ [M-H⁺] 243.0638, found 243.0638.

(2*E*)-2-[(1-Naphthalenyl)methyl]-2-butenoic acid (S17)

93% yield. White solid; Mp: 140-141 °C; E/Z = >20/1; IR (CHCl₃) v_{max} 3012, 1687, 1643 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 8.11 (br d, J = 8.1 Hz, 1H), 7.86 (br d, J = 9.0 Hz, 1H), 7.71 (d, J = 8.1 Hz, 1H), 7.56-7.47 (m, 2H), 7.41-7.33 (m, 2H), 7.12 (d, J = 7.2 Hz, 1H), 4.13 (s, 2H), 1.83 (d, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 173.4, 143.2, 134.2, 133.7, 131.9, 130.3, 128.7, 126.7, 125.9,

125.50, 125.46, 123.6, 123.2, 28.2, 14.9; HRMS (ESI) calcd for $C_{15}H_{13}O_2$ [M-H⁺] 225.0921, found 225.0918.

General procedure for preparation of α,β-unsaturated N-alkoxyamides 3a-3s

To a solution of α , β -unsaturated carboxylic acid (2.0 mmol) in CH₂Cl₂ (0.70 mL) were added oxalyl chloride (0.2 mL, 2.4 mmol) and a few drops of DMF under an argon atmosphere at room temperature. After being stirred for 2 h at the same temperature, the solvent and excess of oxalyl chloride were removed under reduced pressure to give crude product (acyl chloride) which was used without further purification.

Subsequently, to the solution of the acyl chloride in CH_2Cl_2 (4.3 mL) were added isoxazolidine hydrochloride¹ (0.22 g, 2.0 mmol) and pyridine (0.34 mL, 4.2 mmol) at 0 °C. After being stirred for 16-24 h at room temperature, the reaction mixture was diluted with EtOAc. The mixture was washed with 1 M HCl, saturated NaHCO₃, and saturated NaCl. The organic phase was dried over MgSO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography (nhexane : EtOAc = 1 : 1) to afford α , β -unsaturated N-alkoxyamide **3a-3s** in the yields as described below.

(2*E*)-1-(2-Isoxazolidinyl)-2-methyl-2-buten-1-one (3a)

 $Me \xrightarrow{O}_{Me} NMR (300 \text{ MHz, CDCl}_3) \delta: 6.17 (qq, J = 6.9, 1.5 \text{ Hz, 1H}), 3.93 (t, J = 6.9 \text{ Hz}, 2\text{H}), 3.76-3.71 (m, 2\text{H}). 2.28 (br quint J = 6.9 \text{ Hz}, 2\text{H}), 1.87 (br q, 2\text{H}), 1.75$ 6-3.71 (m, 2H), 2.28 (br quint, J = 6.9 Hz, 2H), 1.87 (br s, 3H), 1.75

(dq, J = 6.9, 1.5 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 171,8, 131.1, 130.9, 68.8, 44.7, 27.3, 13.6, 13.5; HRMS (ESI) calcd for C₈H₁₃O₂NNa [M+Na⁺] 178.0839, found 178.0840.

(2*E*)-2-Ethyl-1-(2-isoxazolidinyl)-2-buten-1-one (3b)

 $\begin{array}{c} \mbox{64\% yield. A yellow oil; An inseparable mixture of E/Z isomers. E/Z = 10/1; IR} \\ \mbox{(neat)} \nu_{max} \ 1660, 1630 \ cm^{-1}; {}^{1}\mbox{H NMR} \ (300 \ MHz, \ CDCl_{3}) \ \delta: \ 6.04 \ (qt, J = 6.9, 0.9 \ Hz, 10/11\ H), \ 5.55 \ (qt, J = 6.9, 1.5 \ Hz, 1/11\ H), \ 3.94 \ (t, J = 6.9 \ Hz, 2\ H), \ 3.78-3.74 \end{array}$

(m, 2H), 2.38 (br q, J = 7.5 Hz, 2H), 2.28 (br quint, J = 6.9 Hz, 2H), 1.76 (dt, J = 6.9, 0.6 Hz, 30/11H), 1.69 (dt, J = 6.9, 1.5 Hz, 3/11H), 1.09-0.98 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 172.0, 137.7 (Z), 137.5, 129.8, 68.8, 44.7, 27.2, 27.0 (Z), 20.6, 14.7 (Z), 13.2, 12.8, 12.1 (Z); HRMS (ESI) calcd for C₉H₁₅O₂NNa [M+Na⁺] 192.0995, found 192.0994.

(2E/Z)-1-(2-Isoxazolidinyl)-2-(1-methylethyl)-2-buten-1-one (3c)

 $Me \xrightarrow{i-Pr} N^{-O}$ $IR (neat) v_{max} 1661, 1634 \text{ cm}^{-1}; {}^{1}\text{H NMR} (300 \text{ MHz, CDCl}_3) \delta: 5.72 (qd, J = 7.2, 0.25)$.9 Hz, 9/10H), 5.52 (qd, *J* = 6.9, 1.5 Hz, 1/10H), 3.95 (t, *J* = 7.2 Hz, 2H), 3.77-

3.72 (m, 2H), 2.87 (septd, J = 6.9, 0.9 Hz, 9/10 H), 2.60 (sept, J = 6.9 Hz, 1/10 H), 2.40-2.24 (m, 2H),1.75 (d, J = 7.2 Hz, 3H), 1.14 (d, J = 6.9 Hz, 54/10H), 1.07 (d, J = 6.9 Hz, 6/10H); 13 C NMR (75 MHz, CDCl₃) δ: 178.3 (Z), 170.71, 142.3 (Z), 141.3, 126.8, 68.8, 44.5, 43.0 (Z), 27.7, 27.4, 21.1 (Z), 21.0, 14.8 (Z), 13.8 (Z), 13.0; HRMS (ESI) calcd for C₁₀H₁₇O₂NNa [M+Na⁺] 206.1152, found 206.1150.

(2E)-1-(2-Isoxazolidinyl)-2-(2-propen-1-yl)-4-butene-1-one (3d)

36% yield. A yellow oil; E/Z = >20/1; IR (neat) v_{max} 1661, 1635 cm⁻¹; ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta$: 6.23 (qt, J = 7.2, 0.9 Hz, 1H), 5.80 (ddt, J = 17.1, 9.9, 6.3 Hz, 1H), 5.11-4.98 (m, 2H), 3.93 (t, J = 6.9 Hz, 2H), 3.78-3.73 (m, 2H), 3.13 (br d, J = 6.3 Hz, 2H), 2.26 (br quint, J = 6.9 Hz, 2H), 1.78 (dt, J = 7.2, 0.9 Hz, 3H);

¹³C NMR (75 MHz, CDCl₃) δ: 171.9, 135.0, 133.5, 132.5, 115.5, 69.1, 44.7, 31.8, 27.4, 13.7; HRMS (ESI) calcd for C₁₀H₁₅O₂NNa [M+Na⁺] 204.0995, found 204.0997.

(2*E*)-1-(2-Isoxazolidinyl)-2-phenyl-2-buten-1-one (3e)

99% yield. White solid; E/Z = >20/1; Mp 57-58 °C; IR (CHCl₃) v_{max} 1646, 1619 N^{-O} cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 7.37-7.24 (m, 5H), 6.40 (q, J = 7.2 Hz, 1H), 3.72 (t, J = 6.9 Hz, 2H), 3.63-3.58 (m, 2H), 2.20 (br quint, J = 6.9 Hz, 2H), 1.80

(d, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 169.2, 137.0, 135.1, 131.8, 128.6, 127.7, 126.9, 68.6, 44.5, 27.5, 14.8; HRMS (ESI) calcd for C₁₃H₁₅O₂NNa [M+Na⁺] 240.0995, found 240.0994.

(2Z)-2-Bromo-1-(2-isoxazolidinyl)-2-buten-1-one (3f)

47% yield. A pale yellow oil; E/Z = 1/>20; IR (neat) v_{max} 1634 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 6.63 (q, J = 6.6 Hz, 1H), 4.02 (t, J = 6.9 Hz, 2H), 3.81-3.76 (m, 2H), 2.36 (br quint, J = 6.9 Hz, 2H), 1.90 (d, J = 6.6 Hz, 3H); ¹³C NMR (75

MHz, CDCl₃) δ : 163.5, 134.4, 116.5, 69.4, 45.0, 27.4, 17.2; HRMS (ESI) calcd for C₇H₁₀O₂N⁷⁹BrNa [M+Na⁺] 241.9787, found 241.9788.

(2*E*)-1-(2-Isoxazolidinyl)-2-(phenylmethyl)-2-buten-1-one (3g)

86% yield. A pale yellow oil; E/Z = >20/1; IR (neat) v_{max} 1663, 1630 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 7.28-7.13 (m, 5H), 6.20 (br q, J = 6.9 Hz, 1H), 3.74 (s, 2H), 3.66 (t, J = 6.9 Hz, 2H), 3.58-3.53 (m, 2H), 2.00 (br quint, J = 6.9 Hz, 2H),

1.88 (d, J = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 171.6, 138.8, 134.7, 130.9, 128.2, 128.0, 125.7, 68.8, 44.9, 33.4, 27.2, 14.1; HRMS (ESI) calcd for C₁₄H₁₇O₂NNa [M+Na⁺] 254.1152, found 254.1147. (2*E*)-1-(2-Isoxazolidinyl)-2-[(4-methylphenyl)methyl]-2-buten-1-one (3h)

99% yield. A yellow oil; E/Z = >20/1; IR (neat) v_{max} 1662, 1633 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ: 7.10-7.04 (m, 4H), 6.18 (q, J = 6.9 Hz, 1H), 3.72-3.67 (m, 4H), 3.58-3.53 (m, 2H), 2.29 (s, 3H), 2.01 (br quint, J = 7.2 Hz, 2H), 1.86 (d, J = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 171.9, 135.8, 135.2, 135.0, 130.8, 128.8, 128.1, 68.7, 44.7, 32.6, 27.0, 20.7, 13.7; HRMS

(ESI) calcd for C₁₅H₁₉O₂NNa [M+Na⁺] 268.1308, found 268.1305.

(2E)-1-(2-Isoxazolidinyl)-2-[(4-methoxyphenyl)methyl]-2-buten-1-one (3i)

98% yield. A pale yellow oil; E/Z = >20/1; IR (neat) v_{max} 1664, 1635 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 7.12 (d, J = 8.7 Hz, 2H), 6.79 (d, J = 8.7Hz, 2H), 6.16 (br q, J = 6.9 Hz, 1H), 3.77 (s, 3H), 3.71-3.66 (m, 4H), 3.58-3.53 (m, 2H), 2.02 (br quint, J = 7.2 Hz, 2H), 1.87 (d, J = 6.9 Hz, 3H); ¹³C

NMR (75 MHz, CDCl₃) δ : 172.1, 157.8, 135.3, 131.1, 130.7, 129.4, 113.6, 68.9, 55.1, 44.8, 32.3, 27.1, 13.8; HRMS (ESI) calcd for C₁₅H₁₉O₃NNa [M+Na⁺] 284.1257, found 284.1254.

(2E)-1-(2-Isoxazolidinyl)-2-[[4-(trifluoromethyl)phenyl]methyl]-2-buten-1-one (3j)

80% yield. A colorless oil; IR (neat) v_{max} 1661, 1618 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 7.51 (d, J = 8.1 Hz, 2H), 7.32 (d, J = 8.1 Hz, 2H), 6.35 (q, J = 6.9 Hz, 1H), 3.80 (s, 2H), 3.73 (t, J = 7.2 Hz, 2H), 3.65-3.60 (m, 2H), 2.11 (br quint, J = 7.2 Hz, 2H), 1.86 (d, J = 6.9 Hz, 3H); ¹³C NMR (150 MHz,

CDCl₃): δ_c 171.3, 143.6, 133.8, 133.2, 128.7, 128.5 (q, J = 32.1 Hz), 125.3 (q, J = 3.7 Hz), 124.3 (q, J = 270.1 Hz), 69.2, 44.5, 33.2, 27.2, 14.1; HRMS (ESI) calcd for C₁₅H₁₆O₂NF₃Na [M+Na⁺] 322.1025, found 322.1023.

(2E)-2-[(4-Bromophenyl)methyl]-1-(2-isoxazolidinyl)-2-buten-1-one (3k)

79% yield. A colorless oil; E/Z = >20/1; IR (neat) v_{max} 1661, 1622 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 7.37 (br d, J = 8.1 Hz, 2H), 7.08 (br d, J = 8.1 Hz, 2H), 6.27 (br q, J = 7.2 Hz, 1H), 3.72 (t, J = 6.9 Hz, 2H), 3.68 (s, 2H), 3.63-3.58 (m, 2H), 2.10 (br quint, J = 6.9 Hz, 2H), 1.85 (d, J = 7.2 Hz, 3H); ¹³C

NMR (75 MHz, CDCl₃) δ : 171.4, 138.3, 134.2, 132.4, 131.3, 130.1, 119.7, 69.1, 44.5, 32.7, 27.2, 14.0; HRMS (ESI) calcd for C₁₄H₁₆O₂N⁷⁹BrNa [M+Na⁺] 332.0257, found 332.0259.

(2E)-2-[(4-Fluoropheny)methyl]-1-(2-isoxazolidinyl)-2-buten-1-one (3l)

74% yield. A colorless oil; E/Z = >20/1; IR (neat) v_{max} 1663, 1627 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 7.17-7.15 (m, 2H), 6.95-6.92 (m, 2H), 6.23 (q, J = 7.2 Hz, 1H), 3.71-3.69 (m, 4H), 3.60-3.58 (m, 2H), 2.07 (br quint, J = 7.2 Hz, 2H), 1.86 (d, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ : 171.8, 161.4

(d, J = 242.7 Hz), 134.9 (d, J = 3.2 Hz), 134.8, 131.8, 129.9 (d, J = 7.7 Hz), 115.1 (d, J = 21.0 Hz), 69.0, 44.6, 32.5, 27.2, 13.9; HRMS (ESI) calcd for C₁₄H₁₆O₂NFNa [M+Na⁺] 272.1057, found 272.1059.

(2*E*)-1-(2-Isoxazolidinyl)-2-[(3-methylphenyl)methyl]-2-buten-1-one (3m)

85% yield. A colorless oil; E/Z = >20/1; IR (neat) v_{max} 1662, 1634 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 7.14 (t, J = 7.5 Hz, 1H), 7.01-6.96 (m, 3H), 6.18 (br q, J = 6.9 Hz, 1H), 3.70-3.65 (m, 4H), 3.58-3.53 (m, 2H), 2.30 (s, 3H), 2.00 (br quint, J = 6.9 Hz, 2H), 1.87 (d, J = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 172.2,

139.1, 137.8, 135.0, 131.1, 129.2, 128.2, 126.7, 125.4, 68.9, 44.8, 33.2, 27.1, 21.3, 13.9; HRMS (ESI) calcd for $C_{15}H_{19}O_2NNa$ [M+Na⁺] 268.1308, found 268.1307.

$(2E) \hbox{-} 1-(2-Isoxazolidinyl) \hbox{-} 2-[(3-methoxyphenyl)methyl] \hbox{-} 2-buten \hbox{-} 1-one \ (3n)$

65% yield. A yellow oil; E/Z = >20/1; IR (neat) v_{max} 1662, 1632 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 7.17 (t, J = 7.8 Hz, 1H), 6.81-6.70 (m, 3H), 6.21 (br q, J = 6.9 Hz, 1H), 3.77 (s, 3H), 3.73-3.69 (m, 4H), 3.60-3.55 (m, 2H), 2.04 (br quint, J = 6.9 Hz, 2H), 1.87 (d, J = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃), δ : 172.0, 159.6, 140.8, 134.7, 131.6, 129.2, 120.8, 114.1, 111.4, 68.9, 55.0, 44.8, 33.3, 27.2,

13.9; HRMS (ESI) calcd for $C_{15}H_{19}O_3NNa$ [M+Na⁺] 284.1257, found 284.1252.

$(2E) \hbox{-} 1-(2-Isoxazolidinyl) \hbox{-} 2-[[3-(trifluoromethyl)phenyl]methyl] \hbox{-} 2-buten \hbox{-} 1-one (3o)$

75% yield. A pale yellow oil; E/Z = >20/1; IR (neat) v_{max} 1662, 1627 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ_{H} 7.49-7.36 (m, 4H), 6.34 (br q, J = 7.2 Hz, 1H), 3.80 (s, 2H), 3.70 (t, J = 7.2 Hz, 2H), 3.63-3.61 (m, 2H), 2.09 (br quint, J = 7.2 Hz, 2H), 1.87 (d, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ_{c} 171.4, 140.4, 133.7, 133.2, 132.1, 130.6 (q, J = 31.9 Hz), 128.8, 124.9 (q, J = 3.8 Hz), 124.2 (q, J = 5.2 Hz, 2H)

270.4 Hz), 122.9 (q, *J* = 3.8 Hz), 69.1, 44.5, 33.0, 27.2, 14.1; HRMS (ESI) calcd for C₁₅H₁₆O₂NF₃Na [M+Na⁺] 322.1025, found 322.1018.

(2*E*)-1-(2-Isoxazolidinyl)-2-[(2-methylphenyl)methyl]-2-buten-1-one (3p)

76% yield. A colorless oil; E/Z = >20/1; IR (neat) v_{max} 1663, 1635 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 7.18-7.07 (m, 4H), 6.19 (br q, J = 6.9 Hz, 1H), 3.69 (s, 2H), 3.61 (t, J = 7.2 Hz, 2H), 3.56-3.51 (m, 2H), 2.33 (s, 3H), 1.96 (br quint, J = 7.2Hz, 2H), 1.85 (br d, J = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 171.9, 136.7,

136.2, 134.1, 130.8, 129.8, 128.6, 126.0, 125.7, 68.8, 44.3, 30.6, 27.0, 19.4, 13.7; HRMS (ESI) calcd for C₁₅H₁₉O₂NNa [M+Na⁺] 268.1308, found 268.1303.

(2*E*)-1-(2-Isoxazolidinyl)-2-[(2-methoxyphenyl)methyl]-2-buten-1-one (3q)

93% yield. A yellow oil; E/Z = >20/1; IR (neat) v_{max} 1664, 1630 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 7.19-7.13 (m, 2H), 6.87-6.81 (m, 2H), 6.13 (br q, J = 6.9 Hz, 1H), 3.82 (s, 3H), 3.71-3.66 (m, 4H), 3.56-3.51 (m, 2H), 1.96 (br quint, J = 6.9 Hz, 2H), 1.84 (d, J = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 172.4, 157.2,

134.3, 131.3, 129.8, 127.3, 127.2, 120.2, 109.9, 68.7, 55.1, 45.1, 27.8, 27.1, 13.7; HRMS (ESI) calcd for C₁₅H₁₉O₃NNa [M+Na⁺] 284.1257, found 284.1252.

(2*E*)-1-(2-Isoxazolidinyl)-2-[[2-(trifluoromethyl)phenyl]methyl]-2-buten-1-one (3r)

78% yield. A pale yellow oil; E/Z = >20/1; IR (neat) v_{max} 1661, 1624 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 7.62 (d, J = 7.8 Hz, 1H), 7.44-7.39 (m, 2H), 7.29-7.26 (m. 1H), 6.44 (q, J = 7.2 Hz, 1H), 3.95 (s, 2H), 3.79 (t, J = 7.2 Hz, 2H), 3.67-3.65 (m, 2H), 2.14 (br quint, J = 7.2 Hz, 2H), 1.76 (d, J = 7.2 Hz, 3H); ¹³C NMR

(150 MHz, CDCl₃) δ : 171.0, 137.8, 134.6, 133.2, 131.8, 129.9, 128.4 (q, J = 29.7 Hz), 126.0, 125.8 (q, J = 5.8 Hz), 124.6 (q, J = 272.2 Hz), 69.2, 44.3, 29.7, 27.2, 14.0; HRMS (ESI) calcd for C₁₅H₁₆O₂NF₃Na [M+Na⁺] 322.1025, found 322.1021.

(2E)-1-(2-Isoxazolidinyl)-2-[(1-naphthalenyl)methyl]-2-buten-1-one (3s)

Me N⁻⁰

80% yield. A pale orange oil; E/Z = >20/1; IR (neat) v_{max} 1662, 1626 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 8.07 (br d, J = 8.4 Hz, 1H), 7.85-7.82 (m, 1H), 7.70 (dd, J = 6.9, 2.7 Hz, 1H), 7.55-7.34 (m, 4H), 6.26 (q, J = 6.9 Hz, 1H), 4.18 (s, 2H), 3.47 (t, J = 6.9 Hz, 2H), 3.43-3.38 (m, 2H), 1.92 (d, J = 6.6 Hz, 3H), 1.77 (br quint, J = 6.9 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ : 171.8, 134.7, 134.4, 133.6, 131.8,

131.7, 128.5, 126.8, 126.2, 125.8, 125.5, 125.4, 123.6, 68.8, 44.6, 30.4, 26.9, 14.0; HRMS (ESI) calcd for C₁₈H₁₉O₂NNa [M+Na⁺] 304.1308, found 304.1301.

Preparation of β,γ-unsaturated N-alkoxyamide 6

To a solution of 2-methyl-3-butenoic acid (200 mg, 2.0 mmol) in CH₂Cl₂ (6.0 mL) was added 4methylmorpholine (0.44 mL, 4.0 mmol) at 0 °C. After 15 min, ethyl chloroformate (0.19 mL, 2.0 mmol) was added dropwise and stirring at 0 °C for 15 min. Subsequently, isoxazolidine hydrochloride¹ (219 mg, 2.0 mmol) was added at 0 °C and this solution was gradually warmed to room temperature. After being stirred at the same temperature for 12 h, the reaction mixture was diluted with EtOAc. The mixture was washed with 1 M HCl, saturated NaHCO3, and saturated NaCl. The organic phase was dried over MgSO4, and concentrated under reduced pressure. The residue was purified by preparative TLC (*n*-hexane : AcOEt = 1 : 1) to give 1-(2-isoxazolidinyl)-2-methyl-3-buten-1-one (**6**) (122 mg, 0.79 mmol, 40%) as a colorless oil; IR (neat) v_{max} 1651, 1634 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 5.93 (ddd, *J* = 17.4, 10.2, 7.7 Hz, 1H), 5.17-5.07 (m, 2H), 3.96 (t, *J* = 6.9 Hz, 2H), 3.79-3.61 (m, 3H), 2.31 (br quint, *J* = 6.9 Hz, 2H), 1.25 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 173.6, 137.8, 115.4, 69.3, 43.1, 40.8, 27.4, 16.6; HRMS (ESI) calcd for C₈H₁₃O₂NNa [M+Na⁺] 178.0839, found 178.0840.

General procedure for preparation of γ -phenyl α , β -unsaturated amides 4aa-4ae from α , β unsaturated *N*-alkoxyamide 3a (Table 1, entries 1-4)

To a solution of α , β -unsaturated *N*-alkoxyamide **3a** (0.35 mmol) in CH₂Cl₂ (1.25 mL) were added silylating agent (0.74 mmol), *i*-Pr₂NEt (0.24 mL, 1.40 mmol), and Ph₃Al (1.0 M in *n*-dibutyl ether,

1.05mL, 1.05 mmol) dropwise at room temperature under an argon atmosphere. After being stirred at the same temperature for several hours, this reaction mixture was quenched with an aqueous Rochelle's salt (1.3 M). The resulting suspension was extracted with CHCl₃. The organic phase was dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography (Biotage Isorera One using Biotage SNAP KP-Sil 50g silica gel cartridges) (*n*-hexane : AcOEt = 4 : 1 to EtOAc) to give γ -phenyl α , β -unsaturated amide **4aa-4ae** as shown in Table 1, entries 1-4.

(2E)-N-(3-Hydroxypropyl)-2-methyl-4-phenyl-2-butenamide (4aa)

Ph
Me
N
Me
N
H
A pale yellow oil;
$$E/Z = >20/1$$
; IR (neat) v_{max} 3331, 1659, 1615 cm⁻¹;
¹H NMR (300 MHz, CDCl₃) δ : 7.33-7.17 (m, 5H), 6.49 (br t, $J = 7.2$ Hz,
1H), 6.18 (br s, 1H), 3.63 (br t, $J = 5.4$ Hz, 2H), 3.51-3.45 (m, 4H), 3.33

(br s, 1H), 1.97 (s, 3H), 1.70 (quint, J = 5.7 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ : 170.5, 139.2, 134.4, 131.4, 128.6, 128.4, 126.4, 59.3, 36.5, 34.5, 32.3, 12.9; HRMS (ESI) calcd for C₁₄H₁₉O₂NNa [M+Na⁺] 256.1308, found 256.1308.

(2E)-2-Methyl-4-phenyl- N-[3-[(trimethylsilyl)oxy]propyl]-2-butenamide (4ab)

Hz, 2H), 3.37 (q, J = 5.7 Hz, 2H), 1.93 (s, 3H), 1.72 (quint, J = 5.7 Hz, 2H), 0.08 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ : 168.6, 139.8, 133.2, 132.0, 128.6, 128.5, 126.3, 62.1, 38.8, 34.5, 31.4, 12.7, -0.9; HRMS (ESI) calcd for C₁₇H₂₇O₂NNaSi [M+Na⁺] 328.1703, found 328.1697.

(2E)-2-Methyl-4-phenyl-N-[3-(triethylsilyl)oxy]propyl]-2-butenamide (4ac)

A pale yellow oil; E/Z = >20/1; IR (neat) v_{max} 3322, 1661, 1620 cm⁻¹; ¹H NMR (300 MHz, CD₂Cl₂) δ : 7.33-7.17 (m, 5H), 6.48 (br s, 1H), 6.37 (br t, J = 7.5 Hz, 1H), 3.73 (t, J = 5.4 Hz, 2H), 3.48 (d, J = 7.2

Hz, 2H), 3.38 (q, J = 5.4 Hz, 2H), 1.93 (s, 3H), 1.73 (quint, J = 5.7 Hz, 2H), 0.93 (t, J = 7.8 Hz, 9H), 0.58 (q, J = 7.8 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ : 168.8, 139.8, 133.0, 132.3, 128.6, 128.5, 126.2, 62.4, 38.8, 34.5, 31.6, 12.8, 6.6, 4.2; HRMS (ESI) calcd for C₂₀H₃₃O₂NNaSi [M+Na⁺] 370.2173, found 370.2166.

(2*E*)-*N*-[3-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]propyl]-2-methyl-4-phenyl-2-butenamide (4ad)

Ph Me MeMe

3.61 (t, J = 6.0 Hz, 2/11H), 3.52 (d, J = 6.0 Hz, 2/11H), 3.48 (d, J = 7.2 Hz, 20/11H), 3.43 (q, J = 6.0

Hz, 20/11H), 3.34 (q, J = 6.0 Hz, 2/11H), 1.98 (s, 3/11H), 1.96 (s, 30/11H), 1.74 (br quint, J = 6.0 Hz, 20/11H), 1.64 (br quint, J = 6.0 Hz, 2/11H), 0.87 (s, 9H), 0.03 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ : 169.3, 169.1 (*Z*), 139.4, 139.3 (*Z*), 133.1, 133.0 (*Z*), 132.4 (*Z*), 132.3, 128.9 (*Z*), 128.7 (*Z*), 128.6, 128.5, 126.3, 126.2 (*Z*), 62.83 (*Z*), 62.78, 38.72 (*Z*), 38.67, 34.5, 34.1 (*Z*), 31.54 (*Z*), 31.48, 25.92, 25.88 (*Z*), 18.4, 13.04 (*Z*), 13.00, -5.4, -5.5 (*Z*); HRMS (ESI) calcd for C₂₀H₃₃O₂NNaSi [M+Na⁺] 370.2173, found 370.2172.

(2E)-2-Methyl-4-phenyl-N-[3-[[tris(1-methylethyl)silyl]oxy]propyl]-2-butenamide (4ae)

A pale yellow oil; An inseparable mixture of E/Z isomers. E/Z = 9/1; PS IR (neat) v_{max} 3323, 1660, 1620 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 7.32-7.15 (m, 5H), 6.43 (br s, 1H), 6.36 (br t, J = 7.2 Hz, 1H), 3.82

(t, J = 5.4 Hz, 18/10H), 3.70 (t, J = 5.4 Hz, 2/10H), 3.48-3.43 (m, 4H), 1.96 (s, 3H), 1.77 (br quint, J = 5.4 Hz, 2H), 1.08-1.02 (m, 21H); ¹³C NMR (75 MHz, CDCl₃) δ : 169.5, 139.4, 133.3, 132.5, 128.6, 128.4, 126.3, 63.0, 38.7, 34.5, 31.5, 17.9, 13.0, 11.8; HRMS (ESI) calcd for C₂₃H₃₉O₂NNaSi [M+Na⁺] 412.2642, found 412.2640.

Sequential nucleophilic phenylation/silylation of vinylketene *N*,*O*-acetal generated from α , β unsaturated *N*-alkoxyamide 3a (Table 1, entry 10)

To a solution of α , β -unsaturated *N*-alkoxyamide **3a** (54.3 mg, 0.35 mmol) in CH₂Cl₂ (1.25 mL) were added TBSOTf (0.17 mL, 0.74 mmol), *i*-Pr₂NEt (0.24 mL, 1.40 mmol), and Ph₃Al (1.0 M in *n*-dibutyl ether, 1.05 mL, 1.05 mmol) dropwise at room temperature under argon atmosphere. After being stirred at 40 °C for 5.5 h, this reaction mixture was quenched with an aqueous Rochelle's salt (1.3 M). The resulting suspension was extracted with CHCl₃. The organic phase was dried over MgSO₄ and concentrated under reduced pressure. To a solution of crude product in THF (2.5 mL) were added imidazole (88.5 mg, 1.3 mmol), DMAP (13.4 mg, 0.11 mmol), and TBSCl (180 mg, 1.2 mmol) at 0 °C. After being stirred at room temperature for 16 h, the reaction mixture was quenched with saturated NaHCO₃. The mixture was extracted with CHCl₃. The organic phase was dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography (Biotage Isorera One using Biotage SNAP KP-Sil 50g silica gel cartridges) (*n*-hexane : AcOEt = 4 : 1) to give γ -phenyl α , β -unsaturated amide **4ad** (80.5 mg, 66%, *E*/*Z* = 10/1).

Sequential nucleophilic phenylation/silylation of vinylketene *N*,*O*-acetal generated from β , γ -unsaturated *N*-alkoxyamide 6

To a solution of β , γ -unsaturated *N*-alkoxyamide **6** (54.3 mg, 0.35 mmol) in CH₂Cl₂ (1.25 mL) were added TBSOTf (0.17 mL, 0.74 mmol), *i*-Pr₂NEt (0.24 mL, 1.4 mmol), and Ph₃Al (1.0 M in *n*-dibutyl ether, 1.05 mL, 1.05 mmol) dropwise at room temperature under an argon atmosphere. After being stirred at 40 °C for 4 h, this reaction mixture was quenched with an aqueous Rochelle's salt (1.3 M). The resulting suspension was extracted with CHCl₃. The organic phase was dried over MgSO₄ and concentrated under reduced pressure. To a solution of crude product in THF (2.5 mL) were added imidazole (88.5 mg, 1.3 mmol), DMAP (13.4 mg, 0.11 mmol), and TBSCl (180 mg, 1.2 mmol) at 0 °C. After being stirred at room temperature for 16 h, the reaction mixture was quenched with saturated NaHCO₃. The mixture was extracted with CHCl₃. The organic phase was dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography (Biotage Isorera One using Biotage SNAP KP-Sil 50g silica gel cartridges) (*n*-hexane : AcOEt = 4 : 1) to give γ -phenyl α , β -unsaturated amide **4ad** (72.0 mg, 59%, *E*/*Z* = 5/1).

Reaction of α,β-unsaturated N-alkoxy amide 8 with TBSOTf, *i*-Pr₂NEt, and Ph₃Al

To a solution of α , β -unsaturated *N*-alkoxyamide **8** (28.6 mg, 0.20 mmol) in CH₂Cl₂ (0.71 mL) were added TBSOTf (0.10 mL, 0.42 mmol), *i*-Pr₂NEt (0.13 mL, 0.80 mmol), and Ph₃Al (1.0 M in *n*-dibutyl ether, 0.60 mL, 0.60 mmol) dropwise at room temperature under an argon atmosphere. After being stirred at the same temperature for 7.5 h, this reaction mixture was quenched with an aqueous Rochelle's salt (1.3 M). The resulting suspension was extracted with CHCl₃. The organic phase was dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by preparative TLC (CHCl₃ : MeOH = 10 : 1) to give *N*,2-dimehyl-3-butenamide (**9**) (4.8 mg, 21%) as a colorless oil; IR (neat) ν_{max} 3300, 1654, 1637 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 5.90 (ddd, *J* = 17.4, 10.2, 7.8 Hz, 1H), 5.64 (br s, 1H), 5.23-5.16 (m, 2H), 2.99 (quint, *J* = 7.2 Hz, 1H), 2.80 (d, *J* = 5.1 Hz, 3H), 1.28 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 174.3, 138.4, 116.9, 45.4, 26.4, 16.8; HRMS (ESI) calcd for C₆H₁₁ONNa [M+Na⁺] 136.0733, found 136.0732.

General procedure for preparation of γ -phenyl and γ -alkyl α , β -unsaturated amides (Table 2) To a solution of α , β -unsaturated *N*-alkoxyamide (0.35 mmol) in CH₂Cl₂ (1.25 mL) were added TBSOTF (0.17 mL, 0.74 mmol), *i*-Pr₂NEt (0.24 mL, 1.40 mmol), and organoaluminium reagent (1.05 mmol) dropwise at room temperature under an argon atmosphere. After being stirred at 40 °C for several hours, this reaction mixture was quenched with an aqueous Rochelle's salt (1.3 M). The resulting suspension was extracted with CHCl₃. The organic phase was dried over MgSO₄ and concentrated under reduced pressure. To a solution of crude product in THF (2.5 mL) were added imidazole (88.5 mg, 1.3 mmol), DMAP (13.4 mg, 0.11 mmol), and TBSCl (180 mg, 1.2 mmol) at 0 °C. After being stirred at room temperature for 16-24 h, the reaction mixture was quenched with saturated NaHCO₃. The mixture was extracted with CHCl₃. The organic phase was dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography (Biotage Isorera One using Biotage SNAP KP-Sil 50g silica gel cartridges) (*n*-hexane : EtOAc = 4:1) to give γ -phenyl α , β -unsaturated amide **4bd-4sd** and γ -alkyl α , β -unsaturated amide **10gd-12gd**.

(2*E*/*Z*)-*N*-[3-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]propyl]-2-ethyl-4-phenyl-2-butenamide (4bd)

54% yield. A pale yellow oil; An inseparable mixture of *E/Z* isomers. E/Z = 3/1; IR (neat) ν_{max} 3317, 1658, 1620 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ: 7.58-7.16 (m, 5H), 6.42-6.39 (m, 1H), 6.23-6.17 (m, 1H),

3.75-3.72 (m, 2H), 3.52 (d, J = 7.5 Hz, 2/4H), 3.47 (d, J = 7.5 Hz, 6/4H), 3.44-3.41 (m, 2H), 2.50-2.43 (m, 2H), 2.32 (br q, J = 7.5 Hz, 2/4H), 1.78-1.72 (m, 2H), 1.09 (t, J = 7.5 Hz, 3/4H), 1.06 (t, J = 7.5 Hz, 9/4H), 0.90 (s, 9/4H), 0.87 (s, 27/4H), 0.07 (s, 6/4H), 0.02 (s, 18/4H); ¹³C NMR (75 MHz, CDCl₃) δ : 169.4, 139.5, 139.4, 131.4, 131.2 (*Z*), 128.9 (*Z*), 128.7 (*Z*), 128.6, 128.4, 126.3, 62.7, 38.5, 38.4 (*Z*), 34.1, 31.5, 25.9, 20.6, 20.5 (*Z*), 18.3, 13.6, -5.4 (*Z*), -5.5; HRMS (ESI) calcd for C₂₁H₃₅O₂NNaSi [M+Na⁺] 384.2329, found 384.2334.

(2*E*/*Z*)-*N*-[3-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]propyl]-2-(1-methylethyl)-4-phenyl-2butenamide (4cd)

Ph V_{i-Pr} OTBS E/Z = 1/1; IR (neat) v_{max} 3301, 1655, 1627 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 7.64-7.16 (m, 5H), 6.42-6.18 (m, 1H), 5.83 (t, J = 7.5 Hz,

1/2H), 5.52 (td, J = 7.5, 1.5 Hz, 1/2H), 3.72 (q, J = 5.7 Hz, 2H), 3.52-3.34 (m, 4H), 2.94 (sept, J = 6.9 Hz, 1/2H), 2.60 (br sept, J = 6.9 Hz, 1/2H), 1.80-1.67 (m, 2H), 1.23 (d, J = 6.9 Hz, 6/2H), 1.08 (d, J = 6.9 Hz, 6/2H), 0.89 (s, 9/2H), 0.86 (s, 9/2H), 0.05 (s, 6/2H), 0.01 (s, 6/2H); ¹³C NMR (75 MHz, CDCl₃) δ : 170.7, 170.2, 145.3, 144.8, 140.3, 139.7, 128.9, 128.6, 128.5, 128.4, 128.3, 126.2, 126.1, 124.8, 62.54, 62.46, 38.03, 38.00, 35.4, 33.6, 32.1, 31.7, 31.6, 28.1, 25.90, 25.87, 25.86, 21.4, 21.3, 18.2, -5.5; HRMS (ESI) calcd for C₂₂H₃₇O₂NNaSi [M+Na⁺] 398.2486, found 398.2483.

(2*E*/*Z*)-*N*-[3-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]propyl]-2-(2-propen-1-yl)-4-phenyl-2butenamide (4dd)

55% yield. A colorless oil; An inseparable mixture of E/Z isomers. Ratio of E/Z isomer could not be calculated due to overlap signals of (E)-allylic protons with (Z)-allylic protons; IR (neat) v_{max} 3315, 1656, 1620 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 7.59-7.16 (m, 5H), 6.42 (t,

J = 7.5 Hz, 1H), 6.34 (br s, 1H), 5.94-5.80 (m, 1H), 5.16-5.06 (m, 2H), 3.71 (t, J = 6.0 Hz, 2H), 3.54-

3.47 (m, 2H), 3.41 (q, J = 6.0 Hz, 2H), 3.20 (t, J = 5.7 Hz, 2H), 1.72 (quint, J = 6.0 Hz, 2H), 0.86 (s, 9H), 0.02 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ : 168.9, 139.4, 139.1, 135.2, 134.5, 134.3, 129.0, 128.7, 128.6, 128.5, 126.4, 115.9, 62.3, 38.3, 34.3, 34.0, 31.6, 31.4, 25.9, 25.6, 18.3, -5.4; HRMS (ESI) calcd for C₂₂H₃₅O₂NNaSi [M+Na⁺] 396.2329, found 396.2324.

(2E/Z)-N-[3-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]propyl]-2,4-diphenyl-2-butenamide (4ed)

44% yield. A yellow oil; An inseparable mixture of E/Z isomers. TBS Ratio of E/Z isomer could not be calculated due to overlap signals of olefinic protons with Ph protons; IR (neat) v_{max} 3313, 1662, 1626

cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 7.57-7.03 (m, 11H), 5.57 (br s, 1H), 3.58 (t, *J* = 6.3 Hz, 2H), 3.41-3.34 (m, 2H), 3.32 (d, *J* = 8.1 Hz, 2H), 1.72-1.64 (m, 2H), 0.84 (s, 9H), -0.02 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ : 166.6, 139.1, 138.4, 136.5, 135.6, 135.5, 129.79, 129.76, 129.0, 128.9, 128.5, 128.4, 128.2, 128.0, 126.2, 60.8, 37.1, 35.3, 32.0, 25.9, 25.5, 18.3, -5.5; HRMS (ESI) calcd for C₂₅H₃₅O₂NNaSi [M+Na⁺] 432.2329, found 432.2333.

(2*E*/*Z*)-2-Bromo-*N*-[3-[[(1,1-dimethylethyl)dimethylsilyl]oxy]propyl]-4-phenyl-2-butenamide (4fd)

35% yield. A yellow oil; An inseparable mixture of E/Z isomers. Ratio OTBS of E/Z isomer could not be calculated due to overlap signals of (Z)allylic protons with (E)-allylic protons; IR (neat) v_{max} 3333, 1656,

1625 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 7.56-7.18 (m, 6H), 7.06 (br s, 1H), 3.74 (t, *J* = 5.7 Hz, 2H), 3.64 (t, *J* = 7.2 Hz, 2H), 3.46 (q, *J* = 5.7 Hz, 2H), 1.78 (quint, *J* = 5.7 Hz, 2H), 0.91 (s, 9H), 0.08 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ : 161.3, 139.5, 139.3, 137.2, 136.5, 128.9, 128.8, 128.5, 128.4, 126.5, 118.6, 62.1, 39.1, 38.9, 38.2, 31.6, 29.9, 26.2, 18.7, -5.0; HRMS (ESI) calcd for C₁₉H₃₀O₂N⁷⁹BrNaSi [M+Na⁺] 434.1121, found 434.1121.

(2*E*)-*N*-[3-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]propyl]-4-phenyl-2-(phenylmethyl)-2-butenamide (4gd)

72% yield. A pale yellow oil; An inseparable mixture of *E/Z* isomers. 83 E/Z = 12:1; IR (neat) ν_{max} 3313, 1658, 1622 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 7.63-7.19 (m, 10H), 6.51 (t, J = 7.8 Hz, 1H), 6.26 (br s,

1H), 3.90 (s, 2/13H), 3.88 (s, 24/13H), 3.65 (t, J = 6.0 Hz, 2H), 3.61 (d, J = 7.8 Hz, 2H), 3.40 (q, J = 6.0 Hz, 2H), 1.68 (quint, J = 6.0 Hz, 2H), 0.89 (s, 9H), 0.04 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ : 169.0, 139.04, 139.00, 136.1, 134.0, 133.8 (*Z*), 128.62, 128.58, 128.53, 128.51 (*Z*), 128.3, 126.4, 126.3, 126.2 (*Z*), 62.14, 62.09, 38.20, 38.15, 34.6, 33.0, 31.5, 25.91, 25.88, 18.3, -5.5; HRMS (ESI) calcd for C₂₆H₃₇O₂NNaSi [M+Na⁺] 446.2486, found 446.2482.

(2*E*/*Z*)-*N*-[3-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]propyl]-2-[(4-methylphenyl)methyl]-4-phenyl-2-butenamide (4hd)

71% yield. A pale yellow oil; An inseparable mixture of E/Z isomers. Ratio of E/Z isomer could not be calculated due to overlap signals of allylic protons with CH₂OTBS protons; IR (neat) v_{max} 3319, 1658, 1622 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 7.58-7.07

(m, 9H), 6.47 (t, J = 7.5 Hz, 1H), 6.15 (br s, 1H), 3.78 (br s, 2H), 3.62-3.56 (m, 4H), 3.35 (q, J = 6.0 Hz, 2H), 2.33 (s, 3H), 1.64 (quint, J = 6.0 Hz, 2H), 0.86 (s, 9H), 0.00 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ : 168.6, 138.8, 135.9, 135.8, 135.5, 135.4, 133.7, 133.5, 129.0, 128.7, 128.4, 128.3, 128.2, 127.8, 127.1, 126.7, 126.1, 61.9, 38.1, 34.6, 34.3, 32.6, 31.6, 26.0, 21.1, 18.4, -5.2; HRMS (ESI) calcd for C₂₇H₃₉O₂NNaSi [M+Na⁺] 460.2642, found 460.2637.

(2*E*/*Z*)-*N*-[3-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]propyl]-2-[(4-methoxyphenyl)methyl]-4-phenyl-2-butenamide (4id)

55% yield. A pale yellow oil; An inseparable mixture of E/Z isomers. Ratio of E/Z isomer could not be calculated due to overlap signals of allylic protons with CH_2OTBS protons; IR (neat) v_{max} 3322, 1655, 1616 cm⁻¹; ¹H NMR (300 MHz, CDCl₃)

δ: 7.58-7.12 (m, 7H), 6.82 (d, *J* = 8.7 Hz, 2H), 6.45 (t, *J* = 7.5 Hz, 1H), 6.19 (br s, 1H), 3.78 (s, 3H), 3.75 (s, 2H), 3.62-3.55 (m, 4H), 3.33 (q, *J* = 5.4 Hz, 2H), 1.63 (quint, *J* = 5.4 Hz, 2H), 0.84 (s, 9H), -

0.02 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ: 169.0, 158.1, 139.1, 136.4, 136.3, 133.8, 133.6, 130.9, 129.2, 128.9, 128.7, 128.6, 128.5, 126.4, 114.0, 62.0, 55.2, 38.1, 34.5, 34.2, 32.0, 31.5, 25.9, 18.2, - 5.5; HRMS (ESI) calcd for C₂₇H₃₉O₃NNaSi [M+Na⁺] 476.2591, found 476.2582.

(2*E*/*Z*)-*N*-[3-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]propyl]-4-phenyl-2-[[4-(trifluoromethyl)-phenyl]methyl]-2-butenamide (4jd)

52% yield. A pale yellow oil; An inseparable mixture of E/Z isomers. E/Z = 7/1; IR (neat) v_{max} 3316, 1658, 1618 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 7.57-7.18 (m, 7H), 7.12 (d, J = 7.2 Hz, 2H), 6.42-6.36 (m, 2H), 3.90 (s, 2/8H), 3.88 (s, 14/8H), 3.65 (t, J = 5.4

Hz, 2H), 3.59 (d, J = 7.2 Hz, 2/8H), 3.54 (q, J = 7.8 Hz, 14/8H), 3.37 (q, J = 5.4 Hz, 2H), 1.67 (quint, J = 5.4 Hz, 2H), 0.83 (s, 9H), -0.02 (s, 6H); ¹³C NMR (150 MHz, CDCl₃), δ : 168.8, 143.5, 138.7, 136.2, 136.1, 133.7, 133.6, 128.8 (q, J = 30.8 Hz), 128.73, 128.67, 128.4, 125.4 (q, J = 3.7 Hz), 124.2 (q, J = 270.0 Hz), 126.6, 62.6, 38.74 (*Z*), 38.68, 34.7, 34.3 (*Z*), 32.9, 31.3, 25.9, 18.2, -5.5; HRMS (ESI) calcd for C₂₇H₃₆O₂NF₃NaSi [M+Na⁺] 514.2360, found 514.2357.

(2*E*/*Z*)-2-[(4-Bromophenyl)methyl]-*N*-[3-[[(1,1-dimethylethyl)dimethylsilyl]oxy]propyl]-4-phenyl-2-butenamide (4kd)

65% yield. A pale yellow oil; An inseparable mixture of *E/Z* isomers. Ratio of *E/Z* isomer could not be calculated due to overlap signals of (*E*)-allylic protons with (*Z*)-allylic protons; IR (neat) v_{max} 3316, 1656, 1620 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ: 7.58-7.09

(m, 9H), 6.39-6.32 (m, 2H), 3.78 (br s, 2H), 3.65 (t, J = 5.4 Hz, 2H), 3.54 (d, J = 7.2 Hz, 2H), 3.37 (q, J = 5.4 Hz, 2H), 1.67 (quint, J = 5.4 Hz, 2H), 0.85 (s, 9), 0.01 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ : 168.4, 138.5, 137.9, 136.0, 135.9, 133.4, 131.3, 129.9, 128.5, 128.4, 128.2, 126.3, 119.8, 62.4, 38.6, 34.7, 32.5, 31.5, 26.0, 18.4, -5.2; HRMS (ESI) calcd for C₂₆H₃₆O₂N⁷⁹BrNaSi [M+Na⁺] 524.1591, found 524.1595.

(2*E*/*Z*)-*N*-[3-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]propyl]-2-[(4-fluorophenyl)methyl]-4-phenyl-2-butenamide (4ld)

57% yield. A pale yellow oil; An inseparable mixture of *E/Z* isomers. Ratio of *E/Z* isomer could not be calculated due to overlap signals of olefinic protons with N*H* proton; IR (neat) v_{max} 3317, 1654, 1622 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 7.69-7.01 (m, 9H), 6.47 (t, *J* =

7.2, 1H), 6.39 (br s, 1H), 3.87 (s, 2H), 3.71 (t, J = 5.7 Hz, 2H), 3.63 (d, J = 7.2 Hz, 2H), 3.44 (q, J = 5.7 Hz, 2H), 1.73 (quint, J = 5.7 Hz, 2H), 0.92 (s, 9H), 0.07 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ_c 168.93, 168.89, 161.5 (d, J = 242.6 Hz), 138.9, 136.5, 134.8 (d, J = 3.3 Hz), 133.6, 129.8 (d, J = 7.7 Hz), 128.7, 128.5, 126.5, 115.3 (d, J = 21.3 Hz), 62.4, 38.4, 34.6, 32.2, 31.4, 25.9, 18.3, -5.5; HRMS (ESI) calcd for C₂₆H₃₆O₂NFNaSi [M+Na⁺] 464.2392, found 464.2383.

(2*E*)-*N*-[3-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]propyl]-2-[(3-methylphenyl)methyl]-4-phenyl-2-butenamide (4md)

50% yield. A colorless oil; E/Z = >20/1; IR (neat) v_{max} 3317, 1656, 1620 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 7.32-7.00 (m, 9H), 6.49 (t, J = 7.2 Hz, 1H), 6.19 (br s, 1H), 3.78 (s, 2H), 3.61-3.55 (m, 4H), 3.34 (q, J = 6.0 Hz, 2H), 2.30 (s, 3H), 1.63 (quint, J = 6.0 Hz, 2H), 0.84 (s, 9H), -0.02 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ : 169.0,

139.1, 138.8, 138.2, 135.9, 134.2, 129.0, 128.62, 128.55, 128.49, 127.1, 126.4, 125.2, 62.0, 38.1, 34.6, 32.9, 31.5, 25.9, 21.4, 18.3, -5.5; HRMS (ESI) calcd for C₂₇H₃₉O₂NNaSi [M+Na⁺] 460.2642, found 460.2637.

(2*E*/*Z*)-*N*-[3-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]propyl]-2-[(3-methoxyphenyl)methyl]-4-phenyl-2-butenamide (4nd)

42% yield. A pale yellow oil; An inseparable mixture of *E*/*Z* isomers. Ratio of *E*/*Z* isomer could not be calculated due to overlap signals of (*E*)-allylic protons with (*Z*)-allylic protons; IR (neat) v_{max} 3321, 1657, 1620 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 7.63-7.19 (m, 6H), 6.87-6.79 (m, 3H), 6.53 (t, *J* = 7.5 Hz, 1H), 6.26 (br s, 1H), 3.84 (br s, 2H),

3.80 (s, 3H), 3.67-3.60 (m, 4H), 3.39 (q, J = 5.7 Hz, 2H), 1.69 (quint, J = 5.7 Hz, 2H), 0.89 (s, 9H), 0.03 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ : 169.0, 159.8, 140.5, 139.0, 135.8, 134.3, 129.6, 128.6, 128.5, 126.4, 120.6, 113.8, 111.9, 62.0, 55.1, 38.1, 36.4, 33.0, 31.5, 25.9, 18.3, -5.5; HRMS (ESI) calcd for C₂₇H₃₉O₃NNaSi [M+Na⁺] 476.2591, found 476.2586.

(2*E*)-*N*-[3-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]propyl]-4-phenyl-2-[[3-(trifluoromethyl)-phenyl]methyl]-2-butenamide (4od)

49% yield. A pale yellow oil; An inseparable mixture of *E*/*Z* isomers. BS E/Z = 10/1; IR (neat) v_{max} 3319, 1658, 1622 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 7.57-7.17 (m, 8H), 7.13 (d, *J* = 7.2 Hz, 1H), 6.41-6.36 (m, 2H), 3.91 (s, 2/11H), 3.88 (s, 20/11H), 3.65 (t, *J* = 5.4 Hz, 2H), 3.55 (d, *J* = 7.2 Hz, 2H), 3.37 (q, *J* = 5.4 Hz, 2H), 1.66 (quint, *J* = 6.0 Hz,

2H), 0.83 (s, 9H), -0.03 (s, 6H); ¹³C NMR (150 MHz, CDCl₃, TMS) δ : 168.8, 140.2, 138.7, 136.2, 136.1, 133.8, 133.6, 131.9, 130.8 (q, *J* = 31.9 Hz), 128.9, 128.7, 128.5, 126.6, 124.9 (q, *J* = 3.6 Hz), 124.1 (q, *J* = 270.7 Hz), 123.1 (q, *J* = 3.8 Hz), 62.6, 38.6, 34.7, 32.8, 31.3, 25.8, 18.2, -5.5; HRMS (ESI) calcd for C₂₇H₃₆O₂NF₃NaSi [M+Na⁺] 514.2360, found 514.2357.

(2*E*)-*N*-[3-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]propyl]-2-[(2-methylphenyl)methyl]-4-phenyl-2-butenamide (4pd)

51% yield. A pale yellow oil; An inseparable mixture of *E*/Z isomers. E/Z = 17:1; IR (neat) ν_{max} 3315, 1655, 1620 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 7.56-7.11 (m, 9H), 6.53 (t, *J* = 7.2 Hz, 1H), 6.22 (br s, 1H), 3.78-3.76 (br s, 2H), 3.60 (t, *J* = 5.7 Hz, 2H), 3.49 (d, *J* = 7.2 Hz, 2H),

3.39 (q, J = 6.0 Hz, 2H), 2.38-2.37 (br s, 3H), 1.63 (quint, J = 5.7 Hz, 2H), 0.85 (s, 9H), -0.01 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ : 169.1, 139.0, 136.7, 136.3, 136.2 (Z), 135.5, 134.7, 130.3 (Z), 130.2, 128.72 (Z), 127.68 (Z), 128.61, 128.5, 127.5, 126.4, 126.3, 126.1, 62.1, 38.1, 34.6, 31.5, 30.2, 25.9, 25.6 (Z), 19.8, 18.3, -5.5; HRMS (ESI) calcd for C₂₇H₃₉O₂NNaSi [M+Na⁺] 460.2642, found 460.2637.

(2*E*)-*N*-[3-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]propyl]-2-[(2-methoxyphenyl)methyl]-4-phenyl-2-butenamide (4qd)

53% yield. A colorless oil; An inseparable mixture of *E*/*Z* isomers. *E*/*Z* = 16:1; IR (neat) ν_{max} 3318, 1658, 1622 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 7.31-7.12 (m, 7H), 6.91-6.81 (m, 2H), 6.62 (t, *J* = 7.5 Hz, 16/17H), 6.34-6.31 (m, 1H), 5.64 (br t, *J* = 7.8 Hz, 1/17H), 3.85 (br s,

3H), 3.78 (s, 2H), 3.61-3.56 (m, 4H), 3.31 (q, J = 6.6 Hz, 2H), 1.64 (quint, J = 6.6 Hz, 2H), 0.85 (s, 9H), -0.01 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ : 168.7, 156.8, 139.3, 135.2, 134.9, 129.4, 128.51, 128.49, 128.4 (*Z*), 127.5, 127.0, 126.2, 120.7, 120.6 (*Z*), 110.10, 110.05, 61.6, 55.2, 37.7, 34.5, 31.7, 31.5 (*Z*), 26.4, 25.8, 18.2, -5.5; HRMS (ESI) calcd for C₂₇H₃₉O₃NNaSi [M+Na⁺] 476.2591, found 476.2588.

(2*E*)-*N*-[3-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]propyl]-4-phenyl-2-[[2-(trifluoromethyl)-phenyl]methyl]-2-butenamide (4rd)

56% yield. A pale yellow oil; An inseparable mixture of *E*/*Z* isomers. *E*/*Z* = 7:1; IR (neat) ν_{max} 3314, 1657, 1622 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 7.67-7.10 (m, 9H), 6.64 (t, *J* = 7.8 Hz, 1H), 6.24 (br s, 1H), 4.03 (s, 2/8H), 4.00 (s, 14/8H), 3.61 (t, *J* = 6.0 Hz, 2H), 3.49 (d, *J* =

7.2 Hz, 2/8 Hz), 3.45 (d, J = 7.8 Hz, 14/8H), 3.36 (q, J = 6.0 Hz, 2H), 1.64 (quint, J = 6.0 Hz, 2H), 0.85 (s, 9H), -0.01 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ : 168.4, 138.7, 137.5, 136.4, 134.2, 132.0, 129.5, 128.9 (q, J = 30.6 Hz), 128.7, 128.5, 126.50 (*Z*), 126.46, 126.36, 126.0 (q, J = 5.6 Hz), 124.7 (q, J = 271.9 Hz), 62.14, 62.08 (*Z*), 38.31 (*Z*), 38.25, 34.7, 31.5, 29.1, 25.9, 18.3, -5.5; HRMS (ESI) calcd for C₂₇H₃₆O₂NF₃NaSi [M+Na⁺] 514.2360, found 514.2358.

(2*E*/*Z*)-*N*-[3-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]propyl]-2-[(1-naphthalenyl)methyl]-4-phenyl-2-butenamide (4sd)

53% yield. A pale yellow oil; An inseparable mixture of *E*/Z isomers. Ratio of *E*/Z isomer could not be calculated due to overlap signals of allylic protons with CH₂OTBS protons; IR (neat) v_{max} 3314, 1655, 1619 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 8.15-8.11 (m, 1H), 7.89-7.86 (m, 1H), 7.76-7.73 (d, *J* = 8.1 Hz, 1H), 7.58-7.13 (m, 9H), 6.64

(t, J = 7.5 Hz, 1H), 6.22 (br s, 1H), 4.26 (br s, 2H), 3.57-3.51 (m, 4H), 3.33 (q, J = 6.0 Hz, 2H), 1.63-1.55 (m, 2H), 0.80 (s, 9H), -0.07 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ : 169.1, 138.9, 135.5, 135.3, 135.2, 134.3, 133.8, 132.0, 128.8, 128.7, 128.62, 128.55, 127.1, 126.4, 126.1, 125.7, 125.5, 125.1, 123.4, 61.9, 38.1, 34.7, 31.5, 29.8, 25.8, 18.2, -5.5; HRMS (ESI) calcd for C₃₀H₃₉O₂NNaSi [M+Na⁺] 496.2642, found 496.2632.

(2*E*)-*N*-[3-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]propyl]-2-(phenylmethyl)-2-pentenamide (10gd)

Me
$$Me_{H}$$
 OTBS
Bn H Me Me_{H} OTBS
Me Me_{H} Me Me_{H}

Et₃Al (1.0 M in *n*-hexane, 1.05 mL, 1.05 mmol) was used. 31% yield. A colorless oil; An inseparable mixture of E/Z isomers. E/Z = 13:1; IR (neat) v_{max} 3314, 1656, 1619 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ :

7.31-7.18 (m, 5H), 6.40 (t, J = 7.5 Hz, 1H), 6.17 (br s, 13/14H), 5.47 (t, J = 7.5 Hz, 1/14H), 3.72 (s, 2H), 3.62 (t, J = 5.7 Hz, 2H), 3.36 (q, J = 6.0 Hz, 2H), 2.22 (q, J = 7.5 Hz, 2H), 1.65 (quint, J = 6.0 Hz, 2H), 1.49 (sext, J = 7.2 Hz, 2H), 0.96 (t, J = 7.2 Hz, 3H), 0.89 (s, 9H), 0.04 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ : 169.1, 139.2, 136.3, 135.2, 128.5, 128.4, 128.2, 126.3, 126.2, 62.0, 38.0, 32.8, 31.6, 30.5, 25.9, 22.2, 18.3, 14.0, -5.4; HRMS (ESI) calcd for C₂₂H₃₇O₂NNaSi [M+Na⁺] 398.2486, found 398.2480.

(2*E*)-*N*-[3-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]propyl]-6-methyl-(2-phenylmethyl)-2-heptenamide (12gd)

i-Bu \xrightarrow{O}_{Bn} \xrightarrow{H}_{H} OTBS *i*-Bu₃Al (1.0 M in *n*-hexane, 1.05 mL, 1.05 mmol) was used. 38% yield. A yellow oil; E/Z = >20/1; IR (neat) v_{max} 3315, 1658, 1620 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ : 7.29-7.16 (m, 5H), 6.36 (t, J =

7.5 Hz, 1H), 6.14 (br s, 1H), 3.69 (s, 2H), 3.60 (t, J = 6.0 Hz, 2H), 3.33 (q, J = 6.0 Hz, 2H), 2.21 (q, J = 7.5 Hz, 2H), 1.67-1.53 (m, 3H), 1.34-1.25 (m, 2H), 0.89-0.86 (m, 15H), 0.02 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ : 169.2, 139.2, 136.6, 134.9, 128.5, 128.1, 126.1, 62.0, 38.0, 32.8, 31.5, 27.7, 26.3, 25.9, 25.5, 22.4, 18.3, -5.4; HRMS (ESI) calcd for C₂₄H₄₁O₂NNaSi [M+Na⁺] 426.2799, found 426.2796.

III. References

(1) T. L. Cupps, R. H. Boutin, H. Rapoport, J. Org. Chem. 1985, 50, 3972-3979.

(2) a) T. J. Senter, O. O. Fadeyi, C. W. Lindsley, Org. Lett. 2012, 14, 1869-1871; b) D. Zargarian, H. Alper, Organometallics 1993, 12, 712-724.

(3) a) T. Janecki, E. Błaszczyk, K, Studzian, M. Różalski, U. Krajewska, A. Janecka, *J. Med. Chem.* **2002**, *45*, 1142-1145; b) C. te Grotenhuis, N. van den Heuvel, J. I. van der Vlugt, B. de Bruin, *Angew. Chem. Int. Ed.* **2018**, *57*, 140-145; c) Y. Li, A. Goeke, R. Wang, Q. Wang, G. Fráter, *Tetrahedron* **2007**, *63*, 9605-9613.

(4) a) H. Nakatsuji, H. Nishikado, K. Ueno, Y. Tanabe, Org. Lett. 2009, 11, 4258-4261; b) H. Nishikado,

H. Nakatsuji, K. Ueno, R. Nagase, Y. Tanabe, *Synlett* 2010, *14*, 2087-2092; c) F. N. Palmer, F. Lach,
C. Poriel, A. G. Pepper, M. C. Bagley, A. M. Z. Slawin, C. J. Moody, *Org. Biomol. Chem.* 2005, *3*, 3805-3811.

(5) a) E. Brenna, F. G. Gatti, A. Manfredi, D. Monti, F. Parmeggiani, Org. Process. Res. Dev. 2012, 16, 262-268; b) P. M. Holstein, D. Dailler, J. Vantourout, J. Shaya, A. Millet, O. Baudoin, Angew. Chem. Int. Ed. 2016, 55, 2805-2809.

(6) L. Navarre, S. Darses, J.-P. Genet, Chem. Commun. 2004, 1108-1109.

KPNN-5671 NOESY l ppm 0.0 0 0 0.5 -COLES 0 -1.0 6.907 P -1.5 1 0010 0 0 0 \bigcirc -2.0 0 -2.5 -3.0 0 1 0 6 0 -3.5 ð 0 0 -4.0 -4.5 \bigcirc -5.0 , -5.5 00 -6.0 . 0 00 0 0 -6.5 -7.0 7.5 7.5 7.0 6.5 6.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 5.5 5.0 4.5 4.0 ppm 105/152

Current Data Parameters NAME KPNN-567 EXPNO 40 PROCNO	s 1 0 1
F2 - Acquisition Parame Date_20190502 DimeTime21.02INSTRUMspectPROBHD2114607_0202PULPROGnoesygpphzsku2TD2044SOLVENTCDC12NSCDC12	eters 8 1 h t (ri 8 3 8
DS 1 SWH 9009.001 FIDRES 8.79786 AQ 0.113664 RG 31.12 DW 55.500 DE 11.11 TE 298	6 9 Hz 0 Hz 0 sec 2 0 usec 3 usec
ID 0.000427 D1 2.0000000 D8 0.6999999 D16 0.0002000 INO 0.0001100 TDav 5F01	7 sec 0 sec 9 sec 0 sec 0 sec 1 MHz
NUC1 1 P1 10.00 P32 20000.00 PLW1 24.00600052 SPNAM[29 Crp60,20,20.10 SPOAL29 0.500 SPOFFS29 0 Hz	H D usec D usec 2 W D
SPW29 0.09169600 GPZ0 10.00 GPNAM[1] SMSQ10.100 GPZ1 40.00 P31 5000.00	0 W 0 % 0 % 0 % 0 usec
FI - Acquisition parametric TD 250 SF01 600.534 FIDRES 70.38288 SW 15.002 FnMODE States-TPF	eters 6 2 MHz 1 Hz 2 ppm I
F2 Processing paramet SI 4090 SF 600.5300155 WDW QSINE SSB 2 LB 0 Hz GB 0	ers 6 5 MHz 2
PC 1.00 F1 - Processing paramet 51 SI 4096 MC2 States-TPP1 SF 600.5300145 WDW QSINE) ers 6 1 5 MHz 2
LB 0 Hz GB 0	Z

KPNN-5671 NOESY

Curre NAME EXPNO PROCN	nt) 10	Dat	a E	Par KP	NN	et -5	ers 671 40 1	
F2 - Date_ Time INSTR PROBH PULPR TD SOLVE NS DS	Acc UM ID ROG	quis Z1 no	iti 140 esy	Lor 2 507 /9F	201 201	ar 90 21 20 20 20 20 20 20 20 20 20 20 20 20 20	amet 508 .01 ect 2 (kur: 048 Cl3 8 16	h i
SWH FIDRE AQ RG DW	S			0.	000 .7 11	9. 97 36 31	009 860 640 .12 500	Hz Hz sec
DE TE D0 D1 D8					00	11 29 04 00 99	.13 8.1 277 000 999	usec K sec sec sec
D16 IN0 TDav SF01 NUC1			60	0.0	00 00 53	20 11 42	000 100 1 037 1H	sec sec MHz
P1 P32 PLW1 SPNAM SPOAL	29	Cr	24 p60	21.0	00	10 00 20 0.	.00 .00 052 .10 500	usec usec W
 SPOFF SPW29 GPZ0 GPNAM GPZ1 P31	[[1]		пz ().0	91 Q1 50	69 10 0. 40 00	600 .00 100 .00	W % usec
F1 - TD SF01 FIDRE SW FnMOD	Acq S E	uis	iti St	on 6 70	00 .3 1 es	.5 82 5. -T	amet 256 342 881 002 PPI	MHz Hz ppm
F2 - SI SF WDW SSB LB GB PC	Pro	ces 0 0	sir 60 Hz	ng 00.	ра 53	ran 4 00 QS	mete 096 155 INE 2	ers MHz
F1 - SI MC2 SF WDW SSB LB	Pro	ces 0	sin St 60 Hz	at	pa es 53	rai 40 -TI 00 QS	mete 096 PPI 145 INE 2	ers MHz
GB		0						

114/152

127/152

129/152

