Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

Nicotinamide riboside-amino acid conjugates that are stable to purine nucleoside phosphorylase Faisal Hayat and Marie E. Migaud*

Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Ave., Mobile, AL 36604, USA

Supplementary

1.	Copies of ¹ H NMR, ¹³ C NMR, ¹⁹ F-NMR and HRMS Spectra	2-58
2.	Enzymatic assays by ¹ H NMR	
3.	Table of Vorbrüggen reaction outcomes	62

Compound 4. 400 MHz ¹H NMR spectrum in Acetone-*d*₆

Compound 4. 100 MHz ¹³C NMR spectrum in Acetone-d₆

Compound 7. 400 MHz ¹H NMR spectrum in D₂O

Compound 7. HRMS spectra

Compound 8. 400 MHz ¹H NMR spectrum in D₂O

Compound 8. 100 MHz ¹³C NMR spectrum in D₂O

Compound 8. HRMS spectra

Compound 10a. 400 MHz ¹H NMR spectrum in MeOD

Compound 10a. 100 MHz ¹³C NMR spectrum in MeOD

Compound 10a. HRMS spectra

Compound 10b. 400 MHz ¹H NMR spectrum in MeOD

Compound 10b. 100 MHz ¹³C NMR spectrum in MeOD

Compound 10b. HRMS spectra

Compound 10c. 400 MHz ¹H NMR spectrum in MeOD

Compound 10c. 100 MHz ¹³C NMR spectrum in MeOD

Compound 10c. HRMS spectra

Compound 10d. 400 MHz ¹H NMR spectrum in MeOD

Compound 10d. 100 MHz ¹³C NMR spectrum in MeOD

Compound 10d. HRMS spectra

Compound 10e. 400 MHz ¹H NMR spectrum in MeOD

Compound 10e. 100 MHz ¹³C NMR spectrum in MeOD

mm_072219_nrh_phenylalanine_1 #5-28 RT: 0.07-0.26 AV: 8 NL: 2.55E7 F: FTMS + p ESI Full ms [100.00-600.00]

Compound 10e. HRMS spectra

Compound 10f. 400 MHz ¹H NMR spectrum in MeOD

Compound 10f. 100 MHz ¹³C NMR spectrum in MeOD

Compound 10f. HRMS spectra

Compound 10g. 400 MHz ¹H NMR spectrum in MeOD

Compound 10g. 100 MHz ¹³C NMR spectrum in MeOD

Compound 10g. HRMS spectra

Compound 12a. 400 MHz ¹H NMR spectrum in D₂O

Compound 12a. 100 MHz ¹³C NMR spectrum in D₂O

Compound 12a. 377 MHz ¹⁹F NMR spectrum in MeOD

Compound 12a. HRMS spectra

Compound 12b. 400 MHz ¹H NMR spectrum in D₂O

Compound 12b. 100 MHz ¹³C NMR spectrum in D₂O

FH-02-20 70 1 C:\Bruker\TopSpin3.5pl6\data\FH\nmr [*1e6] F19 MeOD (C:\Bruker\TopSpin3.5p16) FH 11 -76.9382 - 2 H₂N_0 1 ŇΗ2 HO OH CF3COO - 12 - 2 5 0 - 50 - 100 - 150 [ppm]

Compound 12b. 377 MHz ¹⁹F NMR spectrum in MeOD

Compound 12b. HRMS spectra

Compound 12c. 400 MHz ¹H NMR spectrum in D₂O

Compound 12c. 100 MHz ¹³C NMR spectrum in D₂O

FH-02-23 20 1 C:\Bruker\TopSpin3.5pl6\data\FH\nmr

[*1e6]

50-

Compound 12c. 377 MHz ¹⁹F NMR spectrum in MeOD

Compound 12c. HRMS spectra

Compound 12d. 400 MHz ¹H NMR spectrum in D₂O

FH-02-64 33 1 C:\Bruker\TopEpin3.5pl6\data\FH\nmr

Compound 12d. 100 MHz ¹³C NMR spectrum in D₂O

PH-02-64 31 1 C:\Bruker\TopEpin3.5pl6\data\PH\nmr

Compound 12d. 377 MHz ¹⁹F NMR spectrum in MeOD

Compound 12d. HRMS spectra

Compound 12e. 400 MHz ¹H NMR spectrum in D₂O

FH-02-53 41 1 C:\Bruker\TopSpin3.5pl6\data\FH\nmr

Compound 12e. 100 MHz ¹³C NMR spectrum in D₂O

FH-02-53 30 1 C:\Bruker\TopSpin3.5pl6\data\FH\nmr

Compound 12e. 377 MHz ¹⁹F NMR spectrum in MeOD

Compound 12e. HRMS spectra

Compound 12f. 400 MHz ¹H NMR spectrum in D₂O

Compound 12f. 100 MHz ¹³C NMR spectrum in D₂O

FH-02-31 40 1 C:\Bruker\TopSpin3.5pl6\data\FH\nmr

Compound 12f. 377 MHz ¹⁹F NMR spectrum in MeOD

Compound 12f. HRMS spectra

Compound 12g. 400 MHz ¹H NMR spectrum in D₂O

Compound 12g. 100 MHz ¹³C NMR spectrum in D₂O

Compound 12g. 377 MHz ¹⁹F NMR spectrum in MeOD

Compound 12g. HRMS spectra

* Nicotinamide riboside

 Δ Nicotinamide

• D-Ribose-1-phosphate

† NR-glycine* Nicotinamide riboside

• D-Ribose-1-phosphate

Detailed PNP enzyme activity assay. The phosphorolysis of nicotinamide riboside chloride (NR-Cl) and glycine nicotinamide riboside conjugate (Gly-NR) catalyzed by PNP (Purine Nucleoside Phosphorylase) was performed at room temperature and monitored by ¹H NMR at t = 0, 20 min and 6 h. All one dimensional spectra were obtained at 300 K on a Bruker AscendTM 400 MHz ultrashielded spectrometer (Bruker Biospin) operating at 400.13 MHz for protons (9.39 Tesla). TopSpin 3.2 (Bruker BioSpin) was used for all NMR spectral acquisition (ns=128) and pre-processing, and the automation of sample submission was performed using ICON-NMR (Bruker BioSpin). All samples were automatically shimmed, and the spectra acquisition time was 10 minutes 08 seconds (ns=128). Each NMR tube (7inch x 5mm) contained 450 µl HEPES buffer (100.0 mM, pH 7.0) which included 100 mM KH₂PO₄, 5 µl PNP (1mg dissolved in 50µl HEPES buffer), 50.0 µl NR-Cl and NR glycine conjugate (50.0 mM in 1 mL D₂O). For each independent experiment used freshly prepared solutions of NR-Cl and NR glycine conjugate in HEPES buffer, containing 100 mM KH₂PO₄ (13.6 mg/mL) and 50 µl D₂O.

	· · · ·	, , , ,			
Entry	O NHSI	O NH2	TMSOTf		Reaction outcomes ^{a,b}
	` [™]	N		Solvent	
1	1 eqv		2 eqv	DCE (1 eqv)	trace
2		1 eqv	2 eqv	DCE (1eqv)	trace
3	1 eqv		0.5 eqv	DCM (1 eqv)	trace
4	1 eqv		1 eqv	CH ₃ CN (1 eqv)	trace
5	1 eqv		2 eqv	CH ₃ CN (3 eqv)	trace
6	1 eqv		3 eqv	CH ₃ CN (5 eqv)	trace

TABLE 1: exploratory conditions for the synthesis of NR amino acid conjugate 5 by ball-milling.

^a ball-milling (30Hz), 30 minutes; ^b crude ¹H-NMR indicated decomposition of the riboside and formation of trace quantities of the expected product, product formation was confirmed by

MS.