Establishing linear-free-energy relationships for the quadricyclane-to-norbornadiene reaction

Mads Mansø,^{a,b} Anne Ugleholdt Petersen,^a Kasper Moth-Poulsen^b and Mogens Brøndsted Nielsen^{a,*}

 ^a Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100
Copenhagen Ø, Denmark. E-mail: mbn@chem.ku.dk
^b Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden

ELECTRONIC SUPPLEMENTARY INFORMATION

CONTENTS

NMR SpectraPage S2UV-Vis Absorption and Switching StudiesPage S23

NMR Spectra

Compound NBD12

7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5</li

Figure S1: ¹H NMR (500 MHz) of NBD12 in CDCl₃.

Figure S3: ¹³C APT NMR (126 MHz) of NBD12 in CDCl₃.

Figure S4: ¹H NMR (500 MHz) of NBD13 in CDCl₃.

Figure S6: ¹³C APT NMR (126 MHz) of NBD13 in CDCl₃.

Figure S7: ¹H NMR (500 MHz) of NBD14 in CDCl₃.

Figure S8: COSY NMR (500 MHz) of NBD14 in CDCl₃.

Figure S9: ¹³C NMR (126 MHz) of NBD14 in CDCl₃.

Figure S10: ¹H NMR (500 MHz) of NBD15 in CDCl₃.

Figure S12: ¹³C NMR (126 MHz) of NBD15 in CDCl₃.

Figure S13: ¹H NMR (500 MHz) of NBD16 in CDCl₃.

Figure S14: COSY NMR (500 MHz) of NBD16 in CDCl₃.

Figure S15: ¹³C APT NMR (126 MHz) of NBD16 in CDCl₃.

Figure S16: ¹H NMR (400 MHz) of NBD17 in CDCl₃.

Figure S17: COSY NMR (400 MHz) of NBD17 in CDCl₃.

Figure S18: ¹³C NMR (100 MHz) of NBD17 in CDCl₃.

Figure S19: ¹H NMR (500 MHz) of NBD18 in CDCl₃.

Figure S20: COSY NMR (500 MHz) of NBD18 in CDCl₃.

Figure S21: ¹³C APT NMR (126 MHz) of NBD18 in CDCl₃.

(solvent: toluene)

Figure S3: Increase in absorbance at 312 nm of 12 at 90 °C during the thermal backreaction.

Figure S2: Increase in absorbance at 312 nm of 12 at 85 °C during the thermal backreaction.

Figure S4: Increase in absorbance at 312 nm of 12 at 100 °C during the thermal backreaction.

Figure S6: UV-Vis spectra of 13 and 13_{QC} .

Figure S8: Increase in absorbance at 318 nm of **13** at 90 °C during the thermal backreaction.

Figure S7: Increase in absorbance at 318 nm of **13** at 80 °C during the thermal backreaction.

 T^{-1} (10⁻³ K^{-1}) **Figure S10:** Arrhenius plot for **13** giving the values $A = 1.13 \times 10^{13} \text{ s}^{-1}$ and $E_a = 112.2 \text{ kJ/mol}$.

Figure S11: UV-Vis spectra of 14 and 14_{QC}.

Figure S13: Increase in absorbance at 313 nm of 14 at 90 °C during the thermal backreaction.

Figure S15: Increase in absorbance at 313 nm of 14 at 100 °C during the thermal backreaction.

Figure S12: Increase in absorbance at 313 nm of 14 at 80 °C during the thermal backreaction.

Figure S19: Increase in absorbance at 309 nm of **15** at 90 °C during the thermal backreaction-.

Figure S20: Increase in absorbance at 309 nm of **15** at 100 °C during the thermal backreaction-.

Figure S21: Arrhenius plot for 15 giving the values $A = 3.55 \times 10^{12} \text{ s}^{-1}$ and $E_a = 110.4 \text{ kJ/mol}$.

Figure S22: UV-Vis spectra of 16 and 16_{QC} .

during the thermal backreaction.

Time (min) Figure S25: Increase in absorbance at 308 nm of 16 at 100 °C during the thermal backreaction.

Figure S27: UV-Vis spectra of 17 and 17_{QC}.

Figure S29: Increase in absorbance at 314 nm of **17** at 90 °C during the thermal backreaction.

Figure S28: Increase in absorbance at 314 nm of **17** at 70 °C during the thermal backreaction.

 T^{-1} (10⁻³ K^{-1}) **Figure S31:** Arrhenius plot for 17 giving the values $A = 7.58 \ge 10^{12} \text{ s}^{-1}$ and $E_a = 111.1 \text{ kJ/mol}$.

Figure S33: Increase in absorbance at 306 nm of **18** at 75 °C during the thermal backreaction.

Figure S34: Increase in absorbance at 306 nm of **18** at 90 °C during the thermal backreaction.

Figure S35: Increase in absorbance at 306 nm of **18** at 100 °C during the thermal backreaction.

Figure S36: Arrhenius plot for **18** giving the values $A = 9.41 \times 10^{12} \text{ s}^{-1}$ and $E_a = 114.1 \text{ kJ/mol}$.

Figure S37: UV-Vis spectra of 19 and 19_{QC}.

Figure S39: Increase in absorbance at 315 nm of **19** at 90 °C during the thermal backreaction.

Figure S38: Increase in absorbance at 315 nm of **19** at 60 °C during the thermal backreaction.

Figure S40: Increase in absorbance at 315 nm of **19** at 100 °C during the thermal backreaction.

Figure S41: Arrhenius plot for 19 giving the values $A = 2.90 \times 10^{12} \text{ s}^{-1}$ and $E_a = 106.2 \text{ kJ/mol}$.

Figure S42: Increase in absorbance at 327 nm of 20 at 60 °C during the thermal backreaction.

Figure S44: Increase in absorbance at 327 nm of 20 at 100 °C during the thermal backreaction.

Figure S43: Increase in absorbance at 327 nm of 20 at 90 °C during the thermal backreaction.

Figure S46: UV-Vis spectra of 21 and 21_{QC}.

Figure S48: Increase in absorbance at 321 nm of 21 at 80 °C during the thermal backreaction.

Figure S47: Increase in absorbance at 321 nm of 21 at 60 °C during the thermal backreaction.

