Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

Pseudo-Enantiomeric Carbohydrate-Based N-Heterocyclic Carbenes as Promising Chiral Ligands for Enantiotopic Discrimination

Alexander S. Henderson, John F. Bower* and M. Carmen Galan* School of Chemistry, Cantock's Close, University of Bristol, Bristol, BS8 1TS, UK.

Supporting Information

Table of Contents	
General Experiment Details	S2
Experimental Procedures and Data	S3
References	S19
NMR Spectra of Novel Compounds	S20

General Experiment Details:

Commercial starting materials were used without further purification unless stated. Carbohydrate substrates were left under high vacuum for (minimum) 1 h prior to initiating reactions. Dry solvents were obtained by distillation or by passage through a column of anhydrous alumina and transferred anhydrously. All reactions were performed under inert atmospheres – unless otherwise stated – of N2 or Ar by employing Schlenk techniques in conjunction with oven / flame dried glassware. Commercially available Merck Kieselgel 60F254 aluminium backed plates were used for TLC analysis. TLC plates were stained with acid, ninhydrin, KMnO4, vanillin, or a combination thereof, solutions and thermally developed. FCC was performed according to Still,¹ using Fluorochem 60 silica (40-63 µm particle size). Solvents for flash column chromatography (FCC) and thin layer chromatography (TLC) are listed in volume:volume percentages. Infra-red spectra were recorded in the range 4000-650 cm⁻¹ on a Perkin Elmer Spectrum either as neat films or solids compressed onto a diamond window. NMR spectra were recorded on an ECS 400, Varian 400 MHz or Varian 500 MHz spectrometers at 25.0 °C unless otherwise stated. Chemical shifts are quoted in ppm with spectra referenced to the residual protium of the deuterated solvent. Coupling constants are quoted to the nearest 0.5 Hz. Other abbreviations used are: br (broad), s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and *app*. (apparent). Assignments of ¹H NMR and ¹³C NMR signals were made where possible, using COSY, DEPT, HMQC, HSQC and HMBC experiments. Mass spectra were determined by the University of Bristol mass spectrometry service by either; chemical ionisation (CI), electrospray ionisation (ESI) or by matrix-assisted laser deposition/ionization (MALDI) modes. Single crystal analysis was performed on a Bruker-AXS Microstar or a Kappa Apex II diffractometer. Enantiomeric excess was determined by high performance liquid chromatography (HPLC) using an Agilent Infinity 1260 instrument in conjunction with Chiralpak IA, IB and IC columns. Petrol refers to petroleum ether 40-60. See below for carbohydrate numbering nomenclature in pyranoside and furanoside systems.

Experimental Procedures and Data:

Synthesis of a building block 8a with steric bulk at C1

Phenyl 2-amino-3,4,6-tri-O-methyl-2,1-dideoxy-1-thio-β-D-glucopyranoside (8a):

To a solution of azide 7^2 (317 mg, 0.93 mmol) in EtOH (5% wt 12 M HCl, 0.2 M) under Ar at rt, was added Pd (5% wt on C, 10 mol%). H2 (1 atm, balloon) was bubbled through the solvent until the Ar atmosphere was replaced. After 4 h, the H2 was displaced by a stream of N₂ and the suspension was neutralised with sat. aq. NaHCO₃. The reaction mixture was filtered through Celite[®] using EtOH as eluent to afford a colourless solution. Concentration *in vacuo* and subsequent trituration with MeOH (3 x washes) yielded **8a** (280 mg, 96%) as a colourless solid. *Rf* = 0.8 (90:10 CH2Cl2:MeOH); vmax / cm⁻¹ (film): 3403, 2902, 1599, 1504, 1388, 1063; ¹H NMR (500 MHz, CDCl₃) δ : 7.53-7.51 (2H, m, ArCH), 7.29-7.25 (3H, m, ArCH), 4.41 (1H, d, *J* = 10.0 Hz, H-1), 3.64 (1H, dd, *J* = 11.0 and 2.0 Hz, H-6a), 3.63 (3H, s, OCH₃), 3.59 (1H, dd, *J* = 11.0 and 4.5 Hz, H-6b), 3.51 (3H, s, OCH₃), 3.40 (3H, s, OCH₃), 3.34 (1H, ddd, *J* = 9.0, 4.5 and 2.0 Hz, H-5), 3.21 (1H, *app*. t, *J* = 10.0, H-4), 3.06 (1H, *app*. t, *J* = 9.0 Hz, H-3), 2.75 (1H, *app*. t, *J* = 9.5 Hz, H-2), 1.70 (2H, br s, NH2); ¹³C NMR (125 MHz, CDCl₃) δ : 132.9 (ArC), 132.4 (ArCH), 132.4 (ArCH), 128.8 (ArCH), 127.7 (ArCH), 89.3 (C-1), 88.2 (C-3), 79.8 (C-4), 79.2 (C-5), 71.4 (C-6), 60.9 (OCH₃), 60.2 (OCH₃), 59.4 (OCH₃), 55.6 (C-2); *m/z* HRMS (ESI): Found [M+Na]⁺ 336.1240, C₁₅H₂₃NO₄SNa requires 336.1240; [α]²⁴_D = -4 (*c* 1.2, CHCl3).

Synthesis of a carbohydrate-based imidazolium salt with steric bulk at C1

Bis(phenyl 2-amino-3,4,6-tri-*O*-methyl-2,1-dideoxy-1-thio-β-D-glucopyranoside)-*N*,*N*'-iminoethylidene (S4):

To a solution of amine **8a** ((761 mg, 2.18 mmol) and glyoxal (aq. 40%, 1.14 mmol) in anhydrous MeOH (0.5 M) at rt, was added MgSO4 (0.5 g per mmol). After 18 h, the reaction was diluted with CHCl3 (10 mL), filtered and then concentrated. Purification by trituration with cool Et₂O (2 x 5 mL) yielded bis(imine) **S4** as a colourless solid. Note: bis(imine)s were generally insoluble in MeOH and soluble in CHCl3. Rf = 0.9 (90:10 CH2Cl2:MeOH); vmax / cm-1 (film): 2932, 2834, 1721, 2629, 1583, 1479, 1375, 1139, 1104; ¹H NMR (500 MHz, CDCl3) &: 7.75 (2H, s, HC=N), 7.51-5.49 (4H, m, ArCH), 7.29-7.25 (6H, m, ArCH), 4.91 (2H, d, J = 10.0 Hz, H-1), 3.70 (2H, dd, J = 11.0 and 2.0 Hz, H-6a), 3.64 (2H, dd, J = 11.0 and 4.5 Hz, H-6b), 3.54 (6H, s, OCH3), 3.47 (2H, ddd, J = 10.0, 4.5 and 2.0 Hz, H-5), 3.43 (6H, s, OCH3), 3.364 (6H, s, OCH3), 3.361 (2H, *app*. t, J = 9.0 Hz, H-3), 3.27 (2H, dd, J = 10.0 and 9.0 Hz, H-4), 3.18 (2H, dd, J = 10.0 and 9.0 Hz, H-2); 13C NMR (125 MHz, CDCl3) δ : 164.5 (C=N), 132.71 (ArC), 132.65 (ArCH), 129.0 (ArCH), 127.9 (ArCH), 86.0 & 85.9 (C-1 & C-3), 79.6 (C-5), 79.3 (C-4), 75.0 (C-2), 71.6 (C-6), 60.9 (OCH3), 60.6 (OCH3), 59.6 (OCH3); m/z HRMS (ESI): Found [M+Na]+ 671.2424, C32H44N2O8S2Na requires 671.2431; [α]21D = -32 (c 0.4, CHCl3).

1,3-Bis(phenyl 2-amino-3,4,6-tri-*O*-methyl-2,1-dideoxy-1-thio-β-D-glucopyranoside)imidazolium chloride (9a):

Adapted from Huynh and co-workers.³ To a solution of bis(imine) **S4** (490 mg, 0.75 mmol) in CH(OEt)3 (2000 mol%) at rt, was added NH₄Cl (120 mol%) and the suspension was heated to 100 °C under an Ar atmosphere. After 14 h the reaction was allowed to cool to 60 °C and then placed under vacuum for 0.5 h to afford a residue. Purification by FCC (95:5 to 90:10 EtOAc:MeOH) yielded the imidazolinium chloride **9a** (308 mg, 59%) as a hydroscopic beige solid. Rf = 0.4 (90:10 CH2Cl2:MeOH); vmax / cm⁻¹ (film): 3318, 2927, 1735, 1474, 1444, 1258, 1105, 1051; ¹H NMR (400 MHz, CDCl3) δ : 12.45 (1H, br s, CH Imidazolium), 7.43-7.40 (4H, m, ArCH), 7.32-7.27 (6H, m, ArCH), 6.93 (2H, s, CH Imidazolium), 5.97 (2H, d, J = 10.5 Hz, H-1), 4.33 (2H, dd, J = 10.5 and 9.0 Hz, H-3), 3.95 (2H, *app* dt, J = 10.0 and 2.5 Hz, H-5), 3.82 (2H, *app*. t, J = 10.5 Hz, H-2), 3.70-3.62 (4H, m, H-6a &

H-6b), 3.51 (6H, s, OCH₃), 3.42 (6H, s, OCH₃), 3.37 (2H, dd, J = 10.0 and 9.0 Hz, H-4), 3.34 (6H, s, OCH₃); ¹³C NMR (100 MHz, CDCl₃) δ : 137.6 (CH Imidazolium), 133.0 (ArCH), 132.1 (ArC), 129.2 (ArCH), 128.5 (ArCH), 122.3 (CH Imidazolium), 85.2 (C-3), 83.0 (C-1), 79.7 (C-4), 78.6 (C-5), 70.4 (C-6), 65.0 (C-2), 61.5 (OCH₃), 59.9 (OCH₃), 59.3 (OCH₃); *m/z* HRMS (ESI): Found [M-Cl]⁺ 661.2605, C₃₃H₄₅N₂O₅S₂ requires 661.2612; [α]²¹_D = 20 (*c* 0.9, CHCl₃).

[1,3-Bis(phenyl 2-amino-3,4,6-tri-*O*-methyl-2,1-dideoxy-1-thio-β-D-glucopyranoside)imidazol-2-ylidene](chloro)(1,5-cyclooctadiene)rhodium(I) (12a):

Following General Procedure D. NHC·HCl **285a** (43.0 mg, 65.0 µmol); in a modification of the general procedure, NaO*t*-Bu (6.2 mg, 65.0 µmol) was used instead of KO*t*-Bu; FCC (100:0 to 98:2 CH₂Cl₂:MeOH) yielded **291a** (17.0 mg, 29%) as an orange oil; R_f = 0.7 (90:10 CH₂Cl₂:MeOH); v_{max} / cm⁻¹ (film): 2925, 1723, 1582, 1533, 1462, 1365, 1246, 1192, 1098; ¹H NMR (500 MHz, CDCl₃) *observed peaks* δ: 7.57-7.13 (12H, m, ArCH & CH Imidazolylidene), 6.04-3.98 (8H, m, H-Carbohydrate & CH coD), 3.68-2.87 (28H, m, H-Carbohydrate & CH coD), 2.55-1.65 (8H, m, CH₂ coD); ¹³C NMR (125 MHz, CDCl₃) *observed peaks* δ: 137.4, 132.9, 132.7, 132.0, 131.2, 129.8, 129.4, 129.2, 128.8, 128.5, 128.3, 128.2, 122.4, 97.8, 85.0, 83.0, 79.7, 78.5, 78.1, 77.4, 77.3, 77.0, 76.7, 70.5, 65.0, 61.5, 61.3, 59.9, 59.9, 59.4, 59.3, 59.2, 29.7; *m/z* HRMS (ESI): Found [M]⁺ 871.2537, C41H56N2O10RhS2 requires 871.2528; [α]²²_D = 102 (*c* 0.1, CHCl₃).

Synthesis of a carbohydrate-based imidazolium salt with steric bulk at C3

General Hydrogenation Procedure: Pd/C Catalysed Azide Hydrogenation

To solution of azides 11^4 and $14a-e^4$ (100 mol%) in EtOH (5% wt 12 M HCl, 0.2 M) under Ar at rt, was added Pd (5% wt on C, 10 mol%). H₂ (1 atm, balloon) was bubbled through the solvent until the Ar atmosphere was replaced. After 4 h, the H₂ was displaced by a stream of N₂ and the suspension was neutralised with sat. aq. NaHCO₃. The reaction mixture was filtered through Celite® using EtOH as eluent to afford a colourless solution. Concentration *in vacuo* and subsequent trituration with MeOH (3 x washes) yielded the amines **15a-e**.

Methyl 2-amino-4,6-bis-*O*-methyl-3-*O*-(3',5'-trifluoromethyl)benzene-2-deoxy-β-D-glucopyranoside (8b):

Following General Hydrogenation Procedure with some modifications. Azide **11**⁴ (1.15 g, 2.49 mmol); trituration with CHCl₃ (3 x 5 mL) yielded **8b** (932 mg, 86%) as colourless oil; Rf = 0.8 (90:10 CH₂Cl₂:MeOH); vmax / cm⁻¹ (film): 3662, 2933, 1612, 1468, 1377, 1278, 1173, 1130, 1057, 1010; ¹H NMR (500 MHz, CDCl₃) δ : 7.57 (2H, br s, ArCH), 7.47 (1H, br s, ArCH), 4.24 (1H, dd, J = 9.5 and 8.5 Hz, H-3), 4.17 (1H, d, J = 8.0 Hz, H-1), 3.69 (1H, dd, J = 10.5 and 2.0 Hz, H-6a), 3.64 (1H, dd, J = 10.5 and 3.5 Hz, H-6b), 3.55 (3H, s, OCH³), 3.49 (1H, dd, J = 9.5 and 8.5 Hz, H-4), 3.44 (1H, ddd, J = 9.5, 3.5 and 2.0 Hz, H-5), 3.43 (3H, s, OCH³), 3.29 (3H, s, OCH³), 3.05 (1H, dd, J = 9.5 and 8.0 Hz, H-2); ¹³C NMR (125 MHz, CDCl₃) δ : 160.4 (ArCOR), 133.0 (q, J = 33.5 Hz, ArCCF₃), 123.3 (q, J = 273.0 Hz, ArCCF³), 116.8 (d, J = 4.0 Hz, ArCH), 115.2 (t, J = 4.0 Hz, ArCH), 104.5 (C- 1), 85.7 (C-3), 79.3 (C-4), 74.9 (C-5), 71.0 (C-6), 60.4 (OCH₃), 59.5 (OCH₃), 57.4 (OCH₃), 57.0 (C-2); ¹⁹F NMR (470 MHz, CDCl₃) δ : -63.0 (CF₃); *m/z* HRMS (ESI): Found [M+H]⁺ 434.1392, C₁₇H₂₂NF₆O₅ requires 434.1397; [α]²³_D = 45 (*c* 0.9, CHCl₃).

Methyl 2-amino-4,6-bis-*O***-methyl-3-***O***-(2',6'-trifluoromethyl)benzene-2-deoxy-β-D-glucopyranoside (15a):** Following General Hydrogenation Procedure with some modifications. Azide **14a**⁴ (600 mg, 1.31 mmol); trituration with CHCl₃ (3 x 5 mL) yielded **15a** (543 mg, 96%) as colourless solid; *Rf* = 0.8 (90:10 CH₂Cl₂:MeOH); vmax / cm⁻¹ (film): 3392, 2941, 1602, 1521, 1461, 1389, 1344, 1300, 1243, 1211, 1166, 1127, 1088, 1066; ¹H NMR (500 MHz, CDCl₃) δ: 7.78 (2H, d, *J* = 8.0 Hz, ArCH), 7.25 (br t, *J* = 8.0 Hz, ArCH), 4.72 (1H, *app.* t, *J* = 9.5 Hz, H-3), 4.68 (1H, d, *J* = 8.0 Hz, H-1), 3.65 (1H, br t, *J* = 9.0 Hz, H-4), 3.602 (1H, dd, *J* = 11.0 and 2.0 Hz, H-6a), 3.298 (3H, s, OCH₃), 3.51 (1H, dd, *J* = 11.0 and 4.0 Hz, H-6b), 3.36 (3H, s, OCH₃), 3.30 (1H, ddd, *J* = 9.5, 4.0 and 2.0 Hz, H-5), 3.22 (1H, dd, *J* = 10.0 and 8.0 Hz, H-2), 2.73 (3H, s, OCH₃); ¹³C NMR (125 MHz, CDCl₃) δ: 154.3 (ArCOR), 131.4 (d, *J* = 5.0 Hz, ArCH), 124.6 (q, *J* = 31.0 Hz, ArCCF3), 123.2 (q, *J* = 273.0 Hz, ArCCF₃), 123.1 (ArCH), 101.9 (C-1), 84.4 (C-3), 78.3 (C-4), 74.7 (C-5), 70.5 (C-6), 59.3 (OCH₃), 58.6 (OCH₃), 57.4 (OCH₃), 56.6 (C-2); ¹⁹F NMR (470 MHz, CDCl₃) δ: -62.9 (CF₃); *m/z* HRMS (ESI): Found [M+H]⁺ 434.1395, C₁₇H₂₂F₆NO5 requires 434.1397; [α]²¹_D = -9 (*c* 0.8, CHCl₃).

Methyl 2-amino-4,6-bis-*O***-methyl-3***-O***-(2',4'-trifluoromethyl)benzene-2-deoxy-β-D-glucopyranoside (15b):** Following General Hydrogenation Procedure with some modifications. Azide **14b**⁴ (463 mg, 1.01 mmol); trituration with CHCl₃ (3 x 5 mL) yielded **15b** (425 mg, 97%) as colourless solid; Rf = 0.7 (90:10 CH₂Cl₂:MeOH); vmax / cm⁻¹ (film): 2939, 2841, 1628, 1594, 1508, 1348, 1315, 1287, 1262, 1124, 1083, 1055; ¹H NMR (500 MHz, CDCl₃) δ: 7.82 (1H, d, J = 2.0 Hz, ArCH), 7.72 (1H, dd, J = 9.0 and 2.5 Hz, ArCH), 7.51 (1H, d, J = 9.0 Hz, ArCH), 4.42 (1H, t, J = 9.5 Hz, H-3), 4.16 (1H, d, J = 8.0 Hz, H-1), 3.70 (1H, dd, J = 10.5 and 2.0 Hz, H-6a), 3.64 (1H, dd, J = 10.5 and 4.0 Hz, H-6b), 3.54 (3H, s, OCH₃), 3.53 (1H, dd, J = 10.0 and 9.0 Hz, H-4), 3.45 (1H, dd, J = 10, 4.0 and 2.0 Hz, H-5), 3.43 (3H, s, OCH₃), 3.27 (3H, s, OCH₃), 3.11 (1H, dd, J = 9.5 and 8.0 Hz, H-2), 1.48 (2H, br s, NH₂); ¹³C NMR (125 MHz, CDCl₃) δ: 159.8 (ArCOR), 130.5 (q, J = 4.0 Hz, ArCH), 124.9-124.7 (m, ArCH), 123.6 (q, J = 271.5 Hz, ArCCF₃), 112.1 (q, J = 270.0 Hz, ArCCF₃), 123.0 (q, J = 31.5 Hz, ArCCF₃), 115.2 (ArCH), 104.4 (C-1), 85.2 (C-3), 79.1 (C-4), 75.0 (C-5), 71.1 (C-6), 60.4 (OCH₃), 59.5 (OCH₃), 57.4 (OCH₃), 56.7 (C-2); 19F NMR (470 MHz, CDCl₃) δ : -62.0 (s, CF₃), -62.6 (s, CF₃); m/z HRMS (ESI): Found [M+H]⁺434.1383, C₁₇H₂₂F₆NO5 requires 434.1397; [α]²³_D = 59 (*c* 0.6, CHCl₃).

Methyl 2-amino-4,6-bis-O-methyl-3-O-(2',3',5'-trifluoro)benzene-2-deoxy-β-D-glucopyranoside (15c):

According to General Hydrogenation Procedure. Azide $14c^4$ (715 mg, 1.89 mmol); trituration yielded 15c (581 mg, 87%) as a colourless solid which was contaminated by an unknown impurity (~10%); Rf = 0.7 (90:10 CH₂Cl₂:MeOH); ¹H NMR (400 MHz, CDCl₃) δ : 6.94 (1H, ddt, J = 10.5, 5.5 and 2.5 Hz, ArCH), 6.55 (1H, dddd, J = 10.0, 8.5, 5.5 and 2.5 Hz, ArCH), 4.15 (1H, d, J = 8.0 Hz, H-1), 4.09 (1H, *app*. t, $J = \sim9.0-9.5$ Hz, H-3), 3.68 (1H, dd, J = 10.5 and 2.0 Hz, H-6a), 3.63 (1H, dd, J = 10.5 and 4.0 Hz, H-6b), 3.54 (3H, s, OCH₃), 3.50 (1H, dd, J = 9.5 and 9.0 Hz, H-4), 3.43 (3H, s, OCH₃), 3.41-3.38 (1H, m, H-5), 3.38 (3H, s, OCH₃), 3.09 (1H, dd, J = 9.5 and 8.0 Hz, H-2), 1.73 (2H, br s, NH2); ¹³C NMR (125 MHz, CDCl₃) δ : 157.4 (ddd, J = 244.0, 13.5 and 4.0 Hz, ArCF), 151.0 (ddd, J = 248.5, 15.5 and 12.0 Hz, ArCF), 149.5 (dd, J = 8.5 and 4.5 Hz, ArC), 138.4 (ddd, J = 243.0, 13.5 and 5.0 Hz, ArCF), 104.2 (C-1), 101.1 (dd, J = 27.5 and 3.5 Hz, ArCH), 98.1 (dd, J = 28.0 and 21.5 Hz, ArCH), 87.6 (C-3), 78.9 (C-4), 74.9 (C-5), 70.9 (C-6), 60.4 (OCH₃), 59.4 (OCH₃), 57.2 (OCH₃), 56.7 (C-2);

¹⁹F NMR (377 MHz, CDCl₃) δ: -114.3 – -114.4 (m, ArCF), -134.1 – -134.2 (m, ArCF), -163.6 – -163.7 (m, ArCF); *m/z* HRMS (ESI): Found [M+H]⁺ 352.1363, C₁₅H₂₁F₃NO₅ requires 352.1366.

Methyl 2-amino-4,6-bis-*O*-methyl-3-*O*-(4'-phenyl-2',3',5',6'-tetrafluoro)benzene-2-deoxy-β-D-glucopyranoside (15d):

Following General Hydrogenation Procedure with some modifications. Azide **14d**⁴ (963 mg, 2.04 mmol); trituration with CHCl₃ (3 x 5 mL) yielded **15d** (883 mg, 97%) as colourless oil; Rf = 0.7 (90:10 CH₂Cl₂:MeOH); vmax / cm⁻¹ (film): 2931, 1725, 1511, 1495, 1488, 1441, 1196, 1083; ¹H NMR (500 MHz, CDCl₃) & 7.49-7.41 (5H, m, ArCH), 4.30 (1H, dd, J = 10.0 and 9.0 Hz, H-3), 4.15 (1H, d, J = 8.0 Hz, H-1), 3.68 (1H, dd, J = 11.0 and 2.0 Hz, H-6a), 3.66-3.59 (2H, m, H-4 & H-6b), 3.56 (OCH₃), 3.43 (OCH₃), 3.36 (OCH₃), 3.32 (1H, ddd, J = 9.5, 3.5 and 2.0 Hz, H-5), 3.11 (1H, *app.* t, J = 9.0 Hz, H-2); ¹³C NMR (125 MHz, CDCl₃) &: 144.3 (dddd, J = 246.0, 16.5, 8.0 and 4.0 Hz, ArCF), 141.1 (ddt, J = 246.0, 15.5 and 4.5 Hz, ArCF), 137.2 (ArC), 130.4 (t, J = 2.0 Hz, ArCH), 129.0 (ArCH), 128.7 (ArCH), 127.4 (ArC), 114.3 (t, J = 17.0 Hz, ArC), 104.9 (C-1), 88.2 (t, J = 2.5 Hz, C-3), 80.0 (C-4), 74.8 (C-5), 71.0 (C-6), 60.1 (OCH3), 59.4 (OCH3), 57.5 (OCH3), 57.1 (C-2); ¹⁹F NMR (470 MHz, CDCl₃) &: -145.3 (dd, J = 22.5 and 8.5 Hz, ArCF), -156.0 (dd, J = 22.0 and 8.5 Hz, ArCF); *m/z* HRMS (ESI): Found [M+H]⁺ 446.1585, C₂₁H₂₄F₄NO₅ requires 446.1585; [α]²²D = -32 (*c* 0.3, CHCl₃).

Methyl 2-amino-4,6-di-O-methyl-3-O-1'-(4'-cyano)naphthlene-2-deoxy-β-D-glucopyranoside (15e):

Following General Hydrogenation Procedure with some modifications. Azide **14e**⁴ (963 mg, 2.04 mmol); trituration with CHCl3 (3 x 5 mL) yielded **15e** (896 mg, 90%) as colourless oil; Rf = 0.7 (90:10 CH₂Cl₂:MeOH); vmax / cm⁻¹ (film): 2930, 2218, 1577, 1509, 1391, 1324, 1228, 1057; ¹H NMR (400 MHz, CDCl₃) δ : 8.37 (1H, ddd, J = 8.5, 1.5 and 0.5 Hz, ArCH), 8.20 (1H, dt, J = 8.5 and 1.5 Hz, ArCH), 7.85 (1H, d, J = 8.0 Hz, ArCH), 7.71 (1H, ddd, J = 8.5, 7.0 and 1.5 Hz, ArCH), 7.61 (1H, ddd, J = 8.0, 7.0 and 1.5 Hz, ArCH), 7.31 (1H, d, J = 8.5 Hz, ArCH), 4.56 (1H, br t, J = 9.5 Hz, H-3), 4.22 (1H, d, J = 8.0 Hz, H-1), 3.72 (1H, dd, J = 11.0 and 2.0 Hz, H-6a), 3.67 (1H, dd, J = 11.0 and 3.5 Hz, H-6b), 3.63 (1H, br t, J = 9.5 Hz, H-4), 3.57 (3H, s, OCH3), 3.49 (1H, ddd, J = 9.5, 3.5 and 2.0 Hz, H-5), 3.45 (3H, s, OCH3), 3.24 (3H, s, OCH3), 3.22 (1H, dd, J = 9.5 and 8.0 Hz, H-2); ¹³C NMR (100 MHz, CDCl₃) δ : 159.2 (ArCOR), 134.1 (ArCH), 134.0 (ArC), 129.1 (ArCH), 127.1 (ArCH), 125.6 (ArC), 125.3 (ArCH), 122.6 (ArCH), 118.4 (ArCCN), 107.1 (ArCH), 104.6 (C-1), 102.6 (ArCCN), 85.3 (C-3), 79.2 (C-4), 75.0 (C-5), 71.1 (C-6), 60.6 (OCH₃), 59.5 (OCH₃), 57.5 (OCH₃), 57.2 (C-2); *m/z* HRMS (ESI): Found [M+H]⁺ 373.1760, C₂₀H₂₅N₂O₅ requires 373.1758; [α]²²D = 8 (*c* 0.2, CHCl₃).

Synthesis of complexes 12b and 17a-e

General Procedure A. Bis(imine) Synthesis 1.

Adapted from Kündig and co-workers.⁵ To a solution of **amine** (100 mol%) in CH₂Cl₂ (0.4 M) at rt, was added Na₂SO₄ (1 g per mmol of amine), formic acid (7 mol%) and glyoxal (40% by wt in H₂O, 50 mol%). After stirring for 16 h the solution was filtered and then concentrated. Purification by trituration with **solvent** (3 x washes) yielded the **bis(imine)** as a colourless solid. Note: the bis(imine)s were generally insoluble in MeOH and soluble in CHCl₃.

General Procedure B. Bis(imine) Synthesis 2

To a solution of **amine** (100 mol%) and glyoxal (aq. 40%, 50 mol%) in anhydrous MeOH (0.5 M) at rt, was added MgSO4 (0.5 g per mmol). After 18 h, the reaction was diluted with CHCl₃ (10 mL), filtered and then concentrated. Purification by trituration with cool **solvent** (3 x 5 mL) yielded **bis(imine)** as a colourless solid. Note: bis(imine)s were generally insoluble in MeOH and soluble in CHCl₃.

General Procedure C. Imidazolium Chloride Synthesis with MOMCl

To a solution of **bis(imine)** (100 mol%) in anhydrous THF (0.2 M) at rt, was added MOMCl (2000 mol%). After 16 h, the reaction was concentrated and the resulting residue was further purified by FCC to yield the **imidazolium** chloride.

General Procedure D. NHC.HCl Ligation to [Rh(COD)Cl]²

Adapted from Ekkehardt and co-workers.⁶ To a solution of **imidazol(in)ium chloride** (100 mol%) and KO*t*-Bu (100 mol%) in N₂ sat. anhydrous THF (0.01 M) at rt, was added [Rh(COD)Cl]₂ (50 mol%). After 14 h, the reaction was concentrated *in vacuo*, suspended in CH₂Cl₂ and filtered through Celite®. The filtrate was concentrated to afford a residue. Purification by FCC yielded the [**RhNHC(COD)Cl**] complex.

Bis(methyl 2-amino-4,6-bis-*O*-methyl-3-*O*-(3',5'-trifluoromethyl)benzene-2-deoxy-β-D-glucopyranoside)-*N*,*N*'-iminoethylidene (S5):

Following General Procedure A. Amine **8b** (913 mg, 2.11 mmol); trituration with MeOH yielded **S5** (742 mg, 79%) as a colourless solid; R_f = 0.9 (90:10 CH₂Cl₂:MeOH); v_{max} / cm⁻¹ (film): 3661, 2987, 2901, 1623, 1611, 1468, 1405, 1393, 1369, 1276, 1169, 1126, 1065, 1056, 1038; ¹H NMR (500 MHz, CDCl₃) δ : 7.83 (2H, s, HC=N), 7.29 (4H, d, *J* = 1.5 Hz, ArCH), 7.25 (2H, t, *J* = 1.5 Hz, ArCH), 4.49 (2H, d, *J* = 7.5 Hz, H-1), 4.47 (2H, *app.* t, *J* = 9.5

Hz, H-3), 3.70 (2H, dd, J = 10.5 and 2.0 Hz, H-6a), 3.65 (2H, dd, J = 10.5 and 3.5 Hz, H- 6b), 3.56 (2H, dd, J = 10.0 and 9.0 Hz, H-4), 3.48 (6H, s, OCH₃), 3.48 (2H, ddd, J = 10.0, 3.5 and 2.0 Hz, H-5), 3.44 (6H, s, OCH₃), 3.36 (2H, m, found J = 7.5 Hz, H-2), 3.35 (6H, s, OCH₃); ¹³C NMR (125 MHz, CDCl₃) δ : 165.3 (HC=N), 160.2 (ArCOR), 132.4 (q, J = 33.5 Hz, ArCCF₃), 123.1 (q, J = 272.5 Hz, ArCCF₃), 117.5 (br s, ArCH), 115.1 (br s, ArCH), 102.0 (C-1), 84.7 (C-3), 78.9 (C-4), 75.4 (C-2), 74.8 (C-5), 70.9 (C-6), 60.5 (OCH₃), 59.5 (OCH₃), 57.3 (OCH₃); ¹⁹F NMR (377 MHz, CDCl₃) δ : -63.1 (CF₃); *m/z* HRMS (ESI): Found [M+H]+889.2562, C₃₆H₄₁N₂F₁₂O₁₀ requires 889.2564; [α]²⁰_D = -59 (*c* 0.7, CHCl₃).

Bis(methyl 2-amino-4,6-bis-*O*-methyl-3-*O*-(2',6'-trifluoromethyl)benzene-2-deoxy-β-D-glucopyranoside)-*N*,*N*'-iminoethylidene (S6a):

Following General Procedure A with some modifications. Amine **15a** (660 mg, 1.52 mmol); after filtration to remove the desiccant, concentration afforded the crude product, contaminated with the starting material. Dissolution of the residue in a small quantity of Et2O and then the addition of hexane precipitated unreacted starting material. Decanting the solvent and its subsequent concentration yielded **S6a** (257 mg, 39%) as a colourless solid; R_f = 0.9 (90:10 CH₂Cl₂:MeOH); v_{max} / cm⁻¹ (film): 2935, 2888, 2842, 1635, 1602, 1460, 1380, 1343, 1300, 1286, 1246, 1210, 1165, 1130, 1088, 1065; ¹H NMR (500 MHz, CDCl₃) δ : 7.60 (2H, s, HC=N), 7.55 (4H, d, *J* = 8.0 Hz, ArCH), 6.89 (2H, t, *J* = 8.0 Hz, ArCH), 4.73 (2H, *app*. t, *J* = 9.0 Hz, H-3), 4.49 (2H, d, *J* = 7.5 Hz, H-1), 3.65 (2H, *app*. t, *J* = 9.5 Hz, H-4), 3.64 (2H, dd, *J* = 11.0 and 2.0 Hz, H-6a), 3.56 (2H, dd, *J* = 11.0 and 4.0 Hz, H-6b), 3.44 (6H, s, OCH₃), 3.42-3.40 (2H, m, H-2), 3.39 (6H, s, OCH₃), 3.34 (2H, ddd, *J* = 9.5, 4.0 and 2.0 Hz, H-5), 2.94 (6H, s, OCH₃); ¹³C NMR (125 MHz, CDCl₃) δ : 165.4 (HC=N), 154.8 (ArCOR), 131.0 (ArCH), 124.2 (br q, *J* = 31.0 Hz, ArCCF₃), 123.7 (q, *J* = 274.0 Hz, ArCCF₃), 122.3 (ArCH), 102.2 (C-1), 84.6 (C-3), 78.2 (C-4), 74.8 (C-5), 74.6 (C-2), 70.9 (C-6), 59.4 (OCH₃), 59.1 (OCH₃), 57.2 (OCH₃); ¹⁹F NMR (470 MHz, CDCl₃) δ : -59.4 (CF₃); *m*/*z* HRMS (ESI): Found [M+H]+ 889.2577, C₃6H₄₁F₁₂N₂O₁₀ requires 889.2564; [α]²²_D = 25 (*c* 0.6, CHCl₃).

Bis(methyl 2-amino-4,6-bis-*O*-methyl-3-*O*-(2',4'-trifluoromethyl)benzene-2-deoxy-β-D-glucopyranoside)-*N*,*N*'-iminoethylidene (S6b):

Following General Procedure A. Amine **15b** (172 mg, 0.40 mmol); trituration with MeOH yielded **S6b** (89.4 mg, 52%) as a colourless solid; R_{f} = 0.9 (90:10 CH₂Cl₂:MeOH); v_{max} / cm⁻¹ (film): 2929, 2888, 1631, 1594, 1514, 1450, 1386, 1352, 1319, 1292, 1264, 1218, 1178, 1135, 1085, 1055, 1024; ¹H NMR (500 MHz, CDCl₃) &: 7.70 (2H, s, HC=N), 7.66 (2H, dd, *J* = 9.0 and 2.5 Hz, ArCH), 7.52 (2H, d, *J* = 2.5 Hz, ArCH), 7.38 (2H, d, *J* = 9.0 Hz, ArCH), 4.82 (2H, *app*. ddd, *J* = 10.0, 9.0 and 6.0 Hz, H-3), 4.54 (2H, d, *J* = 7.5 Hz, H-1), 3.70 (2H, dd, *J* = 10.5 and 1.5 Hz, H-6a), 3.64 (2H, dd, *J* = 10.5 and 2.5 Hz, H-6b), 3.55-3.52 (4H, m, H-4 & H-5), 3.48 (6H, s, OCH₃), 3.43 (6H, s, OCH₃), 3.33 (2H, dd, *J* = 9.5 and 7.5 Hz, H-2), 3.15 (6H, s, OCH₃); 1₃C NMR (125 MHz, CDCl₃) &: 165.6 (HC=N), 158.8 (ArCOR), 130.3 (ArCH), 124.3 (br s, ArCH), 123.8 (q, *J* = 273.0 Hz, ArCCF₃), 122.56 (q, *J* = 32.5 Hz, ArCCF₃), 122.54 (q, *J* = 272.0 Hz, ArCCF₃), 118.7 (q, *J* = 31.5 Hz, ArCCF₃), 114.4 (ArCH), 102.2 (C-1), 80.6 (C-2), 79.3 (C-4 or C-5), 75.3 (C-2), 74.8 (C-4 or C-5), 70.9 (C-6), 60.4 (OCH₃), 59.5 (OCH₃), 57.3 (OCH₃); 19F NMR (470 MHz, CDCl₃) &: -62.1 (s, CF₃), -63.5 (s, CF₃); *m*/z HRMS (ESI): Found [M+Na]+ 911.2381, C₃6H₄0F₁₂N₂O₁₀Na requires 911.2384; [α]²⁰D = 8 (*c* 0.8, CHCl₃).

Bis(methyl 2-amino-4,6-bis-*O*-methyl-3-*O*-(2',3',5'-trifluoro)benzene-2-deoxy-β-D-glucopyranoside)-*N*,*N*'iminoethylidene (S6c):

Following General Procedure B. Amine **15c** (546 mg, 1.55 mmol); trituration solvent: MeOH (2 x 5 mL) yielded **S6c** (546 mg, 97%) as a colourless solid which was contaminated by an unknown impurity (~10%); R_{f} = 0.9 (90:10 CH₂Cl₂:MeOH); ¹H NMR (500 MHz, CDCl₃) δ : 7.82 (2H, s, HC=N), 6.68 (2H, ddt, J = 10.5, 5.5 and 2.5 Hz, ArCH), 6.40 (2H, dddd, J = 10.0, 8.5, 5.5 and 3.0 Hz, ArCH), 4.50 (2H, d, J = 7.5 Hz, H-1), 4.37 (2H, *app*. t, J = 9.5 Hz, H-3), 3.70 (2H, dd, J = 10.5 and 2.0 Hz, H-6a), 3.64 (2H, dd, J = 10.5 and 4.0 Hz, H- 6b), 3.57 (1H, dd, J = 9.5 and 9.0 Hz, H-4), 3.47 (6H, s, OCH₃), 3.47-3.44 (2H, m, H-5), 3.44 (6H, s, OCH₃), 3.40 (6H, s, OCH₃), 3.37 (2H, dd, J = 9.5 and 7.5 Hz, H-2); ¹³C NMR (125 MHz, CDCl₃) δ : 165.2 (C=N), 157.1 (ddd, J = 244.0, 14.0 and 3.5 Hz, ArCF), 150.7 (ddd, J = 248.5, 15.5 and 12.0 Hz, ArCF), 149.2-149.0 (m, ArC), 138.5 (ddd, J = 244.0, 14.0 and 5.0 Hz, ArCF), 102.0 (C-1), 101.0 (dd, J = 27.5 and 3.0 Hz, ArCH), 97.9 (dd, J = 27.5 and 22.0 Hz, ArCH), 85.3 (C-3), 78.6 (C-4), 75.3 (C-2), 74.8 (C-5), 70.8 (C-6), 60.5 (OCH₃), 59.4 (OCH₃), 57.1 (OCH₃); ¹⁹F NMR (470 MHz, CDCl₃) *major compound* δ : -115.0 (q, J = 10.0 Hz, ArCF), -134.7 (dd, J = 19.0 and 10.0 Hz, ArCF), -164.0 (td, J = 11.5 and 5.5 Hz, ArCF). *Impurity* δ :-120.1 (t, J = 11.0 Hz, ArCF), 139.0 (d, J = 20.0 Hz, ArCF). m/z HRMS (ESI): Found [M+H]⁺ 725.2507, C₃2H₃9N₂O₁₀ requires 725.2503.

Bis(methyl 2-amino-4,6-bis-*O*-methyl-3-*O*-(4'-phenyl-2',3',5',6'-tetrafluoro)benzene-2-deoxy-β-D-glucopyranoside)-*N*,*N*'-iminoethylidene (S6d):

Following General Procedure A. Amine **15d** (905 mg, 2.03 mmol); trituration with MeOH yielded **S6d** (577 mg, 62%) as a colourless solid; R_f = 0.9 (90:10 CH₂Cl₂:MeOH); v_{max} / cm⁻¹ (film): 2937, 2879, 2843, 1632, 1512, 1488, 1438, 1382, 1197, 1138, 1116, 1080, 1054, 1020; ¹H NMR (500 MHz, CDCl₃) &: 7.92 (2H, s, HC=N), 7.37-7.35 (6H, m, ArCH), 7.26-7.23 (4H, m, ArcH), 4.58 (2H, *app.* t, *J* = 9.0 Hz, H-3), 4.52 (2H, d, *J* = 8.0 Hz, H-1), 3.71 (2H, dd, *J* = 11.0 and 2.0 Hz, H-6a), 3.70 (2H, *app.* t, *J* = 9.0 Hz, H-4), 3.64 (2H, dd, *J* = 11.0 and 3.5 Hz, H-6b), 3.48 (6H, s, OCH₃), 3.45 (2H, dd, *J* = 9.5 and 8.0 Hz, H-2), 3.44 (6H, s, OCH₃), 3.42 (2H, ddd, *J* = 9.5, 3.5 and 2.0 Hz, H-5), 3.38 (6H, s, OCH₃); 1₃C NMR (125 MHz, CDCl₃) δ : 165.5 (HC=N), 144.1 (dddd, *J* = 246.0, 12.0, 8.0 and 4.0 Hz, ArCF), 141.0 (ddt, *J* = 247.5, 16.0 and 3.5 Hz, ArCF), 136.8 (t, *J* = 12.0 Hz, ArC), 130.2 (ArCH), 128.8 (ArCH), 128.5 (ArCH), 127.3 (ArC), 114.4 (t, *J* = 17.0 Hz, ArC), 102.2 (C-1), 85.8 (C-3), 79.5 (C-4), 75.1 (C-2), 74.7 (C-5), 71.0 (C-6), 60.3 (OCH₃), 59.5 (OCH₃), 57.4 (OCH₃); ¹⁹F NMR (470 MHz, CDCl₃) δ : -146.1 (dd, *J* = 22.0 and 8.5 Hz, ArCF), -156.0 (dd, *J* = 22.0 and 8.5 Hz, ArCF); *m*/z HRMS (ESI): Found [M+Na]⁺ 935.2755, C44H44F8N2010Na requires 935.2760; [α]²¹D = -104 (*c* 0.6, CHCl₃).

Bis(methyl 2-amino-4,6-di-*O*-methyl-3-*O*-1'-(4'-cyano)naphthlene-2-deoxy-β-D-glucopyranoside)-*N*,*N*'iminoethylidene (S6e):

Following General Procedure A. Amine **15e** (651 mg, 1.75 mmol); trituration with MeOH yielded **S6e** (449 mg, 67%) as a colourless solid; R_f = 0.9 (90:10 CH₂Cl₂:MeOH); v_{max} / cm⁻¹ (film): 2934, 2838, 2217, 1632, 1577, 1509, 1462, 1428, 1388, 1322, 1277, 1244, 1277, 1135, 1119, 1112, 1105, 1016, 1014; ¹H NMR (400 MHz, CDCl₃) δ : 7.93-7.90 (4H, m, ArCH), 7.73 (2H, s, N=CH), 7.54 (2H, d, *J* = 8.5 Hz, ArCH), 7.38 (2H, ddd, *J* = 8.5, 7.0 and 1.0 Hz, ArCH), 7.17 (2H, ddd, *J* = 8.5, 7.0 and 1.0 Hz, ArCH), 6.98 (2H, d, *J* = 8.5 Hz, ArCH), 4.78 (2H, t, *J* = 9.0 Hz, H-3), 4.50 (2H, d, *J* = 7.5 Hz, H-1), 3.69 (2H, dd, *J* = 10.5 and 2.0 Hz, H-6a), 3.62 (2H, dd, *J* = 10.5 and 3.5 Hz, H-6b), 3.60 (2H, t, *J* = 9.5 Hz, H-4), 3.49 (2H, ddd, *J* = 9.5, 3.5 and 2.0 Hz, H-5), 3.47 (6H, s, OCH₃),

3.42 (6H, s, OCH₃), 3.41 (2H, dd, J = 9.5 and 7.5 Hz, H-2), 3.10 (6H, s, OCH₃); ¹³C NMR (100 MHz, CDCl₃) δ : 165.0 (C=N), 158.7 (ArCOR), 133.5 (ArCH), 133.4 (ArC), 128.9 (ArCH), 126.6 (ArCH), 125.04 (ArC), 124.95 (ArCH), 122.1 (ArCH), 118.3 (ArCCN), 107.2 (ArCH), 102.3 (ArCCN), 102.0 (C-1), 83.0 (C-3), 79.1 (C-4), 75.4 (C-2), 74.9 (C-5), 70.9 (C-6), 60.5 (OCH₃), 59.5 (OCH₃), 57.3 (OCH₃); *m/z* HRMS (ESI): Found [M+H]⁺ 767.3286, C42H47N4O10 requires 767.3287; [α]²¹_D = 10 (*c* 0.8, CHCl₃).

1,3-Bis(methyl2-amino-4,6-bis-O-methyl-3-O-(3',5'-trifluoromethyl)benzene-2-deoxy-β-D-glucopyranoside)imidazolium chloride (9b):

Following General Procedure C. Bis(imine) **S5** (340 mg, 0.39 mmol); FCC (100:0 to 96:4 CH₂Cl₂:MeOH) yielded **9b** (201 mg, 56%) as a tan amorphous solid; R_f = 0.6 (90:10 CH₂Cl₂:MeOH); v_{max} / cm⁻¹ (film): 3276, 2929, 1659, 1560, 1591, 1469, 1372, 1283, 1230, 1178, 1136, 1120, 1102, 1058, 1008; ¹H NMR (500 MHz, CD₃OD) δ : 7.97 (2H, br s, CH imidazolium), 7.55 (2H, br s, ArCH), 7.54 (4H, br s, ArCH), 5.31 (2H, dd, *J* = 10.5 and 8.5 Hz, H-3), 4.83 (2H, d, *J* = 8.5 Hz, H-1), 4.57 (2H, dd, *J* = 10.5 and 8.5 Hz, H-2), 3.77-3.70 (6H, m, H-5 & H-6a & H-6b), 3.67 (2H, dd, *J* = 9.5 and 8.5 Hz, H-4), 3.44 (6H, s, OCH₃), 3.29 (6H, s, OCH₃), 3.20 (6H, s, OCH₃), *CH imidazolium undergoes exchange in CD₃OD and was not observed*; ¹³C NMR (125 MHz, CDCl₃) δ : 160.4 (ArCOR), 139.6 (t, *J* = 33.0 Hz, CD imidazolium), 134.0 (q, *J* = 33.5 Hz, ArCCF₃), 124.4 (q, *J* = 272.0 Hz, ArCCF₃), 122.3 (CH imidazolium), 117.5 (ArCH), 116.6 (ArCH), 100.7 (C-1), 81.0 (C-3 & C-4), 75.9 (C-5), 71.5 (C-6), 65.5 (C-2), 60.9 (OCH₃), 59.6 (OCH₃), 57.2 (OCH₃); ¹⁹F NMR (283 MHz, CDCl₃) δ : -60.4 (CF₃); *m*/*z* HRMS (ESI): Found [M-Cl]⁺ 901.2566, C₃₇H₄₁N₂O₁₀ requires 901.2564; [α]²¹_D = 45 (*c* 0.6, CH₃OH).

1,3-Bis(methyl2-amino-4,6-bis-O-methyl-3-O-(2',6'-trifluoromethyl)benzene-2-deoxy-β-D-glucopyranoside)imidazolium chloride (16a):

Following General Procedure C. Bis(imine) **15a** (70 mg, 0.08 mmol); FCC (100:0 to 95:5 CH₂Cl₂:MeOH) yielded **16a** (59.2 mg) as a tan amorphous solid; R_f = 0.5 (90:10 CH₂Cl₂:MeOH); v_{max} / cm⁻¹ (film): 2982, 1603, 1462, 1344, 1300, 1243, 1212, 1134, 1090; ¹H NMR (500 MHz, CDCl₃) δ : 12.19 (1H, s, CH Imidazolium), 7.76 (4H, d, J = 8.0 Hz, ArCH), 7.26 (2H, t, J = 8.0 Hz, ArCH), 7.05 (2H, s, CH Imidazolium), 6.16 (2H, d, J = 8.0 Hz, H-1), 5.12 (2H, *app.* t, J = 9.5 Hz, H-3), 4.19 (2H, *app.* t, J = ~9.0 Hz, H-2), 3.89-3.80 (4H, m, H-4 & H-5), 3.69 (6H, s, OCH₃), 3.65 (2H, dd, J = 11.0 and 2.0 Hz, H-6a), 3.51 (2H, dd, J = 11.0 and 4.0 Hz, H-6b), 3.35 (6H, s, OCH₃), 2.66 (6H, s, OCH₃); ¹³C NMR (125 MHz, CDCl₃) δ : 153.3 (ArCOR), 136.7 (CH Imidazolium), 131.3 (ArCH), 124.1 (br, ArCCF₃), 123.4 (ArCH), 123.1 (q, J = 272.5 Hz, ArCCF₃), 122.9 (CH Imidazolium), 99.1 (C-1), 84.6 (C-3), 78.0 & 73.6 (C-4 & C-5), 70.0 (C-6), 66.9 (C-2), 59.2 (OCH₃), 58.1 (OCH₃), 57.3 (OCH₃); ¹⁹F NMR (470 MHz, CDCl₃) δ : -59.2 (CF₃); *m*/*z* HRMS (ESI): Found [M-Cl] ⁺ 901.2571, C₃₇H₄₁F₁₂N₂O₁₀ requires 901.2564; [α]²²_D = 58 (*c* 0.7, CHCl₃).

1,3-Bis(methyl 2-amino-4,6-bis-*O*-methyl-3-*O*-(2',4'-trifluoromethyl)benzene-2-deoxy-β-D-glucopyranoside)imidazolium chloride (16b):

Following General Procedure C. Bis(imine) **15b** (90 mg, 0.10 mmol); FCC (100:0 to 96:4 CH₂Cl₂:MeOH) yielded **16b** (80.0 mg) as a tan amorphous solid; *R*_f = 0.5 (90:10 CH₂Cl₂:MeOH); ν_{max} / cm⁻¹ (film): 2939, 1627, 1597, 1509, 1384, 1347, 1286, 1260, 1220, 1180, 1122, 1100, 1084, 1053, 1003; ¹H NMR (500 MHz, CDCl₃) δ: 12.31 (1H, s, CH Imidazolium), 7.95 (2H, d, *J* = 9.0 Hz, ArCH), 7.80 (2H, dd, *J* = 9.0 and 2.5 Hz, ArCH), 7.67 (2H, d, *J* =

2.5 Hz, ArCH), 7.05 (2H, s, CH Imidazolium), 6.04 (2H, dd, J = 10.5 and 8.5 Hz, H-3), 4.86 (2H, d, J = 8.0 Hz, H-1), 4.05 (2H, dd, J = 10.5 and 8.0 Hz, H-2), 3.92 (2H, dt, J = 10.0 and 2.5 Hz, H-5), 3.67-3.63 (6H, m, H-4 & H-6a & H-6b), 3.39 (6H, s, OCH₃), 3.21 (6H, s, OCH₃), 2.77 (6H, s, OCH₃); ¹³C NMR (125 MHz, CDCl₃) δ : 158.0 (ArCOR), 135.6 (CH Imidazolium), 131.4 (d, J = 4.0 Hz, ArCH), 124.4-124.1 (m, ArCH), 123.50 (q, J = 33.5 Hz, ArCCF₃), 123.46 (q, J = 271.5 Hz, ArCCF₃), 123.0 (CH Imidazolium), 121.8 (q, J = 273.0 Hz, ArCCF₃), 118.8 (q, J = 31.5 Hz, ArCCF₃), 115.4 (ArCH), 100.8 (C-1), 79.4 (C-4), 79.3 (C-3), 74.2 (C-5), 69.9 (C-6), 66.1 (C-2), 60.4 (OCH₃), 59.4 (OCH₃), 56.9 (OCH₃); ¹⁹F NMR (470 MHz, CDCl₃) δ : -62.2 (CF₃), -62.9 (CF₃); *m/z* HRMS (ESI): Found [M-Cl]⁺901.2563, C₃₇H₄₁F₁₂N₂O₁₀ requires 901.2564. [α]²²D = 75 (*c* 2.5, CHCl₃).

1,3-Bis(methyl2-amino-4-6-bis-O-methyl-3-O-(2',3',5'-trifluoro)benzene-2-deoxy-β-D-glucopyranoside)imidazolium chloride (16c):

Following General Procedure C. Bis(imine) **S5c** (520 mg, 0.72 mmol); FCC (99:1 to 90:10 CH₂Cl₂:MeOH) yielded **16c** (345 mg, 62%) as a hydroscopic beige solid which was contaminated by an unknown impurity (~10%); R_f = 0.6 (90:10 CH₂Cl₂:MeOH); ¹H NMR (400 MHz, CDCl₃) δ : 12.16 (1H, s, CH Imidazolium), 7.24 (2H, CH Imidazolium), 7.06 (2H, m, ArCH), 6.49 (2H, dddd, J= 11.0, 8.5, 5.5 and 3.0 Hz, ArCH), 5.49 (2H, d, J= 8.0 Hz, H-1), 5.31 (2H, *app*. t, J= 9.5 Hz, H-3), 4.09 (2H, dd, J= 10.5 and 8.0 Hz, H-2), 3.92 (2H, *app*. dt, J= 10.0 and 2.5 Hz, H-5), 3.71-3.66 (6H, m, H-4 & H-6a & H-6b), 3.42 (6H, s, OCH₃), 3.33 (6H, s, OCH₃), 3.24 (6H, s, OCH₃); ¹³C NMR (125 MHz, CDCl₃) δ : 157.6 (ddd, J= 245.5, 14.0 and 3.65 Hz, ArCF), 150.8 (ddd, J= 249.0, 15.5 and 12.5 Hz, ArCF), 148.1-147.8 (m, ArC), 134.4 (ddd, J= 243.0, 14.5 and 5.5 Hz, ArCF), 136.4 (CH Imidazolium), 123.0 (CH Imidazolium), 101.1 (dd, J= 27.5 and 3.5, ArCH), 99.9 (C-1), 98.8 (dd, J= 27.5 and 21.5 Hz, ArCH), 83.0 (C-3), 79.4 (C-4), 74.1 (C-5), 70.0 (C-6), 66.4 (C-2), 60.3 (OCH₃), 59.4 (OCH₃), 57.2 (OCH₃); 19F NMR (377 MHz, CDCl₃) δ : -112.7 (q, J= 9.5 Hz, ArCF), -133.6 (dd, J= 20.5 and 10.0 Hz, ArCF), 163.7 (ddt, J= 22.0, 11.5 and 6.0 Hz, ArCF); *m/z* HRMS (ESI): Found [M]⁺737.2522, C₃₃H₃₉F₆N₂O₁₀ requires 737.2503.

1,3-Bis(methyl 2-amino-4,6-bis-*O*-methyl-3-*O*-(4'-phenyl-2',3',5',6'-tetrafluoro)benzene-2-deoxy-β-D-glucopyranoside)imidazolium chloride (16d):

Following General Procedure C. Bis(imine) **15d** (310 mg, 0.34 mmol); FCC (98:2 to 95:5 CH₂Cl₂:MeOH) yielded **16d** (169 mg, 52%) as a tan amorphous solid; R_{f} = 0.4 (90:10 CH₂Cl₂:MeOH); v_{max} / cm⁻¹ (film): 2935, 2850, 1512, 1488, 1441, 1196, 1136, 1084, 1071; ¹H NMR (500 MHz, CDCl₃) &: 12.51 (1H, s, CH Imidazolium), 7.48-7.36 (10H, m, ArCH), 7.21 (2H, d, J = 1.5 Hz, CH Imidazolium), 6.02 (2H, d, J = 8.5 Hz, H-1), 5.06 (2H, dd, J = 10.5 and 8.5 Hz, H-3), 4.25 (2H, dd, J = 10.5 and 8.5 Hz, H-2), 3.95 (2H, *app*. dt, J = 10.0 and 2.0 Hz, H-5), 3.89 (2H, br t, J = 9.0 Hz, H-4), 3.74 (2H, dd, J = 11.0 and 2.0 Hz, H-6a), 3.66 (6H, s, OCH₃), 3.62 (2H, dd, J = 11.0 and 2.5 Hz, H-6b), 3.44 (6H, s, OCH₃), 3.36 (6H, s, OCH₃); ¹³C NMR (125 MHz, CDCl₃) &: 144.2 (ddd, J = 247.5, 6.5 and 2.5 Hz, ArCF), 141.1 (ddt, J = 246.5, 15.5 and 4.5 Hz, ArCF), 137.6 (CH Imidazolium), 136.0 (tt, J = 12.0 and 3.0 Hz, ArC), 130.2 (ArCH), 129.2 (ArCH), 128.7 (ArCH), 127.0 (ArC), 123.0 (CH Imidazolium), 115.5 (t, J = 17.0 Hz, ArC), 99.7 (C-1), 85.8 (C-3), 80.0 (C-4), 73.6 (C-5), 70.2 (C-6), 66.8 (C-2), 59.7 (OCH₃), 59.3 (OCH₃), 57.5 (OCH₃); ¹⁹F NMR (470 MHz, CDCl₃) δ : -144.4 (dd, J = 22.5 and 8.5 Hz, ArCF), -157.0 (dd, J = 23.0 and 8.5 Hz, ArCF); *m*/z HRMS (ESI): Found [M-Cl]⁺925.2944, C45H45N2F8O10 requires 925.2941; [α]²¹D = 32 (*c* 0.6, CHCl₃).

1,3-Bis(methyl 2-amino-4,6-di-*O*-methyl-3-*O*-1'-(4'-cyano)naphthlene-2-deoxy-β-D-glucopyranoside)imidazolium chloride (16e):

Following General Procedure C. Bis(imine) **15e** (200 mg, 0.26 mmol); FCC (95:5 PhMe:MeOH) yielded **16e**(164 mg, 77%) as a tan amorphous solid; R_f = 0.3 (90:10 CH₂Cl₂:MeOH); v_{max} / cm^{-1} (film): 2939, 2219, 1577, 1509, 1463, 1388, 1324, 1246, 1084; ¹H NMR (500 MHz, CDCl₃) δ : 12.35 (1H, s, CH Imidazolium), 8.12 (2H, dt, J = 8.5 and 1.0 Hz, ArCH), 7.86 (2H, d, J = 8.5 Hz, ArCH), 7.67-7.63 (4H, m, ArCH), 7.53 (2H, ddd, J = 8.5, 7.0 and 1.0 Hz, ArCH), 6.93 (2H, d, J = 1.5 Hz, CH Imidazolium), 6.08 (2H, dd, J = 10.5 and 8.5 Hz, H-3), 5.12 (2H, dt, J = 8.0 Hz, H-1), 4.11 (2H, dd, J = 10.5 and 8.0 Hz, H-2), 3.99 (2H, dt, J = 10.0 and 2.5 Hz, H-5), 3.74 (2H, dd, J = 10.0 and 8.5 Hz, H-4), 3.69-3.67 (4H, m, H-6a & H-6b), 3.40 (6H, s, OCH₃), 3.14 (6H, s, OCH₃), 2.78 (6H, s, OCH₃); ¹³C NMR (125 MHz, CDCl₃) δ : 157.0 (ArCOR), 136.1 (CH Imidazolium), 134.3 (ArCH), 113.5 (ArC), 129.0 (ArCH), 127.0 (ArCH), 125.2 (ArCH), 124.7 (ArC), 122.8 (CH Imidazolium), 121.8 (ArCH), 117.8 (ArCCN), 107.0 (ArCH), 102.9 (ArCCN), 100.2 (C-1), 79.5 (C-3), 79.4 (C-4), 74.1 (C-5), 69.8 (C-6), 66.4 (C-2), 60.3 (OCH₃), 59.3 (OCH₃), 56.7 (OCH₃); *m*/z HRMS (ESI): Found [M-Cl]⁺ 779.3292, C4₃H₄7N₄O₁₀ requires 779.3287; [α]²¹_D = 91 (*c* 0.7, CHCl₃).

[1,3-Bis(methyl 2-amino-4,6-bis-*O*-methyl-3-*O*-(3',5'-trifluoromethyl)benzene-2-deoxy-β-D-glucopyranoside)imidazol-2-ylidene](chloro)(1,5-cyclooctadiene)rhodium(I) (12b):

Following General Procedure D with some modifications. NHC.HCl 9b (40 mg, 43 µmol); sealed tube and heated at 100 °C for 16 h; FCC (100:0 to 99:1 CH₂Cl₂:MeOH) yielded **12b** (35.1 mg, 72%) as an orange oil; $R_f = 0.8$ (90:10 CH₂Cl₂:MeOH); v_{max} / cm⁻¹ (film): 2934, 1610, 1468, 1386, 1276, 1171, 1132, 1032, 1010; ¹H NMR (500 MHz, CDCl3) & 7.88 (2H, s, ArCH), 7.41 (1H, s, ArCH), 7.38 (1H, s, ArCH), 7.22 (2H, s, ArCH), 6.95 (1H, d, J = 2.0 Hz, CH Imidazolylidene), 6.80 (1H, s, CH Imidazolylidene), 6.35 (1H, br s, H-Carbohydrate), 5.50 (1H, br s, H-Carbohydrate), 5.17-5.11 (1H, m, CH COD), 4.94(1H, br s, CH COD), 4.66 (1H, br s, H-Carbohydrate), 4.55 (1H, app. d, J = 9.0 Hz, H-Carbohydrate), 4.47 (1H, d, J = 8.0 Hz, H-Carbohydrate), 4.06-3.99 (1H, m, H-Carbohydrate), 3.99-3.94 (1H, m, CH COD), 3.85-3.72 (3H, m, H-Carbohydrate & H-Carbohydrate & H-6a & H-6b), 3.70-3.61 (H-Carbohydrate & H-6a & H- 6b), 3.49 (3H, s, OCH₃), 3.46 (3H, s, OCH₃), 3.45 (3H, s, OCH₃), 3.41 (3H, s, OCH₃), 3.35 (3H, s, OCH₃), 3.28 (3H, s, OCH₃), 3.17 (1H, br s, CH cod), 2.43-2.32 (4H, m, CHH cod), 1.97-1.76 (4H, m, CHH cod). Only observed 13 carbohydrate protons. ¹³C NMR (125 MHz, CDCl₃) &: 189.2 (app. br s, C Carbene), 160.1 (ArC), 159.5 (ArC), 132.9 (q, J = 33.5 Hz, ArCCF₃), 132.4 (q, J = 33.5 Hz, ArCCF₃), 123.2 (q, J = 272.5 Hz, ArCCF₃), 123.1 (q, J = 272.5 Hz, ArCCF3), 118.8 (br s, CH Imidazolylidene), 117.7 (CH Imidazolylidene & ArCH), 116.3 (br, ArCH), 115.5 (m, ArCH), 103.2 (C-Carbohydrate), 101.8 (C-Carbohydrate), 99.2 (d, J = 5.5 Hz, CH COD), 98.3 (d, J = 7.0 Hz, CH COD), 83.0 (C-Carbohydrate & C-Carbohydrate), 78.8 (C-Carbohydrate), 78.2 (C-Carbohydrate), 75.9 (C-Carbohydrate), 75.8 (C-Carbohydrate), 73.5 (C-6), 71.3 (C-6), 69.9-69.5 (m, CH COD & CH COD), 67.4, 64.3 (C-Carbohydrate), 60.6 (OCH3), 60.2 (OCH3), 59.6 (OCH3), 59.4 (OCH₃), 57.1 (OCH₃), 56.8 (OCH₃), 33.1 (CH₂ cod), 32.5 (CH₂ cod), 29.1 (CH₂ cod) 28.9 (CH₂ cod); 19F NMR (283 MHz, CDCl₃) δ: -62.6 (CF₃), -63.0 (CF₃); *m/z* HRMS (ESI): Found [M-Cl]⁺1111.2472, C45H52F12N2O10Rh requires 1111.2480; $[\alpha]^{21}_{D} = -47$ (*c* 1.2, CHCl₃).

[1,3-Bis(methyl 2-amino-4,6-bis-*O*-methyl-3-*O*-(2',6'-trifluoromethyl)benzene-2-deoxy-β-D-glucopyranoside)imidazol-2-ylidene](chloro)(1,5-cyclooctadiene)rhodium(I) (17a):

Following General Procedure D with some modifications. NHC.HCl 16a(45 mg, 0.046 mmol); sealed tube and heated at 100 °C for 16 h; FCC (100:0 to 98:2 CH₂Cl₂:MeOH) yielded **291c** (21.8 mg, 40%) as an orange oil; R_f = 0.5 (90:10 CH₂Cl₂:MeOH); v_{max} / cm^{+} (film): 2937, 2835, 1602, 1459, 1343, 1300, 1242, 1210, 1165, 1128, 1088; ¹H NMR (500 MHz, CDCl₃) observed peaks δ: 7.84 (4H, m, ArCH), 7.23-7.17 (2H, m, ArCH), 7.11 (1H, d, J = 2.0 Hz, CH Imidazolylidene), 7.05 (1H, d, J = 2.0 Hz, CH Imidazolylidene), 6.44 (1H, d, J = 5.0 Hz, H-Carbohydrate), 5.19 (1H, br s, H- Carbohydrate), 5.04 (1H, s, H-Carbohydrate), 4.95 (1H, q, J = 7.5 Hz, CH COD), 4.89-4.84 (3H, m, H-Carbohydrate) & H-Carbohydrate & CH COD), 4.39 (1H, t, J = 9.5 Hz, H-Carbohydrate), 3.89 (1H, t, J = 9.5 Hz, H-Carbohydrate), 3.85 (1H, m, CH COD), 3.78-3.74 (1H, m, CH COD), 3.74-3.69 (2H, m, H-Carbohydrate & H-6a), 3.68-3.63 (2H, m, H-Carbohydrate & H-6b), 3.59-3.53 (H-6a & H-6b), 3.52 (3H, s, OCH₃), 3.49 (3H, s, OCH₃), 3.44 (3H, s, OCH₃), 3.39 (3H, s, OCH₃), 2.86 (6H, s, OCH₃), 2.59-2.51 (1H, m, CHH cop), 2.46 (1H, ddt, J = 15.0, 10.0 and 7.5 Hz, CHH cop), 2.37-2.21 (2H, m, CHH cop & CHH cop), 2.01 (1H, dd, J = 16.0 and 7.0 Hz, CHH cop), 1.91-1.84 (1H, m, CHH cop), 1.81-1.70 (2H, m, CHH cop & CHH cop); ¹³C NMR (125 MHz, CDCl₃) observed peaks δ : 185.8 (d, J = 47.5 Hz, C carbene), 155.4 (ArC), 154.1 (ArC), 132.0 (ArCH), 131.4 (ArCH), 130.9 (ArCH), 122.9 (ArCH), 122.6 (ArCH), 121.5(CH Imidazolylidene), 118.5 (CH Imidazolylidene), 102.8 (C-1), 102.6 (C-1), 98.5 (d, J = 6.5 Hz, CH COD), 97.0 (d, J = 5.0 Hz, CH COD), 86.1 (C-Carbohydrate), 85.1 (C-Carbohydrate), 78.6 (C-Carbohydrate), 77.9 (C-Carbohydrate), 76.6 (C-Carbohydrate), 75.8 (C-Carbohydrate), 74.7 (C-6), 71.4 (C-6), 70.6 (d, J = 14.0 Hz, CH COD), 67.5 (C-Carbohydrate), 66.8 (d, J = 13.0 Hz, CH COD), 65.0 (C-Carbohydrate), 59.4 (OCH3), 59.3 (OCH3), 58.6 (OCH3), 58.3 (OCH3), 57.6 (OCH3), 56.6 (OCH3), 33.7 (CH2 COD), 31.8 (CH2 COD), 29.9 (CH2 COD), 27.9 (CH2 COD); 19F NMR (470 MHz, CDCl3) &: -58.8 (CF_3) , -59.0 (CF₃); m/z HRMS (ESI): Found $[M-CI]^+ 1111.2495$, C45H52N2O10Rh requires 1111.2480; $[\alpha]^{23}_D = 31$ (c 0.6, CHCl3).

[1,3-Bis(methyl 2-amino-4,6-bis-*O*-methyl-3-*O*-(2',4'-trifluoromethyl)benzene-2-deoxy-β-D-glucopyranoside](chloro)(1,5-cyclooctadiene)rhodium(I) (17b):

Following General Procedure D with some modifications. NHC.HCl 16b (50 mg, 53 µmol); sealed tube and heated at 100 °C for 16 h; FCC (100:0 to 95:5 CH₂Cl₂:MeOH) yielded **17b** (60.8 mg, 99%) as an orange oil; $R_f = 0.7$ (90:10 CH₂Cl₂:MeOH); v_{max} / cm-1 (film): 2937, 1627, 1595, 1509, 1347, 1315, 1284, 1262, 1220, 1178, 1125, 1084, 1054; ¹H NMR (500 MHz, CDCl₃) δ: 7.93 (1H, br s, ArCH), 7.85 (1H, d, *J* = 2.5 Hz, ArCH), 7.77 (1H, dd, J = 9.0 and 2.5 Hz, ArCH), 7.69 (1H, d, J = 2.5 Hz, ArCH), 7.57 (1H, dd, J = 9.0 and 2.5 Hz, ArCH), 7.22 (1H, d, J = 2.0 Hz, CH Imidazolylidene), 7.16 (1H, d, J = 9.0 Hz, ArCH), 6.78 (1H, d, J = 2.0 Hz, CH Imidazolylidene), 6.33 (1H, br s, H-carbohydrate), 6.17 (1H, br s, H-carbohydrate), 4.99 (1H, tt, J=9.0 and 2.5 Hz, CH COD), 4.95 (1H, br s, H-carbohydrate), 4.79 (1H, br s, H-carbohydrate), 4.66 (1H, q, J = 7.5 Hz, CH COD), 4.28 (1H, br s, H-carbohydrate), 4.07 (1H, app. dt, J = 7.0 and 1.5 Hz, H-carbohydrate), 3.93 (1H, ddd, 10.0, 4.0 and 2.0 Hz, H-5), 3.78 (1H, dd, J = 11.0 and 2.0 Hz, H-6a), 3.73 (1H, dd, J = 10.0 and 6.5 Hz, H-6a), 3.72 (1H, dd, J = 11.0 and 4.0 Hz, H-6b), 3.66-3.61 (1H, m, H-carbohydrate), 3.61 (3H, s, OCH₃), 3.56 (1H, dd, J = 10.0 and 7.0 Hz, H-6b), 3.50 (3H, s, OCH₃), 3.48 (3H, s, OCH₃), 4.43 (1H, br s, H-carbohydrate), 3.36 (2H, br s, CH COD), 3.28 (3H, s, OCH3), 3.15 (3H, s, OCH3), 2.71 (3H, s, OCH3), 2.61 (1H, br s, CH2 cod), 2.55-2.46 (1H, m, CH2 cod), 2.24-2.11 (2H, m, CH2 cod), 2.06-1.93 (2H, m, CH2 cod), 1.77-1.69 (1H, m, CH₂ cod), 1.63-1.57 (1H, m, CH₂ cod). Only observed 13 carbohydrate protons. ¹³C NMR (125 MHz, CDCl₃) *observed peaks* δ: 183.7 (br d, *J* = 50.0 Hz, C Imidazolylidene), 158.5 (ArCOR), 157.0 (ArCOR), 130.8 (d, *J* = 4.0 Hz, ArCH), 130.0 (d, J = 4.0 Hz, ArCH), 125.1 (br s, ArCH), 123.9 (br s, ArCH), 123.8 (q, J = 271.0 Hz, ArCCF₃), 123.7 (q, *J* = 271.0 Hz, ArCCF₃), 123.0 (q, *J* = 32.0 Hz, ArCCF₃), 122.3 (q, *J* = 33.0 Hz, ArCCF₃),

119.5 (br s, CH Imidazolylidene), 119.5 (br s, CH Imidazolylidene), 119.2 (q, J = 32.0 Hz, ArCCF3), 118.0 (q, J = 32.0 Hz, ArCCF3), 116.5 (br s, ArCH), 113.8 (s, ArCH), 100.3 (C carbohydrate), 98.8 (d, J = 7.0 Hz, CH coD), 98.0 (d, J = 7.0 Hz, CH coD), 81.7 (C carbohydrate), 80.0 (C carbohydrate), 75.7 (C carbohydrate), 74.5 (C carbohydrate), 74.2 (C carbohydrate), 73.4 (C carbohydrate), 72.4 (C carbohydrate), 71.0 (C carbohydrate), 67.9 (d, J = 16.0 Hz, CH coD), 67.6 (C carbohydrate), 62.5 (C carbohydrate), 56.0 (OCH3), 59.52 (OCH3), 59.47 (C carbohydrate), 59.0 (OCH3), 56.8 (OCH3), 56.5 (OCH3), 54.8 (OCH3), 33.7 (CH2 coD), 31.5 (CH2 coD), 31.0 (CH2 coD), 27.1 (CH2 coD); 19F NMR (470 MHz, CDCl3) &: -61.89 (CF3), -61.92 (CF3), -62.1 (CF3), -62.3 (CF3); *m/z* HRMS (ESI): Found [M-Cl]⁺ 1111.2456, C45H52F12N2O10Rh requires 1111.2480; $[\alpha]^{21}_D = 81$ (*c* 1.9, CHCl3).

[1,3-Bis(methyl 2-amino-4,6-bis-*O*-methyl-3-*O*-(2',3',5'-trifluoro)benzene-2-deoxy-β-D-glucopyranoside)imidazol-2-ylidene](chloro)(1,5-cyclooctadiene)rhodium(I) (17c):

Following General Procedure D. NHC.HCl **16c** (20.0 mg, 26.0 µmol), FCC (100:0 to 98:2 CH₂Cl₂:MeOH) yielded **17c** (15.5 mg, 69%) as an orange oil which was contaminated by an unknown impurity (~10%); R_f = 0.7 (90:10 CH₂Cl₂:MeOH); v_{max} / cm⁻¹ (film): 2924, 1632, 1515, 1453, 1124, 1087; ¹H NMR (500 MHz, CDCl₃) *observed peaks* δ: 7.10 (1H, d, J = 2.0 Hz, CH Imidazolylidene), 6.92 (1H, d, J = 2.0 Hz, CH Imidazolylidene), 6.85-6.68 (2H, m, ArCH), 6.52-6.41 (2H, m, ArCH), 5.05-4.97 (2H, m), 4.90-4.84 (2H, m), 4.83-4.68 (1H, br s), 3.97-3.92 (1H, m), 3.89-3.85 (1H, br s), 3.81-3.62 (8H, m), 3.59-3.53 (3H, m), 3.51-3.45 (8H, m), 3.43-3.36 (7H, m), 3.30-3.20 (3H, br s), 2.59-2.46 (1H, br s), 2.46 (3H, m), 2.03-1.80 (4H, m); ¹³C NMR (125 MHz, CDCl₃) *observed peaks* δ: 171.12, 137.85, 129.02, 128.20, 125.28, 122.90 (br, CH Imidazolylidene), 99.75, 79.33, 79.25, 77.27, 77.01, 76.76, 76.08, 73.89, 72.07, 70.11, 69.89, 66.73, 66.28, 64.17, 60.38, 60.28, 60.14, 59.35, 59.34, 59.26, 59.18, 57.07, 57.00, 32.54, 31.92, 29.69, 29.65, 29.35, 22.68, 21.44, 21.03, 14.19, 14.10; ¹⁹F NMR (377 MHz, CDCl₃) δ: -114.3 (q, J = 11.0 Hz, ArCF), -119.5 (q, J = 11.0 Hz, ArCF), -138.4 (br s, ArCF), -163.7 (br, s, ArCF); m/z HRMS (ESI): Found [M]⁺ 947.2419, C41H₅₀F₆N₂O10Rh requires 947.2410; [α]²²D = 5 (*c* 0.2, CHCl₃).

[1,3-Bis(methyl 2-amino-4,6-bis-*O*-methyl-3-*O*-(4'-phenyl-2',3',5',6'-tetrafluoro)benzene-2-deoxy-β-D-glucopyranoside)imidazol-2-ylidene](chloro)(1,5-cyclooctadiene)rhodium(I) (17d):

Following General Procedure D with some modifications. NHC.HCl **16d** (52 mg, 54 µmol); sealed tube and heated at 100 °C for 16 h; FCC (100:0 to 98:2 CH₂Cl₂:MeOH) yielded **17d** (40.6 mg, 64%) as an orange oil; R_{f} = 0.5 (90:10 CH₂Cl₂:MeOH); v_{max} / cm⁻¹ (film): 2932, 2834, 1650, 1486, 1440, 1196, 1079; ¹H NMR (500 MHz, CDCl₃) δ: 7.41-7.28 (10H, m, ArCH), 7.11-7.08 (2H, m, CH Imidazolylidene), 6.48 (1H, br s, H-Carbohydrate), 5.09-5.04 (2H, m, H-Carbohydrate & CH coD), 4.95-4.82 (3H, m, H-Carbohydrate & H-Carbohydrate & CH coD), 4.18 (1H, *app*. t, *J* = 9.5 Hz, H-Carbohydrate , 3.88 (1H, *app*. t, *J* = 7.0 Hz, H-Carbohydrate , 3.85-3.73 (5H, m, H-Carbohydrate & H-Carbohydrate & CH coD & H-6a & H-6b), 3.69-3.61 (3H, m CH coD & H-6a & H-6b), 3.56 (OCH₃), 3.50 (OCH₃), 3.48 (OCH₃), 3.46 (OCH₃), 3,43 (OCH₃), 3.36 (OCH₃), 2.64-2.32 (4H, m, *CH*H coD), 2.05-1.79 (4H, m, *CHH* coD). *Only observed 13 carbohydrate protons*; ¹³C NMR (125 MHz, CDCl₃) δ: 185.8 (*app*. br s, C carbene), 144.1 (br d, *J* = 245.0 Hz, ArCF & ArCF), 141.2 (dd, *J* = 246.0 and 15.0 Hz, ArCF), 140.8 (dd, *J* = 247.0 and 16.0 Hz, ArCF), 136.5 (br s, ArC), 135.8 (br s, ArC), 130.2 (ArCH), 130.1 (ArCH), 128.8 (ArCH), 128.7 (ArCH), 128.5 (ArCH), 128.4 (ArCH), 127.3 (ArC), 127.1 (ArC), 117.5 (CH Imidazolylidene & CH Imidazolylidene), 114.5 (t, *J* = 17.0 Hz, ArC), 114.1 (t, *J* = 17.0 Hz, ArC), 103.5 (C-carbohydrate), 79.4 (C-carbohydrate), 79.3 (C-Carbohydrate), 77.3 (C-Carbohydrate), 76.5 (C-carbohydrate), 75.1 (C-carbohydrate), 73.8

(C-6), 71.4 (C-6), 70.5 (br s, CH cod), 67.9 (br s, CH cod), 64.87, 60.5 (OCH₃), 59.3 (OCH₃), 59.2 (OCH₃), 57.4 (OCH₃) 56.9 (OCH₃), 33.3 (CH₂ cod), 32.0 (CH₂ cod), 29.7 (CH₂ cod), 28.2 (CH₂ cod); 19F NMR (470 MHz, CDCl₃) δ : -145.5 (CF), -145.8 (CF), -156.3 (CF), -157.3 (CF); *m/z* HRMS (ESI): Found [M-Cl]+ 1135.2867, C₅₃H₅₆F₈N₂O₁₀Rh requires 1135.2857; $[\alpha]^{21}_{D} = -1$ (*c* 0.7, CHCl₃).

[1,3-Bis(methyl 2-amino-4,6-di-*O*-methyl-3-*O*-1'-(4'-cyano)naphthlene-2-deoxy-β-D-glucopyranoside) imidazol-2-ylidene](chloro)(1,5-cyclooctadiene)rhodium(I) (17e):

Following General Procedure D with some modifications. NHC.HCl 16e (28.0 mg, 54.0 µmol); sealed tube and heated at 100 °C for 16 h; FCC (100:0 to 98:2 CH₂Cl₂:MeOH) yielded 17e (29.3 mg, 82%) as an orange oil; R_{f} = $0.9 (90:10 \text{ CH}_2\text{Cl}_2:\text{MeOH}); v_{\text{max}} / \text{ cm}^{-1} (\text{film}): 3074, 2929, 2834, 2217, 1575, 1462, 1427, 1387, 1323, 1278, 1244, 1276, 1287, 128$ 1228, 1100, 1082, 1061, 1015; ¹H NMR (500 MHz, CDCl₃) δ: 8.55 (1H, d J = 8.5 Hz, ArCH), 8.30 (1H, d, J = 8.5 Hz, ArCH), 8.16 (1H, d, J = 8.5 Hz, ArCH), 8.13 (1H, d, J = 8.5 Hz, ArCH), 7.84 (1H, d, J = 8.0 Hz, ArCH), 7.69-7.56 (5H, m, ArCH), 8.17 (1H, br s, CH Imidazolylidene), 7.05 (1H, br s, CH Imidazolylidene) 6.92 (2H, br s, ArCH), 6.21 (1H, br s, H-Carbohydrate), 5.77 (1H, br s, H-Carbohydrate), 5.11 (1H, br s, H-Carbohydrate), 4.96 (1H, d, J=6.0 Hz, Hcarbohydrate), 4.81 (1H, td, J = 8.0 and 4.0 Hz, CH cop), 4.37 (1H, d, J = 8.0 Hz, CH cop), 4.00 (1H, td, J = 6.0 and 3.0 Hz, H-Carbohydrate), 3.93 (1H, ddd, 9.5, 4.5 and 2.5 Hz, H-Carbohydrate), 3.86 (1H, br s, H-Carbohydrate), 3.77-3.61 (4H, m, H-Carbohydrate), 3.56 (3H, s, OCH3), 3.54-3.49 (1H, m, H-Carbohydrate), 3.47 (3H, s, OCH3), 3.45 (3H, s, OCH3), 3.45-3.28 (4H, m, H-Carbohydrate & H-Carbohydrate & CH COD & CH COD), 3.16 (3H, s, OCH3), 3.15 (3H, s, OCH3), 2.79 (3H, s, OCH₃), 2.47-2.29 (2H, m, CHH cop), 2.16-2.09 (1H, m, CHH cop), 1.93-1.80 (3H, m, CHH cop), 1.66-1.56 (2H, m, CHH cop); ¹³C NMR (125 MHz, CDCl₃) observed peaks δ: 185.7 (br s, C Carbene), 157.5, 156.7, 134.0, 133.9, 133.8, 133.6, 129.0, 128.9, 126.9, 126.8, 125.5, 125.2, 125.2, 125.1, 123.4, 122.7, 119.6, 118.5, 118.3, 107.48, 106.2, 102.6, 102.1, 100.7, 98.7, 97.7, 81.3, 79.1, 76.8, 76.2, 75.7, 75.5, 75.3, 74.7, 73.5, 73.0, 72.5, 71.9, 70.7, 68.6, 68.1, 67.4, 63.9, 60.2, 59.5, 59.1, 57.6, 57.2, 55.7, 33.2, 32.3, 29.7, 28.1; m/z HRMS (ESI): Found [M-Cl]+989.3193, C51H58N4O10Rh requires 989.3202; $[\alpha]^{21}D = 111$ (*c* 0.9, CHCl₃).

Asymmetric Catalysis:

General Procedure F. Asymmetric Rh-Catalysed Hydrosilylation: To a solution of **complex** (2 mol%) in anhydrous hexane (1 mL, 0.5 M) at rt, was added Ph₂SiH₂ (0.28 mL, 300 mol%) and **ketone** (0.5 mmol, 100 mol%) and the solution was stirred for 18 h. Desilylation was mediated by the addition of MeOH (3.0 mL) and K₂CO₃ (30.0 mg). The solution was stirred for 2 h and then concentrated *in vacuo*. Purification of the title compound was accomplished by FCC which yielded the product **alcohol**.

Following General Procedure E. Complex **12a** (9.1 mg); ketone **2** (58.3 μ L); FCC (hexane:Et₂O 85:15) yielded **3** (45.8 mg, 75%) as a colourless oil; the enantiomeric excess of **3** was determined by chiral HPLC (Chiralpak IB, hexane:I-PrOH 97:3, 0.5 mL min⁻¹, 20.0 °C); t_R (major) = 18.5 min and t_R (minor) = 20.1 min.

Following General Procedure E. Complex 17c (9.8 mg); ketone 2 (58.3 μ L); FCC (hexane:Et₂O 85:15) yielded 3 (54.4 mg, 89%) as a colourless oil; the enantiomeric excess of 3 was determined by chiral HPLC (Chiralpak IB, hexane:*i*-PrOH 97:3, 0.5 mL min⁻¹, 20.0 °C); t_R (major) = 18.5 min and t_R (minor) = 20.1 min.

ŧ	[min]		[min]	[mAU*s]	[mAU]	8	
1	19.867	BB	0.3197	2100.09668	99.72891	86.4289	
2	22.841	BBA	0.3418	329.75827	14.92120	13.5711	

References:

1. Still, W. C.; Kahn, M.; Mitra, A., Rapid chromatographic technique for preparative separations with moderate resolution. *J. Org. Chem.* **1978**, *43* (14), 2923-2925.

2. Buskas, T.; Garegg, P. J.; Konradsson, P.; Maloisel, J. L., Facile Preparation of Glycosyl Donors for Oligosaccharide Synthesis - 2-Azido-2-Deoxyhexopyranosyl Building-Blocks. *Tetrahedron-Asymmetr* **1994**, *5* (11), 2187-2194.

3. Huynh, H. V.; Han, Y.; Jothibasu, R.; Yang, J. A., C-13 NMR Spectroscopic Determination of Ligand Donor Strengths Using N-Heterocyclic Carbene Complexes of Palladium(II). *Organometallics* **2009**, *28* (18), 5395-5404.

4. Henderson, A. S.; Medina, S.; Bower, J. F.; Galan, M. C., Nucleophilic Aromatic Substitution (SNAr) as an Approach to Challenging Carbohydrate-Aryl Ethers. *Organic Letters* **2015**, *17* (19), 4846-4849.

5. Jia, Y. X.; Katayev, D.; Bernardinelli, G.; Seidel, T. M.; Kundig, E. P., New chiral N-heterocyclic carbene ligands in palladium-catalyzed alpha-arylations of amides: conformational locking through allylic strain as a device for stereocontrol. *Chemistry* **2010**, *16* (21), 6300-9.

6. Paas, M.; Wibbeling, B.; Frohlich, R.; Hahn, F. E., Silver and rhodium complexes of stable, monomeric imidazolidin-2-ylidenes: Synthesis, reactivity and decomposition pathway. *Eur J Inorg Chem* **2006**, (1), 158-162.

NMR data

¹H NMR (500 MHz, CDCl₃) Bis(phenyl 2-amino-3,4,6-tri-*O*-methyl-2,1-dideoxy-1-thio-β-D-glucopyranoside)-*N*,*N*'-iminoethylidene (S4):

¹³C NMR (125 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃) 1,3-Bis(phenyl 2-amino-3,4,6-tri-*O*-methyl-2,1-dideoxy-1-thio-β-D-glucopyranoside)imidazolium chloride (9a).

HSQC (CDCl₃)

¹H NMR (500 MHz, CDCl₃) [1,3-Bis(phenyl 2-amino-3,4,6-tri-*O*-methyl-2,1-dideoxy-1-thio-β-D-glucopyranoside)imidazol-2- ylidene](chloro)(1,5-cyclooctadiene)rhodium(I) (12a):

¹³C NMR (125 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃) Methyl 2-amino-4,6-bis-*O*-methyl-3-*O*-(3',5'-trifluoromethyl)benzene-2-deoxy-β-D-glucopyranoside (8b):

¹³C NMR (125 MHz, CDCl₃)

¹⁹F NMR (470 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃) Methyl 2-amino-4,6-bis-*O*-methyl-3-*O*-(2',6'-trifluoromethyl)benzene-2-deoxy-β-D-glucopyranoside (15a):

¹³C NMR (125 MHz, CDCl₃)

-61.0 -61.2 -61.4 -61.6 -61.8 -62.0 -62.2 -62.4 -62.6 -62.8 -63.0 -63.2 -63.4 -63.6 -63.8 -64.0 -64.2 -64.4 -64.6 f1 (ppm)

-30000

-28000

-26000

-24000

-22000

-20000

-18000

-16000

-14000

-12000

10000

-8000

-6000

-4000

-2000

--2000

-0

¹⁹F NMR (470 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃) Methyl 2-amino-4,6-bis-*O*-methyl-3-*O*-(2',4'-trifluoromethyl)benzene-2-deoxy-β-D-glucopyranoside (15b):

¹³C NMR (125 MHz, CDCl₃)

¹⁹F NMR (470 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃) Methyl 2-amino-4,6-bis-*O*-methyl-3-*O*-(2',3',5'-trifluoro)benzene-2-deoxy-β-D-glucopyranoside (15c):

¹⁹F NMR (377 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃) Methyl 2-amino-4,6-bis-*O*-methyl-3-*O*-(4'-phenyl-2',3',5',6'-tetrafluoro)benzene-2-deoxy-β-D-glucopyranoside (15d):

¹⁹F NMR (470 MHz, CDCl₃)

6.0.0	

¹H NMR (500 MHz, CDCl₃) Methyl 2-amino-4,6-di-*O*-methyl-3-*O*-1'-(4'-cyano)naphthlene-2-deoxy-β-D-glucopyranoside (15e):

¹³C NMR (125 MHz, CDCl3)

¹⁹F NMR (377 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃) Bis(methyl 2-amino-4,6-bis-*O*-methyl-3-*O*-(2',6'-trifluoromethyl)benzene-2-deoxy-β-D-glucopyranoside)-*N*,*N*'-iminoethylidene (S6a):

¹³C NMR (125 MHz, CDCl3)

¹⁹F NMR (470 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃) Bis(methyl 2-amino-4,6-bis-*O*-methyl-3-*O*-(2',4'-trifluoromethyl)benzene-2-deoxy-β-D-glucopyranoside)- *N*,*N*'iminoethylidene (S6b):

¹³C NMR (125 MHz, CDCl3)

¹H NMR (500 MHz, CDCl₃) Bis(methyl 2-amino-4,6-bis-*O*-methyl-3-*O*-(2',3',5'-trifluoro)benzene-2-deoxy-β-D-glucopyranoside)-*N*,*N*'- iminoethylidene (S6c):

¹H NMR (500 MHz, CDCl₃) Bis(methyl 2-amino-4,6-bis-*O*-methyl-3-*O*-(4'-phenyl-2',3',5',6'-tetrafluoro)benzene-2-deoxy-β-D-glucopyranoside)-*N*,*N*'iminoethylidene (S6d):

¹⁹F NMR (470 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃) Bis(methyl 2-amino-4,6-di-*O*-methyl-3-*O*-1'-(4'-cyano)naphthlene-2-deoxy-β-D-glucopyranoside)-*N*,*N'*-iminoethylidene (S6e):

¹H NMR (500 MHz, CDCl₃) 1,3-Bis(methyl 2-amino-4,6-bis-*O*-methyl-3-*O*-(3',5'-trifluoromethyl)benzene-2-deoxy-β-D-glucopyranoside)imidazolium chloride (9b):

¹H NMR (500 MHz, CDCl₃) 1,3-Bis(methyl 2-amino-4,6-bis-*O*-methyl-3-*O*-(2',6'-trifluoromethyl)benzene-2-deoxy-β-D-glucopyranoside)imidazolium chloride (16a):

¹H NMR (500 MHz, CDCl₃) 1,3-Bis(methyl 2-amino-4,6-bis-*O*-methyl-3-*O*-(2',4'-trifluoromethyl)benzene-2-deoxy-β-D-glucopyranoside)imidazolium chloride (16b):

¹⁹F NMR (470 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃) 1,3-Bis(methyl 2-amino-4-6-bis-*O*-methyl-3-*O*-(2',3',5'-trifluoro)benzene-2-deoxy-β-D-glucopyranoside)imidazolium chloride (16c):

¹⁹F NMR (377 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃) 1,3-Bis(methyl 2-amino-4,6-bis-*O*-methyl-3-*O*-(4'-phenyl-2',3',5',6'-tetrafluoro)benzene-2-deoxy-β-D-glucopyranoside)imidazolium chloride (16d):

¹H NMR (500 MHz, CDCl₃) 1,3-Bis(methyl 2-amino-4,6-di-*O*-methyl-3-*O*-1'-(4'-cyano)naphthlene-2-deoxy-β-D-glucopyranoside)imidazolium chloride (16e):

¹H NMR (500 MHz, CDCl₃) [1,3-Bis(methyl 2-amino-4,6-bis-*O*-methyl-3-*O*-(3',5'-trifluoromethyl)benzene-2-deoxy-β-D-glucopyranoside)imidazol-2-ylidene](chloro)(1,5-cyclooctadiene)rhodium(I) (12b):

¹H NMR (500 MHz, CDCl₃) [1,3-Bis(methyl 2-amino-4,6-bis-*O*-methyl-3-*O*-(2',6'-trifluoromethyl)benzene-2-deoxy-β-D-glucopyranoside)imidazol-2-ylidene](chloro)(1,5-cyclooctadiene)rhodium(I) (17a):

¹H NMR (500 MHz, CDCl₃) [1,3-Bis(methyl 2-amino-4,6-bis-*O*-methyl-3-*O*-(2',4'-trifluoromethyl)benzene-2-deoxy-β-D-glucopyranoside](chloro)(1,5cyclooctadiene)rhodium(I) (17b):

		1.85 1.92 2.31 2.31	JRINE_001	υρίΑ_Γιυ	80_an0976
-/5					
-70					
-65					
-60					
-55					
-50					
-45					
-40					
-35					
-30					
-25					
-20					
-15		1			
-					
-10					
-50					
5					

¹H NMR (500 MHz, CDCl₃) [1,3-Bis(methyl 2-amino-4,6-bis-*O*-methyl-3-*O*-(2',3',5'-trifluoro)benzene-2-deoxy-β-D-glucopyranoside)imidazol-2-ylidene] (chloro)(1,5-cyclooctadiene)rhodium(I) (17c):

¹H NMR (500 MHz, CDCl₃) [1,3-Bis(methyl 2-amino-4,6-bis-*O*-methyl-3-*O*-(4'-phenyl-2',3',5',6'-tetrafluoro)benzene-2-deoxy-β-D-glucopyranoside)imidazol-2-ylidene](chloro)(1,5-cyclooctadiene)rhodium(I) (17d):

¹H NMR (500 MHz, CDCl₃) [1,3-Bis(methyl 2-amino-4,6-di-*O*-methyl-3-*O*-1'-(4'-cyano)naphthlene-2-deoxy-β-D-glucopyranoside)imidazol-2-ylidene](chloro) (1,5-cyclooctadiene)rhodium(I) (17e):

