Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Chiral 1,5-disubstituted 1,2,3-triazoles – versatile tools for foldamers and peptidomimetic applications

Anna Said Stålsmeden,^a Andrew J. Paterson,^a Imola Cs. Szigyártó,^b Linda Thunberg,^c Johan R. Johansson,^{*d} Tamás Beke-Somfai,^{*b} and Nina Kann^{*a}

Table of contents

Table S1. Computational data for (R)-6	S2-S3
Table S2. Computational data for (S)-6	S4-S5
Table S3. Computational data for (R)-5	S6-S7
Table S4. Computational data for (S)-5	S 8
Table S5. Computational data for (R,R) -7	S9-S10
Table S6. Computational data for (S,R) -7	S11-S12
Table S7. Computational data for (R,S)-7	S13-S14
Table S8. Computational data for (S,S)-7	S15-S16
Table S9. ΔG values of investigated secondary structures.	S17
Determination of enantiomeric excess for monomers 5-8	S18-S24
¹ H and ¹³ C NMR spectra for 2 and 5-11	S25-S41

^{a.} Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden. E-mail: kann@chalmers.se.

^{b.} Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar túdosok krt., H-1117 Budapest, Hungary. E-mail: beke-somfai.tamas@ttk.mta.hu.

^{c.} Early Product Development, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca Gothenburg, Sweden.

^{d.} Medicinal Chemistry, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca Gothenburg, Sweden. E-mail: johan.x.johansson@astrazeneca.com.

	Sec.							Rel. En.
Conf.	struct.	Method	φ	θ	ζ	ρ	Ψ	(kcal.mol⁻¹)
		B3LYP	-139,2	61,7	-5,2	-78,3	-41,8	3,11
1	H14	M06-2X	-141,7	57,0	-4,5	-74,8	-31,7	1,17
		ωB97X-D	-138,8	57,6	-4,6	-74,2	-31,5	1,20
		B3LYP	109,0	74,1	-5,8	-75,8	-81,7	0,98
2	C8	M06-2X	71,8	51,9	-8,4	-67,2	-37,4	0,56
		ωB97X-D	77,6	59,8	-7,0	-69,3	-49,0	0,51
		B3LYP	-92,1	94,1	5,4	104,7	33,7	1,25
3	Turn	M06-2X	-72,7	102,0	7,0	82,5	119,5	4,29
		ωB97X-D	-77,6	99,9	6,6	99,7	40,3	2,65
		B3LYP	117,4	-62,2	5,1	103,1	46,8	0,25
4	2-Helix	M06-2X	117,9	-57,9	7,0	84,3	28,5	0,12
		ωB97X-D	117,6	-60,7	6,3	94,2	35,8	0,19
		B3LYP	116,7	167,5	2,0	108,5	29,8	2,52
6	H8	M06-2X	70,1	-154,7	1,0	74,6	-1,1	2,85
		ωB97X-D	69,9	-147,2	0,3	94,0	-30,3	3,33
		B3LYP	-92,1	94,1	5,4	104,7	33,7	1,25
7	Spiral	M06-2X	-69,5	102,2	5,3	102,0	34,2	2,86
	H16	ωB97X-D	-76,4	100,4	6,5	99,5	40,4	2,65
		B3LYP	-113,1	76,8	3,0	75,0	-116,9	1,47
8	H10	M06-2X	-114,2	75,7	5,6	72,4	-122,8	2,19
		ωB97X-D	-112,7	76,1	5,1	72,3	-120,3	2,14
	H10	B3LYP	109,1	74,1	-5,8	-75,7	-81,7	0,98
10	Turn2	M06-2X	80,3	84,9	-1,2	-55,6	-64,8	2,22
	Turn3	ωB97X-D	77,6	59,8	-7,0	-69,4	-49,0	0,51
		B3LYP	-71,4	146,9	5,2	-73,7	2,5	2,99
11	H14	M06-2X	-69,3	151,1	3,2	-68,2	-7,1	2,33
		ωB97X-D	-68,6	148,5	5,3	-70,8	-2,2	2,38
		B3LYP	-92,1	94,1	5,5	104,7	33,8	1,25
13		M06-2X	-131,0	39,5	-10,0	57,5	27,6	3,44
		ωB97X-D	-132,1	40,7	-10,4	60,8	25,5	4,18
		B3LYP	88.9	83,9	2,0	109,7	33,4	2,29
20		M06-2X	78,1	, 75,2	, 4,1	74,7	33,5	4,66
		ωB97X-D	78,9	75,3	, 2,6	, 106,6	36,3	4,20
21		B3LYP	111,9	164,3	-4,7	-70,9	-78,8	3,57
~-		M06-2X	88,5	164,8	-6,6	-69,8	-62,3	5,39

Table S1. Structural and energetic properties of (R)-6 conformers obtained at the B3LYP/6-311++G(2d,2p),M06-2X/6-311++G(2d,2p) and ω B97X-D/6-311++G(2d,2p) levels of theory.

		ωB97X-D	95,2	161,3	-6,1	-68,1	-64,3	4,93
		B3LYP	-113,9	-170,9	0,9	110,1	34,2	2,16
22		M06-2X	-87,9	-175,7	6,0	87,6	31,1	4,98
		ωB97X-D	-95,6	-175,2	4,5	95,7	38,7	4,54
		B3LYP	161,0	155,4	0,2	61,2	-150,5	7,54
23		M06-2X	174,6	153,6	-1,3	51,6	-147,9	8,85
		ωB97X-D	175,9	151,2	-1,0	56,8	-149,2	9,39
		B3LYP	-107,1	-73,5	6,1	86,8	65,4	0,00
2'	C8	M06-2X	-67,5	-56,4	9,5	74,9	31,1	0,00
		ωB97X-D	-72,6	-63,5	6,7	78,1	42,9	0,00

	Sec.							Rel. En.
Conf.	struct.	Method	arphi	θ	ζ	ρ	Ψ	(kcal.mol ^{_1})
		B3LYP	-117,5	62,1	-5,2	-102,8	-46,2	0,26
1	H14	M06-2X	-117,9	57,9	-7,2	-84,4	-30,3	0,11
		ωB97X-D	-117,6	60,7	-6,3	-94,2	-35,8	0,19
		B3LYP	107,1	73,5	-6,1	-86,8	-65,4	0,00
2	C8	M06-2X	67,6	56,4	-9,5	-74,9	-31,1	0,00
		ωB97X-D	72,6	63,5	-6,7	-78,1	-42,9	0,00
		B3LYP	-87,9	138,6	-2,4	62,5	86,6	4,92
3	Turn	M06-2X	-78,0	139,3	-6,3	61,8	159,9	6,63
		ωB97X-D	-84,4	136,6	-5,8	63,0	157,9	6,46
		B3LYP	-109,1	-74,1	5,8	75,7	81,7	0,98
2′	2-Helix	M06-2X	-71,8	-51,9	8,4	67,2	37,4	0,56
		ωB97X-D	-77,6	-59,8	7,0	69,3	49,0	0,51
		B3LYP	100,6	61,7	-12,0	49,3	80,3	3,05
6	H8	M06-2X	79,4	63,5	-9,7	44,7	65,3	3,29
		ωB97X-D	84,8	60,7	-10,3	47,4	66,2	3,19
7	Spiral	M06-2X	-76,2	144,9	-7,4	56,5	37,5	5,49
	H16	ωB97X-D	-80,2	143,9	-6,5	58,4	37,6	5,33
		B3LYP	-118,0	91,2	0,2	56,2	-110,0	4,65
8	H10	M06-2X	-122,0	89,5	1,2	51,8	-127,5	4,71
		ωB97X-D	-119,6	90,9	1,5	53,5	-118,1	4,10
10	Turn2	M06-2X	-70,1	154,7	-1,0	-74,6	1,1	2,85
	Turn3	ωB97X-D	-68,9	147,6	0,1	-92,7	28,3	3,35
		B3LYP	-139,7	53,8	-16,2	51,4	40,8	5,93
11	H14	M06-2X	-136,8	48,6	-13,3	47,7	38,6	3,34
		ωB97X-D	-136,2	49,3	-15,1	51,0	37,3	3,81
	H10	B3LYP	-76,0	111,2	4,4	-130,7	67,8	2,44
13		M06-2X	-66,3	108,1	6,3	-139,8	63,0	3,37
		ωB97X-D	-70,0	110,3	4,9	-135,0	62,3	3,46
		B3LYP	86,4	97,8	4,6	66,1	68,7	3,74
14		M06-2X	75,3	93,5	6,2	65,9	54,5	4,74
		ωB97X-D	79,2	92,4	6,2	66,1	61,4	4,39
20		B3LYP M06-2X	114,0	170,9	-0,9	-110,1	-34,2	2,16

Table S2. Structural and energetic properties of (S)-6 conformers obtained at the B3LYP/6-311++G(2d,2p),M06-2X/6-311++G(2d,2p) and $\omega B97X-D/6-311++G(2d,2p)$ levels of theory.

	ωB97X-D	95,6	175,2	-4,5	-95,7	-38,7	4,54
	B3LYP	-116,7	-167,6	-2,0	-108,5	-29,8	2,52
21	M06-2X	-70,1	154,7	-1,0	-74,6	1,1	2,85
	ωB97X-D						
	B3LYP	71,4	-146,9	-5,2	73,7	-2,5	2,99
10'	M06-2X	69,3	-151,1	-3,2	68,2	7,1	2,33
	ωB97X-D	68,6	-148,5	-5,2	70,8	2,2	2,38
	B3LYP	-111,9	-164,3	4,6	70,9	78,7	3,57
22	M06-2X	-88,5	-164,8	6,6	69,8	62,3	5,39
	ωB97X-D	-95,0	-160,8	6,3	68,3	68,0	4,88

	Sec.							Rel. En.
Conf.	struct.	Method	φ	θ	ζ	ρ	Ψ	(kcal.mol⁻¹)
		B3LYP	-101,2	51,8	-10,8	-95,8	-46,4	4,83
1	H14	M06-2X	-108,3	51,4	-11,5	-81,8	-29,0	4,75
		ωB97X-D	-104,5	52,0	-11,7	-87,6	-29,4	5,10
-		B3LYP	122,7	64,4	-8,5	-83,4	-72,1	0,00
2	C8	M06-2X	70,9	49,3	-10,9	-73,7	-26,7	0,00
		ωB97X-D	73,7	51,5	-9,0	-75,0	-32,6	0,00
		B3LYP	-92,2	64,1	-7,8	-99,0	-132,7	5,58
3	Turn	M06-2X	-90,7	66,8	-7,9	-79,5	-174,5	5,48
		ωB97X-D	-92,2	64,5	-7,7	-82,6	-173,1	5,82
		B3LYP	-75,0	87,1	5,5	90,0	155,4	5,92
4	2-Helix	M06-2X	-67,5	94,4	4,9	76,3	-172,0	7,78
		ωB97X-D	-72,7	90,3	5,3	79,6	-176,7	7,47
		B3LYP	154,6	-56,5	8,2	94,8	126,9	0,15
6	H8	M06-2X	154,6	-57,6	5,7	97,3	129,8	1,85
		ωB97X-D	150,8	-56,3	6,9	95,3	132,2	1,58
		B3LYP	115,6		-3,2	73,4	78,4	1,34
7	Spiral	M06-2X	75,8	32,3	-2,8	64,4	56,4	2,87
	H16	ωB97X-D	86,0	31,5	-3 <i>,</i> 5	66,8	60,8	2,08
_		B3LYP	-69,1	92,7	3,8	91,9	33,5	4,40
8	H10	M06-2X	-62,4	97,3	4,7	80,4	27,8	5,36
		ωB97X-D	-65,4	95,4	4,0	83,6	26,1	5,23
		B3LYP	-59,6	134,3	0,7	-86,5	8,8	5,85
11	H14	M06-2X	-61,5	144,8	-4,0	-70,0	-14,4	5,75
		ωB97X-D	-59,8	139,5	-1,2	-79,6	1,6	5,70
		B3LYP	151,6	66,0	3,0	100,4	33,7	2,98
13		M06-2X	158,2	64,3	5,8	88,2	26,3	5,00
		ωB97X-D	156,5	65,2	5,3	90,4	27,8	4,78
		B3LYP	-61,1	99,2	4,3	-135,7	58,6	6,84
14		M06-2X	-58,6	100,1	3,5	-139,5	58,5	8,14
		ωB97X-D	-59,6	100,7	4,1	-136,5	54,9	8,09
		B3LYP	84,4	55,7	0,3	94,2	42,3	2,15
20		M06-2X	77,0	60,3	3,2	87,5	30,8	4,48
		ωB97X-D						
21		B3LYP	92,6	-157,4	-1,0	-100,7	-40,4	1,43
		M06-2X	79,7	-165,1	-3,0	-92,7	-33,5	4,20

Table S3. Structural and energetic properties of (R)-5 conformers obtained at the B3LYP/6-311++G(2d,2p),M06-2X/6-311++G(2d,2p) and ω B97X-D/6-311++G(2d,2p) levels of theory.

	B3LYP	-65,0	-64,0	-2,4	-87,8	-40,9	3,67
22	M06-2X	-71,4	-160,0	-6,0	-89,0	-28,3	6,16
	ωB97X-D	-73,7	-155,9	-6,1	-89,0	-30,2	6,08
	B3LYP	69,3	-144,0	0,3	85,9	-17,2	0,48
11'	M06-2X	67,3	-151,5	2,9	75,7	-7,9	1,58
	ωB97X-D	66,0	-147,8	0,0	77,2	-7,2	1,22
	B3LYP	-68,7	-78,3	4,4	81,2	66,0	1,98
23	M06-2X	-61,5	-55,0	8,6	77,8	28,9	0,33
	ωB97X-D	-60,9	-58,0	6,8	78,7	34,1	0,74

	Sec.							Rel. En.
Conf.	struct.	Method	arphi	θ	ζ	ρ	Ψ	(kcal.mol ^{−1})
		B3LYP	-122,4	60,0	-5,8	-99,5	-38,6	0,00
1	H14	M06-2X ωB97X-D	-119,4	55,6	-7,6	-84,7	-27,3	0,00
		B3LYP	68,7	78,3	-4,4	-81,2	-66,0	2,50
2	C8	M06-2X	61,5	54,9	-8,6	-77,8	-28,8	0,52
		ωB97X-D	60,9	58,0	-6,8	-78,7	-34,1	0,74
_		B3LYP	-108,7	70,5	-2,9	-104,4	-130,6	1,45
3	Turn	M06-2X	-112,8	59,6	-4,0	-84,5	177,3	1,09
		ωB97X-D	-114,9	60,3	-4,0	-84,5	178,5	1,29
		B3LYP	-85,6	99,4	3,7	77,2	142,1	0,70
4	2-Helix	M06-2X	-73,1	107,7	2,6	71,1	153,4	3,00
		ωB97X-D	-80,5	102,0	3,4	74,2	149,2	2,46
-		B3LYP	-122,6	-64,4	8,5	83,4	72,0	0,52
6	H8	M06-2X	-154,3	-58,5	13,1	87,9	71,6	2,66
		ωB97X-D	-73,8	-51,5	9,0	75,0	32,6	0,00
		B3LYP	67,8	47,5	-6,1	65,1	73,9	3,99
7	Spiral	M06-2X	58,4	46,4	-3,4	56,9	55,3	3,95
	H16	ωB97X-D	60,9	45,9	-4,0	60,6	60,6	3,75
8	H10	B3LYP M06-2X	-84,3	101,5	5,8	93,1	36,7	0,92
		ωB97X-D	-72,5	107,8	4,1	79,1	26,6	2,53
	H10	B3LYP	-110,7	80,6	3,1	69,5	-125,3	0,87
10	Turn2	M06-2X	-111,8	76,5	6,9	66,9	-134,1	2,50
	Turn3	ωB97X-D	-113,0	78,2	5,6	67,7	-125,3	1,90
		B3LYP	-69,3	144,0	-0,3	-85,8	17,2	1,00
13		M06-2X	-66,9	151,4	-2,7	-75,5	7,5	1,77
		ωB97X-D	-66,6	147,9	-0,3	-77,0	7,1	1,45
		B3LYP	-143,2	73,3	4,6	108,7	25,7	1,43
14		M06-2X	-136,2	40,8	-10,6	57,0	27,0	2,38
		ωB97X-D	-136,0	40,7	-11,1	60,6	24,7	2,53
20		M06-2X	-64,9	109,8	3,6	-135,6	54,7	4,71
2'		M06-2X	-70,9	-49,3	10,9	73,7	26,8	0,19

Table S4. Structural and energetic properties of (*S*)-**5** conformers obtained at the B3LYP/6-311++G(2d,2p), M06-2X/6-311++G(2d,2p) and ω B97X-D/6-311++G(2d,2p) levels of theory.

	Sec.							Rel. En.
Conf.	struct.	Method	φ	θ	ζ	ρ	Ψ	(kcal.mol ^{_1})
		B3LYP	143,8	56,6	-14,5	-74,6	-83,5	3,57
1	H14	M06-2X	-139,6	47,4	-8,9	-70,9	-28,5	7,70
		ωB97X-D	143,7	54,3	-14,8	-72,4	-69,6	3,89
_								
2	C8	M06-2X	78,8	40,9	-7,8	-66,1	-34,3	2,10
		ωB97X-D	81,6	42,1	-7,0	-66,1	-37,1	2,13
		B3LYP	-100,4	64,3	-1,1	85,7	-130,7	7,77
4	2-Helix	M06-2X	-105,0	63,4	1,7	80,6	-140,5	7,86
		ωB97X-D	-101,9	63,8	1,0	81,5	-134,9	7,71
6		B3LYP	124,3	-62,3	3,8	104,0	43,1	0,00
6	H8	M06-2X	122,1	-58,0	6,4	86,6	29,5	0,00
		ωB97X-D	124,0	-60,3	6,2	92,9	31,1	0,00
-		B3LYP	112,7	25,5	-3,1	73,3	65,6	3,46
/	Spiral	M06-2X	76,4	32,5	-2,7	63,8	53,6	3,84
	H16	ωB97X-D	86,4	32,7	-3,6	65,9	55,3	3,27
_		B3LYP	-68,1	92,2	3,3	99,9	35,6	5,25
8	H10	M06-2X	-60,5	96,9	5,0	88,6	29,3	5,82
		ωB97X-D	-63,8	94,6	4,8	91,6	33,3	5,77
	H10							
10	Turn2	M06-2X	-70,8	92,9	5,4	74,8	-162,7	9,40
	Turn3							
		B3LYP	143,8	56,7	-14,5	-74,6	-83,5	3,57
11	H14	M06-2X	150,4	82,0	9,2	-51,6	152,0	7,49
		ωB97X-D	89,6	68,9	0,1	-51,9	-68,3	4,70
12		B3LYP	-61,6	138,5	6,4	-66,3	-21,9	10,05
15		M06-2X	-62,7	147,7	-0,1	-62,2	-24,2	7,71
		ωB97X-D	-61,3	142,8	4,6	-64,5	-23,5	8,21
1.4		B3LYP	150,7	65,0	0,1	107,4	33,1	3,57
14		M06-2X	157,9	62,9	5,0	91,0	27,2	5,16
		ωB97X-D	157,4	63,2	3,2	96,2	32,8	5,00
20		B3LYP	-66,8	99,2	1,7	-115,9	48,0	15,94
20		M06-2X	-61,9	101,1	2,5	-121,1	42,3	16,65
		ωB97X-D	-63,0	100,6	2,2	-119,7	46,3	16,40
21		B3LYP	86,0	58,5	-0,9	104,1	39,3	2,76
		M06-2X	76,6	60,7	2,1	90,5	33,1	4,54

Table S5. Structural and energetic properties of (R,R)-**7** conformers obtained at the B3LYP/6-311++G(2d,2p), M06-2X/6-311++G(2d,2p) and ω B97X-D/6-311++G(2d,2p) levels of theory.

	ωB97X-D	75,8	56,7	1,7	95,3	41,7	3 <i>,</i> 89
	B3LYP	91,5	-158,3	-3,3	-85,4	-60,9	4,36
22	M06-2X	79,3	-168,8	-3,6	-82,9	-42,0	5,52
	ωB97X-D	85,2	-164,6	-4,3	-83,1	-45,7	5,19
	B3LYP	-67,4	-100,7	-2,3	-65,3	-69,8	5,99
7′	M06-2X	-72,7	-166,1	-6,8	-76,7	-32,6	7,50
	ωB97X-D	-65 <i>,</i> 8	-104,0	0,3	-60,0	-41,1	6,49
	B3LYP	88,8	-158,5	3,5	108,6	27,7	2,65
23	M06-2X	67,7	-152,5	2,9	78,5	-8,5	2,30
	ωB97X-D	68,7	-148,2	2,2	92,4	-28,4	2,55
	B3LYP	-68,3	-73,6	4,9	86,4	56,0	2,94
24	M06-2X	-60,3	-57,4	8,0	77,6	30,1	0,63
	ωB97X-D	-60,3	-60,2	5,8	80,3	34,9	1,19

Table S6. Structural and energetic properties of (S,R)-**7** conformers obtained at the B3LYP/6-311++G(2d,2p), M06-2X/6-311++G(2d,2p) and ω B97X-D/6-311++G(2d,2p) levels of theory.

	Sec.							Rel. En.
Conf.	struct.	Method	φ	θ	ζ	ρ	Ψ	(kcal.mol ⁻¹)
		B3LYP	-103,1	55,2	-8,8	-101,0	-48,0	4,67
1	H14	M06-2X	-109,7	53,1	-11,0	-82,7	-28,8	4,65
		ωB97X-D	-105,7	55,8	-10,6	-93,4	-37,6	4,88
2		B3LYP	124,8	63,3	-8,8	-86,8	-62,9	0,00
2	C8	M06-2X	71,2	50,4	-10,7	-74,0	-26,6	0,00
		ωB97X-D	73,6	54,0	-8,3	-76,5	-34,3	0,00
		B3LYP	-102,5	77,8	-5,2	61,0	-128,0	12,05
3	Turn	M06-2X	-126,9	78,9	7,5	67,9	-157,7	13,02
		ωB97X-D	-107,1	74,5	-4,4	61,5	-129,8	11,29
1		B3LYP	159,4	-62,7	9,6	85,6	128,5	2,18
4	2-Helix	M06-2X	154,6	-63,1	5,4	88,7	138,1	3,31
		ωB97X-D	155,1	-61,1	6,5	86,9	139,2	2,61
C		B3LYP	114,3	45,3	-14,1	58,0	81,2	3,40
6	H8	M06-2X	86,3	45,9	-10,9	54,3	67,1	4,57
		ωB97X-D	99,8	45,3	-12,6	56,2	68,6	3,64
_		B3LYP	-102,5	77,8	-5,2	60,9	-128,0	12,05
/	Spiral	M06-2X	-109,1	73,6	-3,7	60,1	-133,9	11,89
	H16	ωB97X-D	-107,1	74,5	-4,4	61,5	-129,8	11,29
0		B3LYP	-63,4	99,0	5,3	-136,4	65,6	5,85
8	H10	M06-2X	-60,0	101,4	5,8	-139,8	60,8	6,86
		ωB97X-D	-60,1	100,1	5,8	-139,0	63,1	6,66
10	H10	B3LYP	90,3	-154,1	1,8	-112,0	-37,3	0,80
10	Turn2	M06-2X	79,1	-165,1	-2,4	-94,4	-34,7	3,68
	Turn3	ωB97X-D	82,7	-161,7	-1,8	-98,6	-41,4	2,98
11		B3LYP	-64,7	-65,6	-0,3	-104,4	-36,7	3,35
11	H14	M06-2X	-70,5	-159,6	-6,7	-89,3	-27,6	5,98
		ωB97X-D	-73,1	-154,6	-4,9	-93,7	-33,0	5,82
12		B3LYP	73,8	-141,4	0,5	62,0	58,8	2,96
15		M06-2X	64,1	-145,5	-0,5	71,7	-0,4	2,31
		ωB97X-D	63,4	-143,3	-2,5	73,6	-4,0	1,85
11		B3LYP	98,2	74,1	5,0	77,2	46,2	5,40
14		M06-2X	150,3	74,8	6,0	71,8	32,6	6,30
		ωB97X-D	146,6	76,3	4,9	72,9	32,4	5,81
2'		B3LYP	-69,6	-90,2	0,9	65,3	86,7	3,31
		M06-2X	-63,6	-52,5	6,8	71,7	36,5	1,13

	ωB97X-D	-62,9	-56,3	6,4	71,6	41,0	1,58
21	M06-2X	-66,6	-88,8	1,8	54,8	65,8	3,78

	Sec.							Rel. En.
Conf.	struct.	Method	φ	θ	ζ	ρ	Ψ	(kcal.mol⁻¹)
		B3LYP	-144,6	61,0	-4,8	-79,6	-40,0	2,00
1	H14	M06-2X	-147,6	56,2	-4,6	-75,9	-30,7	0,24
		ωB97X-D	-145,0	57,1	-4,7	-75,9	-29,3	0,41
		B3LYP	69,6	90,2	-0,9	-65,3	-86,7	3,31
2	C8	M06-2X	63,6	52,5	-6,8	-71,7	-36,5	1,13
		ωB97X-D	62,9	56,3	-6,3	-71,6	-41,0	1,58
		B3LYP	-159,4	62,7	-9,6	-85,6	-128,5	2,18
3	Turn	M06-2X	-154,6	63,1	-5,4	-88,7	-138,1	3,31
		ωB97X-D	·	·	ŗ	·	,	
		B3LYP	-80,9	103,4	4,1	102,2	37,1	0,06
4	2-Helix	M06-2X	-70,1	105,5	5,9	79,1	125,5	3,19
		ωB97X-D	-77,6	102,5	4,4	81,2	125,2	3,23
6	H8	M06-2X	-155,5	-59,2	11,8	91,2	71,6	2,12
_		B3LYP	64,7	65,6	0,3	104,4	36,7	3,35
/	Spiral	M06-2X	58,3	48,0	-4,5	56,0	52,1	4,02
	H16	ωB97X-D	60,5	48,4	-5,3	59,1	53,0	4,21
-		B3LYP	-80,9	103,3	4,1	102,2	37,1	0,06
8	H10	M06-2X	-67,6	103,0	5,2	99,4	34,6	2,48
		ωB97X-D	-74,4	101,9	6,4	98,6	38,6	2,07
	H10	B3LYP	-116,5	75,3	3,3	74,4	-118,6	0,40
10	Turn2	M06-2X	-118,3	73,1	6,1	72,2	-124,4	1,78
	Turn3							
11	H14	M06-2X	66,6	88,8	-1,8	-54,8	-65,7	3,78
		R31 VD	-67.0	141.0	27	-75.0	5.0	2.04
13		M06-2X	-67,0	141,0	0.5	-73,3	0.3	2,04
		ωB97X-D	-62,5	143,0	2,8	-73,6	3,7	1,87
					,-		-,	,-
14		B3LYP	-141,0	/3,2	2,5	114,6	27,4	0,39
			-137,6	41,7	-11,1	56,3	28,6	2,82
		ωва ι χ-D	-138,0	42,4	-11,2	58,9	27,3	3,55
21								
		M06-2X	67,8	127,5	5,0	68,2	40,4	6,50

Table S7. Structural and energetic properties of (*R*,*S*)-**7** conformers obtained at the B3LYP/6-311++G(2d,2p), M06-2X/6-311++G(2d,2p) and ω B97X-D/6-311++G(2d,2p) levels of theory.

		ωB97X-D	72,3	153,6	4,8	93,3	32,9	5,79
22		B3LYP	-73,8	141,4	-0,5	-62,0	-58,8	2,96
23		M06-2X ωB97X-D	-153,9 -117,9	65,6 69,8	2,9 2,0	112,4 123,8	21,6 19,7	3,36 2,18
2'	C8M	B3LYP M06-2X	-124,8 -71,2	-63,2 -50,4	8,8 10,7	86,8 74,0	62,9 26,6	0,00 0,00
		ωB97X-D	-73 <i>,</i> 5	-54,0	8,3	76,5	34,2	0,00

	Sec.							Rel. En.
Conf.	struct.	Method	φ	θ	ζ	ρ	Ψ	(kcal.mol⁻¹)
1	H14	B3LYP	-124,3	62,3	-3,8	-104,0	-43,1	0,00
		ωB97X-D	-124,0	60,3	-6,2	-92,9	-32,0	0,00
		B3LYP	68,3	73,6	-4,9	-86,4	-55,9	2,94
2	C8	M06-2X	60,3	57,4	-8,0	-77,5	-30,2	0,00
		ωB97X-D	60,3	60,2	-5,8	-80,3	-34,9	1,10
3	Turn	B3LYP M0M06-2X	-128,2	102,7	5,4	67,3	136,2	4,21
		ωB97X-D	-135,0	96,6	4,7	66,0	157,4	5,47
4		B3LYP	-143,9	-56,6	14,5	74,6	83,5	3,57
4	2-Helix	M06-2X	-151,3	-53,6	16,1	73,7	69,6	4,00
		ωB97X-D	-143,7	-54,3	14,8	72,4	69,6	3,80
~		B3LYP	69 <i>,</i> 4	63,5	-10,6	48,0	77,2	6,09
6	H8	M06-2X	61,5	59 <i>,</i> 6	-7,2	43,9	63,8	4,40
		ωB97X-D	64,1	60,1	-8,5	45,8	65,5	5,01
_		B3LYP	-116,7	96,3	-1,1	52,6	-117,3	4,40
/	Spiral	M06-2X	-123,4	90,3	0,9	50,0	-130,4	3,97
	H16	ωB97X-D	-123,5	91,1	0,5	53,3	-122,0	3,85
•		B3LYP	-73,2	128,8	-0,4	-117,2	55,9	1,73
8	H10	M06-2X	-67,2	152,4	-2,8	-78,2	7,7	1,68
		ωB97X-D	-68,7	148,3	-2,2	-92,4	28,4	2,46
10	H10	B3LYP	-143,3	53 <i>,</i> 3	-15,8	50,5	41,4	6,00
10	Turn2	M06-2X	-140,9	48,1	-12,8	46,8	39,1	2,57
	Turn3	ωB97X-D	-141,6	49,8	-14,2	48,9	38,1	3,70
11		M06 2V	CA A	100 7		444.0	62.4	2.70
	H14		-64,4	108,7	5,5	-141,8	63,1	2,78
		@B97X-D	-67,1	112,5	3,5	-135,8	63,0	3,26
13		B3LYP	67,4	100,7	2,3	65,3	69,8	5,99
15		M06-2X	64,3	104,5	0,0	59,4	37,4	5,87
		ωB97X-D	65,9	104,0	-0,3	60,0	41,0	6,40
11		B3LYP	68,3	73,6	-4,9	-86,4	-56,0	2,94
14		M06-2X	60,3	57,4	-8,0	-77,6	-30,0	0,00
		ωB97X-D	60,3	60,2	-5,8	-80,3	-34,9	1,10
21								
		M06-2X	72,7	166,2	6,7	76,7	32,6	6,87

Table S8. Structural and energetic properties of (S,S)-**7** conformers obtained at the B3LYP/6-311++G(2d,2p), M06-2X/6-311++G(2d,2p) and ω B97X-D/6-311++G(2d,2p) levels of theory.

	B3LYP	-89,3	132,0	-2,5	64,7	94,3	4,36
22	M06-2X	-72,5	139,8	-4,2	58,5	61,5	4,33
	ωB97X-D	-77,8	139,5	-4,9	59,6	59,0	4,48

Table S9. The ΔG values, in kcal/mol, of the investigated secondary structures for hepta-homooligomers using all 8 possible substitution patterns. Values were obtained at the ω B97X-D/6-31+G(d,p)// ω B97X-D/6-31G(d) level of theory using water as solvent. Values contain zero point and thermal corrections to the energy and entropy contributions within the harmonic approximation. Relative values were determined for each peptide using the average energy value of all secondary structures as reference point. Structures labelled with a '*' in the table experienced unusually large energetic values and convergence problems due to steric clashes of the employed substitution pattern. For visual purposes these are displayed with higher than +30 kcal/mol relative energy on Figure 3 in the main paper.

	(R)-5	(R)-6	(R,R)-7	(R,S)-7	(S)-5	(S)-6	(S,S)-7	(S,R)-7
H8 _p	-4,68	11,86	*	*	15,32	6,65	*	*
Н10 _р	-12,74	-3,38	-20,57	16,06	19,18	3,99	45,62	-13,36
H14 _p	-14,81	-11,06	-25,43	14,49	10,75	*	35,23	-10,43
H16 _p	-25,20	-19,62	-34,85	-6,75	12,19	11,55	*	*
Н8 м	15,32	6,65	*	*	-4,68	11,87	*	*
H10 м	19,18	3,99	45,62	-13,36	-12,74	-3,38	-20,57	16,06
Н14 м	10,75	*	35,23	-10,43	-14,81	-11,06	-25,43	14,49
H16 _м	12,19	11,55	*	*	-25,20	-19,62	-34,85	-6,75

Determination of enantiomeric excess for compounds 5-8

Column: Chiralpak IC (3 μ m, 150×4.6 mm), mobile phase: 25% ethanol in CO₂, back pressure: 120 bar, temperature: 40 °C, flow rate: 3.5 ml/min and wavelength: 220 nm. Enantiomeric excess: 99.1%.

(S)**-5**

Column: Chiralpak IC (3 μ m, 150×4.6 mm), mobile phase: 25% ethanol in CO₂, back pressure: 120 bar, temperature: 40 °C, flow rate: 3.5 ml/min and wavelength: 220 nm. Enantiomeric excess: 98.4%.

Column: Chiralpak IC (3 μ m, 150×4.6 mm), mobile phase: 25% ethanol in CO₂, back pressure: 120 bar, temperature: 40 °C, flow rate: 3.5 ml/min and wavelength: 220 nm. Enantiomeric excess: 81.8%.

Column: Chiralpak IC (3 μ m, 150×4.6 mm), mobile phase: 25% ethanol in CO₂, back pressure: 120 bar, temperature: 40 °C, flow rate: 3.5 ml/min and wavelength: 220 nm. Enantiomeric excess: 79.2%.

(*R*)-6

(*S*,*R*)-7 (peak 1)

Column: Lux Cellulose-5 (3 μ m, 150×4.6 mm), mobile phase: 5% ethanol in CO₂, back pressure: 120 bar, temperature: 40 °C, flow rate: 3.5 ml/min and wavelength: 220 nm. Diastereomeric ratio: 96/4. Enantiomeric excess: >99%.

Column: Lux Cellulose-5 (3 μ m, 150×4.6 mm), mobile phase: 25% ethanol in CO₂, back pressure: 120 bar, temperature: 40 °C, flow rate: 3.5 ml/min and wavelength: 220 nm.

(*R*,*S*)-7 (peak 2)

Column: Lux Cellulose-5 (3 μ m, 150×4.6 mm), mobile phase: 5% ethanol in CO₂, back pressure: 120 bar, temperature: 40 °C, flow rate: 3.5 ml/min and wavelength: 220 nm. Enantiomeric excess: >99%.

Column: Lux Cellulose-5 (3 μ m, 150×4.6 mm), mobile phase: 25% ethanol in CO₂, back pressure: 120 bar, temperature: 40 °C, flow rate: 3.5 ml/min and wavelength: 220 nm. Diastereomeric ratio: 93/7.

(*R*,*R*)-7 (peak 3)

Column: Lux Cellulose-5 (3 μ m, 150×4.6 mm), mobile phase: 5% ethanol in CO₂, back pressure: 120 bar, temperature: 40 °C, flow rate: 3.5 ml/min and wavelength: 220 nm. Diastereomeric ratio: >99/1.

Column: Lux Cellulose-5 (3 μ m, 150×4.6 mm), mobile phase: 25% ethanol in CO₂, back pressure: 120 bar, temperature: 40 °C, flow rate: 3.5 ml/min and wavelength: 220 nm. Enantiomeric excess: >99%.

(*S*,*S*)-7 (peak 4)

Column: Lux Cellulose-5 (3 μ m, 150×4.6 mm), mobile phase: 25% ethanol in CO₂, back pressure: 120 bar, temperature: 40 °C, flow rate: 3.5 ml/min and wavelength: 220 nm. Diastereomeric ratio: >99/1. Enantiomeric excess: 98.8%.

Column: Lux Amylose-1 (3 μ m, 150×4.6 mm), mobile phase: 10% ethanol in CO₂, back pressure: 120 bar, temperature: 40 °C, flow rate: 3.5 ml/min and wavelength: 220 nm. Diastereomeric ratio: >99/1. Enantiomeric excess: 89.8%

Column: Lux Amylose-1 (3 μm, 150×4.6 mm), mobile phase: 10% ethanol in CO₂, back pressure: 120 bar, temperature: 40 °C, flow rate: 3.5 ml/min and wavelength: 220 nm. Diastereomeric ratio: >99/1. Enantiomeric excess: 99.4%

S24

¹H and ¹³C NMR spectra for compounds 2 and 5-11

¹³C NMR (126 MHz, DMSO-d6)

200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm) Ö

2D NOESY for verification of 1,5-regiochemistry

¹H NMR (400 MHz, CDCl₃)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

2D NOESY (500 MHz, DMSO-d₆)

