Supporting Information

Efficient Synthesis of SCF₃-Substituted Tryptanthrins by a Radical Tandem Cyclization

Jincheng Guo,^{#a} Yanan Hao,^{#a} Gang Li,^a Ziwen Wang,^{*a,b} Yuxiu Liu,^{*a} Yongqiang Li,^a

and Qingmin Wang*a

^aState Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic

Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and

Engineering (Tianjin), Nankai University, Tianjin 300071, China

^bTianjin Key Laboratory of Structure and Performance for Functional Molecules, College of

Chemistry, Tianjin Normal University, Tianjin 300387, China

Ziwen Wang, E-mail: hxxywzw@tjnu.edu.cn; Phone: 0086-22-23766531;

Yuxiu Liu, E-mail: liuyuxiu@nankai.edu.cn; Phone: 0086-22-23503792

Qingmin Wang, E-mail: wangqm@nankai.edu.cn; Phone: 0086-22-23503952;

Contents

General Information	······S2
General procedure for the synthesis of oxime 1a~1z	
Experimental Procedures and Product Characterization	S3-S11
NMR Spectra	S12-S60

1. General Information.

Reagents were purchased from commercial sources and were used as received. ¹H and ¹³C Nuclear Magnetic Resonance (NMR) spectra were recorded on Bruker Avance 400 Ultrashield NMR spectrometers. Chemical shifts (δ) were given in parts per million (ppm) and were measured downfield from internal tetramethylsilane. High-resolution mass spectrometry (HRMS) data were obtained on an FTICR-MS instrument (Ionspec 7.0 T). The melting points were determined on an X-4 microscope melting point apparatus and are uncorrected. Conversion was monitored by thin layer chromatography (TLC). Flash column chromatography was performed over silica gel (100-200 mesh).

2. General procedures for the synthesis of oxime 1a~1z.

A round-bottom flask was charged with methyltriphenylphosphonium bromide (5.36 g, 15 mmol) and dry THF (20 mL) under N₂ atmosphere, followed by the addition of potassiumtert-butoxide (1.68 g, 15 mmol) at 0 °C. The reaction mixture was allowed to warm to ambient temperature and stir for 0.5 h. Next, 2-aminoacetophenone (**1a-1**) (1.21 g, 10 mmol) was added. The reaction mixture was stirred at room temperature overnight. After completion, the reaction was quenched with saturated NaHCO₃ solution, and extracted with EtOAc (100 mL). The organic phase was dried over anhydrous MgSO₄ and concentrated under reduced pressure. The reaction mixture was purified via column chromatography to give **1a-2** (0.88 g, 74%).

To a solution of **1a-2** (0.99 g, 7.4 mmol) and Et_3N (1.53 g, 11.1 mmol) in CH₂Cl₂ (15 mL) was added the solution of benzoylchloride (1.0 mL, 8.9 mmol) in dichloromethane (5 mL) dropwise at 0 °C. After completion, the reaction mixture was purified via column chromatography to give **1a-3** (3.89 g, 99%).

A round-bottom flask was charged with NaH (640 mg, 60%wt, 16 mmol) and dry THF (15mL) under N₂ atmosphere, then **1a-3** (700 mg, 3 mmol) in THF (5 mL) was added dropwise. The reaction mixture was allowed to warm to 60 °C and stir for

2 h. Next, cyanogenbromide (1.2 g, 12mmol) was added. The reaction mixture was stirred at room temperature overnight, filtered and purified via column chromatography to give the title compound **1a** (448 mg, 56%).

Analogues 1b-z were synthesized by using similar procedures.

N-Cyano-*N*-(2-(prop-1-en-2-yl)phenyl)benzamide (1a):

White solid, 56% yield, mp: 96-98 °C, ¹**H NMR** (400 MHz, CDCl₃) δ 7.80 (d, J = 7.5 Hz, 2H), 7.60 (t, J = 7.5 Hz, 1H), 7.53 – 7.41 (m, 5H), 7.35 (d, J = 7.3 Hz, 1H), 5.32 (s, 1H), 5.06 (s, 1H), 2.04 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 168.1, 141.7, 141.2, 133.3, 132.5, 130.7, 130.0, 139.6, 139.0, 128.7, 128.6, 127.9, 117.0, 110.6, 23.5. **HRMS** (ESI) calcd for C₁₇H₁₅N₂O [M+H]⁺ 263.1179, found 263.1179.

4-Fluoro-N-cyano-N-(2-(prop-1-en-2-yl)phenyl)benzamide (1b):

White solid, 54% yield, mp: 87-89 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.84 (dd, J = 7.5, 5.7 Hz, 2H), 7.49 – 7.39 (m, 3H), 7.35 (d, J = 7.3 Hz, 1H), 7.16 (t, J = 8.5 Hz, 2H), 5.31 (s, 1H), 5.04 (s, 1H), 2.03 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 165.6 (d, J = 255.8 Hz), 141.7, 141.2, 132.4, 131.8, 131.8, 129.9 (d, J = 45.8 Hz), 128.7, 127.8, 126.8 (d, J = 3.1 Hz), 117.0), 116.0 (d, J = 22.4 Hz), 110.6, 23.5. HRMS (ESI) calcd for C₁₇H₁₄FN₂O [M+H]⁺ 281.1085, found 281.1084.

4-Chloro-N-cyano-N-(2-(prop-1-en-2-yl)phenyl)benzamide (1c):

White solid, 51% yield, mp: 82-84 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 7.9 Hz, 2H), 7.51 – 7.39 (m, 5H), 7.35 (d, J = 7.3 Hz, 1H), 5.31 (s, 1H), 5.03 (s, 1H), 2.03

(s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 141.6, 141.2), 139.8, 132.2, 130.5, 130.2, 129.7, 129.0, 128.9, 128.8, 127.7, 117.1, 110.4, 23.5. HRMS (ESI) calcd for C₁₇H₁₄ClN₂O [M+H]⁺ 297.0789, found 297.0789.

4-Bromo-N-cyano-N-(2-(prop-1-en-2-yl)phenyl)benzamide (1d):

White solid, 66% yield, mp: 90-92 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.61 (m, 4H), 7.49 – 7.38 (m, 3H), 7.35 (d, J = 7.3 Hz, 1H), 5.30 (s, 1H), 5.03 (s, 1H), 2.03 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 141.6, 141.2, 132.2, 132.0, 130.5, 130.2, 129.7, 129.4, 128.8, 128.4, 127.8, 117.1, 110.4, 23.5. HRMS (ESI) calcd for C₁₇H₁₄BrN₂O [M+H]⁺ 341.0284, found 341.0281.

N,4-Dicyano-*N*-(2-(prop-1-en-2-yl)phenyl)benzamide (1e):

White solid, 91% yield, mp: 121-122 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.82 (m, 3H), 7.92 – 7.72 (m, 3H), 7.52 – 7.39 (m, 3H), 7.36 (d, J = 7.2 Hz, 1H), 5.33 (s, 1H), 5.03 (s, 1H), 2.03 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 141.6, 141.2, 134.6, 132.4, 131.8, 130.5, 129.8, 129.5, 128.9, 127.7, 117.4, 117.2, 116.7, 109.9, 23.5. HRMS (ESI) calcd for C₁₈H₁₄N₃O [M+H]⁺ 288.1131, found 288.1127.

4-Methyl-N-cyano-N-(2-(prop-1-en-2-yl)phenyl)benzamide (1f):

White solid, 51% yield, mp: 89-90 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 7.9 Hz, 2H), 7.47 – 7.37 (m, 3H), 7.36 – 7.31 (m, 1H), 7.27 (d, J = 8.3 Hz, 2H), 5.30 (s, 1H), 5.05 (s, 1H), 2.42 (s, 3H), 2.03 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 144.3, 141.7, 141.2, 132.6, 129.9, 129.6, 129.3, 129.2, 128.6, 127.9, 127.8, 117.0,

110.8, 23.5, 21.7. **HRMS** (ESI) calcd for C₁₈H₁₇N₂O [M+H]⁺ 277.1335, found 277.1340.

4-Methoxy-N-cyano-N-(2-(prop-1-en-2-yl)phenyl)benzamide (1g):

Mixture of raw material and product (1: 10), can't purified, white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.8 Hz, 2H), 7.47 – 7.38 (m, 3H), 7.36– 7.30 (m, 3H), 6.95 (d, J = 8.9 Hz, 2H), 5.29 (s, 1H), 5.05 (s, 1H), 3.87 (s, 3H), 2.03 (s, 3H). HRMS (ESI) calcd for C₁₈H₁₇N₂O₂ [M+H]⁺ 293.1285, found 293.1285.

4-(tert-Butyl)-N-cyano-N-(2-(prop-1-en-2-yl)phenyl)benzamide (1h):

Mixture of raw material and product (2: 5), can't purified, colorless liquid, ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 8.3 Hz, 2H), 7.49 (t, J = 8.1 Hz, 3H), 7.46 – 7.40 (m, 2H), 7.36 – 7.30 (m, 1H), 5.29 (s, 1H), 5.06 (s, 1H), 2.03 (s, 3H), 1.33 (s, 9H). HRMS (ESI) calcd for C₂₁H₂₃N₂O [M+H]⁺ 319.1805, found 319.1806.

3-Methyl-N-cyano-N-(2-(prop-1-en-2-yl)phenyl)benzamide (1i):

White solid, 69% yield, mp: 90-91 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.59 (s, 2H), 7.47 – 7.31 (m, 6H), 5.31 (s, 1H), 5.06 (s, 1H), 2.39 (s, 3H), 2.04 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 141.8, 141.2, 138.7, 134.0, 132.5, 130.6, 130.0, 129.6, 129.5, 128.6, 128.4, 127.9, 126.0, 117.0, 110.7, 23.5, 21.4. HRMS (ESI) calcd for C₁₈H₁₇N₂O [M+H]⁺ 277.1335, found 277.1336.

N-Cyano-2-methyl-N-(2-(prop-1-en-2-yl)phenyl)benzamide (1j):

White solid, 69% yield, mp: 89-90 °C, ¹H NMR (400 MHz, CDCl3) δ 7.56 – 7.45 (m, 1H), 7.45 – 7.27 (m, 5H), 7.27 – 7.16 (m, 2H), 5.38 – 5.30 (m, 1H), 5.09 (s, 1H), 2.45 (s, 3H), 2.06 (s, 3H). ¹³C NMR (101 MHz, CDCl3) δ 168.9, 142.1, 141.4, 137.2, 131.9, 131.4, 131.1, 130.1, 129.6, 128.7, 128.1, 127.5, 125.8, 117.0, 110.3, 23.8, 19.5. HRMS (ESI) calcd for C₁₈H₁₇N₂O [M+H]⁺ 277.1335, found 277.1338.

N-Cyano-*N*-(2-(prop-1-en-2-yl)phenyl)-[1,1'-biphenyl]-4-carboxamide (1k):

White solid, 56% yield, mp: 148-149 °C, ¹**H NMR** (400 MHz, CDCl₃) δ 7.89 (d, J = 8.1 Hz, 2H), 7.69 (d, J = 8.3 Hz, 2H), 7.62 (d, J = 7.2 Hz, 2H), 7.51 – 7.39 (m, 6H), 7.36 (dd, J = 7.6, 2.0 Hz, 1H), 5.33 (s, 1H), 5.08 (s, 1H), 2.06 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 146.2, 141.7, 141.2, 139.5, 130.0, 129.7, 129.6, 129.2, 129.0, 128.7, 128.5, 127.9, 127.3, 127.2, 117.1, 110.7, 23.5. **HRMS** (ESI) calcd for C_{23H19}N₂O [M+H]⁺ 339.1492, found 339.1490.

N-Cyano-N-(2-(prop-1-en-2-yl)phenyl)-1-naphthamide (11):

White solid, 68% yield, mp: 120-121 °C, ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 8.3 Hz, 1H), 8.04 (d, J = 8.3 Hz, 1H), 7.92 (d, J = 7.8 Hz, 1H), 7.83 (s, 1H), 7.66 – 7.42 (m, 6H), 7.38 (d, J = 6.8 Hz, 1H), 5.39 (s, 1H), 5.17 (s, 1H), 2.09 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 142.1, 141.4, 133.7, 132.9, 130.2, 130.1, 129.6, 128.7, 128.7, 128.2, 128.1, 128.0, 127.0, 127.0, 124.5, 124.2, 117.1, 110.2, 23.7. HRMS (ESI) calcd for C₂₁H₁₇N₂O [M+H]⁺ 313.1335, found 313.1336.

N-(4-Chloro-2-(prop-1-en-2-yl)phenyl)-*N*-cyanobenzamide (1m):

White solid, 47% yield, mp: 96-97 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 7.6 Hz, 2H), 7.62 (t, J = 7.5 Hz, 1H), 7.56 – 7.48 (m, 4H), 7.32 (d, J = 8.4 Hz, 1H), 5.34 (s, 1H), 5.08 (s, 1H), 2.04 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 143.6, 140.2, 133.5, 132.7, 131.8, 131.5, 130.3, 129.5, 129.0, 128.7, 124.0, 117.9, 110.2, 23.3. HRMS (ESI) calcd for C₁₇H₁₄ClN₂O [M+H]⁺ 297.0789, found 297.0788.

N-(4-Bromo-2-(prop-1-en-2-yl)phenyl)-*N*-cyanobenzamide (1n):

White solid, 50% yield, mp: 92-93 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 7.6 Hz, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.48 (t, J = 7.6 Hz, 2H), 7.41 – 7.36 (m, 2H), 7.34 (s, 1H), 5.34 (d, J = 0.9 Hz, 1H), 5.08 (s, 1H), 2.04 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 143.4, 140.2, 135.9, 133.5, 131.0, 130.4, 129.7, 129.3, 129.0, 128.8, 128.7, 117.8, 110.3, 23.3. HRMS (ESI) calcd for C₁₇H₁₄BrN₂O [M+H]⁺ 341.0284, found 341.0281.

N-Cyano-*N*-(4,5-dimethoxy-2-(prop-1-en-2-yl)phenyl)benzamide (10):

10

Mixture of raw material and product (1: 5), can't purified, white solid, ¹**H** NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 7.1 Hz, 2H), 7.58 (t, J = 7.3 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 6.90 (s, 1H), 6.76 (s, 1H), 5.29 (s, 1H), 5.03 (s, 1H), 3.91 (s, 6H), 2.00 (s, 3H). HRMS (ESI) calcd for C₁₉H₁₉N₂O₃ [M+H]⁺ 323.1390, found 323.1390.

N-Cyano-*N*-(3-methylbut-3-en-1-yl)benzamide (1p):

Colerless liquid, 56% yield, ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 7.3 Hz, 1H), 7.60 (t, J = 7.5 Hz, 1H), 7.48 (t, J = 7.7 Hz, 2H), 4.93 (s, 1H), 4.88 (s, 1H), 3.91 (t, J = 7.0 Hz, 2H), 2.52 (t, J = 7.0 Hz, 2H), 1.83 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 140.6, 133.1, 131.2, 128.6, 128.5, 114.0, 111.0, 45.6, 35.6, 22.0. HRMS (ESI) calcd for C₁₃H₁₅N₂O [M+H]⁺ 215.1179, found (ESI⁺) 215.1177.

N-Ccyano-*N*-(2-(3-methylbut-1-en-2-yl)phenyl)benzamide (1q):

Colerless liquid, 57% yield, ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 7.4 Hz, 2H), 7.61 (t, J = 7.5 Hz, 1H), 7.54 – 7.41 (m, 5H), 7.31 (dd, J = 6.7, 1.5 Hz, 1H), 5.29 (s, 1H), 5.02 (s, 1H), 1.11 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 151.8, 142.2, 133.4, 132.6, 130.6, 130.0, 129.0, 128.7, 128.6, 128.5, 114.1, 110.7, 34.2, 21.8. HRMS (ESI) calcd for C₁₉H₁₉N₂O [M+H]⁺ 291.1492, found 291.1492.

N-Cyano-*N*-(2-(1-cyclohexylvinyl)phenyl)benzamide (1r):

Colerless liquid, 43% yield, ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 7.4 Hz, 2H), 7.61 (t, J = 7.5 Hz, 1H), 7.55 – 7.40 (m, 5H), 7.34 – 7.29 (m, 1H), 5.26 (s, 1H), 5.01 (s, 1H), 2.24 (t, J = 10.9 Hz, 1H), 1.92 – 1.72 (m, 4H), 1.73 – 1.62 (m, 1H), 1.38 – 1.08 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 151.1, 142.2, 133.3, 132.6, 130.6, 130.0, 129.0, 128.7, 128.5, 128.5, 114.3, 110.7, 44.2, 32.4, 26.6, 26.2. HRMS (ESI) calcd for C₂₂H₂₃N₂O [M+H]⁺ 331.1805, found 331.1808.

N-Cyano-*N*-(2-(hept-1-en-2-yl)phenyl)benzamide (1s):

Colerless liquid, 56% yield, ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 7.5 Hz, 2H), 7.60 (t, J = 7.4 Hz, 1H), 7.51 – 7.39 (m, 5H), 7.32 (d, J = 6.6 Hz, 1H), 5.29 (s, 1H), 5.06 (s, 1H), 2.34 (t, J = 7.5 Hz, 2H), 1.47 – 1.40 (m, 2H), 1.35 – 1.20 (m, 6H),.0.90 – 0.78 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 145.9, 141.9, 133.3, 132.6, 130.7, 130.2, 130.0, 129.0, 128.6, 128.2, 115.8, 110.6, 36.8, 31.5, 27.5, 22.5, 14.0. HRMS (ESI) calcd for C₂₁H₂₃N₂O [M+H]⁺ 319.1805, found 331.1811.

N-Cyano-*N*-(2-(1-phenylvinyl)phenyl)benzamide (1t):

White solid, 48% yield, mp: 131-133 °C, ¹H NMR (400 MHz, DMSO- d_6) δ 7.82 – 7.77 (m, 1H), 7.70 – 7.61 (m, 3H), 7.54 – 7.49 (m, 1H), 7.46 (t, J = 7.8 Hz, 2H), 7.40 – 7.35 (m, 3H), 7.35 – 7.31 (m, 2H), 7.28 – 7.22 (m, 2H), 5.89 (s, 1H), 5.31 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 145.8, 139.8, 139.4, 133.1, 132.2, 130.2, 129.5, 128.9, 128.8, 128.5, 128.3, 128.1, 126.8, 118.2, 110.1. HRMS (ESI) calcd for C₂₂H₁₇N₂O [M+H]⁺ 325.1335, found 325.1339.

N-Cyano-*N*-(2-(1-(4-fluorophenyl)vinyl)phenyl)benzamide (1u):

White solid, 47% yield, mp: 141-142 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.50 (m, 3H), 7.50 – 7.43 (m, 2H), 7.43 – 7.33 (m, 4H), 7.25 – 7.22 (m, 1H), 7.05 – 6.91 (m, 2H), 5.74 (s, 1H), 5.38 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 164.1, 161.6, 144.6, 139.6, 135.6, 133.3, 133.1, 132.0, 130.2, 130.1, 129.6, 128.8, 128.6, 128.6, 128.4, 128.2, 118.0, 115.7, 115.5, 110.0. HRMS (ESI) calcd for C₂₂H₁₆FN₂O [M+H]⁺ 343.1241, found 343.1239.

N-(2-(1-(4-Chlorophenyl)vinyl)phenyl)-*N*-cyanobenzamide (1v):

Mixture of raw material and product (1: 5), can't purified, white solid, ¹H NMR (400 MHz, CDCl3) δ 7.58 – 7.42 (m, 5H), 7.42 – 7.27 (m, 6H), 7.21 (d, J = 8.2 Hz, 2H), 5.78 (s, 1H), 5.44 (s, 1H). HRMS (ESI) calcd for C₂₂H₁₆ClN₂O [M+H]⁺ 359.0946, found 359.0946.

N-(2-(1-(4-Bromophenyl)vinyl)phenyl)-*N*-cyanobenzamide (1w):

Mixture of raw material and product (1: 5), can't purified, white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.28 (m, 11H), 7.15 (d, J = 6.7 Hz, 2H), 5.79 (s, 1H), 5.44 (s, 1H). HRMS (ESI) calcd for C₂₂H₁₆BrN₂O [M+H]⁺ 403.0441, found 403.0440.

N-Cyano-*N*-(2-(1-(p-tolyl)vinyl)phenyl)benzamide (1x):

White solid, 50% yield, mp: 115-116 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.45 (m, 5H), 7.39 – 7.30 (m, 4H), 7.19 (d, J = 8.2 Hz, 2H), 7.12 (d, J = 8.1 Hz, 2H), 5.77 (s, 1H), 5.36 (s, 1H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 145.6, 140.0, 138.4, 136.6, 133.1, 132.2, 130.3, 130.1, 129.4, 128.9, 128.2, 128.1, 126.8, 117.4, 110.1, 21.2. HRMS (ESI) calcd for C₂₃H₁₉N₂O [M+H]⁺ 339.1492, found 339.1494. *N*-Cyano-*N*-(2-vinylphenyl)benzamide (1y):

White solid, 50% yield, mp: 85-87 °C, ¹H NMR (400 MHz, DMSO- d_6) δ 7.81 (d, J = 6.9 Hz, 3H), 7.65 (t, J = 8.7 Hz, 2H), 7.52 (t, J = 7.5 Hz, 3H), 7.45 (t, J = 7.6 Hz, 1H), 7.06 – 6.88 (m, 1H), 5.97 (d, J = 17.3 Hz, 1H), 5.53 (d, J = 11.1 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 168.1, 134.5, 133.0, 132.8, 130.5, 130.0, 129.5, 128.7, 128.6, 128.5, 126.8, 119.3, 109.9. HRMS (ESI) calcd for C₁₆H₁₃N₂O [M+H]⁺ 249.1022, found 249.1025.

2,6-Dichloro-N-cyano-N-(2-(prop-1-en-2-yl)phenyl)benzamide (1z):

White solid, 76% yield, mp: 103-105 °C, ¹H NMR (400 MHz, DMSO- d_6) δ 7.51 – 7.46 (m, 2H), 7.46 – 7.41 (m, 4H), 7.41 – 7.37 (m, 1H), 5.36 (s, 1H), 5.13 (s, 1H), 2.16 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 164.3, 142.8, 140.4, 132.6, 132.5, 131.9, 130.8, 130.4, 129.9, 128.6, 128.4, 128.0, 117.9, 108.9, 24.0. HRMS (ESI) calcd for C₁₇H₁₃Cl₂N₂O [M+H]⁺ 331.0399, found 331.0396.

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 f1 (ppm)

 $^{13}\mathrm{C}$ NMR spectrum of compound 1b

 $^{13}\mathrm{C}$ NMR spectrum of compound 1d

¹H NMR spectrum of compound **1h**

¹³C NMR spectrum of compound **1i**

 ^{13}C NMR spectrum of compound 1j

 $^{13}\mathrm{C}$ NMR spectrum of compound $1\mathrm{k}$

¹³C NMR spectrum of compound **1m**

 $^{13}\mathrm{C}$ NMR spectrum of compound 1n

¹H NMR spectrum of compound **1p**

¹H NMR spectrum of compound **1**q

¹H NMR spectrum of compound 1t

 1 H NMR spectrum of compound 1x

 1 H NMR spectrum of compound 1z

¹H NMR spectrum of compound 2a

¹H NMR spectrum of compound **2b**

 $^1\mathrm{H}$ NMR spectrum of compound $\mathbf{2d}$

¹H NMR spectrum of compound **2e**

 $^1\mathrm{H}$ NMR spectrum of compound $\mathbf{2f}$

 ^{1}H NMR spectrum of compound 2g

¹H NMR spectrum of compound **2**j

¹H NMR spectrum of compound **2n**

¹H NMR spectrum of compound **2p**

 ^{1}H NMR spectrum of compound 2q

¹H NMR spectrum of compound **2r**

¹H NMR spectrum of compound **2s**

