Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Controlling the selectivity of an intramolecular Friedel-Crafts

alkylation with alkenes using selenium under mild conditions

Ming-Hong Liao, † Meng Zhang, † Dai-Hui Hu, Rui-Han Zhang, Yan Zhao, Shan-Shan Liu, Yun-

Xia Li, Wei-Lie Xiao,* and E Tang*

Corresponding authors:

tange@ynu.edu.cn

xiaoweilie@ynu.edu.cn

Contents

1. Optimization selenium-mediated IFAC of alkenes 1	S3	
2. Crystallographic data for product (±)-2m	S5	
3. Crystallographic data for product (±)-31	S6	
4. The intrinsic reaction coordinates paths of the key steps of the carbocyclization reactions	s S7	
5. Computed absolute energy values and imaginary frequency of TS	S14	
6. References		S14
7. Copies of ¹ H NMR and ¹³ C NMR Spectra for compounds	S14	
8. Copies of ⁷⁷ Se NMR Spectra for compounds		S60
9. Copies of ROESY Spectra for compounds 4a and (±)-13a	S63	

1. Optimization selenium-mediated IFAC of alkenes 1

To a solution of the electrophilic selenium reagent in CH_2Cl_2 (10 mL) was added Lewis acid catalyst. The solution was stirred for 5 minutes. Cinnamyl-3,4,5-trimethoxybenzyl ether (**1a**, 0.5 mmol) was added and the reaction mixture was stirred until TLC showed the completion of the reaction. Saturated NaHCO₃ (aq., 5 mL) was added and the mixture was subjected to a conventional extractive workup (CH_2Cl_2 , 3×10 mL). The combined organic solution was washed with brine and dried over MgSO₄. After the removal of the solvents under reduced pressure, the residue was subjected to flash chromatography on silica gel (petroleum ether (PE)/ethyl acetate (EA) = 10/1) to deliver the products.

Table S1. Optimization for the Synthesis of 2-Benzoxepin, Isochroman, and Isochromenea

Entry	[PhSe ⁺]	Catalyst	Amount of the catalyst (mol%)	Temperature (°C)	Time (h)	Yield ^f of 2a (%)	Yield ^f of 3a (%)	Yield ^f of 4a (%)
1	PhSeBr	$BF_3 \cdot Et_2O$	10	rt	2		NR	
2	PhSeSePh ^b	$BF_3 \cdot Et_2O$	10	rt	2	< 5	< 5	0
3	PhSeOTf ^d	$BF_3 \cdot Et_2O$	10	rt	2	< 5	9	0
4	NPSSac	$BF_3 \cdot Et_2O$	10	rt	2	< 5	15	0
5	TPSCA ^e	$BF_3 \cdot Et_2O$	10	rt	2		NR	
6	NPSP	$BF_3 \cdot Et_2O$	10	rt	2	93	0	0
7	NPSS	$BF_3 \cdot Et_2O$	10	rt	2	56	0	0
8	NPSP	FeCl ₃	10	rt	2		NR	
9	NPSP	TiCl ₄	10	rt	2		NR	
10	NPSP	-	-	rt	2		NR	
11	NPSP	TMSOTf	10	rt	2	70	0	0
12	NPSP	$ZnCl_2$	10	rt	2	92	0	0
13	NPSP	$ZnCl_2$	20	rt	2	93	0	0
14	NPSP	$ZnCl_2$	30	rt	2	92	0	0
15	NPSP	$ZnCl_2$	5	rt	2	80	0	0
16	NPSP	$BF_3 \cdot Et_2O$	5	rt	2	70	0	0
17	NPSP	$BF_3 \cdot Et_2O$	10	rt	2	93	0	0
18	NPSP	BF ₃ ·Et ₂ O	20	rt	2	95	0	0
19	NPSP	$BF_3 \cdot Et_2O$	30	rt	2	95	0	0

20	NPSP	ZnCl ₂	20	rt	12	94	0	0
21	NPSP	$ZnCl_2$	20	rt	24	94	0	0
22	NPSP	$ZnCl_2$	20	rt	48	93	0	0
23	NPSP	$BF_3 \cdot Et_2O$	20	rt	12	< 5	92	0
24	NPSP	BF ₃ ·Et ₂ O	20	rt	24	< 5	94	0
25	NPSP	$BF_3 \cdot Et_2O$	20	rt	48	< 5	93	0
26	NPSP	$BF_3 \cdot Et_2O$	20	60	2	< 5	55	45
27	PhSeOTf ^d	$BF_3 \cdot Et_2O$	20	rt	2	< 5	65	0
28	PhSeOTf ^d	$BF_3 \cdot Et_2O$	20	rt	4	< 5	72	0
29	PhSeOTf ^d	$BF_3 \cdot Et_2O$	20	$rt \sim 60^{\circ}$	4	< 5	70	0
30	NPSSac	$BF_3 \cdot Et_2O$	20	rt	2	< 5	88	0
31	NPSSac	$BF_3 \cdot Et_2O$	20	rt	4	< 5	90	0
32	NPSSac	$BF_3 \cdot Et_2O$	20	$rt \sim 60^{\circ}$	4	< 5	90	0
33	NPSSac	$BF_3 \cdot Et_2O$	20	60	2	< 5	89	0
34	TPSCA ^e	$BF_3 \cdot Et_2O$	20	rt	2		NR	
35	TPSCA ^e	$BF_3 \cdot Et_2O$	40	rt	2	10	< 5	30
36	TPSCA ^e	$BF_3 \cdot Et_2O$	60	rt	2	51	< 5	45
37	TPSCA ^e	$BF_3 \cdot Et_2O$	80	rt	2	50	< 5	45
38	TPSCA ^g	$BF_3 \cdot Et_2O$	60	rt	2	45	< 5	35
39	TPSCA ^h	$BF_3 \cdot Et_2O$	60	rt	2	49	< 5	42
40	TPSCA ^e	$BF_3 \cdot Et_2O$	60	rt	12	15	35	44
41	TPSCA ^e	BF ₃ ·Et ₂ O	60	-78	2	92	0	0
42	TPSCA ^e	$BF_3 \cdot Et_2O$	60	-20	2	80	0	13
43	TPSCA ^e	$BF_3 \cdot Et_2O$	60	0	2	75	0	18
44	TPSCA ^e	$BF_3 \cdot Et_2O$	60	40	2	17	27	50
45	TPSCA ^e	BF ₃ ·Et ₂ O	60	60	2	< 5	< 5	95
46	TPSCA ^e	$BF_3 \cdot Et_2O$	60	80	2	< 5	< 5	60
47	TPSCA ^e	$BF_3 \cdot Et_2O$	60	60	4	< 5	< 5	95
48	-	$BF_3 \cdot Et_2O$	60	60	2		NR	
49	TPSCA ^e	-	-	60	2		NR	

^a The reaction was performed on a 0.5 mmol scale. ^b 0.28 Mmol of PhSeSePh was added. ^c The reaction was performed at room temperature for 2 h and then at 60 °C for 2 h. ^d PhSeOTf was produced in situ by the reaction of 0.55 mmol of PhSeBr and 0.55 mmol of AgOTf in DCM at room temperature. ^e 0.37 Equiv. of TPSCA was added. ^f Isolated yield. ^g 0.3 Equiv of TPSCA was added. ^h 0.5 Equiv. of TPSCA was added.

We commenced our exploration with the optimization of the IFCA of cinnamyl-3,4,5-trimethoxybenzyl ether (1a). An investigation using a series of Lewis acids and electrophilic selenium reagents identified TMSOTf and ZnCl₂ as active catalysts and NPSP, TPSCA, and NPSSac as active selenium reagents. In the presence of 20 mol% BF₃·Et₂O or 20 mol% ZnCl₂ and stirring for 2 h at room temperature, the NPSP-induced 7-*endo*-trig carbocyclization of **1a** was observed, providing 2-benzoxepin **2a** in 95% and 93% yield, respectively (Table S1,

entries 18 and 13). The yield of **2a** decreased when 5 mol% $BF_3 \cdot Et_2O$ or 5 mol% $ZnCl_2$ was used (Table S1, entries 16 and 15), whereas the yield of **2a** was almost constant when 30 mol% catalyst was used (Table S1, entries 19 and 14). When the reaction time was extended to more than 12 h, the yield of **2a** was slightly increased in the presence of 20 mol% $ZnCl_2$, whereas isochroman **3a** was formed in more than 92% yield in the presence of 20 mol% $BF_3 \cdot Et_2O$ and by a rearrangement/6-*exo*-trig oxycyclization sequence of **2a** (Table S1, entries 20 to 25). Interestingly, **3a** was also formed in 90% yield when the cyclization reaction proceeded at room temperature for 4 h and NPSSac and 20 mol% $BF_3 \cdot Et_2O$ were used (Table S1, entry 31). When the reaction was performed at room temperature to 60 °C, the yield of product **3a** was almost constant (Table S1, entries 32 and 33). Excitingly, when using 0.37 equiv. of TPSCA and 60 mol% $BF_3 \cdot Et_2O$, isochromene **4a** was afforded at 60 °C in 95% yield by a 6-*exo*-trig carbocyclization - /deselenenylation sequence, whereas product **2a** was formed at -78 °C in 92% yield (Table S1, entries 45 and 41). This cyclization reaction was rather sluggish in the absence of catalyst or the electrophilic selenium reagent (Table S1, entries 10, 48, and 49).

2. Crystallographic data for product 2m (CCDC 1941659)

Figure S1. ORTEP structure of 2m

Table S2. Crystal data and structure refinement for	2 m
---	-----

Identification code	2m
Empirical formula	$C_{26}H_{28}O_5Se$
Formula weight	499.44
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system, space group	Orthorhombic, Pbca
Unit cell dimensions	$ \begin{array}{ll} a = 9.3459(8) \ \text{\AA} & \alpha = 90^{\circ}. \\ b = 19.5855(17) \ \text{\AA} & \beta = 90^{\circ}. \\ c = 25.163(2) \ \text{\AA} & \gamma = 90^{\circ}. \end{array} $
Volume	4605.8(7) Å ³
Z, Calculated density	8, 1.441 Mg/m ³
Absorption coefficient	1.666 mm ⁻¹
F(000)	2064

Crystal size	0.32 x 0.30 x 0.28 mm ³
θ range for data collection	1.62 to 25.15°.
Limiting indices	$\textbf{-10} \le h \le 11, \textbf{-23} \le k \le 21, \textbf{-30} \le l \le 30$
Reflections collected / unique	24675 / 4114 [R(int) = 0.0492]
Completeness to $\theta = 25.15$	100.0 %
Max. and min. transmission	0.6527 and 0.6178
Refinement method	Full-matrix least-squares on F ²
Refinement method Data / restraints / parameters	Full-matrix least-squares on F ² 4114 / 0 / 293
Refinement method Data / restraints / parameters Goodness-of-fit on F ²	Full-matrix least-squares on F ² 4114 / 0 / 293 1.023
Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2σ(I)]	Full-matrix least-squares on F ² 4114 / 0 / 293 1.023 R ₁ = 0.0349, wR ₂ = 0.0857
Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2σ(I)] R indices (all data)	Full-matrix least-squares on F^2 4114 / 0 / 293 1.023 $R_1 = 0.0349$, $wR_2 = 0.0857$ $R_1 = 0.0596$, $wR_2 = 0.0971$

3. Crystallographic data for product 3l (CCDC 1941658)

Figure S2. ORTEP structure of 31

Table S3. Crystal data and structure refinement for 31				
Identification code	31			
Empirical formula	$C_{26}H_{25}F_{3}O_{4}Se$			
Formula weight	537.42			
Temperature	293(2) K			
Wavelength	0.71073 A			
Crystal system, space group	Triclinic, P-1			
Unit cell dimensions	$ \begin{array}{ll} a = 6.9173(8) \ {\Bar{A}} & \alpha = 114.9980(10)^\circ. \\ b = 13.9163(16) \ {\Bar{A}} & \beta = 94.3680(10)^\circ. \\ c = 14.1631(16) \ {\Bar{A}} & \gamma = 94.2510(10)^\circ. \end{array} $			
Volume	1223.5(2) Å ³			
Z, Calculated density	2, 1.459 Mg/m ³			
Absorption coefficient	1.587 mm ⁻¹			
F(000)	548			
Crystal size	0.32 x 0.30 x 0.24 mm ³			

θ range for data collection	1.60 to 25.14°.
Limiting indices	$-8 \le h \le 8, -16 \le k \le 16, -16 \le l \le 16$
Reflections collected / unique	9448 / 4325 [R(int) = 0.0541]
Completeness to $\theta = 25.15$	98.8 %
Max. and min. transmission	0.7019 and 0.6306
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4325 / 0 / 310
Goodness-of-fit on F ²	0.999
Final R indices [I>2 σ (I)]	$R_1 = 0.0814, wR_2 = 0.2602$
R indices (all data)	$R_1 = 0.1107, wR_2 = 0.2805$
Largest diff. peak and hole	0.750 and -0.760 e. Å ⁻³

4. The intrinsic reaction coordinates paths of the key steps of the carbocyclization reactions

All calculations were performed with Gaussian 09^1 at B3LYP/6-31G* level. The structures of transition state (TS) were firstly optimized in gas phase and characterized by one imaginary frequency. The coordinates for the structures of TS were also provided in supporting information. The intrinsic reaction coordinates (IRC) paths were scanned to verify the TS structure and identify the structures of the reactant and product. Geometry optimizations in gas phase were applied for the reactants and products before frequency calculations. The relative Gibbs free energies at reaction temperature were given in vacuum and in CH_2Cl_2 (using SMD solvent model)

Figure S3. Geometries and relative free energies of the reactant (R_12), transition state (TS_12), and product (P_12). All calculations were performed with B3LYP/6-31G(d). For free energy calculation, the temperature was set to reaction temperature (25 °C). The data was computed with SMD solvent model (DCM), as well as in vacuum (in parentheses). The distance between atoms were shown as Angstrom

Figure S4. Intrinsic reaction coordinate (IRC) path from R_I2 to P_I2

Table	S4. Coordinates	of TS_I2	
1 1			
C 0	2.57218100	-2.17687000	-0.04802900
C 0	3.05415700	-0.84778500	-0.07410300
C 0	2.50748000	0.07787800	0.83539200
C 0	1.37061700	-0.28652300	1.63196900
C 0	0.96057400	-1.65175500	1.67973100
C 0	1.51025400	-2.55922800	0.80258600
C 0	-0.34972600	0.59237000	0.48473600
C 0	-1.45844100	0.61326500	1.47422000
C 0	-1.84970500	-0.65680000	2.23033800
O 0	-0.87447500	-1.05185800	3.18284200
C 0	-0.01871100	-2.08854100	2.74800600
C 0	0.18933400	1.83038800	-0.07190900
C 0	0.26969900	3.02677500	0.66930100
C 0	0.72628800	4.19718000	0.07337200
C 0	1.11385200	4.19707700	-1.27048900
C 0	1.05434000	3.01471000	-2.01598200
C 0	0.60815500	1.84069900	-1.41826900
Se 0	-3.03122400	1.21795100	0.34343800
C 0	-3.43163000	-0.34553800	-0.70253500
C 0	-4.35394500	-1.28875200	-0.23081700
C 0	-4.70423900	-2.37609400	-1.03253400
C 0	-4.14620500	-2.51615600	-2.30516200
C 0	-3.24441800	-1.56298400	-2.78488500
C 0	-2.89096000	-0.47308600	-1.98886800
Н0	1.15458900	0.35191100	2.48186200
O 0	3.06070800	-3.13987600	-0.85682400
C 0	4.47811500	-3.43620800	-0.83848900
O 0	4.09448500	-0.49952400	-0.90214900
C 0	3.75932600	-0.39570300	-2.29860000

O 0	2.90986400	1.33167000	1.04462500	
C 0	4.07492900	1.93140900	0.44104100	
H 0	1.20712000	-3.60157000	0.78924700	
H 0	-0.37774300	-0.24581300	-0.20807000	
H 0	-1.37200000	1.44623800	2.17502800	
H 0	-2.06566300	-1.47408300	1.53037400	
H 0	-2.76496500	-0.43512500	2.78661500	
H 0	0.54012300	-2.39993100	3.63877500	
H 0	-0.59676500	-2.95936400	2.40342800	
H 0	-0.01481300	3.04208700	1.71680100	
H 0	0.77841300	5.11293500	0.65420700	
H 0	1.45875700	5.11571400	-1.73585200	
H 0	1.34299300	3.01594300	-3.06298800	
H 0	0.54493900	0.92561800	-2.00170700	
H 0	-4.80202900	-1.16333400	0.74969500	
H 0	-5.42022300	-3.10610600	-0.66656200	
H 0	-4.42579300	-3.35978400	-2.92940100	
H 0	-2.82686900	-1.66084200	-3.78288400	
H 0	-2.21526900	0.28877500	-2.36528600	
H 0	4.61020300	-4.23030800	-1.57298300	
Η0	5.07821400	-2.56432200	-1.09877600	
H 0	4.75789500	-3.80124800	0.15475200	
Η0	4.69958200	-0.20393600	-2.81792900	
Η0	3.31452900	-1.32456700	-2.66862700	
Η0	3.06998200	0.43971700	-2.46613400	
H 0	4.95735400	1.31083600	0.59629000	
H 0	3.91487600	2.10428900	-0.62460700	
Н0	4.18159100	2.88427700	0.95977900	

Figure S5. Geometries and relative free energies of the reactant (**R_I6**), transition state (**TS_I6**), and product (**P_I6**). All calculations were performed with B3LYP/6-31G(d). For free energy calculation, the temperature was set to reaction temperature (25 °C). The data was computed with SMD solvent model (DCM), as well as in vacuum (in parentheses). The distance between atoms were shown as Angstrom

Figure S6. Intrinsic reaction coordinate (IRC) path from R_I6 to P_I6

Table S5. Coordinates of TS_I6

0 1			
C 0	3.04271600	-2.15145800	0.87506300
C 0	3.35340500	-1.25341900	-0.15066200
C 0	2.54989400	-0.11376000	-0.34799200
C 0	1.44274400	0.14864700	0.47416300
C 0	1.12212400	-0.78628600	1.49188500
C 0	1.92620400	-1.91099200	1.67468800
C 0	0.48404700	1.34146400	0.35966900
C 0	-0.80334100	0.96400800	-0.28652200
C 0	-0.86641700	0.22304600	-1.53647000
O 0	-1.21047400	-0.09495000	1.91000000
C 0	-0.02111600	-0.57942100	2.48779300
C 0	0.76463200	2.69989300	-0.32910300
C 0	1.02447200	2.89398000	-1.69771900
C 0	1.16442300	4.18113700	-2.21610600
C 0	1.02758800	5.29690500	-1.38844600
C 0	0.73231500	5.11914000	-0.03565700
C 0	0.58231800	3.83538600	0.48456100
Se 0	-1.38705600	-1.59618300	-0.83113400
C 0	-3.29038500	-1.45554000	-1.05369400
C 0	-4.08654100	-0.93052800	-0.02957200
C 0	-5.47099600	-0.88168700	-0.20473400
C 0	-6.05324600	-1.36323900	-1.37895400
C 0	-5.25253800	-1.88886000	-2.39647900
C 0	-3.86765200	-1.93068300	-2.23884900
O 0	3.75912100	-3.30940100	1.05676300
C 0	5.10451400	-3.13557600	1.51859800
O 0	4.43580500	-1.47121600	-0.97677500
C 0	4.16545000	-2.37280200	-2.05742400
O 0	2.83390200	0.70203400	-1.41926900
C 0	4.01754000	1.50280100	-1.28762000
B 0	-1.92749300	0.96477300	2.68116800

F 0	-2.97392000	1.37511000	1.82931600
F 0	-1.04240000	2.05503600	2.90081500
H 0	1.68939800	-2.63405900	2.44987700
H 0	0.23862400	1.62712200	1.37804300
H 0	-1.71801700	1.39182900	0.11717900
H 0	0.09291400	0.07851800	-2.02926300
H 0	-1.65929500	0.52676400	-2.21758700
H 0	0.33094900	0.11397700	3.26653100
H 0	-0.21400400	-1.54162700	2.98194500
H 0	1.15564500	2.04445500	-2.35453100
H 0	1.37728500	4.31059500	-3.27395400
H 0	1.13707800	6.29742900	-1.79809800
H 0	0.60466900	5.97944700	0.61531700
H 0	0.30171700	3.69973100	1.52502200
H 0	-3.63238700	-0.53183700	0.86984800
H 0	-6.09106700	-0.46320700	0.58281000
H 0	-7.13219800	-1.32762000	-1.50404300
H 0	-5.70370000	-2.26274300	-3.31157300
H 0	-3.23450900	-2.33337700	-3.02404100
H 0	5.11572000	-2.63762100	2.49667600
H 0	5.51895000	-4.14094400	1.62062600
H 0	5.69965200	-2.55860800	0.80461000
H 0	5.09808100	-2.46567100	-2.61882600
H 0	3.86362200	-3.35543000	-1.67851400
H 0	3.38346400	-1.96897600	-2.71172500
H 0	3.94757500	2.15114900	-0.40627100
H 0	4.90678300	0.87045300	-1.22271900
H 0	4.06397000	2.12218000	-2.18584800
F 0	-2.38849400	0.47315900	3.88464300

Figure S7. Geometries and relative free energies of the reactant (**R_I8**), transition state (**TS_I8**), and product (**P_I8**). All calculations were performed with B3LYP/6-31G(d). For free energy calculation, the temperature was set to reaction temperature (60 °C). The data was computed with SMD solvent model (DCM), as well as in vacuum (in parentheses). The distance between atoms were shown as Angstrom

Figure S8. Intrinsic reaction coordinate (IRC) path from R_I8 to P_I8

Table S6.	Coordinates	of	TS	18

1 1				
C 0	0.70516600	-2.80470300	1.04998000	
C 0	-0.09046300	-2.87051200	-0.12628600	
C 0	-1.21120400	-2.04678700	-0.22295900	
C 0	-1.57905900	-1.13645200	0.81482000	
C 0	-0.81282100	-1.15598300	2.03125200	
C 0	0.31362800	-1.95668900	2.10242700	
C 0	0.99710700	1.02417800	0.55849800	
C 0	-0.48019200	1.12977800	0.61947700	
C 0	-1.19135400	1.62285900	1.84452700	
O 0	-0.68868500	1.06914200	3.03472800	
C 0	-1.15852200	-0.27879700	3.21732400	
Se 0	1.58126700	-0.06501900	-0.99257900	
O 0	1.83288200	-3.48008500	1.28663500	
C 0	2.32882900	-4.56563200	0.47496600	
O 0	0.19554300	-3.77900200	-1.10330000	
C 0	0.66093600	-3.27175600	-2.37234800	
O 0	-1.97463600	-2.10832700	-1.35099800	
C 0	-2.89709100	-3.22284600	-1.43445100	
C 0	1.34030100	2.51122700	0.41617900	
C 0	1.19295500	3.18377100	-0.80852200	
C 0	1.47101000	4.54700400	-0.89526900	
C 0	1.89139300	5.24869400	0.23607900	
C 0	2.03395800	4.58426000	1.46024600	
C 0	1.74669400	3.22597400	1.55613100	
Se 0	-3.45986800	-0.65049400	0.88052400	
C 0	-3.75017500	0.70969900	-0.46910800	
C 0	-4.66918700	1.70136300	-0.10053700	
C 0	-5.02204400	2.69791200	-1.01156300	
C 0	-4.44173800	2.72394500	-2.28057400	
C 0	-3.51937100	1.73946900	-2.63965600	

C 0	-3.17859700	0.72027200	-1.74620200
C 0	3.48443700	0.06504000	-0.71173600
C 0	4.23796400	0.99239500	-1.43862300
C 0	5.62029400	1.05495500	-1.25487800
C 0	6.24511100	0.19942400	-0.34574400
C 0	5.49015100	-0.72802100	0.37628200
C 0	4.10927900	-0.80378400	0.19064100
H 0	0.93192900	-1.96043200	2.99460100
H 0	1.41771200	0.62488200	1.48070000
H 0	-1.00384400	1.27702400	-0.32468600
H 0	-2.26584900	1.44140800	1.73022800
H 0	-1.04850100	2.71022600	1.89819100
H 0	-0.65414300	-0.64109800	4.11437800
H 0	-2.23922500	-0.26772300	3.39542200
H 0	3.15636000	-4.97430100	1.05544800
H 0	1.56006200	-5.32299300	0.32247300
H 0	2.69539200	-4.19959600	-0.48612900
H 0	0.70332800	-4.13932200	-3.03182700
H 0	-0.03098900	-2.52866700	-2.77392900
H 0	1.65906400	-2.83468200	-2.26493400
H 0	-3.38546000	-3.12257600	-2.40409100
H 0	-2.35763800	-4.17153900	-1.37982400
H 0	-3.63615300	-3.13874600	-0.63418200
H 0	0.90302900	2.61965500	-1.68949900
H 0	1.36284000	5.05942200	-1.84656300
H 0	2.11077400	6.31005800	0.16717600
H 0	2.37354000	5.12650900	2.33769300
H 0	1.84240000	2.71370800	2.50960600
H 0	-5.10736500	1.69448800	0.89375700
H 0	-5.74090400	3.45838300	-0.72074600
H 0	-4.70940200	3.50440000	-2.98654900
H 0	-3.07281600	1.74869400	-3.63024500
H 0	-2.49538600	-0.06427500	-2.04741700
H 0	3.74920900	1.65852100	-2.14178500
H 0	6.20651700	1.77332700	-1.82056400
H 0	7.32068500	0.25116500	-0.20373100
Н0	5.97742900	-1.39766100	1.07939300
H 0	3.52466200	-1.53618400	0.73874900

5. Computed absolute energy values and imaginary frequency of TS

					Number of	Imagina	ary
	E(a.u.)		G(a.u.)		Imaginary	Frequency	
					Frequencies	(Vacuu	m, cm ⁻¹)
	Vacuum	CH ₂ Cl ₂	Vacuum	CH ₂ Cl ₂	0	NA	
I2_R	-3668.396441	-3668.479110	-3668.492320	-3668.573784	1		-205.38
I2_T	-3668.384190	-3668.463506	-3668.475621	-3668.550385	0	NA	
I2_P	-3668.394511	-3668.476718	-3668.484087	-3668.566451	0	NA	
I6_R	-3992.572456	-3992.615709	-3992.671516	-3992.717700	1		-148.48
I6_T	-3992.540380	-3992.582042	-3992.641135	-3992.680009	0	NA	
I6_P	-3992.604855	-3992.638995	-3992.706585	-3992.737377	0	NA	
I8_R	-6298.716374	-6298.799019	-6298.844795	-6298.926185	1		-125.99
I8_T	-6298.704737	-6298.785653	-6298.830796	-6298.908362	0	NA	
I8_P	-6298.754964	-6298.838509	-6298.882312	-6298.959584	0	NA	

Table S7. Computed absolute energy values and imaginary frequency of TS

6. References

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox in *Gaussian 09*, Gaussian, Inc.: Wallingford, CT, USA, 2009.

7. Copies of ¹H NMR and ¹³C NMR Spectra for compounds

000-

000----

000----

-1

f1 (ppm) ò

000-

7.55 7.55 7.57 7.55 7.57 7.55 7.57 7.55 7.57 7.55 7.57 7.55 7.57 7.55 7.57 7.55 7.57 7.55 7.75</t

20121130087.222.1.1r

-- Alim

12018002142.136.1.1r S-1112-Br

0000-

000----

S42

S44

12016001959.57.1.1r
52
53
53
54
55
54
55
54
55
54
55
54
55
54
55
54
55
54
55
54
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55
55</th

61.45 60.98 -56.07

- 2.32 — 0.01

30 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1

8. Copies of ⁷⁷Se NMR Spectra for compounds (±)-2a, (±)-2c, (±)-2g, (±)-2h, (±)-2l, (±)-2n, and (±)-3a

9. Copies of ROESY Spectra for compounds 4a and (±)-13a.

