Supporting Information

Construction of 2,3-disubstituted benzo[*b*]thieno[2,3*d*]thiophenes and benzo[4,5]selenopheno[3,2-*b*]thiophenes using the Fiesselmann thiophene synthesis

Roman A. Irgashev, *.a,b Nadezhda S. Demina, a,b Gennady L. Rusinova,b

 ^a Postovsky Institute of Organic Synthesis, Ural Division, Russian Academy of Sciences, S. Kovalevskoy Str., 22, Ekaterinburg, 620990, Russia
 *Corresponding author: Fax: +7 343 369 30 58; e-mail: <u>irgashev@ios.uran.ru</u>
 ^b Ural Federal University named after the First President of Russia B. N. Yeltsin, Mira Str., 19, Ekaterinburg, 620002, Russia

Table of content

Ex	perimental section
1.	General procedure for the synthesis of (3-chlorobenzo[b]thiophen-2-
yl)	((het)aryl)methanones (6a-m)
2.	General procedure for the synthesis of methyl 3-(het)arylbenzo[b]thieno[2,3-
d]t	hiophene-2-carboxylates (7b-m) and methyl 3-(3,4-
dir	nethoxyphenyl)benzo[4,5]selenopheno[3,2-b]thiophene-2-carboxylate (15)6
La	rge-scale procedure for the synthesis of compound 7a7
3.	General procedure for the synthesis of 2-substituted 3-arylbenzo[b]thieno[2,3-
d]t	hiophenes (8a-d, 9a-d, 10a-c), and 3-(3,4-dimethoxyphenyl)benzo[4,5]selenopheno[3,2-
b]t	hiophenes (16, 17a,b, 18)
4.	Procedure for the synthesis of bis(3-(3,4-dimethoxyphenyl)benzo[b]thieno[2,3-
d]t	hiophen-2-yl)methanone (11)14
5.	General procedure for the synthesis of 3-arylbenzo[b]thieno[2,3-d]thiophene-2-
cai	baldehydes (12a,b)15
6.	Procedure for the synthesis of 3-bromobenzo [<i>b</i>] selenophene-2-carboxylic acid (13) 15

7.	Procedure for the synthesis of (3-bromobenzo[b]selenophen-2-yl)(3,4-	
diı	methoxyphenyl)methanone (14)	16
Co	opies of ¹ H, ¹³ C and ¹⁹ F NMR spectra of new compounds	17
Cr	ystallographic data for compounds 9d, 11 and 17a	113
1. exj	Crystallographic data and results of refinement for the structure 9d in the XRD periment	113
2. exj	Crystallographic data and results of refinement for the structure 11 in the XRD periment	114
3.	Crystallographic data and results of refinement for the structure 17a in the XRD	
exj	periment	115
Re	References	

Experimental section

Instruments and measurements

Analytical studies were carried out using equipment of the Center for Joint Use "Spectroscopy and Analysis of Organic Compounds" at the Postovsky Institute of Organic Synthesis of the Russian Academy of Sciences (Ural Division). Melting points were determined on combined heating stages and are uncorrected. Mass spectrometry was performed using a high resolution Q-TOF LC-MS/MS spectrometer. NMR measurements were performed on NMR spectrometers at 400 MHz, 500 MHz and 600 Hz for ¹H, and 126 MHz for ¹³C spectra in DMSO-*d*₆ or CDCl₃ with tetramethylsilane as an internal standard. ¹⁹F NMR was recorded at 471 MHz in DMSO-*d*₆ or CDCl₃ with hexafluorobenzene as an internal standard. X-ray diffraction analysis was performed on an automated X-ray diffractometer on standard procedure.

Materials

All solvents used were dried and distilled per standard procedures. All reagents were purchased from commercial sources and used without further purification, except for acyl chlorides **5a-b,d**,¹ **5c**,² **5e**³ as well as ethyl 3-bromobenzo[*b*]selenophene-2-carboxylate,⁴ which were prepared in accordance with the reported procedures.

1. General procedure for the synthesis of (3-chlorobenzo[*b*]thiophen-2yl)((het)aryl)methanones (6a-m)

Acyl chloride **5a-e** (10.0 mmol) was dissolved in anhydrous CH_2Cl_2 (100 ml) (or in benzene for synthesis of compound **6f**), then grinded $AlCl_3$ (1.7 g, 13.0 mmol) was added, and the resulting mixture was stirred for 30 minutes until complete homogenization. After that the solution was cooled down to 0 °C with ice bath, and the appropriate (het)arene (12.0 mmol) was added dropwise (in the case of compound **6f** this step was skipped). The obtained reaction mixture was kept overnight at room temperature, and then quenched with water (100 ml). The organic layer was separated, washed with aqueous solution of Na₂CO₃ (100 ml, 0.1 M) and dried with anhydrous CaCl₂. The solvent was distilled under reduced pressure, and the residue was recrystallized from ethanol, thus giving desired compounds **6a-m**.

1.1 (3-Chlorobenzo[*b*]thiophen-2-yl)(3,4-dimethoxyphenyl)methanone (6a)

White crystals (2.9 g, 86%), m.p. (105-106 °C). ¹H NMR (500 MHz, DMSO- d_6) δ 8.22 – 8.14 (m, 1H), 8.01 – 7.93 (m, 1H), 7.70 – 7.61 (m, 2H), 7.53 (dd, J = 8.3, 2.1 Hz, 1H), 7.48 (d, J = 2.1 Hz, 1H), 7.13 (d, J = 8.5 Hz, 1H), 3.89 (s, 3H), 3.84 (s, 3H). ¹³C NMR (126 MHz, Chloroform-d) δ

187.3, 153.8, 149.0, 138.3, 136.6, 134.0, 130.0, 127.4, 125.7, 125.5, 123.3, 123.0, 122.6, 111.5, 109.9, 56.1, 56.0. HRMS (+ESI): Calcd. for C₁₇H₁₃ClLiO₃S m/z 339.0428 [M+Li]⁺, found m/z 339.0423 [M+Li]⁺.

1.2 3-Chlorobenzo[*b*]thiophen-2-yl)(4-methoxyphenyl)methanone (6b)

White crystals (2.6 g, 87%), m.p. (80-81 °C). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.00 – 7.90 (m, 3H), 7.94 – 7.83 (m, 1H), 7.57 – 7.48 (m, 2H), 7.01 – 6.94 (m, 2H), 3.90 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 187.4, 164.0, 138.3, 136.6, 134.2, 132.5, 130.0, 127.4, 125.5, 123.3, 122.9, 122.7, 113.7, 55.5. HRMS (+ESI): Calcd. for C₁₆H₁₁ClLiO₂S m/z 309.0323 [M+Li]⁺, found m/z 309.0321 [M+Li]⁺.

1.3 (3-Chlorobenzo[*b*]thiophen-2-yl)(4-ethoxyphenyl)methanone (6c)

Pale yellow crystals (2.2 g, 70%), m.p. (95-96 °C). ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.97 – 7.94 (m, 1H), 7.94 – 7.91 (m, 2H), 7.90 – 7.83 (m, 1H), 7.57 – 7.50 (m, 2H), 7.01 – 6.92 (m, 2H), 4.14 (q, *J* = 7.0 Hz, 3H), 1.46 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 187.4, 163.5, 138.3, 136.6, 134.3, 132.5, 129.8, 127.4, 125.5, 123.3, 122.9, 122.7, 114.1, 63.8, 14.6. HRMS (+ESI): Calcd. for C₁₇H₁₃ClLiO₂S m/z 323.0479 [M+Li]⁺, found m/z 323.0478 [M+Li]⁺.

1.4 (3-Chlorobenzo[*b*]thiophen-2-yl)(2,5-dimethoxyphenyl)methanone (6d)

Yellow solid (1.9 g, 56%), m.p. (57-58 °C). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 (m, 1H), 7.89 – 7.79 (m, 1H), 7.60 – 7.41 (m, 2H), 7.05 (dd, *J* = 9.0, 3.1 Hz, 1H), 6.99 (d, *J* = 3.1 Hz, 1H), 6.91 (d, *J* = 9.0 Hz, 1H), 3.80 (s, 3H), 3.71 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 188.3, 153.5, 151.7, 139.1, 137.3, 136.5, 129.5, 128.1, 125.3, 125.3, 124.0, 122.8, 118.3, 113.8, 112.7, 56.3, 55.8. HRMS (+ESI): Calcd. for C₁₇H₁₃ClLiO₃S m/z 339.0428 [M+Li]⁺, found m/z 339.0434 [M+Li]⁺.

1.5 (3-Chlorobenzo[*b*]thiophen-2-yl)(4-(dimethylamino)phenyl)methanone (6e)

Dark yellow crystals (1.5 g, 49%), m.p. (124-125 °C). ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.18 – 8.12 (m, 1H), 7.96 – 7.89 (m, 1H), 7.78 – 7.71 (m, 2H), 7.66 – 7.59 (m, 2H), 6.82 – 6.75 (m, 2H), 3.07 (s, 6H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 186.3, 153.9, 138.0, 136.5, 135.0, 132.7, 126.8, 125.3, 124.3, 123.0, 122.6, 121.3, 110.5, 39.9. HRMS (+ESI): Calcd. for C₁₇H₁₄ClLiNOS m/z 322.0639 [M+Li]⁺, found m/z 322.0639 [M+Li]⁺.

1.6 (3-Chlorobenzo[*b*]thiophen-2-yl)(phenyl)methanone (6f)

Beige solid (1.7 g, 61%), m.p. (75-76 °C). ¹H NMR (500 MHz, DMSO- d_6) δ 8.19 (m, 1H), 8.04 – 7.96 (m, 1H), 7.92 – 7.85 (m, 2H), 7.74 (m, 1H), 7.72 – 7.61 (m, 2H), 7.60 (m, 2H). ¹³C NMR (126 MHz, Chloroform-d) δ 189.0, 138.6, 137.5, 136.7, 133.9, 133.2, 129.6, 128.3, 127.8, 125.5, 124.2, 123.6, 122.7. HRMS (+ESI): Calcd. for C₁₅H₉ClLiOS m/z 279.0217 [M+Li]⁺, found m/z 279.0217 [M+Li]⁺.

1.7 (3-Chlorobenzo[*b*]thiophen-2-yl)(thiophen-2-yl)methanone (6g)

Pale yellow solid (0.8 g, 28%), m.p. (70-71 °C). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 – 7.93 (m, 1H), 7.92 – 7.85 (m, 2H), 7.79 (dd, J = 5.0, 1.1 Hz, 1H), 7.60 – 7.49 (m, 2H), 7.19 (dd, J = 4.9, 3.9 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 179.7, 143.6, 138.1, 136.6, 135.6, 135.4, 132.3, 128.2, 127.7, 125.7, 124.0, 123.6, 122.6. HRMS (+ESI): Calcd. for C₁₃H₇ClLiOS₂ m/z 284.9781 [M+Li]⁺, found m/z 284.9780 [M+Li]⁺.

1.8 (3-Chlorobenzo[*b*]thiophen-2-yl)(5-methylthiophen-2-yl)methanone (6h)

Beige solid (1.1 g, 38%), m.p. (89-90 °C). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.02 – 7.94 (m, 1H), 7.89 – 7.82 (m, 1H), 7.70 (d, *J* = 3.8 Hz, 1H), 7.58 – 7.50 (m, 2H), 6.86 (dd, *J* = 3.8, 1.1 Hz, 1H), 2.59 (d, *J* = 0.9 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 179.2, 152.1, 141.3, 138.0, 136.6, 132.4, 127.5, 127.05, 127.04, 125.6, 123.44, 123.38, 122.6, 16.2. HRMS (+ESI): Calcd. for C₁₄H₁₀ClLiOS₂ m/z 292.9856 [M+H]⁺, found m/z 292.9852 [M+ H]⁺.

1.9 (5-Bromothiophen-2-yl)(3-chlorobenzo[*b*]thiophen-2-yl)methanone (6i)

Red solid (2.8 g, 78%), m.p. (130-131 °C). ¹H NMR (500 MHz, DMSO- d_6) δ 8.25 – 8.16 (m, 1H), 8.04 – 7.98 (m, 1H), 7.85 (d, J = 4.1 Hz, 1H), 7.73 – 7.63 (m, 2H), 7.49 (d, J = 4.1 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-d) δ 178.4, 144.9, 138.1, 136.6, 135.7, 131.4, 131.3, 127.9, 125.8, 124.7, 124.4, 123.6, 122.7. HRMS (+ESI): Calcd. for C₁₃H₆BrClLiOS₂ m/z 362.8887 [M+Li]⁺, found m/z 362.8882 [M+Li]⁺.

1.10 (3-Chloro-6-methoxybenzo[b]thiophen-2-yl)(3,4-dimethoxyphenyl)methanone (6j)

Orange solid (2.9 g, 80%), m.p. (174-175 °C). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 (d, J = 8.9 Hz, 1H), 7.56 (dd, J = 8.4, 2.0 Hz, 1H), 7.50 (d, J = 2.0 Hz, 1H), 7.27 (d, J = 2.0 Hz, 1H), 7.12 (dd, J = 8.9, 2.3 Hz, 1H), 6.92 (d, J = 8.4 Hz, 1H), 3.97 (s, 3H), 3.95 (s, 3H), 3.91 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 187.1, 159.9, 153.5, 148.8, 140.4, 131.5, 130.7, 130.3, 125.3, 124.4, 123.6, 116.3, 111.6, 109.9, 104.2, 56.0, 56.0, 55.6. HRMS (+ESI): Calcd. for C₁₈H₁₅ClLiO₄S m/z 369.0534 [M+Li]⁺, found m/z 369.0539 [M+Li]⁺.

1.11 (3,7-Dichloro-6-methoxybenzo[b]thiophen-2-yl)(3,4-dimethoxyphenyl)methanone(6k)

Orange solid (2.8 g, 71%), m.p. (167-168 °C). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.84 (d, J = 8.9 Hz, 1H), 7.58 (dd, J = 8.4, 2.0 Hz, 1H), 7.52 (d, J = 2.1 Hz, 1H), 7.23 (d, J = 8.8 Hz, 1H), 6.93 (d, J = 8.4 Hz, 1H), 4.04 (s, 3H), 3.98 (s, 3H), 3.96 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 186.8, 154.5, 153.8, 149.0, 139.5, 133.0, 131.3, 130.0, 125.5, 123.5, 122.6, 114.8, 111.9, 111.5, 109.9, 56.9, 56.1, 56.0. HRMS (+ESI): Calcd. for C₁₈H₁₅Cl₂O₄S m/z 397.0063 [M+H]⁺, found m/z 397.0061 [M+H]⁺.

1.12 (6-Bromo-3-chlorobenzo[b]thiophen-2-yl)(3,4-dimethoxyphenyl)methanone (6l)

Pale yellow solid (3.5 g, 85%), m.p. (153-154 °C). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.01 (d, J = 1.7 Hz, 1H), 7.81 (dd, J = 8.7, 1.2 Hz, 1H), 7.63 (dd, J = 8.6, 1.6 Hz, 1H), 7.58 – 7.50 (m, 2H), 6.92 (d, J = 8.3 Hz, 1H), 3.98 (s, 3H), 3.95 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 186.8, 154.0, 149.1, 139.5, 135.4, 134.4, 129.7, 129.2, 125.8, 125.2, 124.5, 122.9, 121.8, 111.5, 109.9, 56.1, 56.0. HRMS (+ESI): Calcd. for C₁₇H₁₂BrClLiO₃S m/z 416.9534 [M+Li]⁺, found m/z 416.9526 [M+Li]⁺.

1.13 (1-Chloronaphtho[2,1-*b*]thiophen-2-yl)(3,4-dimethoxyphenyl)methanone (6m)

Pale orange solid (2.5 g, 64%), m.p. (155-156 °C). ¹H NMR (500 MHz, Chloroform-*d*) δ 9.50 (d, J = 8.2 Hz, 1H), 7.98 (dd, J = 7.9, 1.4 Hz, 1H), 7.88 (d, J = 8.8 Hz, 1H), 7.81 (d, J = 8.8 Hz, 1H), 7.72 – 7.65 (m, 1H), 7.65 – 7.60 (m, 1H), 7.59 – 7.54 (m, 2H), 6.93 – 6.90 (m, 1H), 3.98 (s, 3H), 3.96 (s, 3H).¹³C NMR (126 MHz, Chloroform-*d*) δ 187.4, 153.8, 149.0, 138.3, 133.8, 132.0, 130.3, 129.7, 129.0, 128.7, 126.9, 126.1, 125.8, 124.1, 122.9, 120.2, 111.5, 109.9, 56.05, 55.99. (One signal was not found due to overlapping peaks). HRMS (+ESI): Calcd. for C₂₁H₁₅ClNaO₃S m/z 405.0323 [M+Na]⁺, found m/z 405.0326 [M+Na]⁺.

2. General procedure for the synthesis of methyl 3-(het)arylbenzo[b]thieno[2,3d]thiophene-2-carboxylates (7b-m) and methyl 3-(3,4dimethoxyphenyl)benzo[4,5]selenopheno[3,2-b]thiophene-2-carboxylate (15)

Compound **6b-m** or **14** (1.0 mmol) was dissolved in THF-MeOH (9:1, v/v, 10 ml) under an argon atmosphere, then methyl thioglycolate (135 μ l, 1.5 mmol), DBU (75 μ l, 0.5 mmol) and CaO (280.0 mg, 5.0 mmol) were added. The resulted reaction mixture was stirred for 15 h at room temperature, after that the precipitate of CaO was filtered off and washed with THF (2×10 ml). The combined

filtrates were evaporated under reduced pressure, and the residue was recrystallized from MeOHtoluene (5:1, v/v) to afford analytically pure products **7b-m** or **15**, respectively.

Large-scale procedure for the synthesis of compound 7a

Compound **6a** (1.7 g, 5.0 mmol) was dissolved in THF-MeOH (9:1, v/v, 50 ml) under an argon atmosphere, then methyl thioglycolate (0.7 ml, 7.5 mmol), DBU (0.4 ml, 2.5 mmol) and CaO (1.4 g, 25.0 mmol) were added. The resulted reaction mixture was stirred for 15 h at room temperature, after that the precipitate of CaO was filtered off and washed with THF (2×50 ml). The combined filtrates were evaporated under reduced pressure, and the residue was recrystallized from MeOH-toluene (5:1, v/v) to afford product **7a** (1.78 g, 91%).

2.1 Methyl 3-(3,4-dimethoxyphenyl)benzo[b]thieno[2,3-d]thiophene-2-carboxylate (7a)

White solid, m.p. (162-163 °C). ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.19 – 8.12 (m, 1H), 8.14 – 8.06 (m, 1H), 7.58 – 7.49 (m, 2H), 7.27 (d, *J* = 2.1 Hz, 1H), 7.21 (dd, *J* = 8.3, 2.1 Hz, 1H), 7.10 (d, *J* = 8.4 Hz, 1H), 3.85 (s, 3H), 3.80 (s, 3H), 3.78 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 162.4, 149.3, 148.4, 143.1, 141.2, 140.6, 136.8, 132.3, 127.1, 126.4, 125.9, 124.9, 123.8, 121.9, 121.7, 112.4, 110.7, 55.9, 55.8, 52.0. HRMS (+ESI): Calcd. for C₂₀H₁₆LiO₄S₂ m/z 391.0645 [M+Li]⁺, found m/z 391.0646 [M+Li]⁺.

2.2 Methyl 3-(4-methoxyphenyl)benzo[*b*]thieno[2,3-*d*]thiophene-2-carboxylate (7b)

White solid (315.0 mg, 89%), m.p. (135-136 °C). ¹H NMR (400 MHz, DMSO- d_6) δ 8.20 – 8.12 (m, 1H), 8.12 – 8.03 (m, 1H), 7.63 – 7.55 (m, 2H), 7.55 – 7.49 (m, 2H), 7.12 – 7.04 (m, 2H), 3.85 (s, 3H), 3.77 (s, 3H). ¹³C NMR (126 MHz, Chloroform-d) δ 162.5, 159.8, 143.2, 141.3, 140.6, 136.8, 132.3, 130.4, 127.0, 126.2, 125.9, 124.9, 123.9, 121.7, 113.6, 55.2, 52.0. HRMS (+ESI): Calcd. for C₁₉H₁₄LiO₃S₂ m/z 361.0539 [M+Li]⁺, found m/z 361.0543 [M+Li]⁺.

2.3 Methyl 3-(4-ethoxyphenyl)benzo[b]thieno[2,3-d]thiophene-2-carboxylate (7c)

Pale yellow crystals (313.0 mg, 85%), m.p. (137-138 °C). ¹H NMR (500 MHz, DMSO- d_6) δ 8.19 – 8.12 (m, 1H), 8.13 – 8.05 (m, 1H), 7.60 – 7.49 (m, 4H), 7.11 – 7.02 (m, 2H), 4.12 (q, *J* = 6.9 Hz, 2H), 3.76 (s, 3H), 1.38 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 162.6, 159.3, 143.2, 141.4, 140.6, 136.8, 132.3, 130.4, 127.0, 126.1, 125.9, 124.9, 123.9, 121.7, 114.1, 63.4, 52.0, 14.8. HRMS (+ESI): Calcd. for C₂₀H₁₆LiO₃S₂ m/z 375.0695 [M+Li]⁺, found m/z 375.0694 [M+Li]⁺.

2.4 Methyl 3-(2,5-dimethoxyphenyl)benzo[*b*]thieno[2,3-*d*]thiophene-2-carboxylate (7d)

Beige crystals (250.0 mg, 65%), m.p. (149-150 °C). ¹H NMR (400 MHz, DMSO- d_6) δ 8.20 – 8.10 (m, 1H), 8.12 – 8.02 (m, 1H), 7.58 – 7.46 (m, 2H), 7.10 (dd, J = 8.9, 0.6 Hz, 1H), 7.06 – 6.99 (m, 2H), 3.76 (s, 3H), 3.73 (s, 3H), 3.68 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 162.0, 152.9, 150.5, 142.8, 140.2, 136.5, 136.1, 131.9, 129.2, 125.3, 124.4, 123.5, 123.4, 121.2, 115.3, 114.5, 111.9, 55.7, 55.3, 51.6. HRMS (+ESI): Calcd. for C₂₀H₁₆LiO₄S₂ m/z 391.0645 [M+Li]⁺, found m/z 391.0644 [M+Li]⁺.

2.5 Methyl 3-(4-(dimethylamino)phenyl)benzo[*b*]thieno[2,3-*d*]thiophene-2-carboxylate (7e)

Yellow crystals (202.0 mg, 55%), m.p. (202-203 °C). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 – 7.90 (m, 1H), 7.85 (m, 1H), 7.61 – 7.54 (m, 2H), 7.48 – 7.37 (m, 2H), 6.85 – 6.78 (m, 2H), 3.84 (s, 3H), 3.05 (s, 6H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 162.7, 150.5, 143.3, 142.3, 140.6, 136.6, 132.4, 130.2, 125.75, 125.70, 124.8, 123.8, 121.7, 121.3, 111.5, 52.0, 40.2. HRMS (+ESI): Calcd. for C₂₀H₁₇LiNO₂S₂ m/z 374.0655 [M+Li]⁺, found m/z 374.0854 [M+Li]⁺.

2.6 Methyl 3-phenylbenzo[b]thieno[2,3-d]thiophene-2-carboxylate (7f)

Pale orange crystals (266.0 mg, 82%), m.p. (142-143 °C). ¹H NMR (500 MHz, DMSO- d_6) δ 8.21 – 8.14 (m, 1H), 8.13 – 8.05 (m, 1H), 7.66 – 7.59 (m, 2H), 7.59 – 7.46 (m, 5H), 3.76 (s, 3H). ¹³C NMR (126 MHz, Chloroform-d) δ 162.4, 143.2, 141.4, 140.5, 136.9, 134.1, 132.2, 129.0, 128.6, 128.2, 127.8, 125.9, 124.9, 123.9, 121.7, 52.0. HRMS (+ESI): Calcd. for C₁₈H₁₂LiO₂S₂ m/z 331.0433 [M+Li]⁺, found m/z 331.0433 [M+Li]⁺.

2.7 Methyl 3-(thiophen-2-yl)benzo[b]thieno[2,3-d]thiophene-2-carboxylate (7g)

Pale yellow crystals (267.0 mg, 81%), m.p. (130-132 °C). ¹H NMR (500 MHz, DMSO- d_6) δ 8.22 – 8.15 (m, 1H), 8.14 – 8.09 (m, 1H), 7.84 (dd, J = 5.1, 1.2 Hz, 1H), 7.69 (dd, J = 3.7, 1.2 Hz, 1H), 7.59 – 7.50 (m, 2H), 7.27 (dd, J = 5.1, 3.6 Hz, 1H), 3.84 (s, 3H). ¹³C NMR (126 MHz, Chloroform-d) δ 162.2, 143.1, 140.4, 136.8, 134.2, 133.7, 132.0, 129.6, 127.3, 127.2, 127.0, 126.1, 125.0, 123.8, 121.7, 52.2. HRMS (+ESI): Calcd. for C₁₆H₁₀LiO₂S₃ m/z 339.9997 [M+Li]⁺, found m/z 339.9995 [M+Li]⁺.

2.8 Methyl 3-(5-methylthiophen-2-yl)benzo[*b*]thieno[2,3-*d*]thiophene-2-carboxylate (7h) Yellow solid (258.0 mg, 75%), m.p. (69-70 °C). ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.19 – 8.07 (m, 2H), 7.59 – 7.51 (m, 2H), 7.50 (d, *J* = 3.6 Hz, 1H), 6.95 (dd, *J* = 3.6, 1.1 Hz, 1H), 3.83 (s, 3H), 2.55 (d, *J* = 1.1 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 162.3, 143.16, 143.15, 142.1, 140.2, 136.7, 134.1, 132.0, 131.8, 129.9, 126.0, 125.4, 124.9, 123.7, 121.6, 52.1, 15.3. HRMS (+ESI): Calcd. for C₁₇H₁₂LiO₂S₃ m/z 351.0154 [M+Li]⁺, found m/z 351.0154 [M+Li]⁺.

2.9 Methyl 3-(5-bromothiophen-2-yl)benzo[b]thieno[2,3-d]thiophene-2-carboxylate (7i)

Orange solid (217.0 mg, 53%), m.p. (171-173 °C). ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.22 – 8.16 (m, 1H), 8.16 – 8.12 (m, 1H), 7.60 – 7.53 (m, 2H), 7.51 (d, *J* = 3.9 Hz, 1H), 7.40 (d, *J* = 3.9 Hz, 1H), 3.85 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 162.1, 143.0, 139.9, 137.0, 135.7, 132.6, 131.9, 129.9, 129.8, 127.4, 126.3, 125.1, 123.8, 121.7, 114.7, 52.3. HRMS (+ESI): Calcd. for C₁₆H₉BrLiO₂S₃ m/z 414.9103 [M+Li]⁺, found m/z 414.9106 [M+Li]⁺.

2.10 Methyl 3-(3,4-dimethoxyphenyl)-6-methoxybenzo[*b*]thieno[2,3-*d*]thiophene-2carboxylate (7j)

White solid (273.0 mg, 66%), m.p. (170-171 °C). ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.01 (d, *J* = 8.7 Hz, 1H), 7.66 (d, *J* = 2.4 Hz, 1H), 7.22 (d, *J* = 2.0 Hz, 1H), 7.16 (dd, *J* = 8.2, 2.1 Hz, 1H), 7.11 (dd, *J* = 8.8, 2.4 Hz, 1H), 7.07 (d, *J* = 8.4 Hz, 1H), 3.84 (s, 3H), 3.83 (s, 3H), 3.78 (s, 3H), 3.74 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 162.5, 158.5, 149.2, 148.4, 145.1, 141.3, 138.8, 136.9, 126.5, 126.0, 125.6, 122.4, 121.9, 114.4, 112.5, 110.7, 106.5, 55.9, 55.8, 55.5, 51.9. HRMS (+ESI): Calcd. for C₂₁H₁₈LiO₅S₂ m/z 421.0750 [M+Li]⁺, found m/z 421.0755 [M+Li]⁺.

2.11 Methyl 5-chloro-3-(3,4-dimethoxyphenyl)-6-methoxybenzo[*b*]thieno[2,3*d*]thiophene-2-carboxylate (7k)

White solid (228.0 mg, 51%), m.p. (235-236 °C). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.77 (d, *J* = 8.7 Hz, 1H), 7.23 (dd, *J* = 8.2, 2.1 Hz, 1H), 7.18 (d, *J* = 2.0 Hz, 1H), 7.11 (d, *J* = 8.7 Hz, 1H), 7.00 (d, *J* = 8.3 Hz, 1H), 4.01 (s, 3H), 3.96 (s, 3H), 3.94 (s, 3H), 3.83 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 162.5, 153.5, 149.4, 148.6, 144.6, 141.5, 139.7, 137.0, 127.1, 126.5, 126.2, 121.9, 120.6, 116.2, 112.5, 110.84, 110.77, 56.9, 56.0, 55.9, 52.1. HRMS (+ESI): Calcd. for C₂₁H₁₈ClO₅S₂ m/z 449.0279 [M+H]⁺, found m/z 449.0278 [M+H]⁺.

2.12 Methyl 6-bromo-3-(3,4-dimethoxyphenyl)benzo[*b*]thieno[2,3-*d*]thiophene-2carboxylate (7l)

White solid (278.0 mg, 60%), m.p. (197-198 °C). ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.43 (d, *J* = 1.8 Hz, 1H), 8.14 (d, *J* = 8.5 Hz, 1H), 7.70 (dd, *J* = 8.5, 1.8 Hz, 1H), 7.25 (d, *J* = 2.1 Hz, 1H), 7.20 (dd, *J* = 8.2, 2.1 Hz, 1H), 7.10 (d, *J* = 8.3 Hz, 1H), 3.85 (s, 3H), 3.79 (s, 3H), 3.78 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 162.3, 149.4, 148.5, 144.5, 141.1, 140.8, 136.1, 131.1, 128.4,

127.6, 126.3, 126.1, 122.6, 121.8, 119.7, 112.4, 110.8, 55.9, 55.8, 52.1. HRMS (+ESI): Calcd. for $C_{20}H_{15}BrLiO_4S_2 m/z$ 468.9750 [M+Li]⁺, found m/z 468.9753 [M+Li]⁺.

2.13 Methyl 8-(3,4-dimethoxyphenyl)naphtho[2,1-*b*]thieno[2,3-*d*]thiophene-9-carboxylate (7m)

White solid (291.0 mg, 67%), m.p. (237-238 °C). ¹H NMR (500 MHz, Chloroform-*d*) δ 9.50 (d, *J* = 8.2 Hz, 1H), 7.98 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.88 (d, *J* = 8.8 Hz, 1H), 7.81 (d, *J* = 8.8 Hz, 1H), 7.71 – 7.66 (m, 1H), 7.65 – 7.59 (m, 1H), 7.60 – 7.55 (m, 2H), 6.97 – 6.83 (m, 1H), 3.98 (s, 3H), 3.96 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 187.4, 153.8, 149.0, 138.3, 133.8, 132.0, 130.3, 129.7, 129.0, 128.7, 126.9, 126.1, 125.8, 124.10, 124.09, 122.9, 120.2, 111.5, 109.9, 56.05, 55.99, 55.98. (Two signals were not found due to overlapping peaks). HRMS (+ESI): Calcd. for C₂₄H₁₈LiO₄S₂ m/z 441.0801 [M+Li]⁺, found m/z 441.0801 [M+Li]⁺.

2.14 Methyl 3-(3,4-dimethoxyphenyl)benzo[4,5]selenopheno[3,2-*b*]thiophene-2carboxylate (15)

White solid (272.0 mg, 63%), m.p. (166-167 °C). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.95 – 7.87 (m, 2H), 7.50 – 7.43 (m, 1H), 7.36 (m, 1H), 7.23 (dd, J = 8.2, 2.1 Hz, 1H), 7.18 (d, J = 2.0 Hz, 1H), 6.99 (d, J = 8.3 Hz, 1H), 3.96 (s, 3H), 3.93 (s, 3H), 3.84 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 162.4, 149.3, 148.5, 143.9, 143.0, 139.35, 139.34, 139.1, 134.6, 127.4, 126.9, 126.1, 125.5, 123.2, 121.7, 112.2, 110.8, 56.0, 55.9, 52.1. HRMS (+ESI): Calcd. for C₂₀H₁₇O₄SSe m/z 433.0007 [M+H]⁺, found m/z 433.0011 [M+H]⁺.

3. General procedure for the synthesis of 2-substituted 3-arylbenzo[*b*]thieno[2,3-*d*]thiophenes (8a-d, 9a-d, 10a-c), and 3-(3,4-dimethoxyphenyl)benzo[4,5]selenopheno[3,2-*b*]thiophenes (16, 17a,b, 18).

Na₂S·9H₂O (264.0 mg, 1.1 mmol) was suspended in DMF (10 ml) under an argon atmosphere. Then the substrate **6a,b,f,i** or **14** (1.0 mmol) was added, and the reaction mixture was heated at 60 °C for 45 min. The solution turned dark red. After cooling, the appropriate alkylating agent was added to the reaction mixture, namely chloroacetonitrile (70 μ l, 1.1 mmol) for products **8a-d** and **16**, 2-chloro-acetophenone (171.0 mg, 1.1 mmol) or 2-chloro-4'-fluoroacetophenone (190.0 mg, 1.1 mmol) for products **9a-d** and **17a,b**, and chloroacetone (88 μ l, 1.1 mmol) for products **10a-c** and **18**. The dark color immediately disappeared. The reaction mixture was stirred for 15 min, followed by addition of CaO (840.0 mg, 15.0 mmol) and DBU (75 μ l, 0.5 mmol), and then kept at room temperature for another 15 h. After that the resulting mixture was diluted with hydrochloric acid solution (50 ml, 1 M), and the formed precipitate was filtered off, washed with

water (2×10 ml), dried, and recrystallized from acetonitrile, thus giving desired products 8a-d, 9a-d, 10a-c or 16, 17a-b, 18.

3.1 **3-(3,4-Dimethoxyphenyl)benzo**[*b*]thieno[2,3-*d*]thiophene-2-carbonitrile (8a)

White solid (270.0 mg, 77%), m.p. (193-194 °C). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 – 7.86 (m, 2H), 7.55 – 7.46 (m, 3H), 7.44 (d, *J* = 2.2 Hz, 1H), 7.05 (d, *J* = 8.3 Hz, 1H), 4.00 (s, 3H), 3.98 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.2, 149.3, 144.2, 143.5, 137.8, 136.8, 131.5, 126.5, 125.3, 124.5, 123.9, 121.7, 120.7, 115.3, 111.4, 110.7, 103.5, 56.0, 55.9. HRMS (+ESI): Calcd. for C₁₉H₁₃LiNO₂S₂ m/z 358.0542 [M+Li]⁺, found m/z 358.0542 [M+Li]⁺.

3.2 3-(4-Methoxyphenyl)benzo[*b*]thieno[2,3-*d*]thiophene-2-carbonitrile (8b)

White solid (254.0 mg, 79%), m.p. (199-200 °C). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 – 7.85 (m, 2H), 7.88 – 7.79 (m, 2H), 7.54 – 7.42 (m, 2H), 7.13 – 7.04 (m, 2H), 3.90 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.7, 144.3, 143.6, 138.1, 137.9, 137.0, 131.7, 129.3, 126.5, 125.3, 124.4, 124.0, 121.7, 115.3, 114.7, 55.4. HRMS (+ESI): Calcd. for C₁₈H₁₁LiNOS₂ m/z 328.0437 [M+Li]⁺, found m/z 328.0436 [M+Li]⁺.

3.3 3-Phenylbenzo[*b*]thieno[2,3-*d*]thiophene-2-carbonitrile (8c)

White solid (175.0 mg, 60%), m.p. (215-216 °C). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 – 7.84 (m, 4H), 7.63 – 7.44 (m, 5H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 144.5, 143.7, 137.2, 132.0, 131.6, 129.9, 129.4, 127.9, 126.6, 125.4, 124.0, 121.8, 115.0, 105.0, 90.0. HRMS (+ESI): Calcd. for C₁₇H₉LiNS₂ m/z 298.0331 [M+Li]⁺, found m/z 298.0328 [M+Li]⁺.

3.4 3-(5-Bromothiophen-2-yl)benzo[*b*]thieno[2,3-*d*]thiophene-2-carbonitrile (8d)

Orange solid (173.0 mg, 46%), m.p. (203-204 °C). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.95 – 7.87 (m, 2H), 7.59 (d, J = 4.0 Hz, 1H), 7.53 – 7.45 (m, 2H), 7.19 (d, J = 4.0 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 143.6, 138.3, 136.1, 135.8, 135.2, 131.3, 131.0, 128.4, 126.9, 125.6, 124.1, 121.8, 115.5, 114.9, 103.1. HRMS (+ESI): Calcd. for C₁₅H₆BrLiNS₃ m/z 381.9000 [M+Li]⁺, found m/z 381.9005 [M+Li]⁺.

3.5 (3-(3,4-Dimethoxyphenyl)benzo[b]thieno[2,3-d]thiophen-2-yl)(phenyl)methanone (9a)

Pale yellow crystals (344.0 mg, 80%), m.p. (151-152 °C). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.00 – 7.94 (m, 1H), 7.92 – 7.85 (m, 1H), 7.69 – 7.63 (m, 2H), 7.52 – 7.42 (m, 2H), 7.39 – 7.30 (m, 1H), 7.23 – 7.16 (m, 2H), 7.05 (dd, J = 8.2, 2.1 Hz, 1H), 6.83 (d, J = 2.0 Hz, 1H), 6.75 (d, J = 1000 M s = 0.00 M s

8.3 Hz, 1H), 3.85 (s, 3H), 3.73 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 190.1, 149.1, 148.6, 143.1, 139.9, 139.6, 137.9, 137.8, 137.5, 132.4, 132.3, 129.6, 127.8, 127.0, 126.1, 125.1, 123.9, 122.0, 121.8, 112.7, 111.0, 55.9, 55.7. HRMS (+ESI): Calcd. for C₂₅H₁₉O₃S₂ m/z 431.0770 [M+H]⁺, found m/z 431.0773 [M+H]⁺.

3.6 (3-(4-Methoxyphenyl)benzo[*b*]thieno[2,3-*d*]thiophen-2-yl)(phenyl)methanone (9b)

Pale yellow crystals (212.0 mg, 53%), m.p. (111-112 °C). ¹H NMR (400 MHz, DMSO- d_6) δ 8.23 – 8.17 (m, 1H), 8.16 – 8.09 (m, 1H), 7.64 – 7.58 (m, 2H), 7.57 – 7.50 (m, 2H), 7.50 – 7.40 (m, 1H), 7.37 – 7.31 (m, 2H), 7.32 – 7.23 (m, 2H), 6.87 – 6.79 (m, 2H), 3.72 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 190.0, 159.5, 143.1, 139.9, 139.7, 137.7, 137.6, 137.4, 132.4, 132.1, 130.5, 129.6, 127.8, 126.6, 125.9, 125.0, 123.9, 121.9, 113.8, 55.2. HRMS (+ESI): Calcd. for C₂₄H₁₆LiO₂S₂ m/z 407.0746 [M+Li]⁺, found m/z 407.0749 [M+Li]⁺.

3.7 Phenyl(3-phenylbenzo[*b*]thieno[2,3-*d*]thiophen-2-yl)methanone (9c)

Pale yellow solid (222.0 mg, 60%), m.p. (113-114 °C). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.02 – 7.95 (m, 1H), 7.91 – 7.85 (m, 1H), 7.67 – 7.61 (m, 2H), 7.52 – 7.43 (m, 2H), 7.40 – 7.38 (m, 2H), 7.35 – 7.29 (m, 1H), 7.25 – 7.14 (m, 5H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 190.0, 143.2, 140.0, 139.9, 138.5, 137.8, 137.4, 134.3, 132.4, 132.2, 129.7, 129.2, 128.4, 128.3, 127.8, 126.1, 125.1, 123.9, 121.9. HRMS (+ESI): Calcd. for C₂₃H₁₅OS₂ m/z 371.0559 [M+H]⁺, found m/z 371.0561 [M+H]⁺.

3.8 (4-Fluorophenyl)(3-(4-methoxyphenyl)benzo[*b*]thieno[2,3-*d*]thiophen-2yl)methanone (9d)

Yellow crystals (314.0 mg, 75%), m.p. (143-144 °C). ¹H NMR (500 MHz, DMSO- d_6) δ 8.24 – 8.19 (m, 1H), 8.17 – 8.05 (m, 1H), 7.71 – 7.63 (m, 2H), 7.60 – 7.47 (m, 2H), 7.37 – 7.30 (m, 2H), 7.12 – 7.03 (m, 2H), 6.89 – 6.82 (m, 2H), 3.73 (s, 3H). ¹³C NMR (126 MHz, Chloroform-d) δ 188.5, 159.7, 143.1, 139.8, 139.5, 137.7, 137.4, 132.3, 132.2, 132.1, 130.5, 126.5, 126.0, 125.0, 123.9, 121.9, 115.0, 114.8, 113.9, 55.2. ¹⁹F NMR (471 MHz, Chloroform-d) δ 56.18 – 55.17 (m). HRMS (+ESI): Calcd. for C₂₄H₁₅FNaO₂S₂ m/z 441.0390 [M+Na]⁺, found m/z 441.0389 [M+Na]⁺.

3.9 1-(3-(3,4-Dimethoxyphenyl)benzo[*b*]thieno[2,3-*d*]thiophen-2-yl)ethan-1-one (10a)

Beige crystals (254.0 mg, 69%), m.p. (166-167 °C). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.99 – 7.92 (m, 1H), 7.88 – 7.78 (m, 1H), 7.51 – 7.38 (m, 2H), 7.11 (dd, J = 8.2, 2.0 Hz, 1H), 7.06 (d, J = 2.0 Hz, 1H), 7.02 (d, J = 8.3 Hz, 1H), 3.98 (s, 3H), 3.94 (s, 3H), 2.25 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 192.3, 149.7, 149.2, 143.4, 141.4, 141.0, 139.7, 137.6, 132.4, 126.9, 126.1,

125.1, 123.9, 122.2, 121.9, 112.0, 111.3, 56.1, 55.9, 28.9. HRMS (+ESI): Calcd. for C₂₀H₁₇O₃S₂ m/z 369.0614 [M+H]⁺, found m/z 369.0615 [M+H]⁺.

3.10 1-(3-(4-Methoxyphenyl)benzo[b]thieno[2,3-d]thiophen-2-yl)ethan-1-one (10b)

Orange crystals (195.0 mg, 57%), m.p. (157-158 °C). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.99 – 7.92 (m, 1H), 7.83 (m, 1H), 7.51 – 7.38 (m, 4H), 7.10 – 7.02 (m, 2H), 3.91 (s, 3H), 2.22 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 192.3, 160.2, 143.4, 141.4, 140.9, 139.8, 137.6, 132.4, 130.3, 126.7, 126.1, 125.0, 123.9, 122.1, 114.4, 55.3, 28.9. HRMS (+ESI): Calcd. for C₁₉H₁₅O₂S₂ m/z 339.0508 [M+H]⁺, found m/z 339.0508 [M+H]⁺.

3.11 1-(3-Phenylbenzo[*b*]thieno[2,3-*d*]thiophen-2-yl)ethan-1-one (10c)

Brown crystals (129.0 mg, 42%), m.p. (145-146 °C). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.03 – 7.92 (m, 1H), 7.87 – 7.79 (m, 1H), 7.58 – 7.50 (m, 5H), 7.48 – 7.40 (m, 2H), 2.19 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 192.1, 143.5, 141.4, 141.2, 139.8, 137.8, 134.7, 132.4, 129.1, 129.02, 128.96, 126.1, 125.1, 123.9, 122.2, 28.9. HRMS (+ESI): Calcd. for C₁₈H₁₃OS₂ m/z 309.0402 [M+H]⁺, found m/z 309.0407 [M+H]⁺.

3.12 3-(3,4-Dimethoxyphenyl)benzo[4,5]selenopheno[3,2-*b*]thiophene-2-carbonitrile (16)

White solid (239.0 mg, 60%), m.p. (219-220 °C). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.96 – 7.88 (m, 2H), 7.53 – 7.45 (m, 1H), 7.47 – 7.37 (m, 3H), 7.04 (d, *J* = 8.3 Hz, 1H), 3.99 (s, 6H), 3.97 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 150.3, 149.4, 147.0, 143.4, 140.5, 133.9, 126.9, 126.7, 125.8, 125.4, 123.1, 120.5, 115.2, 111.6, 110.6, 102.8, 56.1, 56.0. HRMS (+ESI): Calcd. for C₁₉H₁₄NO₂SSe m/z 399.9905 [M+H]⁺, found m/z 399.9907 [M+H]⁺.

3.13 (3-(3,4-Dimethoxyphenyl)benzo[4,5]selenopheno[3,2-*b*]thiophen-2-

yl)(phenyl)methanone (17a)

Yellow crystals (281.0 mg, 59%), m.p. (171-172 °C). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.99 – 7.93 (m, 1H), 7.93 – 7.89 (m, 1H), 7.69 – 7.63 (m, 2H), 7.51 – 7.44 (m, 1H), 7.41 – 7.31 (m, 2H), 7.22 – 7.15 (m, 2H), 7.03 (dd, *J* = 8.2, 2.1 Hz, 1H), 6.81 (d, *J* = 2.0 Hz, 1H), 6.75 (d, *J* = 8.3 Hz, 1H), 3.84 (s, 3H), 3.72 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 189.9, 149.2, 148.8, 142.9, 142.3, 140.4, 138.4, 137.5, 136.9, 134.7, 132.3, 129.6, 127.9, 127.9, 126.9, 126.2, 125.6, 123.4, 121.4, 112.6, 111.2, 55.9, 55.8. HRMS (+ESI): Calcd. for C₂₅H₁₉O₃SSe m/z 479.0215 [M+H]⁺, found m/z 479.0212 [M+H]⁺.

3.14 (3-(3,4-Dimethoxyphenyl)benzo[4,5]selenopheno[3,2-*b*]thiophen-2-yl)(4-fluorophenyl)methanone (17b)

Yellow crystals (303.0 mg, 61%), m.p. (178-179 °C). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.99 – 7.90 (m, 2H), 7.73 – 7.65 (m, 2H), 7.52 – 7.45 (m, 1H), 7.43 – 7.35 (m, 1H), 7.00 (dd, J = 8.2, 2.1 Hz, 1H), 6.91 – 6.83 (m, 3H), 6.76 (d, J = 8.2 Hz, 1H), 3.86 (s, 3H), 3.75 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 188.3, 166.1, 149.3, 148.8, 142.9, 142.1, 140.3, 138.3, 136.5, 134.6, 133.7, 132.2, 127.7, 126.9, 126.2, 125.6, 123.3, 121.5, 115.1, 112.3, 111.2, 55.9, 55.8. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ 56.50 – 54.96 (m). HRMS (+ESI): Calcd. for C₂₅H₁₉O₃SSe m/z 479.0120 [M+H]⁺, found m/z 479.0116 [M+H]⁺.

3.15 -(3,4-Dimethoxyphenyl)benzo[4,5]selenopheno[3,2-*b*]thiophen-2-yl)ethan-1-one (18)

Pale yellow solid (175.0 mg, 42%), m.p. (185-186°C). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.98 – 7.91 (m, 1H), 7.91 – 7.86 (m, 1H), 7.50 – 7.43 (m, 1H), 7.40 – 7.33 (m, 1H), 7.11 (dd, *J* = 8.1, 2.0 Hz, 1H), 7.06 (d, *J* = 2.0 Hz, 1H), 7.01 (d, *J* = 8.2 Hz, 1H), 3.98 (s, 3H), 3.93 (s, 3H), 2.24 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 192.0, 149.6, 149.1, 143.2, 142.3, 140.2, 139.86, 139.85, 134.7, 127.9, 126.9, 126.2, 125.5, 123.5, 121.6, 111.7, 111.3, 56.0, 55.9, 28.8. HRMS (+ESI): Calcd. for C₂₀H₁₇O₃SSe m/z 417.0058 [M+H]⁺, found m/z 417.0059 [M+H]⁺.

4. Procedure for the synthesis of bis(3-(3,4-dimethoxyphenyl)benzo[b]thieno[2,3d]thiophen-2-yl)methanone (11)

Na₂S·9H₂O (528.0 mg, 2.2 mmol) was dissolved in DMF (10 ml) under an argon atmosphere. Then the compound **6a** (664.0 mg, 2.0 mmol) was added, and the reaction mixture was heated at 60 °C for 45 min. The solution turned dark red. After cooling, 1,3-dichloroacetone (101 μ l, 1.1 mmol). The dark color immediately disappeared. The reaction mixture was stirred for 15 min, followed by addition of CaO (1.7 g, 30.0 mmol) and DBU (150 μ l, 1.0 mmol), and then kept at room temperature for another 15 h. After that the resulting mixture was diluted with hydrochloric acid solution (100 ml, 1 M), and the formed precipitate was filtered off, washed with water (2 × 10 ml), dried, and recrystallized from ethyl acetate to afford product **11** in 71 % yield.

Yellow crystals (481.0 mg), m.p. (138-139 °C). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.94 – 7.89 (m, 1H), 7.84 – 7.78 (m, 1H), 7.50 – 7.39 (m, 2H), 6.81 (dd, J = 8.2, 2.1 Hz, 1H), 6.74 (d, J = 2.1 Hz, 1H), 6.62 (d, J = 8.3 Hz, 1H), 3.80 (s, 3H), 3.68 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 183.1, 149.1, 148.3, 142.9, 139.3, 139.1, 137.6, 137.4, 132.2, 126.03, 126.02, 125.1, 123.8, 122.2, 121.8, 112.4, 110.4, 55.9, 55.8. HRMS (+ESI): Calcd. for C₃₇H₂₇O₅S₄ m/z 679.0736 [M+H]⁺, found m/z 679.0729 [M+H]⁺.

5. General procedure for the synthesis of 3-arylbenzo[*b*]thieno[2,3-*d*]thiophene-2carbaldehydes (12a,b)

The suspension of LiAlH₄ (102.0 mg, 3.0 mmol) in dry THF (15 ml) was cooled down to 0 °C with ice bath, and ester **7a** or **7b** (1.0 mmol) was added in small portions. Then, the reaction mixture was stirred for 3 h at room temperature and quenched by a sequential addition of ethyl acetate (100 μ l), 10% aqueous solution of NaOH (100 μ l), water (300 μ l) and ethanol (5 ml). The formed precipitate was filtered off, washed with THF (2×10 ml). The obtained filtrate was evaporated under reduced pressure to give the crude carbinol, which was used further without isolation. The latter residue was dissolved in CH₂Cl₂ (10 ml), MnO₂ (435.0 mg, 5.0 mmol) was added, and the resulted suspension was stirred for 5 h at room temperature. The precipitate of MnO₂ was filtered off, washed with dichloromethane (2×10 ml), and the solvent was distilled off to afford desired products **12a,b**.

5.1 3-(3,4-Dimethoxyphenyl)benzo[b]thieno[2,3-d]thiophene-2-carbaldehyde (12a)

Pale yellow solid (159.0 mg, 45%), m.p. (192-193 °C). ¹H NMR (500 MHz, DMSO-*d*₆) δ 9.95 (s, 1H), 8.22 (dt, *J* = 7.4, 3.7 Hz, 1H), 8.15 (dd, *J* = 6.1, 3.2 Hz, 1H), 7.57 (dd, *J* = 6.1, 3.1 Hz, 2H), 7.42 (d, *J* = 2.1 Hz, 2H), 7.38 (dd, *J* = 8.2, 2.0 Hz, 1H), 7.21 (d, *J* = 8.2 Hz, 1H), 3.87 (d, *J* = 1.4 Hz, 6H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 184.4, 150.2, 149.4, 144.3, 143.9, 140.3, 139.3, 139.1, 132.2, 126.7, 125.3, 125.0, 124.0, 122.7, 122.4, 112.1, 111.5, 56.1, 56.0. HRMS (+ESI): Calcd. for C₁₉H₁₄LiO₃S₂ m/z 361.0539 [M+Li]⁺, found m/z 361.0543 [M+Li]⁺.

5.2 **3-(4-Methoxyphenyl)benzo**[*b*]thieno[2,3-*d*]thiophene-2-carbaldehyde (12b)

Pale yellow solid (136.0 mg, 42%), m.p. (198-199 °C). ¹H NMR (500 MHz, DMSO-*d*₆) δ 9.88 (s, 1H), 8.25 – 8.18 (m, 1H), 8.19 – 8.12 (m, 1H), 7.78 (d, *J* = 8.4 Hz, 2H), 7.61 – 7.54 (m, 2H), 7.20 (d, *J* = 8.4 Hz, 2H), 3.88 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 184.4, 160.7, 144.3, 143.9, 140.3, 139.3, 139.0, 132.2, 130.8, 126.6, 125.2, 124.8, 124.0, 122.4, 114.7, 55.4. HRMS (+ESI): Calcd. for C₁₈H₁₂LiO₂S₂ m/z 331.0433 [M+Li]⁺, found m/z 331.0433 [M+Li]⁺.

6. Procedure for the synthesis of 3-bromobenzo[*b*]selenophene-2-carboxylic acid (13)

Ethyl 3-bromobenzo[*b*]selenophene-2-carboxylate (3.3 g, 10 mmol) was immersed into mixture of 15% aqueous solution of NaOH (25 ml) and ethanol (25 ml), and the resulting mixture was refluxed for 4 h, then cooled and quenched with hydrochloric acid (12 ml). Ethanol was distilled off, and the formed orange precipitate was filtered off, washed with water (2×10 ml) and dried, thus giving the product **13** in 95% yield.

Orange solid (2.9 g), m.p. (283-284 °C). ¹H NMR (500 MHz, DMSO- d_6) δ 13.79 (s, 1H), 8.20 (m, 1H), 8.00 (m, 1H), 7.63 – 7.52 (m, 2H). ¹³C NMR (126 MHz, DMSO- d_6) δ 163.3, 140.2, 140.0, 131.9, 128.1, 126.9, 126.6, 126.2, 114.2. HRMS (+ESI): Calcd. for C₉H₆BrO₂Se m/z 304.8711 [M+H]⁺, found m/z 304.8708 [M+H]⁺.

7. Procedure for the synthesis of (3-bromobenzo[*b*]selenophen-2-yl)(3,4dimethoxyphenyl)methanone (14)

Thionyl chloride (435 µl, 6 mmol) and the catalytic amount of DMF (10 µl) were added to solution of carboxylic acid **13** (1.5 g, 5 mmol) in CHCl₃ (50 ml). The reaction mixture was refluxed for 4 h, and then the solvent was removed under reduced pressure. The residue of acyl chloride was dissolved in anhydrous CH_2Cl_2 (50 ml), then grinded $AlCl_3$ (0.9 g, 6.5 mmol) was added, and the resulting mixture was stirred for 0.5 h until complete homogenization. After that the solution was cooled down to 0 °C with ice bath, and veratrole (6.0 mmol) was added dropwise. The obtained reaction mixture was kept overnight at room temperature, and then quenched with water (50 ml). The organic layer was separated and washed with aqueous solution of Na₂CO₃ (50 ml, 0.1 M). The solvent was removed under reduced pressure, and the residue was recrystallized from ethanol to afford compound **14** in 83% yield.

Pale yellow solid (1.8 g), m.p. (155-156 °C). ¹H NMR (500 MHz, DMSO- d_6) δ 8.27 (m, 1H), 7.97 – 7.91 (m, 1H), 7.63 (m, 1H), 7.55 (m, 1H), 7.50 – 7.44 (m, 2H), 7.14 – 7.08 (m, 1H), 3.87 (s, 3H), 3.83 (s, 3H). ¹³C NMR (126 MHz, DMSO- d_6) δ 189.0, 154.0, 148.8, 139.7, 139.0, 138.5, 128.8, 127.2, 126.5, 126.3, 126.0, 125.9, 111.0, 110.9, 109.7, 55.9, 55.6. HRMS (+ESI): Calcd. for C₉H₆BrO₂Se m/z 304.8711 [M+H]⁺, found m/z 304.8708 [M+H]⁺.

Copies of ¹H, ¹³C and ¹⁹F NMR spectra of new compounds

(3-Chlorobenzo[b]thiophen-2-yl)(3,4-dimethoxyphenyl)methanone (6a)

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.22 – 8.14 (m, 1H), 8.01 – 7.93 (m, 1H), 7.70 – 7.61 (m, 2H), 7.53 (dd, *J* = 8.3, 2.1 Hz, 1H), 7.48 (d, *J* = 2.1 Hz, 1H), 7.13 (d, *J* = 8.5 Hz, 1H), 3.89 (s, 3H), 3.84 (s, 3H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 187.3, 153.8, 149.0, 138.3, 136.6, 134.0, 130.0, 127.4, 125.7, 125.5, 123.3, 123.0, 122.6, 111.5, 109.9, 56.1, 56.0.

¹H NMR (500 MHz, Chloroform-*d*) δ 8.00 – 7.90 (m, 3H), 7.94 – 7.83 (m, 1H), 7.57 – 7.48 (m, 2H), 7.01 – 6.94 (m, 2H), 3.90 (s, 3H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 187.4, 164.0, 138.3, 136.6, 134.2, 132.5, 130.0, 127.4, 125.5, 123.3, 122.9, 122.7, 113.7, 55.5.

CDCI3 0.00 414 414 413 ₹1.48 1.45 22 13 <mark>28</mark> 56 888 ف ف ې ې ې ص ص 0,0,0 D (m) 7.92 CI C (m) 7.53 B (m) 6.96 E (m) 7.96 F (m) 0 7.86 ÒEt \vdash 96 5 8 D (m) 7.92 7.9 7.8 7.7 7.6 ppm 7.5 7.4 7.0 6.9 8.0 F(m) C(m) 7.86 7.53 J (q) 4.14 A (t) 1.46 B (m) 6.96 E (m) 7.96 0.96 1.77 2.51- $1.91 \pm$ 2.20 I ٣ 2.93 7.5 7.0 6.5 6.0 5.5 5.0 4.0 ppm 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 8.0 4.5

(3-Chlorobenzo[*b*]thiophen-2-yl)(4-ethoxyphenyl)methanone (6c)

¹H NMR (400 MHz, DMSO-*d*₆) δ 7.97 – 7.94 (m, 1H), 7.94 – 7.91 (m, 2H), 7.90 – 7.83 (m, 1H), 7.57 – 7.50 (m, 2H), 7.01 – 6.92 (m, 2H), 4.14 (q, *J* = 7.0 Hz, 3H), 1.46 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 187.4, 163.5, 138.3, 136.6, 134.3, 132.5, 129.8, 127.4, 125.5, 123.3, 122.9, 122.7, 114.1, 63.8, 14.6.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 (m, 1H), 7.89 – 7.79 (m, 1H), 7.60 – 7.41 (m, 2H), 7.05 (dd, *J* = 9.0, 3.1 Hz, 1H), 6.99 (d, *J* = 3.1 Hz, 1H), 6.91 (d, *J* = 9.0 Hz, 1H), 3.80 (s, 3H), 3.71 (s, 3H).

(3-Chlorobenzo[*b*]thiophen-2-yl)(4-(dimethylamino)phenyl)methanone (6e)

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.18 – 8.12 (m, 1H), 7.96 – 7.89 (m, 1H), 7.78 – 7.71 (m, 2H), 7.66 – 7.59 (m, 2H), 6.82 – 6.75 (m, 2H), 3.07 (s, 6H).

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.19 (m, 1H), 8.04 – 7.96 (m, 1H), 7.92 – 7.85 (m, 2H), 7.74 (m, 1H), 7.72 – 7.61 (m, 2H), 7.60 (m, 2H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 189.0, 138.6, 137.5, 136.7, 133.9, 133.2, 129.6, 128.3, 127.8, 125.5, 124.2, 123.6, 122.7.

(3-Chlorobenzo[*b*]thiophen-2-yl)(thiophen-2-yl)methanone (6g) CDCIB -1.56 HDO 00'0----0.02 2 6 22 5 5 CDC13 222 CI Ω C (dd) 7.79 A (m) B (m) 8.00 7.88 E (m) 7.55 G (dd) 7.19 B (m) 7.88 -----4 ģ E (m) 7.55 G (dd) 7.19 A (m) 8.00 8 Ś 5 8 8.2 8.1 8.0 7.9 7.8 7.6 7.5 7.4 7.3 7.2 7.1 7.7 C (dd) 7.79 ppm $F^{-}_{1}F^{+}_{1}F^{+}_{1}F^{+}_{1}F^{+}_{2}F^{+}_{1}F^{+}_{2}F$ 2.02 ± 1.00 868 5.5 4.0 ppm 3.5 2.5 2.0 1.5 0.5 7.5 7.0 6.5 6.0 5.0 4.5 3.0 1.0 0.0 8.0

¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 – 7.93 (m, 1H), 7.92 – 7.85 (m, 2H), 7.79 (dd, *J* = 5.0, 1.1 Hz, 1H), 7.60 – 7.49 (m, 2H), 7.19 (dd, *J* = 4.9, 3.9 Hz, 1H).

¹H NMR (500 MHz, Chloroform-*d*) δ 8.02 – 7.94 (m, 1H), 7.89 – 7.82 (m, 1H), 7.70 (d, *J* = 3.8 Hz, 1H), 7.58 – 7.50 (m, 2H), 6.86 (dd, *J* = 3.8, 1.1 Hz, 1H), 2.59 (d, *J* = 0.9 Hz, 3H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 179.2, 152.1, 141.3, 138.0, 136.6, 132.4, 127.5, 127.05, 127.04, 125.6, 123.44, 123.38, 122.6, 16.2.

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.25 – 8.16 (m, 1H), 8.04 – 7.98 (m, 1H), 7.85 (d, *J* = 4.1 Hz, 1H), 7.73 – 7.63 (m, 2H), 7.49 (d, *J* = 4.1 Hz, 1H).

33

(5-Bromothiophen-2-yl)(3-chlorobenzo[b]thiophen-2-yl)methanone (6i)

¹³C NMR (126 MHz, Chloroform-*d*) δ 178.4, 144.9, 138.1, 136.6, 135.7, 131.4, 131.3, 127.9, 125.8, 124.7, 124.4, 123.6, 122.7.

(3-Chloro-6-methoxybenzo[b]thiophen-2-yl)(3,4-dimethoxyphenyl)methanone (6j)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 (d, *J* = 8.9 Hz, 1H), 7.56 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.50 (d, *J* = 2.0 Hz, 1H), 7.27 (d, *J* = 2.0 Hz, 1H), 7.12 (dd, *J* = 8.9, 2.3 Hz, 1H), 6.92 (d, *J* = 8.4 Hz, 1H), 3.97 (s, 3H), 3.95 (s, 3H), 3.91 (s, 3H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 187.1, 159.9, 153.5, 148.8, 140.4, 131.5, 130.7, 130.3, 125.3, 124.4, 123.6, 116.3, 111.6, 109.9, 104.2, 56.0, 55.6.

¹H NMR (500 MHz, Chloroform-*d*) δ 7.84 (d, *J* = 8.9 Hz, 1H), 7.58 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.52 (d, *J* = 2.1 Hz, 1H), 7.23 (d, *J* = 8.8 Hz, 1H), 6.93 (d, *J* = 8.4 Hz, 1H), 4.04 (s, 3H), 3.98 (s, 3H), 3.96 (s, 3H).

(6-Bromo-3-chlorobenzo[b]thiophen-2-yl)(3,4-dimethoxyphenyl)methanone (6l)

¹H NMR (500 MHz, Chloroform-*d*) δ 8.01 (d, *J* = 1.7 Hz, 1H), 7.81 (dd, *J* = 8.7, 1.2 Hz, 1H), 7.63 (dd, *J* = 8.6, 1.6 Hz, 1H), 7.58 – 7.50 (m, 2H), 6.92 (d, *J* = 8.3 Hz, 1H), 3.98 (s, 3H), 3.95 (s, 3H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 186.8, 154.0, 149.1, 139.5, 135.4, 134.4, 129.7, 129.2, 125.8, 125.2, 124.5, 122.9, 121.8, 111.5, 109.9, 56.1, 56.0.

¹H NMR (500 MHz, Chloroform-*d*) δ 9.50 (d, *J* = 8.2 Hz, 1H), 7.98 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.88 (d, *J* = 8.8 Hz, 1H), 7.81 (d, *J* = 8.8 Hz, 1H), 7.72 - 7.65 (m, 1H), 7.65 - 7.60 (m, 1H), 7.59 - 7.54 (m, 2H), 6.93 - 6.90 (m, 1H), 3.98 (s, 3H), 3.96 (s, 3H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 187.4, 153.8, 149.0, 138.3, 133.8, 132.0, 130.3, 129.7, 129.0, 128.7, 126.9, 126.1, 125.8, 124.1, 122.9, 120.2, 111.5, 109.9, 56.05, 55.99. (One signal was not found due to overlapping peaks).

Methyl 3-(3,4-dimethoxyphenyl)benzo[b]thieno[2,3-d]thiophene-2-carboxylate (7a)

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.19 – 8.12 (m, 1H), 8.14 – 8.06 (m, 1H), 7.58 – 7.49 (m, 2H), 7.27 (d, *J* = 2.1 Hz, 1H), 7.21 (dd, *J* = 8.3, 2.1 Hz, 1H), 7.10 (d, *J* = 8.4 Hz, 1H), 3.85 (s, 3H), 3.80 (s, 3H), 3.78 (s, 3H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 162.4, 149.3, 148.4, 143.1, 141.2, 140.6, 136.8, 132.3, 127.1, 126.4, 125.9, 124.9, 123.8, 121.9, 121.7, 112.4, 110.7, 55.9, 55.8, 52.0.

Т

Methyl 3-(4-methoxyphenyl)benzo[b]thieno[2,3-d]thiophene-2-carboxylate (7b)

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.20 – 8.12 (m, 1H), 8.12 – 8.03 (m, 1H), 7.63 – 7.55 (m, 2H), 7.55 – 7.49 (m, 2H), 7.12 – 7.04 (m, 2H), 3.85 (s, 3H), 3.77 (s, 3H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 162.5, 159.8, 143.2, 141.3, 140.6, 136.8, 132.3, 130.4, 127.0, 126.2, 125.9, 124.9, 123.9, 121.7, 113.6, 55.2, 52.0.

Methyl 3-(4-ethoxyphenyl)benzo[b]thieno[2,3-d]thiophene-2-carboxylate (7c)

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.19 – 8.12 (m, 1H), 8.13 – 8.05 (m, 1H), 7.60 – 7.49 (m, 4H), 7.11 – 7.02 (m, 2H), 4.12 (q, *J* = 6.9 Hz, 2H), 3.76 (s, 3H), 1.38 (t, *J* = 6.9 Hz, 3H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 162.6, 159.3, 143.2, 141.4, 140.6, 136.8, 132.3, 130.4, 127.0, 126.1, 125.9, 124.9, 123.9, 121.7, 114.1, 63.4, 52.0, 14.8.

Methyl 3-(2,5-dimethoxyphenyl)benzo[*b*]thieno[2,3-*d*]thiophene-2-carboxylate (7d)

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.20 – 8.10 (m, 1H), 8.12 – 8.02 (m, 1H), 7.58 – 7.46 (m, 2H), 7.10 (dd, *J* = 8.9, 0.6 Hz, 1H), 7.06 – 6.99 (m, 2H), 3.76 (s, 3H), 3.73 (s, 3H), 3.68 (s, 3H).

Methyl 3-(4-(dimethylamino)phenyl)benzo[*b*]thieno[2,3-*d*]thiophene-2-carboxylate (7e)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 – 7.90 (m, 1H), 7.85 (m, 1H), 7.61 – 7.54 (m, 2H), 7.48 – 7.37 (m, 2H), 6.85 – 6.78 (m, 2H), 3.84 (s, 3H), 3.05 (s, 6H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 162.7, 150.5, 143.3, 142.3, 140.6, 136.6, 132.4, 130.2, 125.75, 125.70, 124.8, 123.8, 121.7, 121.3, 111.5, 52.0, 40.2.

Methyl 3-phenylbenzo[b]thieno[2,3-d]thiophene-2-carboxylate (7f)

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.21 – 8.14 (m, 1H), 8.13 – 8.05 (m, 1H), 7.66 – 7.59 (m, 2H), 7.59 – 7.46 (m, 5H), 3.76 (s, 3H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 162.4, 143.2, 141.4, 140.5, 136.9, 134.1, 132.2, 129.0, 128.6, 128.2, 127.8, 125.9, 124.9, 123.9, 121.7, 52.0.

Methyl 3-(thiophen-2-yl)benzo[b]thieno[2,3-d]thiophene-2-carboxylate (7g)

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.22 – 8.15 (m, 1H), 8.14 – 8.09 (m, 1H), 7.84 (dd, *J* = 5.1, 1.2 Hz, 1H), 7.69 (dd, *J* = 3.7, 1.2 Hz, 1H), 7.59 – 7.50 (m, 2H), 7.27 (dd, *J* = 5.1, 3.6 Hz, 1H), 3.84 (s, 3H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 162.2, 143.1, 140.4, 136.8, 134.2, 133.7, 132.0, 129.6, 127.3, 127.2, 127.0, 126.1, 125.0, 123.8, 121.7, 52.2.

Methyl 3-(5-methylthiophen-2-yl)benzo[b]thieno[2,3-d]thiophene-2-carboxylate (7h)

¹H NMR (400 MHz, DMSO- d_6) δ 8.19 – 8.07 (m, 2H), 7.59 – 7.51 (m, 2H), 7.50 (d, J = 3.6 Hz, 1H), 6.95 (dd, J = 3.6, 1.1 Hz, 1H), 3.83 (s, 3H), 2.55 (d, J = 1.1 Hz, 3H).

Methyl 3-(5-bromothiophen-2-yl)benzo[*b*]thieno[2,3-*d*]thiophene-2-carboxylate (7i)

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.22 – 8.16 (m, 1H), 8.16 – 8.12 (m, 1H), 7.60 – 7.53 (m, 2H), 7.51 (d, *J* = 3.9 Hz, 1H), 7.40 (d, *J* = 3.9 Hz, 1H), 3.85 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 162.1, 143.0, 139.9, 137.0, 135.7, 132.6, 131.9, 129.9, 129.8, 127.4, 126.3, 125.1, 123.8, 121.7, 114.7, 52.3.

Methyl 3-(3,4-dimethoxyphenyl)-6-methoxybenzo[*b*]thieno[2,3-*d*]thiophene-2-carboxylate (7j)

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.01 (d, *J* = 8.7 Hz, 1H), 7.66 (d, *J* = 2.4 Hz, 1H), 7.22 (d, *J* = 2.0 Hz, 1H), 7.16 (dd, *J* = 8.2, 2.1 Hz, 1H), 7.11 (dd, *J* = 8.8, 2.4 Hz, 1H), 7.07 (d, *J* = 8.4 Hz, 1H), 3.84 (s, 3H), 3.83 (s, 3H), 3.78 (s, 3H), 3.74 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 162.5, 158.5, 149.2, 148.4, 145.1, 141.3, 138.8, 136.9, 126.5, 126.0, 125.6, 122.4, 121.9, 114.4, 112.5, 110.7, 106.5, 55.9, 55.8, 55.5, 51.9.

¹H NMR (500 MHz, Chloroform-*d*) δ 7.77 (d, *J* = 8.7 Hz, 1H), 7.23 (dd, *J* = 8.2, 2.1 Hz, 1H), 7.18 (d, *J* = 2.0 Hz, 1H), 7.11 (d, *J* = 8.7 Hz, 1H), 7.00 (d, *J* = 8.3 Hz, 1H), 4.01 (s, 3H), 3.96 (s, 3H), 3.94 (s, 3H), 3.83 (s, 3H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 162.5, 153.5, 149.4, 148.6, 144.6, 141.5, 139.7, 137.0, 127.1, 126.5, 126.2, 121.9, 120.6, 116.2, 112.5, 110.84, 110.77, 56.9, 56.0, 55.9, 52.1.

Methyl 6-bromo-3-(3,4-dimethoxyphenyl)benzo[b]thieno[2,3-d]thiophene-2-carboxylate (7l)

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.43 (d, *J* = 1.8 Hz, 1H), 8.14 (d, *J* = 8.5 Hz, 1H), 7.70 (dd, *J* = 8.5, 1.8 Hz, 1H), 7.25 (d, *J* = 2.1 Hz, 1H), 7.20 (dd, *J* = 8.2, 2.1 Hz, 1H), 7.10 (d, *J* = 8.3 Hz, 1H), 3.85 (s, 3H), 3.79 (s, 3H), 3.78 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 162.3, 149.4, 148.5, 144.5, 141.1, 140.8, 136.1, 131.1, 128.4, 127.6, 126.3, 126.1, 122.6, 121.8, 119.7, 112.4, 110.8, 55.9, 55.8, 52.1.

Methyl 8-(3,4-dimethoxyphenyl)naphtho[2,1-b]thieno[2,3-d]thiophene-9-carboxylate (7m)

¹H NMR (500 MHz, Chloroform-*d*) δ 9.50 (d, *J* = 8.2 Hz, 1H), 7.98 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.88 (d, *J* = 8.8 Hz, 1H), 7.81 (d, *J* = 8.8 Hz, 1H), 7.71 – 7.66 (m, 1H), 7.65 – 7.59 (m, 1H), 7.60 – 7.55 (m, 2H), 6.97 – 6.83 (m, 1H), 3.98 (s, 3H), 3.96 (s, 3H).

(Two signals were not found due to overlapping peaks).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 – 7.86 (m, 2H), 7.55 – 7.46 (m, 3H), 7.44 (d, *J* = 2.2 Hz, 1H), 7.05 (d, *J* = 8.3 Hz, 1H), 4.00 (s, 3H), 3.98 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 150.2, 149.3, 144.2, 143.5, 137.8, 136.8, 131.5, 126.5, 125.3, 124.5, 123.9, 121.7, 120.7, 115.3, 111.4, 110.7, 103.5, 56.0, 55.9.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 – 7.85 (m, 2H), 7.88 – 7.79 (m, 2H), 7.54 – 7.42 (m, 2H), 7.13 – 7.04 (m, 2H), 3.90 (s, 3H).

71

¹³C NMR (101 MHz, Chloroform-*d*) δ 160.7, 144.3, 143.6, 138.1, 137.9, 137.0, 131.7, 129.3, 126.5, 125.3, 124.4, 124.0, 121.7, 115.3, 114.7, 55.4.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 – 7.84 (m, 4H), 7.63 – 7.44 (m, 5H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 144.5, 143.7, 137.2, 132.0, 131.6, 129.9, 129.4, 127.9, 126.6, 125.4, 124.0, 121.8, 115.0, 105.0, 90.0.

¹H NMR (500 MHz, Chloroform-*d*) δ 7.95 – 7.87 (m, 2H), 7.59 (d, *J* = 4.0 Hz, 1H), 7.53 – 7.45 (m, 2H), 7.19 (d, *J* = 4.0 Hz, 1H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 143.6, 138.3, 136.1, 135.8, 135.2, 131.3, 131.0, 128.4, 126.9, 125.6, 124.1, 121.8, 115.5, 114.9, 103.1.

¹H NMR (500 MHz, Chloroform-*d*) δ 8.00 – 7.94 (m, 1H), 7.92 – 7.85 (m, 1H), 7.69 – 7.63 (m, 2H), 7.52 – 7.42 (m, 2H), 7.39 – 7.30 (m, 1H), 7.23 – 7.16 (m, 2H), 7.05 (dd, *J* = 8.2, 2.1 Hz, 1H), 6.83 (d, *J* = 2.0 Hz, 1H), 6.75 (d, *J* = 8.3 Hz, 1H), 3.85 (s, 3H), 3.73 (s, 3H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 190.1, 149.1, 148.6, 143.1, 139.9, 139.6, 137.9, 137.8, 137.5, 132.4, 132.3, 129.6, 127.8, 127.0, 126.1, 125.1, 123.9, 122.0, 121.8, 112.7, 111.0, 55.9, 55.7.

(3-(4-Methoxyphenyl)benzo[b]thieno[2,3-d]thiophen-2-yl)(phenyl)methanone (9b)

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.23 – 8.17 (m, 1H), 8.16 – 8.09 (m, 1H), 7.64 – 7.58 (m, 2H), 7.57 – 7.50 (m, 2H), 7.50 – 7.40 (m, 1H), 7.37 – 7.31 (m, 2H), 7.32 – 7.23 (m, 2H), 6.87 – 6.79 (m, 2H), 3.72 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 190.0, 159.5, 143.1, 139.9, 139.7, 137.7, 137.6, 137.4, 132.4, 132.1, 130.5, 129.6, 127.8, 126.6, 125.9, 125.0, 123.9, 121.9, 113.8, 55.2.

¹H NMR (500 MHz, Chloroform-*d*) δ 8.02 – 7.95 (m, 1H), 7.91 – 7.85 (m, 1H), 7.67 – 7.61 (m, 2H), 7.52 – 7.43 (m, 2H), 7.40 – 7.38 (m, 2H), 7.35 – 7.29 (m, 1H), 7.25 – 7.14 (m, 5H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 190.0, 143.2, 140.0, 139.9, 138.5, 137.8, 137.4, 134.3, 132.4, 132.2, 129.7, 129.2, 128.4, 128.3, 127.8, 126.1, 125.1, 123.9, 121.9.

(4-Fluorophenyl)(3-(4-methoxyphenyl)benzo[b]thieno[2,3-d]thiophen-2-yl)methanone (9d)

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.24 – 8.19 (m, 1H), 8.17 – 8.05 (m, 1H), 7.71 – 7.63 (m, 2H), 7.60 – 7.47 (m, 2H), 7.37 – 7.30 (m, 2H), 7.12 – 7.03 (m, 2H), 6.89 – 6.82 (m, 2H), 3.73 (s, 3H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 188.5, 159.7, 143.1, 139.8, 139.5, 137.7, 137.4, 132.3, 132.2, 132.1, 130.5, 126.5, 126.0, 125.0, 123.9, 121.9, 115.0, 114.8, 113.9, 55.2.

¹⁹F NMR (471 MHz, Chloroform-*d*) δ 56.18 – 55.17 (m).

1-(3-(3,4-Dimethoxyphenyl)benzo[b]thieno[2,3-d]thiophen-2-yl)ethan-1-one (10a)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.99 – 7.92 (m, 1H), 7.88 – 7.78 (m, 1H), 7.51 – 7.38 (m, 2H), 7.11 (dd, *J* = 8.2, 2.0 Hz, 1H), 7.06 (d, *J* = 2.0 Hz, 1H), 7.02 (d, *J* = 8.3 Hz, 1H), 3.98 (s, 3H), 3.94 (s, 3H), 2.25 (s, 3H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 192.3, 149.7, 149.2, 143.4, 141.4, 141.0, 139.7, 137.6, 132.4, 126.9, 126.1, 125.1, 123.9, 122.2, 121.9, 112.0, 111.3, 56.1, 55.9, 28.9.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.99 – 7.92 (m, 1H), 7.83 (m, 1H), 7.51 – 7.38 (m, 4H), 7.10 – 7.02 (m, 2H), 3.91 (s, 3H), 2.22 (s, 3H).

1-(3-(4-Methoxyphenyl)benzo[b]thieno[2,3-d]thiophen-2-yl)ethan-1-one (10b)

¹³C NMR (126 MHz, Chloroform-*d*) δ 192.3, 160.2, 143.4, 141.4, 140.9, 139.8, 137.6, 132.4, 130.3, 126.7, 126.1, 125.0, 123.9, 122.1, 114.4, 55.3, 28.9.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.03 – 7.92 (m, 1H), 7.87 – 7.79 (m, 1H), 7.58 – 7.50 (m, 5H), 7.48 – 7.40 (m, 2H), 2.19 (s, 3H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 192.1, 143.5, 141.4, 141.2, 139.8, 137.8, 134.7, 132.4, 129.1, 129.02, 128.96, 126.1, 125.1, 123.9, 122.2, 28.9.

Bis(3-(3,4-dimethoxyphenyl)benzo[b]thieno[2,3-d]thiophen-2-yl)methanone (11)

¹H NMR (500 MHz, Chloroform-*d*) δ 7.94 – 7.89 (m, 1H), 7.84 – 7.78 (m, 1H), 7.50 – 7.39 (m, 2H), 6.81 (dd, *J* = 8.2, 2.1 Hz, 1H), 6.74 (d, *J* = 2.1 Hz, 1H), 6.62 (d, *J* = 8.3 Hz, 1H), 3.80 (s, 3H), 3.68 (s, 3H).

3-(3,4-Dimethoxyphenyl)benzo[b]thieno[2,3-d]thiophene-2-carbaldehyde (12a)

¹H NMR (500 MHz, DMSO-*d*₆) δ 9.95 (s, 1H), 8.22 (dt, *J* = 7.4, 3.7 Hz, 1H), 8.15 (dd, *J* = 6.1, 3.2 Hz, 1H), 7.57 (dd, *J* = 6.1, 3.1 Hz, 2H), 7.42 (d, *J* = 2.1 Hz, 2H), 7.38 (dd, *J* = 8.2, 2.0 Hz, 1H), 7.21 (d, *J* = 8.2 Hz, 1H), 3.87 (d, *J* = 1.4 Hz, 6H).

3-(4-Methoxyphenyl)benzo[b]thieno[2,3-d]thiophene-2-carbaldehyde (12b)

¹H NMR (500 MHz, DMSO-*d*₆) δ 9.88 (s, 1H), 8.25 - 8.18 (m, 1H), 8.19 - 8.12 (m, 1H), 7.78 (d, *J* = 8.4 Hz, 2H), 7.61 - 7.54 (m, 2H), 7.20 (d, *J* = 8.4 Hz, 2H), 3.88 (s, 3H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 184.4, 160.7, 144.3, 143.9, 140.3, 139.3, 139.0, 132.2, 130.8, 126.6, 125.2, 124.8, 124.0, 122.4, 114.7, 55.4.

3-Bromobenzo[*b*]selenophene-2-carboxylic acid (13)

¹H NMR (500 MHz, DMSO-*d*₆) δ 13.79 (s, 1H), 8.35 – 8.10 (m, 1H), 8.07 – 7.86 (m, 1H), 7.67 – 7.44 (m, 2H).

¹³C NMR (126 MHz, DMSO-*d*₆) δ 163.3, 140.2, 140.0, 131.9, 128.1, 126.9, 126.6, 126.2, 114.2.

(3-Bromobenzo[*b*]selenophen-2-yl)(3,4-dimethoxyphenyl)methanone (14)

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.27 (m, 1H), 7.97 – 7.91 (m, 1H), 7.63 (m, 1H), 7.55 (m, 1H), 7.50 – 7.44 (m, 2H), 7.14 – 7.08 (m, 1H), 3.87 (s, 3H), 3.83 (s, 3H).

¹³C NMR (126 MHz, DMSO-*d*₆) δ 189.0, 154.0, 148.8, 139.7, 139.0, 138.5, 128.8, 127.2, 126.5, 126.3, 126.0, 125.9, 111.0, 110.9, 109.7, 55.9, 55.6.

Methyl 3-(3,4-dimethoxyphenyl)benzo[4,5]selenopheno[3,2-*b*]thiophene-2-carboxylate (15)

¹H NMR (500 MHz, Chloroform-*d*) δ 7.95 – 7.87 (m, 2H), 7.50 – 7.43 (m, 1H), 7.36 (m, 1H), 7.23 (dd, *J* = 8.2, 2.1 Hz, 1H), 7.18 (d, *J* = 2.0 Hz, 1H), 6.99 (d, *J* = 8.3 Hz, 1H), 3.96 (s, 3H), 3.93 (s, 3H), 3.84 (s, 3H).

¹H NMR (500 MHz, Chloroform-*d*) δ 7.96 – 7.88 (m, 2H), 7.53 – 7.45 (m, 1H), 7.47 – 7.37 (m, 3H), 7.04 (d, *J* = 8.3 Hz, 1H), 3.99 (s, 6H), 3.97 (s, 3H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 150.3, 149.4, 147.0, 143.4, 140.5, 133.9, 126.9, 126.7, 125.8, 125.4, 123.1, 120.5, 115.2, 111.6, 110.6, 102.8, 56.1, 56.0.

¹H NMR (500 MHz, Chloroform-*d*) δ 7.99 – 7.93 (m, 1H), 7.93 – 7.89 (m, 1H), 7.69 – 7.63 (m, 2H), 7.51 – 7.44 (m, 1H), 7.41 – 7.31 (m, 2H), 7.22 – 7.15 (m, 2H), 7.03 (dd, *J* = 8.2, 2.1 Hz, 1H), 6.81 (d, *J* = 2.0 Hz, 1H), 6.75 (d, *J* = 8.3 Hz, 1H), 3.84 (s, 3H), 3.72 (s, 3H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 189.9, 149.2, 148.8, 142.9, 142.3, 140.4, 138.4, 137.5, 136.9, 134.7, 132.3, 129.6, 127.9, 126.9, 126.2, 125.6, 123.4, 121.4, 112.6, 111.2, 55.9, 55.8.

(3-(3,4-Dimethoxyphenyl)benzo[4,5]selenopheno[3,2-*b*]thiophen-2-yl)(4-fluorophenyl)methanone (17b)

¹H NMR (500 MHz, Chloroform-*d*) δ 7.99 – 7.90 (m, 2H), 7.73 – 7.65 (m, 2H), 7.52 – 7.45 (m, 1H), 7.43 – 7.35 (m, 1H), 7.00 (dd, *J* = 8.2, 2.1 Hz, 1H), 6.91 – 6.83 (m, 3H), 6.76 (d, *J* = 8.2 Hz, 1H), 3.86 (s, 3H), 3.75 (s, 3H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 188.3, 166.1, 149.3, 148.8, 142.9, 142.1, 140.3, 138.3, 136.5, 134.6, 133.7, 132.2, 127.7, 126.9, 126.2, 125.6, 123.3, 121.5, 115.1, 112.3, 111.2, 55.9, 55.8.

 $^{19}\mathrm{F}$ NMR (471 MHz, Chloroform-d) δ 56.50 – 54.96 (m).

1-(3-(3,4-Dimethoxyphenyl)benzo[4,5]selenopheno[3,2-*b*]thiophen-2-yl)ethan-1-one (18)

¹H NMR (500 MHz, Chloroform-*d*) δ 7.98 – 7.91 (m, 1H), 7.91 – 7.86 (m, 1H), 7.50 – 7.43 (m, 1H), 7.40 – 7.33 (m, 1H), 7.11 (dd, *J* = 8.1, 2.0 Hz, 1H), 7.06 (d, *J* = 2.0 Hz, 1H), 7.01 (d, *J* = 8.2 Hz, 1H), 3.98 (s, 3H), 3.93 (s, 3H), 2.24 (s, 3H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 192.0, 149.6, 149.1, 143.2, 142.3, 140.2, 139.86, 139.85, 134.7, 127.9, 126.9, 126.2, 125.5, 123.5, 121.6, 111.7, 111.3, 56.0, 55.9, 28.8.

Crystallographic data for compounds 9d, 11 and 17a

1. Crystallographic data and results of refinement for the structure 9d in the XRD experiment

Compound **9d** in according XRD data. Thermal ellipsoids are shown at 50% probability level.

Empirical formula	$C_{24}H_{16}O_2S_2$	$ ho_{calc}mg/mm^3$	1.330
Formula weight	400.49	m/mm ⁻¹	0.283
Temperature/K	295(2)	F(000)	1664
Crystal system	monoclinic	Crystal size/mm ³	0.43 imes 0.35 imes 0.28
Space group	P2(1)/c	2Θ range for data collection	$3.52 \le \Theta \le 30.95^\circ$
			-16 < h < 25,
a/Å	18.5085(13)	Index ranges	-14 < k < 13,
			-28 < 1 < 24
b/Å	10.2845(7)	Reflections collected	24153
c/Å	21.0481(13)	Independent reflections	10789 [R(int) = 0.0440]
α/°	90.00	Data/restraints/parameters	10789 / 0 / 508
β/°	93.372(7)	Goodness-of-fit on F ²	1.003
γ/°	90.00	Final R indexes [I>2 σ (I)]	$R_1 = 0.0551,$
			$wR_2 = 0.1332$
Volume/Å ³	3999.6(5)	Final R indexes [all data]	$R_1 = 0.1301,$
			$wR_2 = 0.1922$
Z	8	Largest diff. peak/hole / e Å ⁻³	0.265 / -0.351

Compound	9d
----------	----

Deposition number CCDC 1981665 contains the supplementary crystallographic data for this structure. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

2. Crystallographic data and results of refinement for the structure 11 in the XRD experiment

Compound **11** in according XRD data. Thermal ellipsoids are shown at 50% probability level.

Empirical formula	$C_{41}H_{34}O_7S_4$	$\rho_{calc} mg/mm^3$	1.359
Formula weight	766.92	m/mm ⁻¹	0.304
Temperature/K	295(2)	F(000)	800
Crystal system	triclinic	Crystal size/mm ³	0.44 imes 0.37 imes 0.18
Space group	P-1	2Θ range for data collection	$3.58 \le \Theta \le 30.49^\circ$
			-16 < h < 15,
a/Å	11.9138(8)	Index ranges	-16 < k < 13,
			-11 < 1 < 19
b/Å	12.2695(7)	Reflections collected	18236
c/Å	13.3791(8)	Independent reflections	10029 [R(int) = 0.0483]
α/°	97.497(5)	Data/restraints/parameters	10029 / 0 / 475
β/°	92.616(5)	Goodness-of-fit on F ²	1.005
γ/°	104.106(5)	Final R indexes [I>2σ (I)]	$R_1 = 0.0594,$
			$wR_2 = 0.1317$
Volume/Å ³	1874.4(2)	Final R indexes [all data]	$R_1 = 0.1282,$
			$wR_2 = 0.1887$
Z	2	Largest diff. peak/hole / e Å ⁻³	0.328 / -0.427

Compound	11
----------	----

Deposition number CCDC 1981668 contains the supplementary crystallographic data for this structure. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

3. Crystallographic data and results of refinement for the structure 17a in the XRD experiment

Compound 17a in according XRD data. Thermal ellipsoids are shown at 50% probability level.

Empirical formula	$C_{25}H_{18}O_3SSe$	$\rho_{calc} mg/mm^3$	1.526
Formula weight	477.41	m/mm ⁻¹	1.933
Temperature/K	295(2)	F(000)	968
Crystal system	monoclinic	Crystal size/mm ³	$0.46 \times 0.38 \times 0.31$
Space group	P2(1)/c	2Θ range for data collection	$3.55 \le \Theta \le 31^\circ$
			-13 < h < 15,
a/Å	18.5085(13)	Index ranges	-31 < k < 28,
			-11 < 1 < 11
b/Å	21.6499(12)	Reflections collected	14525
c/Å	8.7289(5)	Independent reflections	5660 [R(int) = 0.0388]
α/°	90.00	Data/restraints/parameters	5660 / 0 / 290
β/°	91.177(5)	Goodness-of-fit on F ²	1.003
γ/°	90.00	Final R indexes [I>2σ (I)]	$R_1 = 0.0419,$
			$wR_2 = 0.0849$
Volume/Å ³	2077.5(2)	Final R indexes [all data]	$R_1 = 0.0723,$
			$wR_2 = 0.1025$
Z	4	Largest diff. peak/hole / e Å ⁻³	0.658 / -0.627

Compound 17a

Deposition number CCDC 1981666 contains the supplementary crystallographic data for this structure. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

References

- 1 W. Ried, G. Oremek and B. Ocakcioglu, *Liebigs Ann. der Chemie*, 1980, **1980**, 1424–1427.
- 2 W. B. Wright and H. J. Brabander, J. Heterocycl. Chem., 1971, 8, 711–714.
- 3 H. Kudo, R. N. Castle and M. L. Lee, J. Heterocycl. Chem., 1984, 21, 1761–1764.
- 4 E. Paegle, S. Belyakov and P. Arsenyan, *European J. Org. Chem.*, 2014, **2014**, 3831–3840.