Metal-free and regiospecific synthesis of 3-arylindoles

Chuangchuang Xu, Wenlai Xie, and Jiaxi Xu*

State Key Laboratory of Chemical Engineering Resource, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.

E-mail: jxxu@mail.buct.edu.cn

Electronic Supplementary Information

Contents

1.	Optimization of the reaction conditions with different acids and bases	S2-S	53.
----	--	------	-----

1. Optimization of the reaction conditions with different acids and bases. Table S1. Optimization of the reaction conditions with different acids^a

Br	CN + NHNH ₂ •HCl +/-) 2a	Acids, TEA (1.1 equiv.)	HN 3a
entry	acid/equiv.	2a/equiv.	3a yield/%
1	$BF_3 \cdot OEt_2/1.0$	1.1	23 ^b
2	FeCl ₂ /1.0	1.1	
3	FeCl ₃ /1.0	1.1	
4	$ZnCl_2/1.0$	1.1	21
5	AlCl ₃ /1.0	1.1	13
6	$MgCl_2/1.0$	1.1	22
7	Zn(OTf) ₂ /1.0	1.1	12
8	Mg(OTf) ₂ /1.0	1.1	17
9	AcOH/1.0	1.1	11
10	TFA/1.0	1.1	17
11	TsOH·H ₂ O/1.0	1.1	27
12°		1.1	13

^aReacions were conducted on a 0.3 mmol scale of *trans*-1a in 3 mL of anhydrous 1,4dioxane at 190 °C for 30 min under microwave irradiation in a sealed vessel. Yields of isolated product 3a were illustrated. ^b2-(4-Bromophenyl)-*N*-phenylacetohydrazonoyl cyanide (4) was obtained in a small amount as a byproduct. ^cReaction was conducted without TEA.

Br	CN + (+/-) 1a 2a	IHNH₂•HCI	TSOH•H ₂ O, base (1.5 equiv.) 1,4-dioxane, MW,190 °C.	Br Br
entry	TsOH·H ₂ O/equiv.	2a/equiv.	base/equiv.	3a yield/%
1	0.5	2.5	pyridine/1.5	42
2	0.5	2.5	2,6-lutidine/1.5	34
3	0.5	2.5	2,6-dichloropyridine/1.5	25
4	0.5	2.5	DBU/1.5	51
5	0.5	2.5	DIPEA/1.5	55
6	0.5	2.5	quinuclidine/1.5	54
7	0.5	2.5	DABCO/1.5	49
8	0.5	2.5	HNEt ₂ /1.5	57
9	0.5	2.5	KOH/1.5	39
10	0.5	2.5	K ₂ CO ₃ /1.5	47
11	0.5	2.5	NaH/1.5	49
12	0.5	2.5	NaOH/1.5	40

Table S2. Optimization of the reaction conditions with different bases^a

^aReacions were conducted on a 0.3 mmol scale of *trans*-1a in 3 mL of anhydrous 1,4dioxane at 190 °C for 30 min under microwave irradiation in a sealed vessel. Yields of the isolated product 3a were illustrated.

2. Copies of ¹H, ¹³C and ¹⁹F NMR spectra of compounds 2-6.

¹H, ¹³C NMR and ¹⁹F spectra of **3b**.

S5

S6

S9

¹H and ¹³C NMR spectra of **3**I.

¹H and ¹³C NMR spectra of **3p**.

¹H and ¹³C NMR spectra of **3s**.

¹H and ¹³C NMR spectra of **3t**.

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

- 3.796

 1 H and 13 C NMR spectra of 5. Jul17-2019 xucc823-2 - 12.671 7.774 7.753 7.652 7.635 7.631 7.631 7.631 7.633 7.543 7.543 7.420 7.420 7.420 7.420 7.420 7.420 7.420 7.420 7.239 7.237 7.2427 7.2227 - 2.500 2.96 2.00 1.02 1.02 1.00 -

 1 H and 13 C NMR spectra of **7b**.

