Electronic Supplementary Information

Catalyst and solvent switched divergent C-H functionalization: oxidative annulation of N-aryl substituted quinazolin-4-amine with alkynes

Siddi Ramulu Meesa, Praveen Kumar Naikawadi, Kishan Gugulothu, K. Shiva Kumar* Department of Chemistry, Osmania University, Hyderabad-500 007, India E-mail: <u>shivakumarkota@yahoo.co.in</u>; <u>shivakumarkota@osmania.ac.in</u>

Table of Contents

S. No.	Page No
1. Selected screening results	S2
2. X-ray structure determination	S3
3. General methods	S4
4. General procedure for the synthesis of <i>N</i> -arylquinazolin-4-amine derivatives (1)	S4
5. Analytical data of <i>N</i> -arylquinazolin-4-amine derivatives (1)	S4
6. General procedure for the synthesis of indolquinazolines derivatives (3)	S6
7. Analytical data of indolquinazolines derivatives (3)	S7
8. General procedure for the synthesis of pyrido[2,3,4- <i>de</i>]quinazoline (4)	S14
9. Analytical data of pyrido[2,3,4- <i>de</i>]quinazoline (4)	S14
10. References	.S19
11. Copies of ¹ H and ¹³ C NMR spectra of products	S20

1. Table S1. Selected Screening Results

Entry	Catalyst (mol%)	Oxidant	Additive	Solvent	Yield ^b	
					(7 3ea	'o) 4ea
1	$Pd(OAc)_2$ (10)	Cu(OAc) ₂ .H ₂ O	TBAB	DMF	38	0
2	$Pd(OAc)_2(10)$	Ag ₂ CO ₃	TBAB	DMF	45	0
3	$Pd(OAc)_2(10)$	AgNO ₃	TBAB	DMF	48	0
4	$Pd(OAc)_2(10)$	Cu(OAc) ₂	TBAB	1,4-dioxane	52	0
5	$Pd(OAc)_2(10)$	Cu(OAc) ₂	TBAB	toluene	33	0
6	$Pd(OAc)_2(10)$	Cu(OAc) ₂	TBAB	DCE	30	0
7	$Pd(OAc)_2(10)$	Cu(OAc) ₂	TBAB	PEG-400	58	0
8	$Pd(OAc)_2(10)$	Cu(OAc) ₂	TBAB	H ₂ O	55	0
9c	$Pd(OAc)_2(10)$	Cu(OAc) ₂	TBAB	DMF	55	0
10 ^d	$Pd(OAc)_2 (10)$	Cu(OAc) ₂	TBAB	DMF	63	0
11	$Pd(OAc)_2(5)$	Cu(OAc) ₂	TBAB	DMF	35	0
12	PdCl ₂ (10)	Cu(OAc) ₂	TBAB	DMF	10	0
13	$[RuCl_2(p-cymene)]_2(5)$	Cu(OAc) ₂	-	1,4-dioxane	15	20
14	$[RuCl_2(p-cymene)]_2(5)$	Cu(OAc) ₂	-	toluene	18	25
15	$[RuCl_2(p-cymene)]_2(5)$	Cu(OAc) ₂	-	DCE	12	18
16	$[RuCl_2(p-cymene)]_2(5)$	AgOAc	-	PEG-400	-	40
17	$[RuCl_2(p-cymene)]_2 (5)$	Ag ₂ CO ₃	-	PEG-400	-	38
18	$[RuCl_2(p-cymene)]_2 (5)$	AgNO ₃	-	PEG-400	-	40
19	$[RuCl_2(p-cymene)]_2(7.5)$	Cu(OAc) ₂ .H ₂ O	-	PEG-400	-	62
20	$[RuCl_2(p-cymene)]_2 (2.5)$	Cu(OAc) ₂ .H ₂ O	-	PEG-400	-	32
21°	$[RuCl_2(p-cymene)]_2(5)$	Cu(OAc) ₂ .H ₂ O	-	PEG-400	-	40
22 ^d	$[\operatorname{RuCl}_2(p-cymene)]_2(5)$	Cu(OAc) ₂ .H ₂ O	-	PEG-400	-	60
23 ^e	$[RuCl_2(p-cymene)]_2(5)$	Cu(OAc) ₂ .H ₂ O	-	PEG-400	-	56
	$[\mathbf{D}\mathbf{u}\mathbf{C}]$ (n					

24 ^f	cymene)] ₂ (5)	Cu(OAc) ₂ .H ₂ O	-	PEG-400	-	62

Reaction conditions: **1e** (0.452 mmol), **2a** (0.452 mmol), catalyst, oxidant (0.3 equiv.), TBAB (0.452 mmol), solvent (3 mL), 100 °C, 12 h. ^bYields of isolated products are given. ^cThe reaction was performed at 80 °C. ^dThe reaction was performed at 120 °C. ^eThe reaction was performed for 10 h. ^fThe reaction was performed for 15 h.

2. X-Ray Structure Determination:

X-ray intensity data measurements were carried out on a Bruker D8 VENTURE Kappa Duo PHOTON II CPAD diffractometer equipped with Incoatech multilayer mirrors optics. The intensity measurements were carried out with Mo micro-focus sealed tube diffraction source (Cu-K α = 0.72 Å) at 100(2) K temperature. The X-ray generator was operated at 50 kV and 1.4 mA. A preliminary set of cell constants and an orientation matrix were calculated from two sets of 20 frames. Data were collected with ω scan width of 0.5° at different settings of φ and 2 Θ with a frame time of 40 seconds keeping the sample–to-detector distance fixed at 4.00 cm. The X-ray data collection was monitored by APEX3 program (Bruker, 2016). All the data were corrected for Lorentzian, polarization and absorption effects using SAINT and SADABS programs (Bruker, 2016). SHELX-97 was used for structure solution and full matrix least-squares refinement on F². Molecular diagrams were generated using ORTEP-33 and Mercury programs. Geometrical calculations were performed using SHELXTL and PLATON. All the hydrogen atoms were placed in geometrically idealized position and constrained to ride on their parent atoms. An ORTEP III view of both compounds were drawn with 50% probability displacement ellipsoids and H–atoms are shown as small spheres of arbitrary radious.

Crystal Data of (3aa): CCDC 1949446, Single crystals suitable for X-ray diffraction of **3aa** EtOAc. Molecular formula = $C_{28}H_{19}N_3$, Formula weight = 397.46, Crystal system = Monoclinic, space group = P 21/n, a=9.9378(3) Å, b =11.6946(4) Å, c = 18.4106(7) Å, V = 2123.19(13) Å3, T = 296(2) K, Z = 4, Dc = 1.243 Mg/m3, 16746 Reflections collected, 4175 [R(int) = 0.0443] independent reflections, Goodness of fit = 0.951.

Crystal Data of (4ea): CCDC 1949441, Single crystals suitable for X-ray diffraction of **4ea** DCM: EtOAc (1:1). Molecular formula = C_{29} H₂₁ N₃ O, Formula weight = 427.49, Crystal system = Triclinic, space group = P -1, a= 9.707(9) Å, b = 11.145(10) Å, c = 21.590(16) Å, V = 2247(3) Å3, T = 293(2) K, Z = 4, Dc = 1.264 Mg/m³, 51342 Reflections collected, 7907 [R(int) = 0.0921] independent reflections, Goodness of fit = 0.991.

3. Experimental Section

Unless stated otherwise, solvents and chemicals were obtained from commercial sources and were used without further purification. Reactions were monitored by thin layer chromatography (TLC) on silica gel plates (60 F254), visualizing with ultraviolet light or iodine spray. Flash chromatography was performed on silica gel (100-200 mesh) using hexane and ethyl acetate. Melting points were recorded on a DBK digital melting point apparatus and were uncorrected. ¹H NMR and ¹³C NMR spectra were recorded on a 400 MHz Bruker BiospinAvance III FT-NMR spectrometer. ¹H and ¹³C NMR spectra were determined in CDCl₃ and DMSO-*d*₆ solutions by using 400 or 126 or 100 MHz spectrometers, respectively. Proton chemical shifts (δ) are relative to tetramethylsilane (TMS, δ = 0.00) as internal standard and expressed in ppm. Spin multiplicities are given as s (singlet), d (doublet), t (triplet) and m (multiplet). Coupling constants (*J*) are given in hertz. High-resolution mass spectra were recorded on a Bruker maxis-TOF mass spectrometer.

4. General Procedure for the Synthesis of N-Arylquinazolin-4-amine Derivatives (1)^{1,2}

A mixture of 2-Aminobenzonitrile (S1, 500 mg, 4.237 mmol) and DMF-DMA (S2, 8.5 mL, 63.559 mmol) in DMF (5 mL) was heated to 90 °C for 4 h. After completion of the reaction the mixture was cooled to room temp, diluted with water (25 mL) and extracted with ethyl acetate (3×20 mL). The organic layers were collected, combined, washed with brine solution (20 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. providing a colorless solid as *N'*-(2-cyanophenyl)-*N*,*N*-dimethylformimidamide (S3). The crude compound were used directly in the next step without further purification.

To the solution of the above-made solid in a stirred solution of N'-(2-cyanophenyl)-N,N-dimethylformimidamide (**S3**, 500 mg, 2.890 mmol), aniline (**S4**, 269 mg, 2.890 mmol), in AcOH (2.5 mL, 43.352 mmol) and refluxed for 3 h. After completion of the reaction. The reaction mixture was poured into ice water and stirred for 10 min then extracted with ethyl acetate. The ethyl acetate layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude compounds were purified by column chromatography using ethyl acetate and *n*-hexane to give the desired product (**1**).

5. Analytical data of N-Arylquinazolin-4-amine Derivatives

N-Phenylquinazolin-4-amine (1a)

Off white solid; Yield: 81%; mp: 249-252 °C (lit³ 251-253 °C); $R_f = 0.2$ (20% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 8.74 (s, 1H), 8.02 (d, J = 8.0 Hz, 1H), 7.94 (d, J = 8.4 Hz, 1H), 7.81 (t, J = 7.6 Hz, 1H), 7.75 (d, J = 8.0 Hz, 2H), 7.58 (t, J = 8.0 Hz, 1H), 7.42 (t, J = 8.0 Hz, 2H), 7.20 (t, J = 8.0 Hz, 1H).

N-(*p*-Tolyl)quinazolin-4-amine (1b)

Off white solid; Yield: 76%; mp: 168-172 °C; $R_f = 0.5$ (30% EtOAc/*n*-hexane); ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.72 (s, 1H), 8.54

(s, 1H), 8.52 (d, J = 8.0 Hz, 1H), 7.83 (t, J = 8.0 Hz, 1H), 7.75 (d, J = 7.6 Hz, 1H), 7.70 (d, J = 8.4 Hz, 2H), 7.61 (t, J = 6.0 Hz, 1H), 7.19 (d, J = 8.4 Hz, 2H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 158.0, 155.1, 149.9, 135.5, 134.6, 132.8, 129.6 (2C), 128.7, 126.4, 122.6 (2C), 120.8, 115.2, 20.9; HRMS (ESI): m/z calcd for C₁₅H₁₄N₃([M + H]⁺) 236.1187, found 236.1188.

N-(*m*-Tolyl)quinazolin-4-amine (1c)

White solid; Yield: 84%; mp: 195-197 °C (lit⁴ 196-197 °C); R_f= 0.2 (20% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 8.76 (s, 1H), 7.95-7.89 (m, 2H), 7.80-7.76 (m, 1H), 7.73 (bs, 1H), 7.55-7.51 (m, 3H), 7.29 (t, *J* = 8.0 Hz, 1H), 6.99 (d, *J* = 8.0 Hz, 1H), 2.38 (s, 3H).

N-(2,4-Dimethylphenyl)quinazolin-4-amine (1d)

Gray solid; Yield: 84%; mp: 155-157 °C; $R_f = 0.3$ (30% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 8.66 (s, 1H), 7.94 (d, J = 8.0 Hz, 1H), 7.88 (d, J = 12.0 Hz, 1H), 7.77 (t, J = 6.0 Hz, 1H), 7.61 (bs, 1H), 7.54-7.50 (m, 1H), 7.45 (d, J = 8.0 Hz, 1H), 7.10 (s, 1H), 7.07 (d, J = 8.0 Hz, 1H), 2.33 (s, 3H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.7, 155.4, 149.9, 136.4, 133.4, 133.1, 132.8, 131.7, 128.7, 127.5, 126.4, 125.9, 120.9, 115.0, 21.0, 18.1; HRMS (ESI): m/z calcd for C₁₆H₁₆N₃([M + H]⁺) 250.1344, found 250.1348.

N-(4-Methoxyphenyl)quinazolin-4-amine (1e)

OCH₃

Brown solid; Yield: 75%; mp: 150-154 °C; $R_f = 0.3$ (30% EtOAc/*n*-hexane); ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.71 (s, 1H), 8.49 (d, J = 8.0 Hz, 2H), 7.82 (t, J = 8 Hz, 1H), 7.74 (d, J = 7.6 Hz, 1H), 7.67 (d, J = 9.2 Hz, 2H), 7.59 (t, J = 8.0 Hz, 1H), 6.96 (d, J = 8.8 Hz, 2H), 3.76 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 158.5, 156.6, 155.1, 149.8, 132.5, 131.5, 128.0, 125.9, 124.9 (2C), 122.2, 115.4, 114.0 (2C), 55.4; HRMS (ESI): m/z calcd for C₁₅H₁₄N₃O ([M + H]⁺) 252.1137, found 252.1138.

N-(4-Chlorophenyl)quinazolin-4-amine (1f)

Yellow solid; Yield: 76%; mp: 155-160 °C (lit⁵ 163-164 °C); $R_f = 0.4$ (30% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 8.77 (s, 1H), 7.92 (d, J = 8.8 Hz, 2H), 7.80 (t, J = 8.0 Hz, 1H), 7.70 (d, J = 8.0 Hz, 3H), 7.56 (t, J = 8.0 Hz, 1H), 7.36 (d, J = 8.0 Hz, 2H). *N*-(4-Bromophenyl)quinazolin-4-amine (1g)

Brown solid; Yield: 85%; mp: 161-164 °C (lit² 232-234 °C); $R_f = 0.4$ (30% EtOAc/*n*-hexane); ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.89 (s, 1H), 8.64 (s, 1H), 8.57 (d, J = 8.0 Hz, 1H), 7.92-7.87 (m, 3H), 7.82 (d, J = 8.0 Hz, 1H), 7.67 (t, J = 8.0 Hz, 1H), 7.59 (d, J = 8.0 Hz, 2H).

N-(4-(Trifluoromethyl)phenyl)quinazolin-4-amine (1h)

White solid; Yield: 80%; mp: 195-197 °C; $R_f = 0.3$ (20% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 8.86 (s, 1H), 8.01-7.94 (m, 4H), 7.90-7.86 (m, 1H), 7.70 (d, J = 8.0 Hz, 2H), 7.67-7.62 (m, 1H), 7.61 (bs, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -62.06; ¹³C NMR (100 MHz, CDCl₃) δ 158.0, 155.6, 151.2, 142.5, 134.4, 130.5, 128.3, 127.5, 127.5, 126.7, 122.1 (3C), 121.3, 116.3; HRMS (ESI): m/z calcd for C₁₅H₁₀N₃F₃Na ([M + Na]⁺) 312.0725, found 312.0726.

N-(4-Nitrophenyl)quinazolin-4-amine (1i)

Yellow solid; Yield: 70%; mp: 230-233 °C; $R_f = 0.3$ (30% EtOAc/*n*-hexane); ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.31 (s, 1H), 8.81 (s, 1H), 8.66 (d, *J* = 8.4 Hz, 1H), 8.35-8.29 (m, 3H), 7.97 (t, *J* = 7.4 Hz, 1H), 7.91 (d, *J* = 8.0 Hz, 1H), 7.85 (dd, *J* = 2.0 & 2.0 Hz, 1H), 7.76 (t, *J* = 7.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 157.2, 153.9, 149.9, 145.9, 141.8, 133.5, 127.9, 126.7, 124.5 (2C), 123.0, 120.7 (2C), 115.3; HRMS (ESI): m/z calcd for C₁₄H₁₀N₄O₂Na ([M + Na]⁺) 289.0702, found 289.0703.

5-Methyl-N-(p-tolyl)quinazolin-4-amine (1j)

Brown solid; Yield: 82%; mp: 138-140 °C; $R_f = 0.4$ (20% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 8.61 (s, 1H), 7.73 (t, J = 7.6 Hz, 2H), 7.59 (t, J = 7.8 Hz, 1H), 7.51 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 6.4 Hz, 1H), 7.21 (d, J = 8.0 Hz, 2H), 7.30 (s, 3H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 154.3, 151.9, 135.5, 134.7, 132.2, 132.1, 129.8, 129.6 (2C), 127.3, 122.8 (2C), 115.6, 24.4, 20.9; HRMS (ESI): m/z calcd for C₁₆H₁₅N₃Na ([M + Na]⁺) 272.1164, found 272.1164.

7-Chloro-N-(p-tolyl)quinazolin-4-amine (1k)

Off white solid; Yield: 82%; mp: 205-208 °C; $R_f = 0.4$ (30% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 8.68 (s, 1H), 7.86 (s, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.52 (d, J = 8.0 Hz, 2H), 7.45 (d, J = 8.0 Hz, 1H), 7.21 (d, J = 8.0 Hz, 2H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 157.8, 155.9, 150.5, 139.1, 135.1, 135.0, 129.7 (2C), 127.6, 127.3, 122.7 (2C), 122.2, 113.4, 21.0; HRMS (ESI): m/z calcd for C₁₅H₁₃N₃Cl ([M + H]⁺) 270.0798, found 270.0796.

N-(4-Bromophenyl)-6,7-dimethoxyquinazolin-4-amine (11)⁶

Brown solid; Yield: 75%; mp: 265-268 °C; $R_f = 0.3$ (50% EtOAc/*n*-hexane); ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.55 (s, 1H), 8.49 (s, 1H), 7.82 (d, J = 12.0 Hz, 3H), 7.57 (d, J = 12.0 Hz, 2H), 7.20 (s, 1H), 3.97 (s, 3H), 3.94 (s, 3H).

N-Benzylquinazolin-4-amine (1m)

White solid; Yield: 45%; mp: 143-145 °C (lit⁷ 142-145 °C); $R_f = 0.4$ (50% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 8.69 (s, 1H), 7.85 (d, J = 8.0 Hz, 1H), 7.73 (t, J = 6.0 Hz, 2H), 7.46-7.31 (m, 6H), 6.21 (bs, 1H), 4.87 (d, J = 8.0 Hz, 2H).

N-(2,6-Dimethylphenyl)quinazolin-4-amine (1n)

H₃C

White solid; Yield: 80%; mp: 218-220 °C; $R_f = 0.3$ (30% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 8.60 (s, 1H), 8.04 (d, J = 6.8 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.78 (t, J = 8.0 Hz, 1H), 7.59 (bs, 1H), 7.52 (t, J = 8.0 Hz, 1H), 7.21-7.14 (m, 3H), 2.23 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 159.0, 155.7, 149.8, 136.2, 134.8, 132.9 (2C), 128.5 (3C), 127.8, 126.4, 121.2, 114.7, 18.5 (2C); HRMS (ESI): m/z calcd for C₁₆H₁₆N₃ ([M + H]⁺) 250.1344, found 250.1344.

6. General Procedure for the Synthesis of Indolquinazoline Derivatives (3): To an oven-dried 10 mL round bottom flask were added appropriate quinazolin-4-amine (0.452 mmol), appropriate diphenylacetylene (0.452 mmol), $Pd(OAc)_2$ (0.045mmol), $Cu(OAc)_2$ (0.3 equiv.), TBAB (0.452 mmol), and DMF (3.0 mL). The mixture was stirred under open air for 12 h at 100 °C. After the reaction was complete (as indicated by the TLC), the reaction mixture was cooled to room temperature and diluted with ethyl acetate (10 ml).

The mixture was washed with brine (3 x 5 mL), dried over Na_2SO_4 , then concentrated under reduced pressure. The crude compounds were purified by column chromatography using ethyl acetate and *n*-hexane gave the indolquinazoline (**3**).

8. Analytical data of Indolquinazoline Derivatives Derivatives

4-(2,3-Diphenyl-1*H*-indol-1-yl) quinazoline (3aa)

The general procedure was followed by using *N*-phenylquinazolin-4-amine (**1a**) (100 mg, 0.452 mmol), diphenylacetylene (**2a**) (80 mg, 0.452 mmol), Pd(OAc)₂ (10 mg, 0.045 mmol), Cu(OAc)₂ (25 mg, 0.135 mmol) and TBAB (146 mg, 0.452 mmol) to yielded **3aa** (117 mg, 65%) as a pale yellow solid; mp: 158-162 °C; R_f = 0.5 (20% EtOAc/*n*-hexane); ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.31 (s, 1H), 8.10 (d, *J* = 8.0 Hz, 1H), 8.01 (t, *J* = 7.2 Hz, 1H), 7.72-7.61 (m, 3H), 7.40 (d, *J* = 4.0 Hz, 4H), 7.34-7.21 (m, 3H), 7.16 (d, *J* = 8.0 Hz, 1H), 7.07 (bs, 5H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 158.7, 155.0, 152.3, 138.1, 137.6, 135.7, 133.9, 131.2, 130.3 (4C), 129.5, 129.0 (2C), 128.6, 128.5 (2C), 128.3, 128.2, 127.1, 125.4, 124.2, 122.5, 121.9, 119.9, 118.3, 111.6; HRMS (ESI): m/z calcd for C₂₈H₂₀N₃ ([M + H]⁺) 398.1652, found 398.1673.

4-(2,3-Di-*p*-tolyl-1*H*-indol-1-yl) quinazoline (3ab)

The general procedure was followed by using *N*-phenylquinazolin-4-amine (**1a**) (100 mg, 0.452 mmol), 1,2-di-p-tolylethyne (**2b**) (93 mg, 0.452 mmol), Pd(OAc)₂ (10 mg, 0.045 mmol), Cu(OAc)₂ (25 mg, 0.135 mmol) and TBAB (146 mg, 0.452 mmol) to yielded **3ab** (125 mg, 65%) as a brown solid; mp: 130-134 °C; R_f = 0.5 (20% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 9.25 (s, 1H), 8.10 (d, *J* = 8.4 Hz, 1H), 7.88 (t, *J* = 7.6 Hz, 1H), 7.81 (d, *J* = 8.4 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.50 (t, *J* = 7.6 Hz, 1H), 7.33 (d, *J* = 7.6 Hz, 2H), 7.24 (d, *J* = 8 Hz, 1H), 7.19 (d, *J* = 7.2 Hz, 3H), 7.13 (d, *J* = 8 Hz, 1H), 6.96 (d, *J* = 8 Hz, 2H), 6.82 (d, *J* = 7.6 Hz, 2H), 2.40 (s, 3H), 2.17 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.3, 155.8, 153.4, 139.3, 138.5, 138.4, 137.2, 135.6, 132.3, 131.2 (2C), 131.1 (2C), 130.3 (2C), 130.2, 130.0 (2C), 129.7, 129.6, 129.4, 126.9, 124.7, 123.5, 123.1, 121.3, 120.1, 112.3, 23.3, 23.2; HRMS (ESI): m/z calcd for C₃₀H₂₄N₃ ([M + H]⁺) 426.1970, found 426.1991.

4-(2,3-Bis(4-methoxyphenyl)-1*H*-indol-1-yl)quinazoline (3ac)

The general procedure was followed by using N-phenylquinazolin-4-amine (1a) (100 mg, 0.452 mmol), 1,2-bis(4-

methoxyphenyl)ethyne (**2c**) (108 mg, 0.452 mmol), Pd(OAc)₂ (10 mg, 0.045 mmol), Cu(OAc)₂ (25 mg, 0.135 mmol) and TBAB (146 mg, 0.452 mmol) to yielded **3ac** (136 mg, 66%) as a pale yellow solid; mp: 159-162 °C; $R_f = 0.4$ (20% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 9.26 (s, 1H), 8.09 (d, J = 8.0 Hz, 1H), 7.87 (t, J = 8.0 Hz, 1H), 7.77 (t, J = 8.0 Hz, 2H), 7.48 (t, J = 7.6 Hz, 1H), 7.35 (d, J = 8.0 Hz, 2H), 7.25-7.17 (m, 2H), 7.14 (d, J = 8.0 Hz, 1H), 6.98 (d, J = 8.8 Hz, 2H), 6.93 (d, J = 8.8 Hz, 2H), 6.55 (d, J = 8.8 Hz, 2H), 3.85 (s, 3H), 3.65 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.4, 158.8, 158.3, 154.8, 152.5, 138.1, 136.9, 134.5, 131.3 (2C), 131.2 (2C), 129.1, 128.6, 128.2, 126.5, 125.7, 123.8, 123.4, 122.2, 121.9, 119.9, 118.2, 113.9 (2C), 113.6 (2C), 111.0, 55.2, 55.0; HRMS (ESI): m/z calcd for C₃₀H₂₄N₃O₂ ([M + H]⁺) 458.1869, found 458.1871.

4-(2,3-Bis(4-fluorophenyl)-1*H*-indol-1-yl)quinazoline (3ad)

The general procedure was followed by using *N*-phenylquinazolin-4-amine (**1a**) (100 mg, 0.452 mmol), 1,2-bis(4-fluorophenyl)ethyne (**2d**) (97 mg, 0.452 mmol), Pd(OAc)₂ (10 mg, 0.045 mmol), Cu(OAc)₂ (25 mg, 0.135 mmol) and TBAB (146 mg, 0.452 mmol) to yielded **3ad** (121 mg, 62%) as a brown solid; Yield: 81%; mp: 149-153 °C; $R_f = 0.6$ (20% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 9.25 (s, 1H), 8.12 (d, J = 8.4 Hz, 1H), 7.91 (t, J = 8.4 Hz, 1H), 7.78 (d, J = 8.4 Hz, 1H), 7.73 (d, J = 7.2 Hz, 1H), 7.53 (t, J = 7.6 Hz, 1H), 7.38-7.35 (m, 2H), 7.28 (d, J = 7.2 Hz, 1H), 7.23 (t, J = 6.8 Hz, 1H), 7.14 (d, J = 8 Hz, 1H), 7.08 (t, J = 8.4 Hz, 2H), 7.04-7.01 (m, 2H), 6.74 (t, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 163.3 (d, C–F J = 247.0 Hz), 163.0 (d, C–F J = 245.0 Hz), 158.9, 154.8 (2C), 152.6, 138.1, 136.4, 134.6 (2C), 131.9 (d, C–F J = 8.0 Hz), 131.7 (d, C–F J = 8.0 Hz), 129.8 (d, C–F J = 3.0 Hz), 128.8, 128.6, 128.4, 127.3 (d, C–F J = 4.0 Hz), 125.3, 123.9, 122.2, 122.1, 119.8 (2C), 118.4, 115.6 (d, C–F J = 21.0 Hz), 115.4 (d, C–F J = 22.0 Hz), 111.2 (2C); HRMS (ESI): m/z calcd for C₂₈H₁₈F₂N₃ ([M + H]⁺) 434.1463, found 434.1459.

4-(2,3-Di(thiophen-2-yl)-1*H*-indol-1-yl)quinazoline (3ae)

The general procedure was followed by using *N*-phenylquinazolin-4-amine (**1a**) (100 mg, 0.452 mmol), 1,2-di(thiophen-2-yl)ethyne (**2e**) (86 mg, 0.452 mmol), Pd(OAc)₂ (10 mg, 0.045 mmol), Cu(OAc)₂ (25 mg, 0.135 mmol) and TBAB (146 mg, 0.452 mmol) to yielded **3ae** (111 mg, 60%) as a pale yellow solid; mp: 142-145 °C; $R_f = 0.4$ (10% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 9.31 (s, 1H), 8.13 (d, J = 8.4 Hz, 1H), 7.94-7.89 (m, 2H), 7.76 (d, J = 8 Hz, 1H), 7.54 (t, J = 7.6 Hz, 1H), 7.37-7.36 (m, 1H), 7.29 (t, J = 7.6 Hz, 1H), 7.23-7.21 (m, 2H), 7.14-7.11 (m, 2H), 7.06 (d, J = 8 Hz, 1H), 6.83 (d, J = 3.2 Hz, 1H), 6.75 (t, J = 4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 158.6, 154.8, 152.5, 138.0, 134.8, 134.7, 131.4, 131.2, 130.1, 128.7, 128.5, 128.4, 127.8, 127.3, 127.1, 126.8, 125.5, 125.3, 124.3, 122.5, 122.3, 120.4, 113.9, 111.0; HRMS (ESI): m/z calcd for C₂₄H₁₆N₃S₂ ([M + H]⁺) 410.0786, found 410.0780. **(S)-4-(2,3-Diethyl-1***H***-indol-1-yl)quinazoline (3af)**

The general procedure was followed by using *N*-phenylquinazolin-4-amine (**1a**) (100 mg, 0.452 mmol), hex-3-yne (**2f**) (37 mg, 0.452 mmol), Pd(OAc)₂ (10.0 mg, 0.045 mmol), Cu(OAc)₂ (25 mg, 0.135 mmol) and TBAB (146 mg, 0.452 mmol) to yielded **3af** (84 mg, 62%) as a yellow semi solid; $R_f = 0.6$ (20% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 9.35 (s, 1H), 8.19 (d, *J* = 8.4 Hz, 1H), 7.98 (t, *J* = 7.2 Hz, 1H), 7.77 (d, *J* = 8.0 Hz, 1H), 7.64-7.57 (m, 2H), 7.17 (t, *J* = 7.4 Hz, 1H), 7.04 (t, *J* = 7.4 Hz, 1H), 6.81 (d, *J* = 8.0 Hz, 1H), 3.11-3.02 (m, 1H), 2.88-2.83 (m, 2H), 2.74-2.65 (m, 1H), 1.35 (t, *J* = 7.6 Hz, 3H), 0.89 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 158.9, 155.0, 152.7, 139.0, 137.8, 134.5, 129.1, 128.8, 128.3, 126.1, 122.0, 121.6, 120.8, 118.6, 117.9, 110.6, 18.3,

17.6, 15.60, 14.9; HRMS (ESI): m/z calcd for $C_{20}H_{19}N_3Na$ ([M + Na]⁺) 324.1477, found 324.1478.

4-(5-Methyl-2,3-diphenyl-1*H*-indol-1-yl)quinazoline (3ba)

The general procedure was followed by using *N*-(p-tolyl)quinazolin-4-amine (**1b**) (106 mg, 0.452 mmol), diphenylacetylene (**2a**) (81 mg, 0.452 mmol), Pd(OAc)₂ (10 mg, 0.045 mmol), Cu(OAc)₂ (25 mg, 0.135 mmol) and TBAB (146 mg, 0.452 mmol) to yielded **3ba** (119 mg, 64%) as a yellow solid; mp: 138-141 °C; R_f = 0.6 (20% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 9.22 (s, 1H), 8.08 (d, *J* = 8.4 Hz, 1H), 7.87 (t, *J* = 8 Hz, 1H), 7.82 (d, *J* = 8 Hz, 1H), 7.56 (s, 1H), 7.49 (t, *J* = 7.2 Hz, 1H), 7.42-7.36 (m, 4H), 7.30 (t, *J* = 8 Hz, 1H), 7.87 (t, *J* = 8 Hz, 1H), 7.80 (t, *J* = 8 Hz, 1H), 7.86 (s, 1H), 7.49 (t, *J* = 7.2 Hz, 1H), 7.42-7.36 (m, 4H), 7.30 (t, *J* = 8 Hz, 1H), 7.81 (t, *J* = 8 Hz, 1H), 7.80 (t, *J* = 8 Hz, 1H), 7.85 (t, *J* = 8 Hz, 1H), 7.85 (t, *J* = 8 Hz, 1H), 7.86 (t, *J* = 8 Hz, 1H), 7.86 (t, *J* = 8 Hz, 1H), 7.80 (t, *J* = 7.2 Hz, 1H), 7.42-7.36 (m, 4H), 7.30 (t, *J* = 8 Hz, 1H), 7.81 (t, *J* = 8 Hz, 1H), 7.80 (t, *J* = 8 Hz, 1H), 7.85 (t, *J* = 8 Hz, 1H), 7.80 (t, *J* = 8 Hz, 1H), 7.80 (t, *J* = 8 Hz, 1H), 7.80 (t, *J* = 7.2 Hz, 1H), 7.42-7.36 (m, 4H), 7.30 (t, *J* = 8 Hz, 1H), 7.81 (t, *J* = 8 Hz, 1H), 7.80 (t, *J* = 8 Hz, 1H), 7.81 (t, *J* = 8 Hz, 1H), 7.80 (t, *J* = 8 Hz, 1H), 7.80 (t, *J* = 7.2 Hz, 1H), 7.82 (t, *J* = 8 Hz, 1H), 7.80 (t, *J* = 7.2 Hz, 1H), 7.82 (t, *J* = 8 Hz, 1H), 7.80 (t, *J* = 7.2 Hz, 1H), 7.82 (t, *J* = 8 Hz, 1H), 7.80 (t, *J* = 7.2 Hz, 1H), 7.82 (t, *J* = 8 Hz, 1H), 7.80 (t, *J* = 7.2 Hz, 1H), 7.82 (t, *J* = 8 Hz, 1H), 7.80 (t, J = 8 Hz, 1H), 7.80 (t, J

7.2 Hz, 1H), 7.08-6.98 (m, 7H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 158.2, 153.7, 151.4, 136.4, 135.7, 133.4, 133.2, 130.5, 130.4, 129.2 (2C), 129.0 (2C), 128.1, 127.5, 127.4 (2C), 127.1, 127.0 (2C), 126.4, 125.5, 124.6, 124.1, 121.1, 118.7, 118.0, 109.8, 20.4; HRMS (ESI): m/z calcd for C₂₉H₂₂N₃ ([M + H]⁺) 412.1808, found 412.1800.

4-(5-Methyl-2,3-di-*p*-tolyl-1*H*-indol-1-yl)quinazoline (3bb)

The general procedure was followed by using *N*-(p-tolyl)quinazolin-4-amine (**1b**) (106 mg, 0.452 mmol), 1,2-di-p-tolylethyne (**2b**) (93 mg, 0.452 mmol), Pd(OAc)₂ (10 mg, 0.045 mmol), Cu(OAc)₂ (25 mg, 0.135 mmol) and TBAB (146 mg, 0.452 mmol) to yielded **3bb** (129 mg, 65%) as a Yellow solid; mp: 125-129 °C; R_f = 0.6 (20% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 9.23 (s, 1H), 8.08 (d, *J* = 8.4 Hz, 1H), 7.87 (t, *J* = 8.4 Hz, 1H), 7.82 (d, *J* = 8.4 Hz, 1H), 7.54 (s, 1H), 7.49 (t, *J* = 7.6 Hz, 1H), 7.31 (d, *J* = 8 Hz, 2H), 7.19 (d, *J* = 8 Hz, 2H), 7.02 (s, 2H), 6.94 (d, *J* = 8 Hz, 2H), 6.81 (d, *J* = 8.0 Hz, 2H), 2.44 (s, 3H), 2.40 (s, 3H), 2.16 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 158.4, 153.8, 151.4, 136.4, 136.1, 135.6, 135.0, 133.3, 130.3 (2C), 129.1 (2C), 128.9 (2C), 128.3, 128.1 (2C), 127.7 (2C), 127.5 (2C), 127.0, 124.7, 123.8, 121.2, 118.6, 117.6, 109.7, 20.4, 20.2, 20.1; HRMS (ESI): m/z calcd for C₃₁H₂₆N₃ ([M + H]⁺) 440.2121, found 440.2133.

4-(2,3-Bis(4-methoxyphenyl)-5-methyl-1*H*-indol-1-yl)quinazoline (3bc)

The general procedure was followed by using *N*-(*p*-tolyl)quinazolin-4-amine (**1b**) (106 mg, 0.452 mmol), 1,2-bis(4methoxyphenyl)ethyne (**2c**) (108 mg, 0.452 mmol), Pd(OAc)₂ (10 mg, 0.045 mmol), Cu(OAc)₂ (25 mg, 0.135 mmol) and TBAB (146 mg, 0.452 mmol) to yielded **3bc** (128 mg, 60%) as a yellow solid; mp: 177-180 °C; R_f = 0.5 (20% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 9.24 (s, 1H), 8.08 (d, *J* = 8.4 Hz, 1H), 7.86 (t, *J* = 8.4 Hz, 1H), 7.78 (d, *J* = 8.4 Hz, 1H), 7.52 (s, 1H), 7.47 (t, *J* = 6.0 Hz, 1H), 7.34 (d, *J* = 8.8 Hz, 2H), 7.05-7.02 (m, 2H), 6.98-6.92 (m, 4H), 6.54 (d, *J* = 8.8 Hz, 2H), 3.85 (s, 3H), 3.65 (s, 3H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.5, 158.7, 158.2, 154.8, 152.5, 137.0, 136.5, 134.4, 131.3 (5C), 129.4, 128.5, 128.1, 126.7, 125.8, 124.8, 123.9, 122.2, 119.5, 118.0, 113.9 (2C), 113.6 (2C), 110.7, 55.2, 55.0, 21.5; HRMS (ESI): m/z calcd for C₃₁H₂₆N₃O₂ ([M + H]⁺) 472.2025, found 472.2031.

4-(2,3-Bis(4-fluorophenyl)-5-methyl-1*H*-indol-1-yl)quinazoline (3bd)

The general procedure was followed by using *N*-(*p*-tolyl)quinazolin-4-amine (**1b**) (106 mg, 0.452 mmol), 1,2-bis(4-fluorophenyl)ethyne (**2d**) (97 mg, 0.452 mmol), Pd(OAc)₂ (10 mg, 0.045 mmol), Cu(OAc)₂ (25 mg, 0.135 mmol) and TBAB (146 mg, 0.452 mmol) to yielded **3bd** (129 mg, 64%) as a brown solid; mp: 192-195 °C; $R_f = 0.7$ (20% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 9.23 (s, 1H), 8.11 (d, *J* = 8.4 Hz, 1H), 7.90 (t, *J* = 8.4 Hz, 1H), 7.79 (d, *J* = 8.4 Hz, 1H), 7.52 (d, *J* = 8.0 Hz, 1H), 7.50 (s, 1H), 7.37-7.33 (m, 2H), 7.11-6.99 (m, 6H), 6.73 (t, *J* = 8.8 Hz, 2H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 163.2 (d, C–F *J* = 247.0 Hz), 160.8 (d, C–F *J* = 244.0 Hz), 158.9, 154.8 (2C), 152.6, 136.6, 136.4, 134.6, 131.8 (3C), 131.7 (d, C–F *J* = 3.0 Hz), 129.9 (d, C–F *J* = 4.0 Hz), 128.9, 128.8 (2C), 128.3, 127.4 (d, C–F *J* = 3.0 Hz), 125.4 (d, C–F *J* = 4.0 Hz), 122.0, 119.5 (2C), 118.2, 115.7 (d, C–F *J* = 21.0 Hz), 115.4 (d, C–F *J* = 22.0 Hz), 110.9 (2C), 21.5; HRMS (ESI): m/z calcd for C₂₉H₂₀F₂N₃ ([M + H]⁺) 448.1620, found 448.1635.

4-(5-Methyl-2,3-di(thiophen-2-yl)-1*H*-indol-1-yl)quinazoline (3be)

The general procedure was followed by using *N*-(*p*-tolyl)quinazolin-4-amine (**1b**) (106 mg, 0.452 mmol), 1,2-di(thiophen-2-yl)ethyne (**2e**) (86 mg, 0.452 mmol), Pd(OAc)₂ (10 mg, 0.045 mmol), Cu(OAc)₂ (25 mg, 0.135 mmol) and TBAB (146 mg, 0.452 mmol) to yielded **3be** (113 mg, 59%) as a yellow solid; mp: 70-72 °C; R_f = 0.5 (10% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 9.30 (s, 1H), 8.12 (d, *J* = 8.4 Hz, 1H), 7.91 (t, *J* = 7.2 Hz, 1H), 7.77 (d, *J* = 8.0 Hz, 1H), 7.65 (s, 1H), 7.53 (t, *J* = 7.6 Hz, 1H), 7.37 (d, *J* = 5.2 Hz, 1H), 7.20 (d, *J* = 2.4 Hz, 1H), 7.13 (t, *J* = 4.4 Hz, 2H), 7.05 (d, *J* = 8.8 Hz, 1H), 6.95 (d, *J* = 8.4 Hz, 1H), 6.80 (d, *J* = 2.8 Hz, 1H), 6.74 (t, *J* = 4.0 Hz, 1H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 158.8, 154.8, 152.5, 136.5, 134.9, 134.6, 131.8, 131.6, 131.4, 129.9, 128.7, 128.6, 128.4, 128.1, 127.6, 127.3, 127.1, 126.8, 125.8, 125.5, 125.3, 122.4, 120.0, 110.7, 21.5; HRMS (ESI): m/z calcd for C₂₅H₁₈N₃S₂ ([M + H]⁺) 424.0942, found 424.0941.

4-(6-Methyl-2,3-diphenyl-1*H*-indol-1-yl)quinazoline (3ca)

The general procedure was followed by using *N*-(*m*-tolyl)quinazolin-4-amine (**1c**) (106 mg, 0.452 mmol), diphenylacetylene (**2a**) (81 mg, 0.452 mmol), Pd(OAc)₂ (10 mg, 0.045 mmol), Cu(OAc)₂ (25 mg, 0.135 mmol) and TBAB (146 mg, 0.452 mmol) to yielded **3ca** (121 mg, 65%) as a yellow solid; mp: 160-162 °C; $R_f = 0.5$ (20% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 9.27 (s, 1H), 8.07 (d, *J* = 8.0 Hz, 1H), 7.85 (t, *J* = 6.0 Hz, 1H), 7.77 (d, *J* = 8.0 Hz, 1H), 7.67 (d, *J* = 8.0 Hz, 1H), 7.48-7.41 (m, 3H), 7.36 (t, *J* = 8.0 Hz, 2H), 7.28 (t, *J* = 6.0 Hz, 1H), 7.09 (d, *J* = 8.0 Hz, 1H), 7.05-7.00 (m, 6H), 2.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 154.8, 152.5, 138.6, 136.7, 134.4, 134.3, 133.8, 131.5, 130.2 (2C), 130.1 (2C), 128.5, 128.4 (2C), 128.2, 128.1 (2C), 127.4, 126.7, 126.5, 125.7, 123.7, 122.2, 119.8, 119.1, 111.0, 21.8; HRMS (ESI): m/z calcd for C₂₉H₂₂N₃ ([M + H]⁺) 412.1813, found 412.1814.

The general procedure was followed by using *N*-(2,4-dimethylphenyl)quinazolin-4-amine (**1d**) (112 mg, 0.452 mmol), diphenylacetylene (**2a**) (81 mg, 0.452 mmol), Pd(OAc)₂ (10.0 mg, 0.045 mmol), Cu(OAc)₂ (25 mg, 0.135 mmol) and TBAB (146 mg, 0.452 mmol) to yielded **3da** (121 mg, 63%) as a pale yellow solid; mp: 158-160 °C; R_f = 0.6 (20% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 9.33 (s, 1H), 8.02 (d, *J* = 8.0 Hz, 1H), 7.80 (s, 1H), 7.49-7.33 (m, 7H), 7.08-6.83 (m, 7H), 2.43 (s, 3H), 1.68 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.5, 154.3, 151.5, 138.7, 135.7, 134.6, 134.4, 131.1, 130.9 (2C), 130.3 (2C), 128.9, 128.7, 128.4, 128.3 (2C), 128.2, 127.8 (2C), 127.7 (2C), 126.2, 124.9, 124.6, 121.3, 117.9, 117.7, 21.3, 19.2; HRMS (ESI): m/z calcd for C₃₀H₂₄N₃

 $([M + H]^+)$ 426.1970, found 426.1972.

4-(5-Methoxy-2,3-diphenyl-1*H*-indol-1-yl)quinazoline(3ea)

The general procedure was followed by using *N*-(4-methoxyphenyl)quinazolin-4-amine (**1e**) (113 mg, 0.452 mmol), diphenylacetylene (**2a**) (81 mg, 0.452 mmol), Pd(OAc)₂ (10.0 mg, 0.045 mmol), Cu(OAc)₂ (25 mg, 0.135 mmol) and TBAB (146 mg, 0.452 mmol) to yielded **3ea** (131 mg, 68%) as a yellow solid; mp: 163-166 °C; $R_f = 0.5$ (20% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 9.22 (s, 1H), 8.08 (d, J = 8.8 Hz, 1H), 7.86 (t, J = 8.4 Hz, 1H), 7.81 (d, J = 8.4 Hz, 1H), 7.48 (t, J = 8 Hz, 1H), 7.43-7.36 (m, 4H), 7.33-7.29 (m, 1H), 7.21 (d, J = 2.4 Hz, 1H), 7.09 (d, J = 8.8 Hz, 1H), 7.05-7.00 (m, 5H), 6.86 (dd, J = 9.2 Hz, 1H), 3.85 (s, 3H); ¹³C NMR (100

MHz, CDCl₃): δ 158.1, 154.8, 153.7, 151.4, 137.0, 133.4, 133.1, 132.3, 130.3, 129.1 (2C), 129.0 (2C), 128.4, 127.5, 127.4 (2C), 127.1, 127.0 (2C), 126.4, 125.5, 124.6, 120.9, 118.2, 112.4, 111.0, 100.8, 54.8; HRMS (ESI): m/z calcd for C₂₉H₂₂ON₃ ([M + H]⁺) 428.1757, found 428.1742.

4-(5-Methoxy-2,3-di-*p*-tolyl-1*H*-indol-1-yl)quinazoline (3eb)

The general procedure was followed by using *N*-(4-methoxyphenyl)quinazolin-4-amine (**1e**) (113 mg, 0.452 mmol), 1,2-diptolylethyne (**2b**) (93 mg, 0.452 mmol), Pd(OAc)₂ (10.0 mg, 0.045 mmol), Cu(OAc)₂ (25 mg, 0.135 mmol) and TBAB (146 mg, 0.452 mmol) to yielded **3eb** (126 mg, 61%) as a yellow solid; mp: 143-147 °C; $R_f = 0.6$ (20% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 9.22 (s, 1H), 8.08 (d, J = 8.4 Hz, 1H), 7.87 (t, J = 7.2 Hz, 1H), 7.81 (d, J = 8.4 Hz, 1H), 7.49 (t, J = 6.8 Hz, 1H), 7.30 (d, J = 7.6 Hz, 2H), 7.20 (bs, 3H), 7.05 (d, J = 8.8 Hz, 1H), 6.93 (d, J = 7.6 Hz, 2H), 6.84-6.79 (m, 3H), 3.84 (s, 3H), 2.40 (s, 3H), 2.16 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.4, 155.8, 154.8, 152.5, 138.1, 137.2, 136.1, 134.4, 133.4, 131.3, 130.0 (2C), 129.9 (2C), 129.7, 129.3 (2C), 128.8 (2C), 128.5, 128.2, 125.8, 122.1, 118.9, 113.2, 111.9, 106.4, 101.9, 55.9, 21.3, 21.2; HRMS (ESI): m/z calcd for C₃₁H₂₆N₃O ([M + H]⁺) 456.2076, found 456.2103.

4-(2,3-Bis(4-fluorophenyl)-5-methoxy-1*H*-indol-1-yl)quinazolin (3ed)

The general procedure was followed by using *N*-(4-methoxyphenyl)quinazolin-4-amine (**1e**) (113 mg, 0.452 mmol), 1,2-bis(4-fluorophenyl)ethyne (**2d**) (97 mg, 0.452 mmol), Pd(OAc)₂ (10.0 mg, 0.045 mmol), Cu(OAc)₂ (25 mg, 0.135 mmol) and TBAB (146 mg, 0.452 mmol) to yielded **3ed** (132 mg, 63%) as a yellow solid brown solid; mp: 171-174 °C; $R_f = 0.6$ (20% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 9.22 (s, 1H), 8.11 (d, *J* = 8.4 Hz, 1H), 7.90 (t, *J* = 8.0 Hz, 1H), 7.79 (d, *J* = 8.4 Hz, 1H), 7.51 (t, *J* = 7.6 Hz, 1H), 7.35 (dd, *J* = 8.8 Hz, 2H), 7.13 (d, *J* = 2.4 Hz, 1H), 7.11-7.06 (m, 3H), 7.00 (dd, *J* = 8.8 Hz, 2H), 6.87 (dd, *J* = 2.4 Hz, 1H), 6.73 (t, *J* = 8.8 Hz, 2H), 3.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 163.3 (d, C–F *J* = 247.0 Hz), 160.8 (d, C–F *J* = 245.0 Hz), 158.9, 156.0, 154.8 (2C), 152.6, 137.0, 134.6 (2C), 133.3, 131.8 (d, C–F *J* = 8.0 Hz), 131.7 (d, C–F *J* = 7.0 Hz), 129.9 (d, C–F *J* = 3.0 Hz), 129.3, 128.7, 128.3, 127.3 (d, C–F *J* = 3.0 Hz), 125.4, 121.9, 118.3, 115.7 (d, C–F *J* = 21.0 Hz), 115.5 (d, C–F *J* = 22.0 Hz), 113.6 (2C), 112.1 (2C), 101.7, 55.9; HRMS (ESI): m/z calcd for C₂₉H₂₀ON₃F₂ ([M + H]⁺) 464.1569, found 464.1552.

4-(5-Chloro-2,3-diphenyl-1*H*-indol-1-yl)quinazoline (3fa)

The general procedure was followed by using *N*-(4-chlorophenyl)quinazolin-4-amine (**1f**) (115 mg, 0.452 mmol), diphenylacetylene (**2a**) (81 mg, 0.452 mmol), Pd(OAc)₂ (10.0 mg, 0.045 mmol), Cu(OAc)₂ (25 mg, 0.135 mmol) and TBAB (146 mg, 0.452 mmol) to yielded **3fa** (127 mg, 65%) as a pale yellow solid; mp: 179-182 °C; $R_f = 0.6$ (20% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 9.25 (s, 1H), 8.10 (d, J = 8.4 Hz, 1H), 7.88 (t, J = 8.0 Hz, 1H), 7.74 (d, J = 8.0 Hz, 2H), 7.50 (t, J = 8.0 Hz, 1H), 7.39-7.38 (m, 4H), 7.35-7.29 (m, 1H), 7.17 (dd, J = 4.0 Hz, 1H), 7.09 (d, J = 8.8 Hz, 1H), 7.06-6.99 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 158.7, 154.7, 152.6, 138.6, 136.5, 134.6, 133.4, 130.8, 130.1 (4C), 129.9, 128.7, 128.6 (2C), 128.4, 128.2 (2C), 127.9, 127.8, 126.9, 125.2, 123.9, 122.0, 119.6, 118.7, 112.2; HRMS (ESI): m/z calcd for C₂₈H₁₉N₃Cl ([M + H]⁺) 432.1262, found 432.1251. **4-(5-Chloro-2,3-di-***p***-tolyl-1***H***-indol-1-yl)quinazoline (3fb**)

The general procedure was followed by using *N*-(4-chlorophenyl)quinazolin-4-amine (**1f**) (115 mg, 0.452 mmol), 1,2-di-*p*-tolylethyne (**2b**) (93 mg, 0.452 mmol), Pd(OAc)₂ (10.0 mg, 0.045 mmol), Cu(OAc)₂ (25 mg, 0.135 mmol) and TBAB (146 mg, 0.452 mmol) to yielded **3fb** (131 mg, 63%) as an off white solid; mp: 134-138 °C; $R_f = 0.6$ (20% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 9.25 (s, 1H), 8.09 (d, J = 8.4 Hz, 1H), 7.88 (t, J = 8 Hz, 1H), 7.73 (d, J = 6.8 Hz, 2H), 7.50 (t, J = 7.6 Hz, 1H), 7.27 (d, J = 8 Hz, 2H), 7.19 (d, J = 8 Hz, 2H), 7.14 (d, J = 8.4 Hz, 1H), 7.04 (d, J = 8.8 Hz, 1H), 6.93 (d, J = 7.6 Hz, 2H), 6.81 (d, J = 8 Hz, 2H), 2.39 (s, 3H), 2.16 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 158.9, 154.8, 152.5, 138.6, 137.7, 136.5, 136.4, 134.6, 130.5, 130.2, 129.9 (4C), 129.3 (2C), 128.9 (2C), 128.7, 128.4, 127.9, 127.6, 125.3, 123.6, 122.0, 119.5, 118.3, 112.1, 21.3, 21.2; HRMS (ESI): m/z calcd for C₃₀H₂₃ClN₃ ([M + H]⁺) 460.1575, found 460.1563.

4-(5-Bromo-2,3-diphenyl-1*H*-indol-1-yl)quinazoline (3ga)

The general procedure was followed by using *N*-(4-bromophenyl)quinazolin-4-amine (**1g**) (135 mg, 0.452 mmol), diphenylacetylene (**2a**) (81 mg, 0.452 mmol), Pd(OAc)₂ (10.0 mg, 0.045 mmol), Cu(OAc)₂ (25 mg, 0.135 mmol) and TBAB (146 mg, 0.452 mmol) to yielded **3ga** (146 mg, 68%) as an off white solid; mp: 157-160 °C; $R_f = 0.6$ (20% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 9.25 (s, 1H), 8.10 (d, *J* = 8.4 Hz, 1H), 7.89 (t, *J* = 8 Hz, 2H), 7.73 (d, *J* = 8 Hz, 1H), 7.50 (t, *J* = 7.2 Hz, 1H), 7.38 (d, *J* = 4.4 Hz, 4H), 7.34-7.29 (m, 2H), 7.06-7.01 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 158.7, 154.7, 152.6, 138.4, 136.8, 134.7, 133.4, 130.8, 130.5, 130.2 (2C), 130.1 (2C), 128.7, 128.6 (2C), 128.5, 128.2 (2C), 127.9, 126.9, 126.5, 125.2, 122.6, 121.9, 118.6, 115.3, 112.7; HRMS (ESI): m/z calcd for C₂₈H₁₉N₃Br ([M + H]⁺) 476.0762, found 476.0754.

4-(5-Bromo-2,3-di-*p*-tolyl-1*H*-indol-1-yl)quinazoline (3gb)

The general procedure was followed by using *N*-(4-bromophenyl)quinazolin-4-amine (**1g**) (135 mg, 0.452 mmol), 1,2-di-*p*-tolylethyne (**2b**) (93 mg, 0.452 mmol), Pd(OAc)₂ (10.0 mg, 0.045 mmol), Cu(OAc)₂ (25 mg, 0.135 mmol) and TBAB (146 mg, 0.452 mmol) to yielded **3gb** (152 mg, 67%) as a yellow solid; mp: 161-165 °C; R_f = 0.6 (20% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 9.25 (s, 1H), 8.10 (d, *J* = 8.4 Hz, 1H), 7.89 (d, *J* = 10 Hz, 2H), 7.72 (d, *J* = 8.4 Hz, 1H), 7.50 (t, *J* = 7.2 Hz, 1H), 7.27 (d, *J* = 8.8 Hz, 3H), 7.19 (d, *J* = 7.6 Hz, 2H), 7.00 (d, *J* = 8.4 Hz, 1H), 6.93 (d, *J* = 7.6 Hz, 2H), 6.81 (d, *J* = 7.6 Hz, 2H), 2.39 (s, 3H), 2.16 (s, 3H); ¹³C

NMR (100 MHz, CDCl₃): δ 158.9, 154.8, 152.5, 138.5, 137.7, 136.8, 136.5, 134.6, 130.7, 130.5, 130.0 (2C), 129.9 (2C), 129.3 (2C), 128.9 (2C), 128.7, 128.5, 127.9, 126.2, 125.3, 122.6, 122.1, 118.2, 115.2, 112.5, 21.3, 21.2; HRMS (ESI): m/z calcd for C₃₀H₂₃N₃Br ([M + H]⁺) 504.1075, found 504.1067.

4-(2,3-Diphenyl-5-(trifluoromethyl)-1*H*-indol-1-yl)quinazoline (3ha)

The general procedure was followed by using *N*-(4-(trifluoromethyl)phenyl)quinazolin-4-amine (**1h**) (131 mg, 0.452 mmol), 1,2diphenylethyne (**2a**) (80 mg, 0.452 mmol), Pd(OAc)₂ (10.0 mg, 0.045 mmol), Cu(OAc)₂ (25 mg, 0.135 mmol) and TBAB (146 mg, 0.452 mmol) to yielded **3ha** (130 mg, 62%) as a white solid; mp: 175-178 °C; $R_f = 0.3$ (20% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 9.28 (s, 1H), 8.12 (d, J = 8.4 Hz, 1H), 8.07 (s, 1H), 7.90 (t, J = 7.4 Hz, 1H), 7.72 (d, J = 8.4 Hz, 1H), 7.52 (t, J = 7.6 Hz, 1H), 7.46 (d, J = 8.8 Hz, 1H), 7.41 (d, J = 4.4 Hz, 4H), 7.37-7.33 (m, 1H), 7.24 (d, J = 10.0 Hz, 1H), 7.07-7.00 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 158.5, 154.7, 152.6, 139.3, 139.0, 134.7, 133.1, 130.6, 130.2 (2C), 130.1 (2C), 128.8 (d, C-F J = 18.5 Hz), 128.6, 128.3, 128.2, 128.1, 127.1, 126.3, 125.07, 124.6, 124.3, 123.6, 121.9, 120.4 (d, C-F J = 3.4 Hz), 119.4, 117.8 (d, C-F J = 4.2 Hz), 117.7, 111.5; HRMS (ESI): m/z calcd for C₂₉H₁₈F₃N₃Na ([M + Na]⁺) 488.1351, found 488.1352.

4-(5-Nitro-2,3-diphenyl-1*H*-indol-1-yl)quinazoline (3ia)

The general procedure was followed by using *N*-(4-nitrophenyl)quinazolin-4-amine (**1i**) (120 mg, 0.452 mmol), 1,2-diphenylethyne (**2a**) (80 mg, 0.452 mmol), Pd(OAc)₂ (10.0 mg, 0.045 mmol), Cu(OAc)₂ (25 mg, 0.135 mmol) and TBAB (146 mg, 0.452 mmol) to yielded **3ia** (110 mg, 55%) as a yellow solid; mp: 165-168 °C; $R_f = 0.3$ (20% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 9.32 (s, 1H), 8.73 (s, 1H), 8.13 (d, *J* = 8.4 Hz, 2H), 7.92 (t, *J* = 7.4 Hz, 1H), 7.67 (d, *J* = 8.4 Hz, 1H), 7.53 (t, *J* = 7.4 Hz, 1H), 7.41-7.38 (m, 5H), 7.22 (d, *J* = 9.2 Hz, 1H), 7.07-7.04 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 158.0, 154.7, 152.7, 143.5, 140.6, 140.2, 134.9, 132.4, 130.1 (3C), 130.0 (3C), 128.9, 128.8 (3C), 128.4, 128.3 (2C), 127.4, 124.7, 121.8, 120.1, 119.1, 117.1, 111.3; HRMS (ESI): m/z calcd for C₂₈H₁₈N₄O₂Na ([M + Na]⁺) 465.1328, found 465.1329.

5-Methyl-4-(5-methyl-2,3-diphenyl-1*H*-indol-1-yl)quinazoline (3ja)

The general procedure was followed by using 5-methyl-*N*-(p-tolyl)quinazolin-4-amine (**1j**) (112.5 mg, 0.452 mmol), 1,2-diphenylethyne (**2a**) (80 mg, 0.452 mmol), Pd(OAc)₂ (10.0 mg, 0.045 mmol), Cu(OAc)₂ (25 mg, 0.135 mmol), and TBAB (146 mg, 0.452 mmol) to yielded **3ja** (123 mg, 64%) as a orange solid; mp: 235-238 °C; $R_f = 0.5$ (20% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 9.17 (s, 1H), 7.97 (d, J = 8.4 Hz, 1H), 7.76 (t, J = 8.0 Hz, 1H), 7.56 (s, 1H), 7.41 (d, J = 7.2 Hz, 2H), 7.35 (t, J = 7.6 Hz, 3H), 7.27 (t, J = 7.4 Hz, 1H), 7.04-7.00 (m, 6H), 6.80 (d, J = 8.0 Hz, 1H), 2.44 (s, 3H), 2.19 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 158.2, 154.1, 153.9, 136.9, 136.6, 135.6, 134.4, 134.1, 131.3, 131.2, 131.1, 130.3 (2C), 130.2 (2C), 128.7, 128.4 (2C), 128.0 (2C), 127.5, 127.0, 126.4, 125.3, 123.1, 119.8, 118.8, 110.0, 21.5, 20.4; HRMS (ESI): m/z calcd for C₃₀H₂₃N₃Na ([M + Na]⁺) 448.1790, found 448.1792.

7-Chloro-4-(5-methyl-2,3-diphenyl-1*H*-indol-1-yl)quinazoline (3ka)

The general procedure was followed by using 7-Chloro-*N*-(*p*-tolyl)quinazolin-4-amine(**1k**) (121 mg, 0.452 mmol), diphenylacetylene (**2a**) (81 mg, 0.452 mmol), Pd(OAc)₂ (10.0 mg, 0.045 mmol), Cu(OAc)₂ (25 mg, 0.135 mmol) and TBAB (146 mg, 0.452 mmol) to yielded **3ka** (131 mg, 65%) as a yellow solid; mp: 190-192 °C; $R_f = 0.7$ (20% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 9.21 (s, 1H), 8.06 (d, J = 2.0 Hz, 1H), 7.75 (d, J = 8.8 Hz, 1H), 7.55 (s, 1H), 7.42-7.36 (m, 5H), 7.33-7.29 (m, 1H), 7.10-7.01 (m, 7H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.2, 155.8, 153.0, 140.8, 137.2, 136.5, 134.0, 131.8, 131.2, 130.3 (2C), 130.0 (2C), 129.2, 129.2, 128.5 (2C), 128.2 (2C), 127.7, 127.6, 127.2, 126.7, 125.4, 120.4, 119.8, 119.4, 110.8, 21.5; HRMS (ESI): m/z calcd for C₂₉H₂₁N₃ClNa ([M + Na]⁺) 468.1244, found 468.1246.

4-(5-Bromo-2-(4-methoxyphenyl)-3-phenyl-1*H*-indol-1-yl)quinazoline (3gh) and 4-(5-Bromo-3-(4-methoxyphenyl)-2-phenyl-1*H*-indol-1-yl)quinazoline (3gh')

The general procedure was followed by using *N*-(4-bromophenyl)quinazolin-4-amine (**1g**) (135 mg, 0.452 mmol), 1-methoxy-4-(phenylethynyl)benzene (**2h**) (94 mg, 0.452 mmol), Pd(OAc)₂ (10.0 mg, 0.045 mmol), Cu(OAc)₂ (25 mg, 0.135 mmol) and TBAB (146 mg, 0.452 mmol) to yielded **3gh+3gh'** (297 mg, 65%) as a off white solid; mp: 178-180 °C; R_f = 0.7 (20% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 9.26 (d, *J* = 14.0 Hz, 2H), 8.10 (d, *J* = 8.4 Hz, 2H), 7.89-7.86 (m, 4H), 7.71 (dd, *J* = 8.4 & 8.0 Hz, 2H), 7.49 (t, *J* = 7.6 Hz, 2H), 7.38 (d, *J* = 4.0 Hz, 4H), 7.33-7.26 (m, 5H), 7.05-7.01 (m, 7H), 6.97-6.91 (m, 4H), 6.54 (d, *J* = 8.8 Hz, 2H), 3.84 (s, 3H), 3.64 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.1, 158.8, 158.7, 158.6, 154.8, 154.7, 152.6, 152.5, 138.4, 138.1, 136.8, 136.7, 134.7, 134.6, 133.6, 131.3 (2C), 131.2 (2C), 130.9, 130.8, 130.5, 130.2, 130.1 (2C), 130.0 (2C), 128.7 (2C), 128.6 (2C), 128.5, 128.4, 128.2 (2C), 127.8, 126.8, 126.4, 126.2, 125.5, 125.3 (2C), 123.0, 122.6, 122.4, 122.0, 121.9, 118.3, 117.8, 115.2, 114.1 (2C), 113.7 (2C), 112.6, 112.5, 55.2, 55.0; HRMS (ESI): m/z calcd for C₂₉H₂₁BrN₃O ([M + H]⁺) 506.0868, found 506.0868.

8. General Procedure for the Synthesis of Pyrido[2,3,4-*de*]quinazoline (4): To an oven-dried 10 mL round bottom flask were added appropriate quinazolin-4-amine (0.452 mmol), appropriate diphenylacetylene (0.452 mmol), $[RuCl_2(p-cymene)]_2$ (0.022 mmol) and $Cu(OAc)_2.H_2O$ (0.3 equiv.), and PEG-400 (3 mL). The mixture was stirred under open air for 12 h at 100 °C. After the completion of the reaction (as indicated by the TLC), the reaction was cooled to room temperature, the mixture was extracted with ethyl acetate (3 × 10 mL). The combined ethyl acetate was concentrated under reduced pressure. The crude product were purified by column chromatography using ethyl acetate and *n*-hexane gave the pyrido[2,3,4-*de*]quinazoline (4).

8. Analytical data of Pyrido[2,3,4-de]quinazoline (4)

4,5,6-Triphenyl-4*H*-pyrido[2,3,4-*de*]quinazoline (4aa)

The general procedure was followed by using *N*-phenylquinazolin-4-amine (**1a**) (100 mg, 0.452 mmol), diphenylacetylene (**2a**) (81 mg, 0.452 mmol), $[RuCl_2(p-cymene)]_2$ (14 mg, 0.022 mmol) and $Cu(OAc)_2.H_2O$ (27 mg, 0.135 mmol) to yielded **4aa** (117 mg, 65%) as an off white solid; mp: 290-293 °C; $R_f = 0.4$ (50% EtOAc/*n*-hexane); ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.24 (s, 1H), 7.69 (t, *J* = 8 Hz, 1H), 7.34 (d, *J* = 8 Hz, 1H), 7.28-7.25 (m, 6H), 7.17-7.15 (m, 4H), 7.10 (d, *J* = 8 Hz, 2H), 6.94-6.89 (m, 3H), 6.54 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 157.6, 156.5, 151.8, 142.0, 139.1, 138.9, 135.8, 135.7, 134.4, 133.9, 131.0 (2C), 130.5 (2C), 129.8 (2C), 128.7 (2C), 128.5 (2C), 127.7, 127.4, 127.0 (2C), 126.9, 121.3, 119.1, 115.2; HRMS (ESI): m/z calcd for C₂₈H₂₀N₃ ([M + H]⁺) 398.1657, found 398.1663.

4-Phenyl-5,6-di-p-tolyl-4H-pyrido[2,3,4-de]quinazoline (4ab)

CH3 H₃C.

The general procedure was followed by using *N*-phenylquinazolin-4-amine (**1a**) (100 mg, 0.452 mmol), 1,2-di-p-tolylethyne (**2b**) (93 mg, 0.452 mmol), [RuCl₂(p-cymene)]₂ (14 mg, 0.022 mmol) and Cu(OAc)₂.H₂O (27 mg, 0.135 mmol) to yielded **4ab** (121 mg, 63%) as a brown solid; mp: 218-220 °C; R_f = 0.4 (50% EtOAc/*n*-hexane); ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.23 (s, 1H), 7.65 (t, *J* = 6.0 Hz, 1H), 7.32 (d, *J* = 8.0 Hz, 1H), 7.24 (bs, 4H), 7.16 (s, 1H), 7.06 (d, *J* = 8 Hz, 4H), 6.97 (d, *J* = 8.0 Hz, 2H), 6.74 (d, *J* = 8.0 Hz, 2H), 6.51 (d, *J* = 8.0 Hz, 1H), 2.22 (s, 3H), 2.01 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 157.6, 156.5, 150.7, 141.9, 139.0, 136.3, 135.9 (2C), 134.3, 132.9, 131.2, 130.8 (2C), 130.3 (2C), 129.8 (2C), 129.2 (2C), 128.7 (2C), 127.6 (4C), 121.3, 119.0, 115.3, 20.7, 20.6; HRMS (ESI): m/z calcd for C₃₀H₂₄N₃ ([M + H]⁺) 426.1970, found 426.1967.

5,6-Bis(4-methoxyphenyl)-4-phenyl-4*H*-pyrido[2,3,4-*de*]quinazoline (4ac)

The general procedure was followed by using N-phenylquinazolin-4-amine (1a) (100 mg, 0.452 mmol), 1,2-bis(4methoxyphenyl)ethyne (2c) (108 mg, 0.452 mmol), [RuCl₂(p-cymene)]₂ (14 mg, 0.022 mmol) and Cu(OAc)₂.H₂O (27 mg, 0.135 mmol) to yielded 4ac (128 mg, 62%) as a brown solid; mp: 215-217 °C; $R_f = 0.4$ (70% EtOAc/*n*-hexane); ¹H NMR (400 MHz, DMSO- d_6): δ 8.26 (s, 1H), 7.68 (s, 1H), 7.27 (s, 1H), 7.24 (s, 2H), 7.18 (d, J = 8.0 Hz, 1H), 7.07 (d, J = 7.6 Hz, 2H), 7.00 (d, J = 8.4Hz, 2H), 6.94 (t, J = 6.4 Hz, 1H), 6.84 (d, J = 8.0 Hz, 2H), 6.63 (t, J = 8.0 Hz, 1H), 6.55 (d, J = 7.2 Hz, 1H), 6.49 (d, J = 8 Hz, 2H), 3.69 (s, 3H), 3.53 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 157.8, 157.5, 156.4, 142.0, 139.1, 136.2, 134.4, 132.2 (2C), 131.6 (2C), 131.4, 129.8 (2C), 128.8 (2C), 128.0, 127.6, 126.4, 121.4, 118.9, 115.4, 115.3, 113.9 (2C), 112.3 (3C), 54.8, 54.7; HRMS (ESI): m/z calcd for $C_{30}H_{24}N_3O_2$ ([M + H]⁺) 458.1869, found 458.1888.

5,6-Bis(4-fluorophenyl)-4-phenyl-4*H*-pyrido[2,3,4-*de*]quinazoline (4ad)

The general procedure was followed by using N-phenylquinazolin-4-amine (1a) (100 mg, 0.452 mmol), 1,2-bis(4-fluorophenyl)ethyne (2d) (97 mg, 0.452 mmol), [RuCl₂(p-cymene)]₂ (14 mg, 0.022 mmol) and Cu(OAc)₂.H₂O (27 mg, 0.135 mmol) to yielded 4ad (130 mg, 65%) as a pale yellow solid; mp: 228-230 °C; $R_f = 0.5$ (50% EtOAc/*n*-hexane); ¹H NMR (400 MHz, DMSO- d_6): δ 8.25 (s, 1H), 7.70 (t, J = 5.6 Hz, 1H), 7.36 (d, J = 8.0 Hz, 1H), 7.27 (t, J = 4.0 Hz, 3H), 7.20-7.10 (m, 8H), 6.80 (t, J = 8.0 Hz, 2H), 6.54 (d, J = 8.0 Hz, 1H); ¹³C NMR (126 MHz, DMSO- d_6): δ 162.5 (d, C–F J = 244.0 Hz), 160.5 (d, C–F J = 247.0 Hz), 158.1, 157.0 (2C), 151.2, 141.8, 139.4, 136.1, 135.0 (2C), 133.7 (d, C–F J = 7.5 Hz), 133.1 (d, C–F J = 7.5 Hz), 132.5, 130.9, 130.3 (3C), 129.4 (3C), 128.3, 121.1, 119.9, 117.5, 116.1 (d, C–F J = 21.4 Hz), 115.7, 114.6 (d, C–F J = 22.7 Hz); HRMS (ESI): m/z calcd for C₂₈H₁₈F₂N₃ ([M + H]⁺) 434.1469, found 434.1467.

5,6-diethyl-4-phenyl-4H-pyrido[2,3,4-de]quinazoline (4af)

The general procedure was followed by using N-phenylquinazolin-4-amine (1a) (100 mg, 0.452 mmol), hex-3-yne (2f) (37 mg, 0.452 mmol), [RuCl₂(p-cymene)]₂ (14 mg, 0.022 mmol) and Cu(OAc)₂.H₂O (27 mg, 0.135 mmol) to yielded 4af (82 mg, 60%) as a yellow solid; mp: 98-102 °C; $R_f = 0.3$ (30% EtOAc/n-hexane); ¹H NMR (400 MHz, DMSO- d_6): δ 8.23 (s, 1H), 7.76 (bs, 1H), 7.58 (t, J = 5.6Hz, 2H), 7.51 (d, J = 5.6 Hz, 1H), 7.35-7.29 (m, 3H), 7.18 (d, J = 6.0 Hz, 1H), 2.65-2.63 (m, 2H), 2.33-2.31 (m, 2H), 1.17 (t, J = 5.2 Hz, 2H), 7.51 (d, J = 5.6 Hz, 1H), 7.35-7.29 (m, 3H), 7.18 (d, J = 6.0 Hz, 1H), 2.65-2.63 (m, 2H), 2.33-2.31 (m, 2H), 1.17 (t, J = 5.2 Hz, 2H), 7.51 (d, J = 5.6 Hz, 2H), Hz, 3H), 0.91 (t, J = 5.4 Hz, 3H); ¹³C NMR (126 MHz, DMSO- d_6): δ 157.7, 156.4, 142.3, 139.3, 134.9, 134.8, 130.2 (3C), 129.7 (3C), 129.1, 118.8, 118.6, 113.6, 22.8, 20.7, 13.9, 13.0; HRMS (ESI): m/z calcd for C₂₀H₁₉N₃Na ([M + Na]⁺) 324.1477, found 324.1480.

5,6-Diphenyl-4-(*p*-tolyl)-4*H*-pyrido[2,3,4-*de*]quinazoline (4ba)

The general procedure was followed by using N-(p-tolyl)quinazolin-4-amine (1b) (106 mg, 0.452 mmol), diphenylacetylene (2a) (81 mg, 0.452 mmol), [RuCl₂(p-cymene)]₂ (14 mg, 0.022 mmol) and Cu(OAc)₂.H₂O (27 mg, 0.135 mmol) to yielded **4ba** (121 mg, 65%) as an off white solid; mp: 275-278 °C; $R_f = 0.5$ (50% EtOAc/*n*-hexane); ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.24 (s, 1H), 7.67 (t, *J* = 8 Hz, 1H), 7.33 (d, J = 8 Hz, 1H), 7.25 (t, J = 6.0 Hz, 2H), 7.16 (t, J = 8.0 Hz, 3H), 7.11 (t, J = 8.0 Hz, 4H), 7.05 (d, J = 8 Hz, 2H), 6.94-6.92 (m, 3H), 6.52 (d, J = 8.0 Hz, 1H), 2.19 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6): δ 157.7, 156.6, 156.5, 142.1, 136.9, 136.4, 135.8, 135.7, 134.4, 134.0, 131.1, 130.9 (2C), 130.5 (2C), 129.5 (2C), 129.3 (2C), 128.5 (2C), 127.4, 127.0, 126.9 (2C), 121.3, 119.1, 115.1, 20.6; HRMS (ESI): m/z calcd for C₂₉H₂₂N₃ ([M + H]⁺) 412.1814, found 412.1820.

5,6-Bis(4-methoxyphenyl)-4-(p-tolyl)-4H-pyrido[2,3,4-de]quinazoline (4bc)

The general procedure was followed by using *N*-(*p*-tolyl)quinazolin-4-amine (**1b**) (106 mg, 0.452 mmol), 1,2-bis(4-methoxyphenyl)ethyne (**2c**) (108 mg, 0.452 mmol), [RuCl₂(*p*-cymene)]₂ (14 mg, 0.022 mmol) and Cu(OAc)₂.H₂O (27 mg, 0.135 mmol) to yielded **4bc** (128 mg, 60%) as a brown solid; mp: 195-198 °C; $R_f = 0.4$ (70% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 8.42 (s, 1H), 7.60 (t, *J* = 8 Hz, 1H), 7.43 (d, *J* = 8.0 Hz, 1H), 7.07 (d, *J* = 8 Hz, 2H), 7.02-6.96 (m, 4H), 6.79-6.76 (m, 4H), 6.74 (d, *J* = 8 Hz, 1H), 6.45 (d, *J* = 8.0 Hz, 2H), 3.76 (s, 3H), 3.62 (s, 3H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 158.4, 158.3 (2C), 157.0, 141.9, 137.8, 136.5, 136.2, 134.3, 132.2 (2C), 132.0, 131.7 (2C), 129.9 (2C), 129.1 (2C), 128.6, 128.3, 126.7, 122.6, 119.6, 116.3, 114.0 (2C), 112.7 (2C), 55.1, 54.9, 21.2; HRMS (ESI): m/z calcd for C₃₁H₂₆N₃O₂ ([M + H]⁺) 472.2025, found 472.2025. **4-(4-Methoxyphenyl)-5,6-diphenyl-4***H***-pyrido[2,3,4-***de***]quinazoline (4ea)**

The general procedure was followed by using *N*-(4-methoxyphenyl)quinazolin-4-amine (**1e**) (113 mg, 0.452 mmol), diphenylacetylene (**2a**) (81 mg, 0.452 mmol), $[RuCl_2(p-cymene)]_2(14$ mg, 0.022 mmol) and $Cu(OAc)_2.H_2O$ (27 mg, 0.135 mmol) to yielded **4ea** (126 mg, 65%) as a brown solid; mp: 238-240 °C; $R_f = 0.45$ (80% EtOAc/*n*-hexane); ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.26 (s, 1H), 7.67 (t, *J* = 8 Hz, 1H), 7.33 (d, *J* = 7.2 Hz, 1H), 7.25 (t, *J* = 7.2 Hz, 2H), 7.16 (t, *J* = 6.4 Hz, 5H), 7.10 (d, *J* = 6.4 Hz, 2H), 6.95-6.93 (m, 3H), 6.78 (d, *J* = 8.4 Hz, 2H), 6.52 (d, *J* = 8 Hz, 1H), 3.66 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 158.1, 157.8, 156.6, 150.8, 142.4, 135.9, 135.7, 134.3, 134.1, 131.6, 130.9 (2C), 130.8 (2C), 130.5 (2C), 128.4 (2C), 127.4, 127.0, 126.9 (2C), 124.4, 121.2, 119.1, 115.1, 113.9 (2C), 55.1; HRMS (ESI): m/z calcd for C₂₉H₂₂ON₃ ([M + H]⁺) 428.1763, found 428.1780.

4,5,6-Tris(4-methoxyphenyl)-4*H*-pyrido[2,3,4-*de*]quinazoline (4ec)

The general procedure was followed by using *N*-(4-methoxyphenyl)quinazolin-4-amine (**1e**) (113 mg, 0.452 mmol), 1,2-bis(4-methoxyphenyl)ethyne (**2c**) (108 mg, 0.452 mmol), $[RuCl_2(p-cymene)]_2$ (14 mg, 0.022 mmol) and $Cu(OAc)_2$.H₂O (27 mg, 0.135 mmol) to yielded **4ec** (132 mg, 60%) as a white solid; mp: 158-160 °C; R_f = 0.3 (80% EtOAc/*n*-hexane); ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.22 (s, 1H), 7.66 (t, *J* = 6.0 Hz, 1H), 7.30 (d, *J* = 8.0 Hz, 1H), 7.14 (d, *J* = 8.0 Hz, 2H), 7.06 (d, *J* = 8.0 Hz, 2H), 7.01 (d, *J*

Hz, 2H), 6.84-6.80 (m, 4H), 6.54-6.51 (m, 3H), 3.70 (s, 3H), 3.69 (s, 3H), 3.56 (s, 3H); ¹³C NMR (126 MHz, DMSO- d_6): δ 158.5, 158.4, 158.3 (2C), 157.0, 151.2, 142.9, 136.7, 134.8, 132.7 (2C), 132.4, 132.1 (2C), 131.3 (2C), 128.6, 127.1, 121.7, 119.3, 117.5, 115.6, 114.4 (4C), 112.9 (2C), 55.6, 55.3, 55.2; HRMS (ESI): m/z calcd for C₃₁H₂₆N₃O₃ ([M + H]⁺) 488.1974, found 488.1972. **4-(4-Chlorophenyl)-5,6-diphenyl-4***H***-pyrido[2,3,4-***de***]quinazoline (4fa)**

The general procedure was followed by using *N*-(4-chlorophenyl)quinazolin-4-amine (**1f**) (115 mg, 0.452 mmol), diphenylacetylene (**2a**) (81 mg, 0.452 mmol), $[RuCl_2(p-cymene)]_2$ (14 mg, 0.022 mmol) and $Cu(OAc)_2$.H₂O (27 mg, 0.135 mmol) to yielded **4fa** (123

mg, 63%) as an off white solid; mp: 198-200 °C; $R_f = 0.4$ (30% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 8.44 (s, 1H), 7.63 (t, J = 8 Hz, 1H), 7.48 (d, J = 8.0 Hz, 1H), 7.25-7.22 (m, 4H), 7.19-7.16 (m, 1H), 7.10 (d, J = 8.4 Hz, 2H), 7.07 (d, J = 8.0 Hz, 2H), 6.96-6.94 (m, 3H), 6.89-6.87 (m, 2H), 6.75 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 158.2, 156.9, 141.3, 137.5, 135.7, 135.5, 134.5, 133.9, 133.8, 131.0 (2C), 130.9 (2C), 130.6 (2C), 129.5 (2C), 129.0, 128.6 (2C), 127.8, 127.5 (2C), 127.2, 122.9, 120.4, 117.7, 116.6; HRMS (ESI): m/z calcd for C₂₈H₁₉N₃Cl ([M + H]⁺) 432.1268, found 432.1269.

4-(4-Chlorophenyl)-5,6-di-p-tolyl-4H-pyrido[2,3,4-de]quinazoline (4fb)

The general procedure was followed by using *N*-(4-chlorophenyl)quinazolin-4-amine (**1f**) (115 mg, 0.452 mmol), 1,2-di-*p*-tolylethyne (**2b**) (93 mg, 0.452 mmol), [RuCl₂(*p*-cymene)]₂ (14 mg, 0.022 mmol) and Cu(OAc)₂.H₂O (27 mg, 0.135 mmol) to yielded **4fb** (127 mg, 61%) as an off white solid; mp: 180-182 °C; R_f = 0.45 (30% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 8.42 (s, 1H), 7.61 (t, *J* = 8.0 Hz, 1H), 7.45 (d, *J* = 8.0 Hz, 1H), 7.24 (d, *J* = 8.0 Hz, 2H), 7.06-7.03 (m, 4H), 6.97 (d, *J* = 8 Hz, 2H), 6.75-6.72 (m, 5H), 2.28 (s, 3H), 2.13 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 158.2, 156.9, 141.3, 137.7, 137.4, 136.7, 135.8, 134.5, 134.4, 133.8, 132.8, 131.0 (2C), 130.7 (2C), 130.4 (2C), 129.4 (2C), 129.2 (2C), 128.2 (2C), 127.7, 125.5, 120.2, 117.7, 116.6, 21.2, 21.1; HRMS (ESI): m/z calcd for C₃₀H₂₃ClN₃ ([M + H]⁺) 460.1581, found 460.1586.

4-(4-Bromophenyl)-5,6-diphenyl-4H-pyrido[2,3,4-de]quinazoline (4ga)

The general procedure was followed by using *N*-(4-bromophenyl)quinazolin-4-amine (**1g**) (135 mg, 0.452 mmol), diphenylacetylene (**2a**) (81 mg, 0.452 mmol), $[\text{RuCl}_2(p\text{-cymene})]_2$ (14 mg, 0.022 mmol) and $\text{Cu}(\text{OAc})_2$.H₂O (27 mg, 0.135 mmol) to yielded **4ga** (135 mg, 63%) as a brown solid; mp: 215-217 °C; R_f = 0.4 (30% EtOAc/*n*-hexane); ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.26 (s, 1H), 7.70 (t, J = 8.0 Hz, 1H), 7.46 (d, J = 8 Hz, 2H), 7.36 (d, J = 8 Hz, 1H), 7.28-7.26 (m, 4H), 7.17-7.12 (m, 5H), 6.98-6.96 (m, 3H), 6.54 (d, J = 7.6 Hz, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 157.5, 156.4, 141.5, 138.3, 135.6, 134.5, 133.7, 132.2 (2C), 131.8 (2C), 131.4, 130.9 (2C), 130.4 (2C), 128.5 (2C), 127.7, 127.1 (2C), 121.5, 121.4, 121.0, 120.8, 119.4, 119.3, 115.4; HRMS (ESI): m/z calcd for C₂₈H₁₉N₃Br ([M + H]⁺) 476.0762, found 476.0768.

5,6-Diphenyl-4-(4-(trifluoromethyl)phenyl)-4*H*-pyrido[2,3,4-de]quinazoline (4ha)

The general procedure was followed by using *N*-(4-(trifluoromethyl)phenyl)quinazolin-4-amine (**1h**) (130.6 mg, 0.452 mmol), 1,2diphenylethyne (**2a**) (80 mg, 0.452 mmol), [RuCl₂(*p*-cymene)]₂ (14 mg, 0.022 mmol) and Cu(OAc)₂.H₂O (27 mg, 0.135 mmol) to

uphenyleunyle (2a) (30 mg, 0.452 mmor), [Rucl₂(*p*-cyntenc)]₂ (14 mg, 0.022 mmor) and Cu(OAC)₂:H₂O (27 mg, 0.135 mmor) to yielded **4ha** (126 mg, 60%) as a off white solid; mp: 238-240 °C; $R_f = 0.2$ (20% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 8.45 (s, 1H), 7.65 (bs, 1H), 7.53 (d, *J* = 7.6 Hz, 3H), 7.28-7.16 (m, 5H), 7.12 (d, *J* = 6.8 Hz, 2H), 6.93-6.88 (m, 5H), 6.77 (d, *J* = 7.6 Hz, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -62.68; ¹³C NMR (100 MHz, CDCl₃): δ 158.0, 142.1, 140.9, 135.6, 135.4, 134.5, 133.6, 130.9 (2C), 130.6 (2C), 130.3 (2C), 130.2, 129.8, 128.6 (3C), 127.9 (d, C–F *J* = 62.6 Hz), 127.3 (2C), 126.4, 126.3 (d, C–F *J* = 7.1 Hz), 126.2, 124.9, 123.1, 122.2, 120.7, 116.9; HRMS (ESI): m/z calcd for C₂₉H₁₈N₃F₃Na ([M + Na]⁺) 488.1351, found 488.1353. **8-Chloro-5,6-diphenyl-4-(***p***-tolyl)-4***H***-pyrido[2,3,4-***de***]quinazoline (4ka)**

The general procedure was followed by using 7-chloro-*N*-(*p*-tolyl)quinazolin-4-amine (**1k**) (121 mg, 0.452 mmol), diphenylacetylene (**2a**) (81 mg, 0.452 mmol), $[RuCl_2(p-cymene)]_2$ (14 mg, 0.022 mmol) and $Cu(OAc)_2.H_2O$ (27 mg, 0.135 mmol) to yielded **4ka** (129 mg, 64%) as a brown solid; mp: 267-269 °C; R_f = 0.2 (20% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 8.45 (s, 1H), 7.42 (d, *J* = 2.0 Hz, 1H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.20-7.17 (m, 1H), 7.09-7.06 (m, 4H), 6.99 (d, *J* = 8.0 Hz, 2H), 6.94-6.92 (m, 3H), 6.89-6.86 (m, 2H), 6.66 (d, *J* = 4.0 Hz, 1H), 2.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 158.0, 157.9, 152.2, 143.3, 140.8, 138.1, 137.2, 136.0, 135.3, 133.8, 130.8 (2C), 130.6 (2C), 129.9 (2C), 129.1 (2C), 128.7 (2C), 127.7, 127.4, 127.3 (2C), 121.9, 119.5, 116.3, 116.2, 21.2; HRMS (ESI): m/z calcd for C₂₉H₂₁N₃ClNa([M + Na]⁺) 468.1244, found 468.1243.

8-Chloro-4,5,6-tri-*p*-tolyl-4*H*-pyrido[2,3,4-*de*]quinazoline (4kb)

The general procedure was followed by using 7-chloro-*N*-(*p*-tolyl)quinazolin-4-amine (**1k**) (121 mg, 0.452 mmol), 1,2-di-*p*-tolylethyne (**2b**) (93 mg, 0.452 mmol), [RuCl₂(*p*-cymene)]₂ (14 mg, 0.022 mmol) and Cu(OAc)₂.H₂O (27 mg, 0.135 mmol) to yielded **4kb** (128 mg, 60%) as a brown solid; mp: 125-130 °C; $R_f = 0.3$ (20% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 8.43 (s, 1H), 7.40 (s, 1H), 7.06 (t, *J* = 10.0 Hz, 4H), 6.95 (t, *J* = 6.0 Hz, 4H), 6.75-6.73 (m, 4H), 6.66 (s, 1H), 2.28 (s, 3H), 2.26 (s, 3H), 2.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 157.9, 157.8, 151.9, 143.3, 140.9, 138.0, 137.5, 137.3, 136.9, 136.1, 132.3, 130.9, 130.6 (2C), 130.3 (2C), 129.9 (2C), 129.4 (2C), 129.0 (2C), 128.0 (2C), 122.0, 119.1, 116.3, 116.2, 21.2 (2C), 21.2; HRMS (ESI): m/z calcd for C₃₁H₂₅N₃Cl ([M + H]⁺) 474.1737, found 474.1727.

4-(4-Bromophenyl)-7,8-dimethoxy-5,6-diphenyl-4*H*-pyrido[2,3,4-*de*]quinazoline (4la)

The general procedure was followed by using *N*-(4-bromophenyl)-6,7-dimethoxyquinazolin-4-amine (**1**I) (163 mg, 0.452 mmol), diphenylacetylene (**2a**) (81 mg, 0.452 mmol), $[RuCl_2(p-cymene)]_2$ (14 mg, 0.022 mmol) and $Cu(OAc)_2.H_2O$ (27 mg, 0.135 mmol) to yielded **4la** (133 mg, 55%) as a white solid; mp: 190-194 °C; $R_f = 0.5$ (40% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 8.33 (s, 1H), 7.37 (d, *J* = 8.0 Hz, 2H), 7.13-7.03 (m, 6H), 6.98 (d, *J* = 8.0 Hz, 2H), 6.92-6.91 (m, 3H), 6.85-6.82 (m, 2H), 3.96 (s, 3H), 3.04 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.6, 157.3, 156.4, 149.6, 142.7, 139.2, 138.3 (2C), 134.0, 132.3 (2C), 131.5 (2C), 131.1 (2C), 130.7 (2C), 127.5, 127.3 (2C), 126.8 (2C), 126.5, 126.0, 121.9, 119.6, 113.0, 103.2, 60.7, 55.9; HRMS (ESI): m/z calcd for $C_{30}H_{23}BrN_3O_2([M + H]^+)$ 536.0973, found 536.0975.

4-Benzyl-5,6-diphenyl-4*H*-pyrido[2,3,4-*de*]quinazoline (4ma)

 $\sim \sim N^{\prime}$

The general procedure was followed by using *N*-benzylquinazolin-4-amine (**1m**) (106 mg, 0.452 mmol), diphenylacetylene (**2a**) (81 mg, 0.452 mmol), $[RuCl_2(p-cymene)]_2$ (14 mg, 0.022 mmol) and $Cu(OAc)_2.H_2O$ (27 mg, 0.135 mmol) to yielded **4ma** (117 mg, 63%) as a brown solid; mp: 236-239 °C; R_f = 0.5 (40% EtOAc/*n*-hexane); ¹H NMR (400 MHz, CDCl₃): δ 8.54 (s, 1H), 7.60 (t, *J* = 6.0 Hz, 1H), 7.47 (bs, 1H), 7.20-7.17 (m, 5H), 7.14-7.11 (m, 2H), 7.07-7.02 (m, 4H), 6.93-6.89 (m, 4H), 6.65 (d, *J* = 8.0 Hz, 1H), 5.26 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 157.5, 157.1, 151.0, 142.1, 136.9, 136.0, 135.6, 134.2, 133.6, 130.6 (3C), 130.5 (2C), 128.4 (3C), 128.3 (2C), 127.7 (2C), 127.1 (2C), 126.7 (2C), 123.3, 119.9, 116.1, 49.3; HRMS (ESI): m/z calcd for C₂₉H₂₂N₃ ([M + H]⁺) 412.1813,found 412.1815.

9. References

- A. S. Kumar, J. Kudva, B. R. Bharath, V. M. Rai, S. M. Kumar, V. Kumar, S. P. Sajankila, *ChemistrySelect*, 2018, 3, 13586– 13595.
- 2. Z. Wang, C. L. Wang, Y. N. Sun, N. Zhang, Z. L. Liu, J. L. Liu, Tetrahedron, 2014, 70, 906-913.
- 3. Z. Wang, X. Wu, L. Wang, J. Zhang, J. Liu, Z. Song, Z. Tang, Bioorg. Med. Chem. Lett., 2016, 26, 2589–2593.
- 4. W. Szczepankiewicz, J. Suwinski, Tetrahedron Lett., 1998, 39, 1785–1786.
- M. Tobe, Y. Isobe, H. Tomizawa, T. Nagasaki, H. Takahashi, T. Fukazawa, H. Hayashi, *Bioorg. Med. Chem.*, 2003, 11, 383–391.
- 6. A. Garofalo, L. Goossens, B. Baldeyrou, A. Lemoine, S. Ravez, P. Six, M. H. David-Cordonnier, J. -P. Bonte, P. Depreux, A. Lansiaux, J. -F. Goossens, *J. Med. Chem.*, 2010, **53**, 8089–8103.
- 7. T. Mohamed, P. P. Rao, Eur. J. Med. Chem., 2017, 126, 823-843.

12. Copies of ¹H and ¹³C NMR Spectra of Products Compound 3aa

Compound 3ac

1 1

ľ

Compound 3ea

www.www.com.com/website/we

90 80 f1 (ppm)

Compound 3ka

Compound 3gh and 3gh'

Compound 4ab

Compound 4ac

Compound 4ad

Compound 4af

Compound 4ba

Compound 4bc

Compound 4ea

Compound 4ec

Compound 4fa

S54

Compound 4fb

Compound 4ga

157.50 156.42 156.42 138.33 131.55 133.55 1133.55 1135.55 1135.55 1135.55 1135.55 1135.55 1135.55 1135.55 1135.55 1135.55 1135.55 1135.55 1135.55 1155.55 1155.55 1155.55 1155.55 1155

Compound 4ha

Compound 4ka

En

Compound 4la

Compound 4ma

Compound 1a

Compound 1b

Compound 1e

Compound 1f

[

Compound-1n

