Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

1,2-Addition to Trifluoromethylated β -enamino diketones: Regioselective Synthesis of Trifluoromethyl-Containing Azomethine Pyrazoles and Isoxazoles

Karlos Eduardo Pianoski,^a Julia Poletto,^a Michael Jackson Vieira da Silva,^a Jeniffer Nascimento Ascencio Camargo,^a Andrey Petita Jacomini,^a Davana Silva Gonçalves,^a Davi Fernando Back,^b Sidnei Moura^c and Fernanda Andreia Rosa*^a

SUPORTING INFORMATION

Table of contents

1.	General Information, Synthetic Procedure and Spectra Data	.7
2.	X-ray crystallographic information and ORTEP diagrams of compounds 2f, 5dc ar	٦d
	6fc	20
3.	1 H and 13 C spectra for trifluoromethylated eta -enamino diketone 2 :	a-
	f	2
4.	¹ H and ¹³ C spectra for 5-aryl-4-[(<i>tert</i> -butyl)iminomethyl]-3-trifluoromethyl- N -phenylpyrazole	es
	3a-f	4
5.	¹ H and ¹³ C spectra for 5-aryl-4-[(<i>tert</i> -butyl)iminomethyl]-3-trifluoromethylisoxazoles 4 :	a-
	f	5
6.	¹ H and ¹³ C spectra for 5-aryl-4-[(aryl)iminomethyl]-3-trifluoromethyl- N -phenylpyrazoles 5(a	a-
	af)-5(fa-ff)	28
7.	¹ H and ¹³ C spectra for 5-aryl-4-[(aryl)iminomethyl]-3-trifluoromethylisoxazoles 6(aa-af)-6(f a	a-
	ff)	00
8	References \$20)1

^a Departamento de Química, Universidade Estadual de Maringá (UEM), 87030-900, Maringá PR, Brazil.

^b Departamento de Química, Universidade Federal de Santa Maria (UFSM), 97110-970 - Santa Maria, RS, Brazil.

^c Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), 295070-560, Caxias do Sul, RS, Brazil.

^{*}E-mail: farosa@uem.br

General Information

The reagents used were obtain by commercial supplier without previous purification. Solvents were dried and purify according to recommend procedures. All the reactions were monitored by thin-layer chromatography with Merck TLC silica gel plates and analyzed with UV light. All melting points were measured using a MQAPF-307 Microquímica apparatus using benzoic acid as internal standard. 1H NMR, 13C NMR, HSQC and HMBC experiments were run on Bruker avance III HD apparatus operating at ¹H 300 and 500 MHz and ¹³C 75 and 125 MHz. Chemical shifts are reported in ppm using TMS as the internal standard for CDCl₃ in ¹H and ¹³C. ESI(+)-MS and tandem ESI(+)-MS/MS were acquired using a hybrid high-resolution and high accuracy microTof (Q-TOF) mass spectrometer (Bruker). For ESI(+)-MS, the energy for the collision induced dissociations (CDI) was optimised for each component. For data acquisition and processing, the Q-TOF-control data analysis software (Bruker Scientific) was used. The single Crystal X-ray diffraction studies were based on X-ray intensity data measurements of compounds 2f (CCDC: 1959494),2a 5dc (CCDC: 1959495),2b 6fc (CCDC: 1959496)2c were collected with a Bruker APEX II CCD area-detector diffractometer and graphitemonochromatized Mo-Ka radiation. The structure was solved by direct methods using SHELXS.3 Subsequent Fourier-difference map analyses yielded the positions of the non-hydrogen atoms. Refinements were carried out the SHELXS package.3 All refinements were made by full matrix least squares on F2 with anisotropic displacement parameters for all non-hydrogen atoms. Hydrogen atoms were included in the refinement in calculated positions but the atoms (of hydrogens) that are commenting performing special bond were located in the Fourier map. The ORTEP diagram were drawn with 50% probability displacement ellipsoids using ORTEP-3 for Windows. 4

General Synthetic Procedure and Spectra Data.

Tertiary trifluoromethylated β -enamino diketones 1a-f.

General method. A solution of β -enamino ketone⁵ (20 mmol, 1 equiv), anhydrous CH₂Cl₂ (6 mL), and pyridine (1.9 ml, 24.0 mmol, 1.2 equiv) was added dropwise to a stirred solution of trifluoracetic anhydride (3.5 mL, 24.0 mmol, 1.2 equiv) in CH₂Cl₂ (8 mL) at 0 °C under nitrogen atmosphere for 1 h. After warming to rt, the solution was stirred under reflux for 15 h. The organic layer was washed with a solution of H₂O–HCl (10:1; 1 x 20 mL) and with distilled H₂O (3 x 20 mL). Finally, the organic layer was dried over anhydrous sodium sulfate and evaporated under vacuum to afford the tertiary β-enamine diketones substrates 1a-f. The spectral data of 1a-f were in full accordance with those available in the literature.⁵

Secondary trifluoromethylated β -enamino diketones 2a-f.

General method. A mixture of compound **1** (**1a**: 3.16 g; **1b**: 2.71 g; **1c**: 3.01 g; **1d**: 2.89 g; **1e**: 3.05 g; **1f**: 3.50 g, 10.0 mmol, 1.0 equiv) and *tert*-butylamine (1.49 g, 20.0 mmol, 2.0 equiv) in dichloromethane (10 mL) was stirred at room temperature for 1 h. Then it was washed with distilled water (5 x 25 mL) and the organic layers were dried with anhydrous sodium sulfate. The solvent was evaporated under reduced pressure and the obtained residue was dissolved in hot ethanol (5 mL) and cooled to 0 °C which induced crystallization. The solid was filtered, washed with cold ethanol (20 mL) and dried under vacuum.

(Z and E)-4-(tert-Butylamino)-1,1,1-trifluoro-3-(4-nitrobenzoyl)-3-buten-2-one (2a): Yellow solid; 92% yield (3.17 g); Z/E ratio in CDCl₃: 25.4/74.6; mp 124.2-127.0 °C; ¹H NMR (500.13 MHz, CDCl₃) δ (ppm) (Z) 1.39 (s, 9H, t-Bu), 7.76 (d, 1H, H⁴, J = 14.7 Hz), 7.85 (d, 2H, 4-NO₂-C₆H₄, J = 8.8 Hz), 8.30 (d, 2H, 4-NO₂C₆H₄, J = 8.8 Hz), 10.98 (s, 1H, NH); (E) 1.48 (s, 9H, t-Bu), 7.53 (d, 2H, 4-NO₂-C₆H₄, J = 8.9 Hz), 8.13 (d, 1H, H⁴, J = 14.3 Hz), 8.24 (d, 2H, 4-NO₂-C₆H₄, J = 8.9 Hz), 11.33 (s, 1H, NH); ¹³C NMR (125.76 MHz, CDCl₃) δ (ppm) (Z) 29.4 (C(CH₃)₃), 55.4 (C(CH₃)₃), 105.7 (C³), 116.6 (q, CF₃, ¹J_{C-F} = 288.3 Hz), 123.6, 130.0, 144.6, 149.8 (4-NO₂-C₆H₄), 157.8 (C⁴), 179.0 (q, C², ²J_{C-F} = 35.4 Hz), 190.6 (C³′); (E) 29.4 (C(CH₃)₃), 55.6 (C(CH₃)₃), 103.3 (C³), 117.4 (q, CF₃, ¹J_{C-F} = 293.1 Hz), 123.3, 127.8, 146.9, 148.6 (4-NO₂-C₆H₄), 156.3 (C⁴), 176.4 (q, C², ²J_{C-F} = 32.9 Hz), 195.4 (C³′); HRMS (ESI+): calcd for C₁₅H₁₆F₃N₂O₄+, [M+H]+: 345.1054, found 345.1061.

(Z and E)-3-Benzoyl-4-(tert-butylamino)-1,1,1-trifluoro-3-buten-2-one (2b): Light yellow solid; 88% yield (2.02 g); Z/E ratio in CDCl₃: 60.6/39.4; mp 93.2-95.7 $^{\circ}$ C; $^{\circ}$ H NMR (500.13 MHz, CDCl₃) δ (ppm) (Z) 1.36 (s, 9H, t-Bu), 7.44-7.48 (m, 2H, C₆H₅), 7.54-7.57 (m, 1H, C₆H₅), 7.70-7.73 (m, 3H, H⁴ and C₆H₅), 10.89 (s, 1H, N_H); (E) 1.45 (s, 9H, t-Bu), 7.37-7.40 (m, 2H, C₆H₅), 7.44-7.48 (m, 3H, C₆H₅), 8.09 (d, 1H, H⁴, J = 14,3 Hz), 11.01 (s, 1H, N_H); 13 C NMR (125.76 MHz, CDCl₃) δ (ppm) (Z) 29.7 (C(CH₃)₃), 55.1 (C(CH₃)₃), 106.3 (C³), 117.0 (q, C₅F₃, 1 J_{C-F} = 288.3 Hz), 128.6, 129.6, 132.6, 139.1 (C₆H₅), 157.9 (C⁴), 179.4 (q, C², 2 J_{C-F} = 35.2 Hz), 192.8 (C³'); (E) 29.7 (C(CH₃)₃), 55.2 (C(CH₃)₃), 104.0 (C³), 117.6 (q, C₅F₃, 1 J_{C-F} = 293.2 Hz), 127.7, 128.2, 131.3, 141.0 (C₆H₅), 156.1 (C⁴), 177.6 (q, C², 2 J_{C-F} = 32.5 Hz), 197.2 (C³'); HRMS (ESI+): calcd for C₁₅H₁₇F₃NO₂+, [M+H]+: 300.1206, found 300.1220.

(Z and E)-4-(tert-Butylamino)-1,1,1-trifluoro-3-(4-methoxybenzoyl)-3-buten-2-one (2c): Orange solid; 82% yield (2.70 g); Z/E ratio in CDCl₃: 68.3/31.7; mp 120.4-122.1 °C; ¹H NMR (500.13 MHz, CDCl₃) δ (ppm) (Z) 1.37 (s, 9H, t-Bu), 3.88 (s, 3H, 4-OCH₃-C₆H₄), 6.96 (d, 2H, 4-OCH₃-C₆H₄, J = 8.7 Hz), 7.71 (d, 1H, H⁴, J = 14.5 Hz), 7.75 (d, 2H, 4-OCH₃-C₆H₄, J = 8.7 Hz), 10.91 (d, 1H, NH, J = 12,9 Hz); (E) 1.43 (s, 9H, t-Bu), 3.85 (s, 3H, 4-OCH₃-C₆H₄), 6.91 (d, 2H, 4-OCH₃C₆H₄, J = 8.9 Hz), 7.54 (d, 2H, 4-OCH₃C₆H₄, J = 8.7 Hz), 8.09 (d, 1H, H⁴, J = 14.3 Hz), 10.75 (d, 1H, NH, J = 11.7 Hz); ¹³C NMR (125.76 MHz, CDCl₃) δ (ppm) (Z) 29.6 (C(CH₃)₃), 54.7 (4-OCH₃-C₆H₄), 55.5 (C(CH₃)₃), 106.3 (C³), 117.0 (q, CF₃, ${}^{1}J_{C-F}$ = 288.4 Hz), 113.8, 131.6, 131.8, 163.3 (4-OCH₃-C₆H₄), 157.4 (C⁴), 179.1 (q, C², ${}^{2}J_{C-F}$ = 34.9 Hz), 191.7 (C³); (E) 29.5 (C(CH₃)₃), 54.8 (4-OCH₃-C₆H₄), 55.3 (C(CH₃)₃), 104.1 (C³), 117.5 (q, CF₃, ${}^{1}J_{C-F}$ = 293.0 Hz), 113.5, 130.3, 133.2, 162.6 (4-OCH₃-C₆H₄), 155.7 (C⁴), 177.5 (q, C², ${}^{2}J_{C-F}$ = 32.3 Hz), 195.6 (C³); HRMS (ESI+): calcd for C₁₆H₁₉F₃NO₃+, [M+H]+: 330.1312, found 330.1311.

(Z and E)-4-(tert-Butylamino)-3-(4-chlorobenzoyl)-1,1,1-trifluor-3-buten-2-one (2e): Dark Yellow solid; 89% yield (2.96 g); Z/E ratio in CDCl₃: 51.7/48.3; mp 93.0-94.5 $^{\rm o}$ C; $^{\rm 1}$ H NMR (500.13 MHz, CDCl₃) δ (ppm) (Z) 1.38 (s, 9H, t-Bu), 7.34-7.45 (m, 6H, 4-Cl-C₆H₄ E and Z), 7.67-7.73 (m, 3H, 4-Cl-C₆H₄ E and Z, and H⁴), 10.89 (s, 1H, NH); (E) 1.45 (s, 9H, t-Bu), 7.34-7.45 (m, 6H, 4-Cl-C₆H₄ E and Z), 8.09 (d, 1H, H⁴, J = 14.3), 11.02 (s, 1H, NH); $^{\rm 13}$ C NMR (125.76 MHz, CDCl₃) δ (ppm) (Z) 29.7 (C(CH₃)₃), 55.3 (C(CH₃)₃), 103.6 (C³), 116.8 (q, CF₃, $^{\rm 1}$ J_{C-F} = 288.4 Hz), 128.4, 130.8, 138.9, 139.3 (4-Cl-C₆H₄), 157.6 (C⁴), 179.2 (q, C², $^{\rm 2}$ J_{C-F} = 35.2 Hz), 191.5 (C³); (E) 29.6 (C(CH₃)₃), 55.4 (C(CH₃)₃), 106.0 (C³), 117.5 (q, CF₃, $^{\rm 1}$ J_{C-F} = 293.1 Hz), 128.9, 129.1, 137.2, 137.4 (4-Cl-C₆H₄), 156.1 (C⁴), 177.1 (q, C², $^{\rm 2}$ J_{C-F} = 32.6 Hz), 196.0 (C³); HRMS (ESI+): calcd for C₁₅H₁₆ClF₃NO₂+, [M+H]⁺: 334.0816, found 334.0809.

(Z and E)-3-(4-bromobenzoyl)-4-(tert-butylamino)-1,1,1-trifluor-3-buten-2-one (2f): Yellow solid; 85% yield (3.21 g); Z/E ratio in CDCl₃: 51.4/48.6; mp 118.1-120.2 °C; 1H NMR (500.13 MHz, CDCl₃) δ (ppm) (Z) 1.38 (s, 9H, t-Bu), 7.33 (d, 2H, 4-Br-C₆H₄, J = 8.6 Hz), 7.52 (d, 2H, 4-Br-C₆H₄, J = 8.6 Hz), 7.70 (d, 1H, 1H

Analysis of the reactivity of trifluoromethylated β -enamino diketone 1a with phenylhydrazine: Formation of pyrazoles A and B.

General method. The preliminary analysis of cyclocondensation reaction of trifluoromethylated β -enamino diketone **1a** with phenylhydrazine was performed in according to the methodology described in literature.^{6,7} The compound **1a** (0.316 g, 1.0 mmol, 1.0 equiv) was solubilized in MeCN (8 mL), added phenylhydrazine

(0.108 g, 1.0 mmol, 1.0 equiv) and the mixture was stirred under reflux for 24 h. Then it was washed with distilled water (75 mL), extracted with dichloromethane (3x20 mL) and the organic layers were dried with anhydrous sodium sulfate. The solvent was evaporated under reduced pressure.

Analysis of the reactivity of trifluoromethylated β -enamino diketone 2a-f with phenylhydrazine.

General method. The analysis of cyclocondensation reaction of trifluoromethylated β-enamino diketone 2a-f with phenylhydrazine was evaluated in according to the methodology described by da Silva et al.8 The compound 2 (2a: 0.344 g; 2b: 0.229 g; 2c: 0.329 g; 2d: 0.317 g; 2e: 0.334 g; 2f: 0.378 g, 1.0 mmol, 1.0 equiv) was solubilized in MeCN (8 mL), then added phenylhydrazine (0.108 g, 1.0 mmol, 1.0 equiv) and boron trifluoride diethyl etherate solution 46.5% (0.400 mL, 1.5 mmol, 1.5 equiv). The mixture was stirred under reflux for 7 h. After that, reaction mixture was cooled to room temperature and the solvent was evaporated under vacuum. Then, the residue was washed with a solution of 3% of K_2CO_3 (25 mL), extracted with dichloromethane (3x20 mL) and dried with anhydrous sodium sulfate. The solvent was evaporated under reduced pressure and the obtained residue was dissolved in hot methanol (5 mL) and cooled to 0 °C which induced crystallization. The solid was filtered, washed with cold methanol (20 mL) and dried under vacuum.

(*E*)-4-[(*tert*-Butyl)iminomethyl]-3-trifluoromethyl-5-(4-nitrophenyl)-1-phenyl-1*H*-pyrazole (3a): Yellow solid; 84% yield (0.351 g); mp 150.2-152.2 °C; ¹H NMR (500.13 MHz, CDCl₃) δ (ppm) 1.13 (*s*, 9H, *t*-Bu), 7.19-7.21 (*m*, 2H, C₆H₅) 7.35-7.36 (*m*, 3H, C₆H₅), 7.50 (*d*, 2H, 4-NO₂-C₆H₄, J = 8.8 Hz), 8.16 (*d*, 2H, 4-NO₂-C₆H₄, J = 8.8 Hz), 8.26 (*s*, 1H, C<u>H</u>); ¹³C NMR (125.76 MHz, CDCl₃) δ (ppm) 29.3 (C(<u>C</u>H₃)₃), 58.4 (<u>C</u>(CH₃)₃), 118.9 (C⁴), 121.4 (*q*, <u>C</u>F₃, ¹J_{C-F} = 270.2 Hz), 123.2 (4-NO₂-C₆H₄), 125.7, 129.2, 129.5, (C₆H₅), 132.1, 135.4 (4-NO₂-C₆H₄), 138.4 (C₆H₅), 141.2 (C⁵), 142.0 (*q*, C³, ²J_{C-F} = 37.7 Hz), 144.7 (<u>C</u>H) 148.0 (4-NO₂-C₆H₄); **HRMS** (ESI+): calcd for C₂₁H₂₀F₃N₄O₂+, [M+H]+:417.1533, found 417.1522.

(*E*)-4-[(*tert*-Butyl)iminomethyl]-3-trifluoromethyl-1,5-diphenyl-1*H*-pyrazole (3b): Light yellow solid; 68% yield (0.222 g); mp 97.2-98.5 °C; ¹H NMR (500.13 MHz, CDCl₃) δ (ppm) 1.17 (*s*, 9H, *t*-Bu), 7.22-7.25 (*m*, 4H, C₆H₅ A and B), 7.30-7.37 (*m*, 6H, C₆H₅ A and B), 8.15 (*s*, 1H, C<u>H</u>); ¹³C NMR (125.76 MHz, CDCl₃) δ (ppm) 29.3 (C(<u>C</u>H₃)₃), 58.0 (<u>C</u>(CH₃)₃), 118.5 (C⁴), 121.5 (*q*, <u>C</u>F₃, 1 J_{C-F} = 270.0 Hz), 125.5, 128.4, 128.4, 128.5, 129.1, 129.3, 130.7 (C₆H₅ - A and B), 139.0 (C₆H₅ - B), 141.2 (*q*, C³, 2 J_{C-F} = 36.9 Hz), 144.3 (C⁵), 145.5 (<u>C</u>H); **HRMS** (ESI+): calcd for C₂₁H₂₁F₃N₃*, [M+H]*: 372.1682, found 372.1670.

(*E*)-4-[(*tert*-Butyl)iminomethyl]-3-trifluoromethyl-5-(4-methoxyphenyl)-1-phenyl-1*H*-pyrazole (3c): White solid; 60% yield (0.244 g); mp 135.5-137.9 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 1.19 (s, 9H, t-Bu), 3.82 (s, 3H, 4-OC<u>H</u>₃-C₆H₄), 6.84 (d, 2H, 4-OCH₃-C₆H₄, J = 8.9 Hz), 7.17 (d, 2H, 4-OCH₃-C₆H₄, J = 8.9 Hz), 7.22-7.25 (m, 2H, C₆H₅), 7.29-7.33 (m, 3H, C₆H₅), 8.14 (s, 1H, C<u>H</u>); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 29.4 (C(<u>C</u>H₃)₃), 55.4 (4-O<u>C</u>H₃-C₆H₄), 58.0 (<u>C</u>(C(H₃)₃), 113.9 (4-OCH₃-C₆H₄), 118.2 (C⁴), 121.5 (q, <u>C</u>F₃, ¹J_{C-F} = 269.8 Hz), 120.4 (4-OCH₃-C₆H₄), 125.6, 128.4, 129.2 (C₆H₅), 132.0 (4-OCH₃-C₆H₄), 139.1 (C₆H₅), 141.1 (q, C³, ²J_{C-F} = 37.6 Hz), 144.3 (C⁵), 145.7 (<u>C</u>H) 160.3 (4-OCH₃-C₆H₄); **HRMS** (ESI+): calcd for C₂₂H₂₃F₃N₃O⁺, [M+H]⁺: 402.1788, found 402.1789.

(*E*)-4-[(*tert*-Butyl)iminomethyl]-3-trifluoromethyl-5-(4-fluorophenyl)-1-phenyl-1*H*-pyrazole (3*d*): White solid; 81% yield (0.317 g); mp 124.9-126.8 °C; ¹H NMR (500.13 MHz, CDCl₃) δ (ppm) 1.16 (*s*, 9H, *t*-Bu), 7.00-7.03 (*m*, 2H, 4-F-C₆H₄), 7.20-7.22 (*m*, 2H, C₆H₅), 7.24-7.27 (*m*, 2H, 4-F-C₆H₄), 7.32-7.33 (*m*, 3H, C₆H₅), 8.18 (*s*, 1H, C<u>H</u>); ¹³C NMR (125.76 MHz, CDCl₃) δ (ppm) 29.3 (C(<u>C</u>H₃)₃), 58.1 (<u>C</u>(CH₃)₃), 115.5 (*d*, 4-F-C₆H₄, 2 /_{C-F} = 21.8 Hz), 118.4 (C⁴), 121.4 (*q*, <u>C</u>F₃, 1 /_{C-F} = 269.9 Hz), 124.5 (*d*, 4-F-C₆H₄, 4 /_{C-F} = 3.5 Hz), 125.6, 128.6, 129.3 (C₆H₅), 132.8 (*d*, 4-F-C₆H₄, 3 /_{C-F} = 8.4 Hz), 138.8 (C₆H₅), 141.4 (*q*, C³, 2 /_{C-F} = 37.7 Hz), 143.1 (C⁵), 145.2 (<u>C</u>H), 163.2 (*d*, 4-F-C₆H₄, 1 /_{C-F} = 250.2 Hz); HRMS (ESI+): calcd for C₂₁H₂₀F₄N₃+, [M+H]+: 390.1588, found 390.1573.

(*E*)-4-[(*tert*-Butyl)iminomethyl]-5-(4-chlorophenyl)-3-trifluoromethyl-1-phenyl-1*H*-pyrazole (3e): Yellow solid; 71% yield (0.289 g); mp 117.1-119.0 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 1.16 (*s*, 9H, *t*-Bu), 7.17 (*d*, 2H, 4-Cl-C₆H₄, J = 9.0 Hz), 7.22-7.26 (m, 2H, C₆H₅), 7.28 (d, 2H, 4-Cl-C₆H₄, J = 9.0 Hz), 7.32-7.40 (m, 3H, C₆H₅), 8.14 (*s*, 1H, C<u>H</u>); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 29.3 (C(<u>C</u>H₃)₃), 58.1 (<u>C</u>(CH₃)₃), 118.8 (C⁴), 121.4 (q, <u>C</u>F₃, ¹J_{C-F} = 269.9 Hz), 126.6, 128.1 (4-Cl-C₆H₄), 128.6, 129.4, 129.6 (C₆H₅), 130.6, 134.3 (4-Cl-C₆H₄), 137.5 (C₆H₅), 141.5 (q, C³, ²J_{C-F} = 37.9 Hz), 144.3 (C⁵), 145.2 (<u>C</u>H); **HRMS** (ESI+): calcd for C₂₁H₂₀ClF₃N₃+, [M+H]⁺: 406.1292, found 406.1281.

(*E*)-5-(4-Bromophenyl)-4-[(*tert*-butyl)iminomethyl]-3-trifluoromethyl-1-phenyl-1*H*-pyrazole (3*f*): White solid; 77% yield (0.348 g); mp 115.8-117.2 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 1.17 (*s*, 9H, *t*-Bu), 7.15 (*d*, 2H, 4-Br-C₆H₄, J = 8.7 Hz), 7.20-7.23 (m, 2H, C₆H₅), 7.32-7.35 (m, 3H, C₆H₅), 7.45 (d, 2H, 4-Br-C₆H₄, J = 8.7 Hz), 8.18 (*s*, 1H, C<u>H</u>); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 29.3 (C(<u>C</u>H₃)₃), 58.2 (<u>C</u>(CH₃)₃), 118.5 (C⁴), 121.4 (q, <u>C</u>F₃, 1 J_{C-F} = 269.9 Hz), 123.8 (4-Br-C₆H₄), 125.6 (C₆H₅), 127.4 (4-Br-C₆H₄), 128.7, 129.3 (C₆H₅), 131.6, 132.4 (4-Br-C₆H₄), 138.7 (C₆H₅), 141.5 (q, C³, 2 J_{C-F} = 37.7 Hz), 142.8 (C⁵), 145.2 (<u>C</u>H); **HRMS** (ESI+): calcd for C₂₁H₂₀BrF₃N₃+, [M+H]+: 450.0787, found 450.0790.

5-aryl 4-iminomethyl 3-trifluoromethyl isoxazoles 4a-f.

General method. The compound **2** (**2a**: 0.344 g; **2b**: 0.229 g; **2c**: 0.329 g; **2d**: 0.317 g; **2e**: 0.334 g; **2f**: 0.378 g, 1.0 mmol, 1.0 equiv) was solubilized in MeCN (8 mL), added hydroxylamine hydrochloride (0.083 g, 1.2 mmol, 1.2 equiv) and boron trifluoride diethyl etherate solution 46.5% (0.400 mL, 1.5 mmol, 1.5 equiv). The mixture was stirred under reflux for 5 h. Next, reaction mixture was cooled to room temperature and the solvent was evaporated under vacuum. Then, the residue was washed with a solution of 3% of K_2CO_3 (25 mL), extracted with dichloromethane (3x20 mL) and dried with anhydrous sodium sulfate. The solvent was evaporated under reduced pressure and the obtained residue was dissolved in hot methanol (5 mL) and cooled to 0 °C which induced crystallization. The solid was filtered, washed with cold methanol (20 mL) and dried under vacuum.

(*E*)-4-[(*tert*-Butyl)iminomethyl]-3-trifluoromethyl-5-(4-nitrophenyl)-isoxazole (4a): Light Yellow solid; 89% yield (0.305 g); mp 75.2-78.4 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 1.31 (*s*, 9H, *t*-Bu), 8.26 (*s*, 1H, C<u>H</u>), 8.35 (*d*, 2H, 4-NO₂-C₆H₄, J = 9.2 Hz), 8.43 (*d*, 2H, 4-NO₂-C₆H₄, J = 9.2 Hz); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 29.3 (C(<u>C</u>H₃)₃), 59.4 (<u>C</u>(CH₃)₃), 114.5 (C⁴), 119.7 (*q*, <u>C</u>F₃, ¹J_{C-F} = 272.2 Hz), 123.8, 129.7, 132.1 (4-NO₂-C₆H₄), 142.8 (<u>C</u>H), 149.4 (4-NO₂-C₆H₄), 155.1 (*q*, C³, ²J_{C-F} = 37.8 Hz), 167.8 (C⁵); **HRMS** (ESI+): calcd for C₁₅H₁₅F₃N₃O₃+, [M+H]⁺: 342.1060, found 342.1078.

(*E*)-4-[(*tert*-Butyl)iminomethyl]-3-trifluoromethyl-5-phenyl-isoxazole (4b): Light yellow liquid; 63% yield (0.189 g); mp - 0 C; 1 H NMR (300.06 MHz, CDCl₃) δ (ppm) 1.29 (s, 9H, t-Bu), 7.48-7.55 (m, 3H, C₆H₅), 7.93-7.96 (m, 2H, C₆H₅), 8.26 (s, 1H, C<u>H</u>); 13 C NMR (75.46 MHz, CDCl₃) δ (ppm) 29.2 (C(<u>C</u>H₃)₃), 58.8 (<u>C</u>(CH₃)₃), 112.8 (C⁴), 119.9 (q, <u>C</u>F₃, 1 J_{C-F} = 271.9 Hz), 126.4, 128.3, 129.0, 131.6 (C₆H₅), 143.2 (<u>C</u>H), 154.3 (q, C³, 2 J_{C-F} = 37.5 Hz), 170.6 (C⁵); HRMS (ESI+): calcd for C₁₅H₁₆F₃N₂O⁺, [M+H]⁺: 297.1215, found 297.1235.

(*E*)-4-[(*tert*-Butyl)iminomethyl]-3-trifluoromethyl-5-(4-methoxyphenyl)-isoxazole (4c): White solid; 78% yield (0.257 g); mp 92.2-93.6 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 1.29 (s, 9H, t-Bu), 3.89 (s, 3H, 4-OC<u>H</u>₃-C₆H₄), 7.01 (d, 2H, 4-OCH₃-C₆H₄, J = 9.0 Hz), 7.99 (d, 2H, 4-OCH₃-C₆H₄, J = 9.0 Hz), 8.24 (s, 1H, C<u>H</u>); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 29.3 (C(<u>C</u>H₃)₃), 55.6 (4-O<u>C</u>H₃-C₆H₄), 58.7 (<u>C</u>(CH₃)₃), 111.5 (C⁴), 114.3, 119.0 (4-OCH₃-C₆H₄), 119.9 (q, <u>C</u>F₃, 1 1 1 C- 1 F = 271.9 Hz), 130.1 (4-OCH₃-C₆H₄), 143.5 (<u>C</u>H), 154.4 (q, C³, 2 1 2 C- 1 F = 37.4 Hz), 162.2 (4-OCH₃-C₆H₄), 170.6 (C⁵); HRMS (ESI+): calcd for C₁₆H₁₈F₃N₂O₂+, [M+H]+: 327.1315, found 327.1318.

(*E*)-4-[(*tert*-Butyl)iminomethyl]-3-trifluoromethyl-5-(4-fluorophenyl)-isoxazole (4d): Light yellow liquid; 65% yield (0.205 g); mp - 0 C; 1 H NMR (300.06 MHz, CDCl₃) δ (ppm) 1.30 (s, 9H, t-Bu), 7.17-7.23 (m, 2H, 4-F-C₆H₄), 8.09-8.14 (m, 2H, 4-F-C₆H₄), 8.24 (s, 1H, C<u>H</u>); 13 C NMR (75.46 MHz, CDCl₃) δ (ppm) 29.3 (C(<u>C</u>H₃)₃), 59.0 (<u>C</u>(CH₃)₃), 112.4 (C⁴), 116.1 (d, 2 J_{C-F} = 22.0 Hz, 4-F-C₆H₄), 119.9 (q, <u>C</u>F₃, 1 J_{C-F} = 269.9 Hz), 122.8 (d, 4-F-C₆H₄, 4 J_{C-}

 $_{F}$ = 3.3 Hz), 130.9 (*d*, 4-F-C₆H₄, $^{3}J_{C-F}$ = 8.8 Hz), 143.1 (<u>C</u>H), 154.6 (*q*, C³, $^{2}J_{C-F}$ = 37.4 Hz), 164.7 (*d*, 4-F-C₆H₄, $^{1}J_{C-F}$ = 253.6 Hz), 169.6 (C⁵); **HRMS** (ESI+): calcd for C₁₅H₁₅F₄N₂O⁺, [M+H]⁺: 315.1115, found 315.1133.

(*E*)-4-[(*tert*-Butyl)iminomethyl]-5-(4-chlorophenyl)-3-trifluoromethyl-isoxazole (4e): White solid; 79% yield (0.262 g); mp 56.8-58.0 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 1.29 (*s*, 9H, *t*-Bu), 7.49 (*d*, 2H, 4-Cl-C₆H₄, J = 8.8 Hz), 8.05 (*d*, 2H, 4-Cl-C₆H₄, J = 8.8 Hz), 8.23 (*s*, 1H, C<u>H</u>); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 29.3 (C(<u>C</u>H₃)₃), 59.0 (<u>C</u>(CH₃)₃), 112.8 (C⁴), 119.9 (*q*, <u>C</u>F₃, ¹J_{C-F} = 272.2 Hz), 124.9, 129.2, 129.8, 138.0 (4-Cl-C₆H₄), 143.1 (<u>C</u>H) 154.7 (*q*, C³, ²J_{C-F} = 37.4 Hz), 169.4 (C⁵); HRMS (ESI+): calcd for C₁₅H₁₅ClF₃N₂O⁺, [M+H]⁺: 331.0820, found 331.0834.

(*E*)-5-(4-Bromophenyl)-4-[(*tert*-butyl)iminomethyl]-3-trifluoromethyl-isoxazole (4f): White solid; 83% yield (0.310 g); mp 66.6-69.1 $^{\circ}$ C; $^{\circ}$ H NMR (300.06 MHz, CDCl₃) $^{\circ}$ (ppm) 1.29 (s, 9H, *t*-Bu), 7.65 (d, 2H, 4-Br-C₆H₄, J = 8.8 Hz), 7.99 (d, 2H, 4-Br-C₆H₄, J = 8.8 Hz), 8.23 (s, 1H, C<u>H</u>); 13 C NMR (75.45 MHz, CDCl₃) $^{\circ}$ (ppm) 29.3 (C(<u>C</u>H₃)₃), 59.1 (<u>C</u>(CH₃)₃), 112.9 (C⁴), 119.8 (q, <u>C</u>F₃, 1 J_{C-F} = 272.1 Hz), 125.4, 126.5, 130.0, 132.1 (4-Br-C₆H₄), 143.1 (<u>C</u>H), 154.7 (q, C³, 2 J_{C-F} = 37.4 Hz), 169.5 (C⁵); HRMS (ESI+): calcd for C₁₅H₁₅BrF₃N₂O⁺, [M+H]⁺: 375.0314, found 375.0332.

5-aryl-4-[(aryl)iminomethyl]-3-trifluoromethyl-N-phenylpyrazoles 5(aa-af)-5(fa-ff).

General method. The compound **2** (**2a**: 0.344 g; **2b**: 0.229 g; **2c**: 0.329 g; **2d**: 0.317 g; **2e**: 0.334 g; **2f**: 0.378 g, 1.0 mmol, 1.0 equiv) was solubilized in MeCN (8 mL), then added phenylhydrazine (0.108 g, 1.0 mmol, 1.0 equiv) and boron trifluoride diethyl etherate solution 46.5% (0.400 mL, 1.5 mmol, 1.5 equiv). The mixture was stirred under reflux for 7 h. In sequence, the reaction mixture was cooled to room temperature, added substituted anilines (3.0 mmol, 3.0 equiv) and stirred for 15 min. Then, the solvent was evaporated under vacuum and the residue was washed with a solution of 3% of K_2CO_3 (25 mL), extracted with dichloromethane (3x20 mL) and dried with anhydrous sodium sulfate. The solvent was evaporated under reduced pressure and the obtained residue was dissolved in hot ethyl ether (5 mL) and cooled to 0 °C which induced crystallization. The solid was filtered, washed with cold ethyl ether (20 mL) and dried under vacuum.

5(aa-af)-5(fa-ff)

(*E*)-3-Trifluoromethyl-4-[(4-methoxyphenyl)iminomethyl]-5-(4-nitrophenyl)-1-phenyl-1*H*-pyrazole (5aa): Yellow solid; 78% yield (0.366 g); mp 158.8-161.8 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 3.80 (*s*, 3H, 4-OCH₃-C₆H₄), 6.87 (*d*, 2H, 4-OCH₃-C₆H₄, J = 9.0 Hz), 7.04 (*d*, 2H, 4-OCH₃-C₆H₄, J = 9.0 Hz), 7.22-7.25 (*m*, 2H, C₆H₅), 7.35-7.38 (*m*, 3H, C₆H₅), 7.57 (*d*, 2H, 4-NO₂-C₆H₄, J = 9.0 Hz), 8.20 (*d*, 2H, 4-NO₂-C₆H₄, J = 9.0 Hz), 8.50 (*s*, 1H, C<u>H</u>); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 55.6 (4-OCH₃-C₆H₄), 114.5 (4-OCH₃-C₆H₄), 118.2 (C⁴), 121.3 (*q*, C₅-3, ¹ J_{C-F} = 270.2 Hz), 122.2 (4-NO₂-C₆H₄), 123.4 (4-OCH₃-C₆H₄), 125.7, 129.3, 129.6 (C₆H₅), 132.2, 135.1 (4-NO₂-C₆H₄), 138.2 (C₆H₅), 142.1 (C⁵), 142.5 (*q*, C³, ² J_{C-F} = 38.0 Hz), 144.1 (4-OCH₃-C₆H₄), 146.6 (CH), 148.2 (4-NO₂-C₆H₄), 158.9 (4-OCH₃-C₆H₄); HRMS (ESI+): calcd for C₂₄H₁₈F₃N₄O₃+, [M+H]+: 467.1326, found 467.1344.

(*E*)-3-Trifluoromethyl-5-(4-nitrophenyl)-1-phenyl-4-[(phenyl)iminomethyl]-1*H*-pyrazole (5ab): Orange solid; 65% yield (0.285 g); mp 147.4-150.3 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 7.01-7.04 (m, 2H, C₆H₅ A and B), 7.22-7.25 (m, 3H, C₆H₅ A and B), 7.32-7.39 (m, 5H, C₆H₅ A and B), 7.58 (d, 2H, 4-NO₂-C₆H₄, J = 9.0 Hz), 8.22 (d, 2H, 4-NO₂-C₆H₄, J = 9.0 Hz), 8.48 (s, 1H, C_H); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 117.9 (C⁴), 121.2 (q, C̄F₃, ¹J_{C-F} = 270.3 Hz), 120.7, 123.5, 125.7, 126.6, 129.3, 129.4, 129.6, 132.2, 134.9, 138.1 (C₆H₅ – A, B and 4-NO₂-C₆H₄), 142.4 (C⁵), 142.6 (q, C³, ²J_{C-F} = 38.1 Hz), 148.3 (4-NO₂-C₆H₄), 149.1 (CH), 151.4 (C₆H₅ – B); HRMS (ESI+): calcd for C₂₃H₁₆F₃N₄O₂+, [M+H]+: 437.1220, found 437.1245.

(*E*)-3-Trifluoromethyl-4-[(2-methoxyphenyl)iminomethyl]-5-(4-nitrophenyl)-1-phenyl-1*H*-pyrazole (5ac): Yellow solid; 69% yield (0.321 g); mp 165.2-167.2 $^{\circ}$ C; 1 H NMR (300.06 MHz, CDCl₃) δ (ppm) 3.79 (*s*, 3H, 2-OCH₃-C₆H₄), 6.86-6.95 (*m*, 3H, 2-OCH₃-C₆H₄), 7.13-7.19 (*m*, 1H, 2-OCH₃-C₆H₄), 7.22-7.25 (*m*, 2H, C₆H₅), 7.35-

7.39 $(m, 3H, C_6H_5)$, 7.62 $(d, 2H, 4-NO_2-C_6H_4, J = 9.0 Hz)$, 8.18 $(d, 2H, 4-NO_2-C_6H_4, J = 9.0 Hz)$, 8.57 $(s, 1H, C_H)$; ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 55.9 (2-OCH₃-C₆H₄), 112.1 (2-OCH₃-C₆H₄), 118.2 (C⁴), 120.5, 121.1 (2-OCH₃-C₆H₄), 121.3 (q, C_F) , ¹ J_{C-F} = 270.2 Hz), 123.3 (4-NO₂-C₆H₄), 125.7 (C₆H₅), 127.3 (2-OCH₃-C₆H₄), 129.3, 129.6 (C₆H₅), 132.3, 134.8 (4-NO₂-C₆H₄), 138.2 (C₆H₅), 140.9 (2-OCH₃-C₆H₄), 142.2 (C⁵), 142.7 $(q, C^3, ^2J_{C-F} = 38.0 Hz)$, 148.1 (4-NO₂-C₆H₄), 150.3 (CH), 152.4 (2-OCH₃-C₆H₄); HRMS (ESI+): calcd for C₂₄H₁₈F₃N₄O₃+, [M+H]⁺: 467.1326, found 467.1349.

- (*E*)-3-Trifluoromethyl-4-[(4-fluorophenyl)iminomethyl]-5-(4-nitrophenyl)-1-phenyl-1*H*-pyrazole (5ad): Orange solid; 69% yield (0.314 g); mp 161.8-165.7 $^{\circ}$ C; 1 H NMR (300.06 MHz, CDCl₃) δ (ppm) 7.00-7.03 (*m*, 4H, 4-F-C₆H₄), 7.22-7.25 (*m*, 2H, C₆H₅), 7.35-7.39 (*m*, 3H, C₆H₅), 7.56 (*d*, 2H, 4-NO₂-C₆H₄, *J* = 9.0 Hz), 8.22 (*d*, 2H, 4-NO₂-C₆H₄, *J* = 9.0 Hz), 8.46 (*s*, 1H, C<u>H</u>); 13 C NMR (75.45 MHz, CDCl₃) δ (ppm) 116.1 (*d*, 4-F-C₆H₄, 2 *J*_{C-F} = 22.6 Hz), 117.8 (C⁴), 121.3 (*q*, C₅F₃, 1 *J*_{C-F} = 270.2 Hz), 122.3 (*d*, 4-F-C₆H₄, 3 *J*_{C-F} = 8.4 Hz), 123.5 (4-NO₂-C₆H₄), 125.7, 129.4, 129.6 (C₆H₅), 132.1, 134.9 (4-NO₂-C₆H₄), 138.1 (C₆H₅), 142.4 (C⁵), 142.6 (*q*, C³, 2 *J*_{C-F} = 38.1 Hz), 147.3 (*d*, 4-F-C₆H₄, 4 *J*_{C-F} = 2.9 Hz), 148.3 (4-NO₂-C₆H₄), 148.7 (C₁H), 161.7 (*d*, 4-F-C₆H₄, 1 *J*_{C-F} = 245.8 Hz); HRMS (ESI+): calcd for C₂₃H₁₅F₄N₄O₂+, [M+H]+: 455.1126, found 455.1154.
- (*E*)-4-[(4-Chlorophenyl)iminomethyl]-3-trifluoromethyl-5-(4-nitrophenyl)-1-phenyl-1*H*-pyrazole (5ae): Orange solid; 61% yield (0.286 g); mp 191.9-194.4 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 6.95 (*d*, 2H, 4-Cl-C₆H₄, J = 8.8 Hz), 7.21-7.25 (m, 2H, C₆H₅), 7.30 (d, 2H, 4-Cl-C₆H₄, J = 8.8 Hz), 7.35-7.39 (m, 3H, C₆H₅), 7.56 (d, 2H, 4-NO₂-C₆H₄, J = 9.0 Hz), 8.22 (d, 2H, 4-NO₂-C₆H₄, J = 9.0 Hz), 8.45 (s, 1H, C<u>H</u>); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 117.7 (C⁴), 121.2 (q, <u>C</u>F₃, ${}^{1}J_{\text{C-F}}$ = 270.2 Hz), 122.1 (4-Cl-C₆H₄), 123.6 (4-NO₂-C₆H₄), 125.7, 129.4, 129.5 (C₆H₅), 129.6 (4-Cl-C₆H₄), 132.1 (4-NO₂-C₆H₄), 132.3 (4-Cl-C₆H₄), 134.8 (4-NO₂-C₆H₄), 138.0 (C₆H₅), 142.6 (C⁵), 142.7 (q, C³, ${}^{2}J_{\text{C-F}}$ = 38.2 Hz), 148.4 (4-NO₂-C₆H₄), 149.4 (<u>C</u>H), 149.8 (4-Cl-C₆H₄); HRMS (ESI+): calcd for C₂₃H₁₅ClF₃N₄O₂+, [M+H]+: 471.0830, found 471.0846.
- (*E*)-4-[(4-Bromophenyl)iminomethyl]-3-trifluoromethyl-5-(4-nitrophenyl)-1-phenyl-1*H*-pyrazole (5af): Yellow solid; 54% yield (0.278 g); mp 205.4-207.7 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 6.89 (*d*, 2H, 4-Br-C₆H₄, *J* = 8.7 Hz), 7.21-7.25 (*m*, 2H, C₆H₅), 7.35-7.39 (*m*, 3H, C₆H₅), 7.45 (*d*, 2H, 4-Br-C₆H₄, *J* = 8.7 Hz), 7.55 (*d*, 2H, 4-NO₂-C₆H₄, *J* = 8.9 Hz), 8.21 (*d*, 2H, 4-NO₂-C₆H₄, *J* = 8.9 Hz), 8.44 (*s*, 1H, C<u>H</u>); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 117.6 (C⁴), 120.1 (4-Br-C₆H₄), 121.2 (*q*, \underline{C} F₃, 1 J_{C-F} = 270.2 Hz), 122.5 (4-Br-C₆H₄), 123.6 (4-NO₂-C₆H₄), 125.7, 129.5, 129.6 (C₆H₅), 132.1 (4-NO₂-C₆H₄), 132.4 (4-Br-C₆H₄), 134.8 (4-NO₂-C₆H₄), 138.0 (C₆H₅), 142.6 (C⁵), 142.7 (*q*, C³, 2 J_{C-F} = 38.2 Hz), 148.4 (4-NO₂-C₆H₄), 149.5 (\underline{C} H), 150.3 (4-Br-C₆H₄); HRMS (ESI+): calcd for C₂₃H₁₅BrF₃N₄O₂+, [M+H]+: 515.0325, found 515.0346.
- (*E*)-3-Trifluoromethyl-4-[(4-methoxyphenyl)iminomethyl]-1,5-diphenyl-1*H*-pyrazole (5ba): White solid; 68% yield (0.288 g); mp 134.6-136.9 $^{\circ}$ C; $^{\circ}$ H NMR (300.06 MHz, CDCl₃) $^{\circ}$ (ppm) 3.80 (*s*, 3H, 4-OC_{H₃}-C₆H₄), 6.87 (*d*, 2H, 4-OCH₃-C₆H₄, *J* = 9.0 Hz), 7.29 (*d*, 2H, 4-OCH₃-C₆H₄, *J* = 9.0 Hz), 7.24-7.42 (*m*, 10H, C₆H₅ A and B), 8.35 (*s*, 1H, C<u>H</u>); $^{\circ}$ C NMR (75.45 MHz, CDCl₃) $^{\circ}$ (ppm) 55.6 (4-OCH₃-C₆H₄), 114.4 (4-OCH₃-C₆H₄), 117.8 (C⁴), 121.4 (*q*, C₅-3, $^{\circ}$ J_{C-F} = 269.9 Hz), 122.2 (4-OCH₃-C₆H₄), 125.5, 128.1, 128.6, 128.7, 129.2, 129.7, 130.7, 138.7 (C₆H₅-A and B), 141.4 (*q*, C³, $^{\circ}$ J_{C-F} = 38.2 Hz), 145.0 (4-OCH₃-C₆H₄), 145.8 (C⁵), 147.9 (CH), 158.5 (4-OCH₃-C₆H₅); **HRMS** (ESI+): calcd for C₂₄H₁₉F₃N₃O⁺, [M+H]⁺: 422.1475, found 422.1495.
- (*E*)-3-Trifluoromethyl-1,5-diphenyl-4-[(phenyl)iminomethyl]-1*H*-pyrazole (5bb): White solid; 63% yield (0.247 g); mp 154.8-156.5 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 7.06-7.09 (m, 2H, C₆H₅ B),7.16-7.21 (m, 1H, C₆H₅ B), 7.27-7.42 (m, 12H, C₆H₅ A, B and C), 8.33 (s, 1H, C<u>H</u>); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 117.6 (C⁴), 121.4 (q, \underline{C} F₃, ¹J_{C-F} = 270.0 Hz), 120. 8, 125.5, 126.1, 127.9, 128.7, 128.8, 129.2, 129.2, 129.8, 130.7, 138.6 (C₆H₅ A, B and C), 141.5 (q, C³, ²J_{C-F} = 38.2 Hz), 146.2 (C⁵), 150.1 (\underline{C} H), 152.2 (C₆H₅ C); HRMS (ESI+): calcd for C₂₃H₁₇F₃N₃+, [M+H]+: 392.1369, found 392.1387.
- (*E*)-3-Trifluoromethyl-4-[(2-methoxyphenyl)iminomethyl]-1,5-diphenyl-1*H*-pyrazole (5bc): Light Yellow solid; 66% yield (0.276 g); mp 196.8-198.3 $^{\rm o}$ C; $^{\rm t}$ H NMR (300.06 MHz, CDCl₃) δ (ppm) 3.82 (*s*, 3H, 2-OCH₃-C₆H₄), 6.87-6.94 (*m*, 3H, 2-OCH₃-C₆H₄), 7.10-7.16 (*m*, 1H, 2-OCH₃-C₆H₄), 7.23-7.40 (*m*, 10H, C₆H₅ A and B), 8.38 (*s*, 1H, C<u>H</u>); $^{\rm 13}$ C NMR (75.45 MHz, CDCl₃) δ (ppm) 56.2 (2-O<u>C</u>H₃-C₆H₄), 112.6 (2-OCH₃-C₆H₄), 117.9 (C⁴), 121.0, 121.2 (2-OCH₃-C₆H₄), 121.4 (*q*, <u>C</u>F₃, $^{\rm 1}$ J_{C-F} = 269.9 Hz), 125.5 (C₆H₅), 126.7 (2-OCH₃-C₆H₄), 127.9, 128.7, 129.2, 129.7, 130.8, 138.7 (C₆H₅-A and B), 141.5 (*q*, C³, $^{\rm 2}$ J_{C-F} = 38.2 Hz), 142.1 (2-OCH₃-C₆H₄), 146.0 (C⁵), 151.6 (<u>C</u>H), 152.2 (2-OCH₃-C₆H₄); **HRMS** (ESI+): calcd for C₂₄H₁₉F₃N₃O⁺, [M+H]⁺: 422.1475, found 422.1487.
- (*E*)-3-Trifluoromethyl-4-[(4-fluorophenyl)iminomethyl]-1,5-diphenyl-1*H*-pyrazole (5bd): Yellow solid; 69% yield (0.285 g); mp 150.0-151.9 $^{\circ}$ C; 1 H NMR (300.06 MHz, CDCl₃) $^{\circ}$ (ppm) 6.98-7.09 (m, 4H, 4-F-C₆H₄),

7.24-7.43 (m, 10H, C₆H₅ A and B), 8.31 (s, 1H, C<u>H</u>); ¹³**C NMR** (75.45 MHz, CDCl₃) δ (ppm) 115.9 (d, 4-F-C₆H₄, ${}^2J_{\text{C-F}}$ = 22.6 Hz), 117.5 (C⁴), 121.3 (q, CF₃, ${}^1J_{\text{C-F}}$ = 269.9 Hz), 122.3 (d, 4-F-C₆H₄, ${}^3J_{\text{C-F}}$ = 8.3 Hz), 125.5, 127.9, 128.8, 128.8, 129.2, 129.9, 130.7, 138.6 (C₆H₅ – A and B), 141.5 (q, C³, ${}^2J_{\text{C-F}}$ = 38.3 Hz), 146.2 (C⁵), 148.1 (d, 4-F-C₆H₄, ${}^4J_{\text{C-F}}$ = 2.9 Hz), 149.7 (CH), 161.4 (d, 4-F-C₆H₄, ${}^1J_{\text{C-F}}$ = 244.7 Hz); **HRMS** (ESI+): calcd for C₂₃H₁₆F₄N₃+, [M+H]⁺: 410.1275, found 410.1283.

- (*E*)-4-[(4-Chlorophenyl)iminomethyl]-3-trifluoromethyl-1,5-diphenyl-1*H*-pyrazole (5be): White solid; 68% yield (0.284 g); mp 158.5-160.3 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 7.01 (*d*, 2H, 4-Cl-C₆H₄, J = 8.8 Hz), 7.24-7.43 (*m*, 12H, C₆H₅ A, B and 4-Cl-C₆H₄), 8.29 (*s*, 1H, C<u>H</u>); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 117.4 (C⁴), 121.3 (*q*, \underline{C} F₃, ${}^{1}J_{C-F}$ = 269.9 Hz), 122.2, 125.5, 127.8 (4-Cl-C₆H₄) 128.8, 128.8, 129.2, 129.9, 130.7, 131.7, 138.6 (C₆H₅ A and B), 141.5 (*q*, \underline{C} 3, ${}^{2}J_{C-F}$ = 38.2 Hz), 146.4 (C⁵), 150.4 (\underline{C} H), 150.5 (4-Cl-C₆H₄); HRMS (ESI+): calcd for C₂₃H₁₆ClF₃N₃+, [M+H]+: 426.0979, found 426.0989.
- (*E*)-4-[(4-Bromophenyl)iminomethyl]-3-trifluoromethyl-1,5-diphenyl-1*H*-pyrazole (5bf): Yellow solid; 62% yield (0.272 g); mp 167.3-169.7 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 6.94 (*d*, 2H, 4-Br-C₆H₄, *J* = 8.6 Hz), 7.27-7.45 (*m*, 12H, C₆H₅ A, B and 4-Br-C₆H₄), 8.29 (*s*, 1H, C<u>H</u>); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 117.4 (C⁴), 119.5 (4-Br-C₆H₄), 121.3 (*q*, <u>C</u>F₃, ¹*J*_{C-F} = 269.9 Hz), 122.6 (4-Br-C₆H₄), 125.5, 127.8, 128.8, 128.8, 129.2, 129.9, 130.6, (C₆H₅ A and B), 132.2 (4-Br-C₆H₄), 138.5 (C₆H₅ B), 141.6 (*q*, C³, ²*J*_{C-F} = 38.1 Hz), 146.4 (C⁵), 150.4 (<u>C</u>H), 151.0 (4-Br-C₆H₅); **HRMS** (ESI+): calcd for C₂₃H₁₆BrF₃N₃+, [M+H]+: 470.0474, found 470.0507.
- (*E*)-3-Trifluoromethyl-5-(4-methoxyphenyl)-4-[(4-methoxyphenyl)iminomethyl]-1-phenyl-1*H*-pyrazole (5ca): Light Yellow solid; 63% yield (0.284 g); mp 140.0-143.2 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 3.80 (s, 3H, 4-OCH₃-C₆H₄ B), 3.82 (s, 3H, 4-OCH₃-C₆H₄ A), 6.86-6.90 (m, 4H, 4-OCH₃-C₆H₄ A and B), 7.10 (d, 2H, 4-OCH₃-C₆H₄ B, J = 9.0 Hz), 7.23 (d, 2H, 4-OCH₃-C₆H₄ A, J = 8.9 Hz), 7.27-7.35 (m, 5H, C₆H₅), 8.34 (s, 1H, CH); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 55.4 (4-OCH₃-C₆H₄ A), 55.6 (4-OCH₃-C₆H₄ B), 114.2, 114.4 (4-OCH₃-C₆H₄ A and B), 117.6 (C⁴), 120.0 (4-OCH₃-C₆H₄ A), 121.4 (q, C₅F₃, ¹JC-F = 269.9 Hz), 122.2 (4-OCH₃-C₆H₄ B), 125.5, 128.5, 129.2 (C₆H₅), 132.1 (4-OCH₃-C₆H₄ A), 138.8 (C₆H₅), 141.3 (q, C³, ²JC-F = 38.0 Hz), 145.1 (4-OCH₃-C₆H₄ B), 145.8 (C⁵), 148.2 (CH), 158.4, 160.6 (4-OCH₃-C₆H₄ A and B); HRMS (ESI+): calcd for C₂₅H₂₁F₃N₃O₂+, [M+H]⁺: 452.1580, found 452.1600.
- (*E*)-3-Trifluoromethyl-5-(4-methoxyphenyl)-1-phenyl-4-[(phenyl)iminomethyl]-1*H*-pyrazole (5cb): White solid; 62% yield (0.263 g); mp 136.5-139.2 0 C; 1 H NMR (300.06 MHz, CDCl₃) δ (ppm) 3.82 (*s*, 3H, OCH₃), 6.88 (*d*, 2H, 4-OCH₃-C₆H₄, *J* = 8.9 Hz), 7.07-7.10 (*m*, 2H, C₆H₅ A and B), 7.16-7.24 (*m*, 3H, C₆H₅ A, B and 4-OCH₃C₆H₄), 7.27-7.36 (*m*, 7H, C₆H₅ A and B), 8.32 (*s*, 1H, CH); 13 C NMR (75.45 MHz, CDCl₃) δ (ppm) 55.4 (4-OCH₃-C₆H₄), 114.2 (4-OCH₃-C₆H₄), 117.3 (C⁴), 119.8 (4-OCH₃-C₆H₄), 120.8 (C₆H₅ A or B), 121.2 (*q*, CF₃, 1 J_{C-F} = 269.9 Hz), 125.5, 126.0, 128.6, 129.2, 129.2 (C₆H₅ A and B), 132.1 (4-OCH₃-C₆H₄), 138.8 (C₆H₅ A), 141.5 (*q*, C³, 2 J_{C-F} = 38.1 Hz), 146.2 (C⁵), 150.3 (CH), 152.3 (C₆H₅ B), 160.7 (4-OCH₃-C₆H₄); HRMS (ESI+): calcd for C₂₄H₁₉F₃N₃O⁺, [M+H]⁺: 422.1475, found 422.1500.
- (*E*)-3-Trifluoromethyl-5-(4-methoxyphenyl)-4-[(2-methoxyphenyl)iminomethyl]-1-phenyl-*1H*-pyrazole (5cc): White solid; 52% yield (0.233 g); mp 130.0-131.5 $^{\circ}$ C; 1 H NMR (300.06 MHz, CDCl₃) δ (ppm) 3.81 (*s*, 3H, 4-OCH₃-C₆H₄), 3.84 (*s*, 3H, 2-OCH₃-C₆H₄), 6.85-6.95 (*m*, 6H, 4-OCH₃-C₆H₄ and 2-OCH₃-C₆H₄), 7.11-7.17 (*m*, 1H, 2-OCH₃-C₆H₄), 7.24-7.28 (*m*, 3H, 4-OCH₃-C₆H₄ and 2-OCH₃-C₆H₄), 7.32-7.36 (*m*, 3H, 4-OCH₃-C₆H₄ and 2-OCH₃-C₆H₄), 8.37 (*s*, 1H, CH); 13 C NMR (75.45 MHz, CDCl₃) δ (ppm) 55.4 (4-OCH₃-C₆H₄), 56.2, 112.4 (2-OCH₃-C₆H₄), 114.1 (4-OCH₃-C₆H₄), 117.6 (C⁴), 119.8 (4-OCH₃-C₆H₄), 120.8, 121.2 (2-OCH₃-C₆H₄), 121.4 (*q*, CF₃, 1 J_{C-F} = 269.8 Hz), 125.6 (C₆H₅), 126.6 (2-OCH₃-C₆H₄), 128.6, 129.2 (C₆H₅), 132.2 (4-OCH₃-C₆H₄), 138.8 (C₆H₅), 141.4 (*q*, C³, 2 J_{C-F} = 38.1 Hz), 142.2 (2-OCH₃-C₆H₄), 146.1 (C⁵), 151.8 (CH), 152.2 (2-OCH₃-C₆H₄), 160.5 (4-OCH₃-C₆H₄); HRMS (ESI+): calcd for C₂₅H₂₁F₃N₃O₂+, [M+H]+: 452.1580, found 452.1609.
- (*E*)-3-Trifluoromethyl-4-[(4-fluorophenyl)iminomethyl]-5-(4-methoxyphenyl)-1-phenyl-1*H*-pyrazole (5cd): Light Yellow solid; 56% yield (0.248 g); mp 126.7-129.0 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 3.83 (*s*, 3H, 4-OCH₃-C₆H₄), 6.89 (*d*, 2H, 4-OCH₃-C₆H₄, J = 8.9 Hz), 6.99-7.10 (*m*, 4H, 4-F-C₆H₄), 7.21-7.25 (*m*, 3H, 4-OCH₃-C₆H₄ and C₆H₅), 7.27-7.36 (*m*, 4H, C₆H₅), 8.30 (*s*, 1H, CH); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 55.4 (4-OCH₃-C₆H₄), 114.3 (4-OCH₃-C₆H₄), 115.9 (*d*, 4-F-C₆H₄, $^2J_{C-F}$ = 22.5 Hz), 117.2 (C⁴), 119.8 (4-OCH₃-C₆H₄), 121.4 (*q*, CF₃, $^1J_{C-F}$ = 269.8 Hz), 122.3 (*d*, 4-F-C₆H₄, $^3J_{C-F}$ = 8.3 Hz), 125.5, 128.6, 129.2 (C₆H₅), 132.1 (4-OCH₃-C₆H₄), 138.7 (C₆H₅), 141.4 (*q*, C³, $^2J_{C-F}$ = 38.1 Hz), 146.2 (C⁵), 148.2 (*d*, 4-F-C₆H₄, $^4J_{C-F}$ = 2.9 Hz), 150.0 (CH), 160.7 (4-OCH₃-C₆H₄), 161.4 (*d*, 4-F-C₆H₄, $^1J_{C-F}$ = 244.7 Hz); HRMS (ESI+): calcd for C₂₄H₁₈F₄N₃O⁺, [M+H]⁺: 440.1381, found 440.1401.

(*E*)-4-[(4-Chlorophenyl)iminomethyl]-3-trifluoromethyl-5-(4-methoxyphenyl)-1-phenyl-1*H*-pyrazole (5ce): Orange solid; 59% yield (0.269 g); mp 153.3-155.1 $^{\circ}$ C; 1 H NMR (300.06 MHz, CDCl₃) δ (ppm) 3.83 (*s*, 3H, 4-OCH₃-C₆H₄), 6.89 (*d*, 2H, 4-OCH₃-C₆H₄, *J* = 8.9 Hz), 7.02 (*d*, 2H, 4-Cl-C₆H₄, *J* = 8.8 Hz), 7.20-7.24 (*m*, 3H, 4-OCH₃-C₆H₄ and C₆H₅), 7.28-7.36 (*m*, 7H, 4-Cl-C₆H₄ and C₆H₅), 8.28 (*s*, 1H, CH); 13 C NMR (75.45 MHz, CDCl₃) δ (ppm) 55.4 (4-OCH₃-C₆H₄), 114.3 (4-OCH₃-C₆H₄), 117.1 (C⁴), 119.7 (4-OCH₃-C₆H₄), 121.3 (*q*, CF₃, 1 J_{C-F} = 269.8 Hz), 122.2 (4-Cl-C₆H₄), 125.5, 128.7, 129.2 (C₆H₅), 129.2, 131.6 (4-Cl-C₆H₄), 132.1 (4-OCH₃-C₆H₄), 138.7 (C₆H₅), 141.5 (*q*, C³, 2 J_{C-F} = 38.3 Hz), 146.4 (C⁵), 150.6 (CH), 150.6 (4-Cl-C₆H₄), 160.7 (4-OCH₃-C₆H₄); HRMS (ESI+): calcd for C₂₄H₁₈ClF₃N₃O⁺, [M+H]⁺: 456.1085, found 456.1109.

(*E*)-4-[(4-Bromophenyl)iminomethyl]-3-trifluoromethyl-5-(4-methoxyphenyl)-1-phenyl-1*H*-pyrazole (5cf): Yellow solid; 52% yield (0.263 g); mp 161.3-162.9 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 3.82 (*s*, 3H, 4-OCH₃-C₆H₄), 6.89 (*d*, 2H, 4-OCH₃-C₆H₄, *J* = 8.9 Hz), 6.96 (*d*, 2H, 4-Br-C₆H₄, *J* = 8.8 Hz), 7.19-7.25 (*m*, 3H, 4-OCH₃-C₆H₄ and C₆H₅), 7.26-7.28 (*m*, 1H, C₆H₅), 7.32-7.36 (*m*, 3H, C₆H₅), 7.44 (*d*, 2H, 4-Br-C₆H₄, *J* = 8.8 Hz), 8.28 (*s*, 1H, CH); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 55.4 (4-OCH₃-C₆H₄), 114.3 (4-OCH₃-C₆H₄), 117.1 (C⁴), 119.4 (4-Br-C₆H₄), 119.7 (4-OCH₃-C₆H₄), 121.3 (*q*, CF₃, ¹/C-F = 270.0 Hz), 122.6 (4-Br-C₆H₄), 125.5, 128.7, 129.3 (C₆H₅), 132.1 (4-Br-C₆H₄), 132.2 (4-OCH₃-C₆H₄), 138.7 (C₆H₅), 141.5 (*q*, C³, ²/C-F = 38.2 Hz), 146.5 (C⁵), 150.7 (CH), 151.2 (4-Br-C₆H₄), 160.8 (4-OCH₃-C₆H₄); HRMS (ESI+): calcd for C₂4H₁₈BrF₃N₃O⁺, [M+H]⁺: 500.0580, found 500.0605.

(*E*)-3-Trifluoromethyl-5-(4-fluorophenyl)-4-[(4-methoxyphenyl)iminomethyl]-1-phenyl-1*H*-pyrazole (5da): Light Gray solid; 71% yield (0.316 g); mp 149.5-150.5 $^{\circ}$ C; 1 H NMR (300.06 MHz, CDCl₃) δ (ppm) 3.80 (*s*, 3H, 4-OCH₃-C₆H₄), 6.87 (*d*, 2H, 4-OCH₃-C₆H₄, *J* = 9.0 Hz), 7.03-7.09 (*m*, 4H, 4-F-C₆H₄ and 4-OCH₃-C₆H₄), 7.23-7.25 (*m*, 1H, C₆H₅), 7.30-7.36 (*m*, 5H, 4-F-C₆H₄ and C₆H₅), 8.39 (*s*, 1H, C<u>H</u>); 13 C NMR (75.45 MHz, CDCl₃) δ (ppm) 55.6 (4-OCH₃-C₆H₄), 114.4 (4-OCH₃-C₆H₄), 115.9 (*d*, 4-F-C₆H₄, 2 J_{C-F} = 21.9 Hz), 117.8 (C⁴), 121.4 (*q*, CF₃, 1 J_{C-F} = 269.9 Hz), 122.2 (4-OCH₃-C₆H₄), 124.2 (*d*, 4-F-C₆H₄, 4 J_{C-F} = 3.5 Hz), 125.6, 128.8, 129.3 (C₆H₅), 132.8 (*d*, 4-F-C₆H₄, 3 J_{C-F} = 8.5 Hz), 138.6 (C₆H₅), 141.7 (*q*, C³, 2 J_{C-F} = 38.0 Hz), 144.3 (C⁵), 144.8 (4-OCH₃-C₆H₄), 147.5 (CH), 158.6 (4-OCH₃-C₆H₄), 163.4 (*d*, 4-F-C₆H₄, 1 J_{C-F} = 250.8 Hz); HRMS (ESI+): calcd for C₂₄H₁₈F₄N₃O⁺, [M+H]⁺: 440.1381, found 440.1396.

(*E*)-3-Trifluoromethyl-5-(4-fluorophenyl)-1-phenyl-4-[(phenyl)iminomethyl]-1*H*-pyrazole (5db): Yellow solid; 58% yield (0.241 g); mp 135.7-137.7 0 C; 1 H NMR (300.06 MHz, CDCl₃) δ (ppm) 7.04-7.09 (*m*, 4H, 4-F-C₆H₄ and C₆H₅ – A and B), 7.17-7.25 (*m*, 2H, C₆H₅ – A and B), 7.30-7.37 (*m*, 8H, 4-F-C₆H₄ and C₆H₅ – A and B), 8.37 (*s*, 1H, C<u>H</u>); 13 C NMR (75.45 MHz, CDCl₃) δ (ppm) 115.9 (*d*, 4-F-C₆H₄, 2 J_{C-F} = 21.9 Hz), 117.5 (C⁴), 120.8 (C₆H₅ – A or B), 121.3 (*q*, C_F3, 1 J_{C-F} = 270.0 Hz), 124.1 (*d*, 4-F-C₆H₄, 4 J_{C-F} = 3.4 Hz), 125.6, 126.3, 128.9, 129.2, 129.3 (C₆H₅ – A and B), 132.8 (*d*, 4-F-C₆H₄, 3 J_{C-F} = 8.6 Hz), 138.5 (C₆H₅), 141.9 (*q*, C³, 2 J_{C-F} = 38.2 Hz), 144.7 (C⁵), 149.8 (C₂H), 152.0 (C₆H₅ – B), 163.4 (*d*, 4-F-C₆H₄, 1 J_{C-F} = 251.0 Hz); HRMS (ESI+): calcd for C₂₃H₁₆F₄N₃+, [M+H]⁺: 410.1275, found 410.1303.

(*E*)-3-Trifluoromethyl-5-(4-fluorophenyl)-4-[(2-methoxyphenyl)iminomethyl]-1-phenyl-1*H*-pyrazole (5dc): Light Brown solid; 61% yield (0.267 g); mp 125.6-127.1 $^{\circ}$ C; 1 H NMR (300.06 MHz, CDCl₃) δ (ppm) 3.81 (s, 3H, 2-OCH₃-C₆H₄), 6.87-6.95 (*m*, 3H, 2-OCH₃-C₆H₄), 7.01-7.07 (*m*, 2H, 4-F-C₆H₄), 7.11-7.17 (*m*, 1H, 2-OCH₃-C₆H₄), 7.22-7.25 (*m*, 1H, C₆H₅), 7.33-7.38 (*m*, 5H, 4-F-C₆H₄ and C₆H₅), 8.44 (s, 1H, C_H); 13 C NMR (75.45 MHz, CDCl₃) δ (ppm) 56.1 (2-OCH₃-C₆H₄), 112.4 (2-OCH₃-C₆H₄), 115.8 (*d*, 4-F-C₆H₄, 2 J_{C-F} = 21.8 Hz), 117.8 (C⁴), 120.9, 121.2 (2-OCH₃-C₆H₄), 121.4 (*q*, CF₃, 1 J_{C-F} = 270.0 Hz), 124.1 (*d*, 4-F-C₆H₄, 4 J_{C-F} = 3.4 Hz), 125.6 (C₆H₅), 126.9 (2-OCH₃-C₆H₄), 128.8, 129.3 (C₆H₅), 133.0 (*d*, 4-F-C₆H₄, 3 J_{C-F} = 8.6 Hz), 138.6 (C₆H₅), 141.7 (2-OCH₃-C₆H₄), 141.9 (*q*, C³, 2 J_{C-F} = 38.0 Hz), 144.5 (C⁵), 151.2 (CH), 152.3 (2-OCH₃-C₆H₄), 163.4 (*d*, 4-F-C₆H₄, 1 J_{C-F} = 250.5 Hz); HRMS (ESI+): calcd for C₂₄H₁₈F₄N₃O+, [M+H]+: 440.1381, found 440.1405.

(*E*)-3-Trifluoromethyl-5-(4-fluorophenyl)-4-[(4-fluorophenyl)iminomethyl]-1-phenyl-1*H*-pyrazole (5dd): Light Gray solid; 70% yield (0.316 g); mp 169.7-171.6 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 7.02-7.10 (m, 6H, 4-F-C₆H₄ – A and B), 7.23-7.25 (m, 1H, C₆H₅), 7.29-7.37 (m, 6H, 4-F-C₆H₄ – A and B), 8.34 (s, 1H, C_H); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 115.9 (d, 4-F-C₆H₄ – B, $^2J_{C-F}$ = 22.7 Hz), 115.9 (d, 4-F-C₆H₄ – A, $^2J_{C-F}$ = 21.9 Hz), 117.4 (C⁴), 121.3 (q, C_F3, $^1J_{C-F}$ = 270.0 Hz), 122.3 (d, 4-F-C₆H₄ – B, $^3J_{C-F}$ = 8.3 Hz), 124.1 (d, 4-F-C₆H₄ – A, $^4J_{C-F}$ = 3.5 Hz), 125.6, 128.9, 129.3 (C₆H₅), 132.8 (d, 4-F-C₆H₄ – A, $^3J_{C-F}$ = 8.5 Hz), 138.5 (C₆H₅), 141.8 (q, C³, $^2J_{C-F}$ = 38.0 Hz), 144.7 (C⁵), 147.9 (d, 4-F-C₆H₄ – B, $^4J_{C-F}$ = 2.9 Hz), 149.4 (CH), 161.5 (d, 4-F-C₆H₄ – B, $^1J_{C-F}$ = 245.0 Hz), 163.5 (d, 4-F-C₆H₄ – A, $^1J_{C-F}$ = 251.2 Hz); HRMS (ESI+): calcd for C₂₃H₁₅F₅N₃+, [M+H]+: 428.1181, found 428.1208.

(*E*)-4-[(4-Chlorophenyl)iminomethyl]-3-trifluoromethyl-5-(4-fluorophenyl)-1-phenyl-1*H*-pyrazole (5de): Light Yellow solid; 67% yield (0.302 g); mp 150.9-152.5 0 C; 1 H NMR (300.06 MHz, CDCl₃) δ (ppm) 6.99 (*d*, 2H, 4-Cl-C₆H₄, *J* = 8.8 Hz), 7.04-7.10 (*m*, 2H, 4-F-C₆H₄), 7.22-7.25 (*m*, 1H, C₆H₅), 7.28-7.37 (*m*, 8H, 4-F-C₆H₄, 4-Cl-C₆H₄ and C₆H₅), 8.33 (*s*, 1H, C<u>H</u>); 13 C NMR (75.45 MHz, CDCl₃) δ (ppm) 116.0 (*d*, 4-F-C₆H₄, 2 *J*_{C-F} = 22.0 Hz), 117.3 (C⁴), 121.3 (*q*, C EF₃, 1 *J*_{C-F} = 269.9 Hz), 122.1 (4-Cl-C₆H₄), 123.9 (*d*, 4-F-C₆H₄, 4 *J*_{C-F} = 3.6 Hz), 125.6, 128.9, 129.3 (C₆H₅), 129.4, 131.8 (4-Cl-C₆H₄), 132.8 (*d*, 4-F-C₆H₄, 3 *J*_{C-F} = 8.6 Hz), 138.4 (C₆H₅), 141.9 (*q*, C³, 2 *J*_{C-F} = 38.2 Hz), 144.9 (C⁵), 150.1 (C CH), 150.3 (4-Cl-C₆H₄), 163.5 (*d*, 4-F-C₆H₄, 1 *J*_{C-F} = 251.3 Hz); HRMS (ESI+): calcd for C₂₃H₁₅ClF₄N₃+, [M+H]+: 444.0885, found 444.0908.

(*E*)-4-[(4-Bromophenyl)iminomethyl]-3-trifluoromethyl-5-(4-fluorophenyl)-1-phenyl-1*H*-pyrazole (5df): Light Yellow solid; 60% yield (0.293 g); mp 158.8-159.9 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 6.93 (*d*, 2H, 4-Br-C₆H₄, *J* = 8.8 Hz), 7.04-7.10 (*m*, 2H, 4-F-C₆H₄), 7.22-7.25 (*m*, 1H, C₆H₅), 7.28-7.37 (*m*, 6H, 4-F-C₆H₄ and C₆H₅), 7.45 (*d*, 2H, 4-Br-C₆H₄, *J* = 8.8 Hz), 8.32 (*s*, 1H, C<u>H</u>); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 116.0 (*d*, 4-F-C₆H₄, 2 *J*_{C-F} = 22.0 Hz), 117.3 (C⁴), 119.7 (4-Br-C₆H₄), 121.3 (*q*, C₅F₃, 1 *J*_{C-F} = 270.1 Hz), 122.5 (4-Br-C₆H₄), 123.9 (*d*, 4-F-C₆H₄, 4 *J*_{C-F} = 3.5 Hz), 125.6, 129.0, 129.4 (C₆H₅), 132.3 (4-Br-C₆H₄), 132.8 (*d*, 4-F-C₆H₄, 3 *J*_{C-F} = 8.5 Hz), 138.4 (C₆H₅), 141.9 (*q*, C³, 2 *J*_{C-F} = 38.0 Hz), 144.9 (C⁵), 150.1 (CH), 150.8 (4-Br-C₆H₄), 163.5 (*d*, 4-F-C₆H₄, 1 *J*_{C-F} = 251.3 Hz); HRMS (ESI+): calcd for C₂₃H₁₅BrF₄N₃+, [M+H]+: 488.0380, found 488.0401.

(*E*)-5-(4-Chlorophenyl)-3-trifluoromethyl-4-[(4-methoxyphenyl)iminomethyl]-1-phenyl-1*H*-pyrazole (5ea): Light yellow solid; 61% yield (0.281 g); mp 155.9-159.0 $^{\rm o}$ C; $^{\rm 1}$ H NMR (500.13 MHz, CDCl₃) δ (ppm) 3.81 (*s*, 3H, 4-OCH₃-C₆H₄), 6.88 (*d*, 2H, 4-OCH₃-C₆H₄, *J* = 8.9 Hz), 7.08 (*d*, 2H, 4-OCH₃-C₆H₄, *J* = 8.9 Hz), 7.23-7.25 (*m*, 2H, C₆H₅), 7.26-7.28 (*m*, 2H, 4-Cl-C₆H₄), 7.33-7.36 (*m*, 5H, 4-Cl-C₆H₄ and C₆H₅), 8.39 (*s*, 1H, C<u>H</u>); $^{\rm 13}$ C NMR (125.76 MHz, CDCl₃) δ (ppm) 55.6 (4-OCH₃-C₆H₄), 114.4 (4-OCH₃-C₆H₄), 117.8 (C⁴), 121.4 (*q*, CF₃, $^{\rm 1}$ J_{C-F} = 270.0 Hz), 122.2 (4-OCH₃-C₆H₄), 125.6 (C₆H₅), 126.7 (4-Cl-C₆H₄), 128.9 (C₆H₅), 129.3, 132.2, 135.9 (4-Cl-C₆H₄), 138.5 (C₆H₅), 141.8 (*q*, C³, $^{\rm 2}$ J_{C-F} = 38.0 Hz), 144.0 (C⁵), 144.7 (4-OCH₃-C₆H₄), 147.4 (CH), 158.6 (4-OCH₃-C₆H₄); HRMS (ESI+): calcd for C₂4H₁₈ClF₃N₃O⁺, [M+H]⁺: 456.1085, found 456.1097.

(*E*)-5-(4-Chlorophenyl)-3-trifluoromethyl-1-phenyl-4-[(phenyl)iminomethyl]-1*H*-pyrazole (5eb): White solid; 55% yield (0.235 g); mp 175.6-176.4 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 7.05-7.08 (m, 2H, C₆H₅), 7.18-7.24 (m, 2H, C₆H₅), 7.29-7.37 (m, 10H, C₆H₅ A, B and 4-Cl-C₆H₄), 8.37 (s, 1H, C_H); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 117.6 (C⁴), 120.8 (C₆H₅ – A or B), 121.3 (q, \underline{C} F₃, ¹JC-F = 270.1 Hz), 125.6, 126.3 (C₆H₅ – A and B), 126.5 (4-Cl-C₆H₄), 129.0, 129.0, 129.2, 129.4, 132.2, 136.1, 138.4 (C₆H₅ – A, B and 4-Cl-C₆H₄), 142.0 (q, C³, ²JC-F = 38.2 Hz), 144.4 (C⁵), 149.6 (\underline{C} H), 151.9 (C₆H₅ – B); **HRMS** (ESI+): calcd for C₂₃H₁₆ClF₃N₃+, [M+H]+: 426.0979, found 426.1008.

(*E*)-5-(4-Chlorophenyl)-3-trifluoromethyl-4-[(2-methoxyphenyl)iminomethyl]-1-phenyl-1*H*-pyrazole (5ec): Light gray solid; 59% yield (0.270 g); mp 162.2-167.2 0 C; 1 H NMR (300.06 MHz, CDCl₃) δ (ppm) 3.82 (*s*, 3H, 2-OCH₃-C₆H₄), 6.87-6.95 (*m*, 4H, 2-OCH₃-C₆H₄ and 4-Cl-C₆H₄), 7.12-7.18 (*m*, 1H, 2-OCH₃-C₆H₄), 7.23-7.26 (*m*, 4H, 2-OCH₃-C₆H₄ and C₆H₅), 7.34-7.38 (*m*, 4H, 4-Cl-C₆H₄ and C₆H₅), 8.44 (*s*, 1H, C<u>H</u>); 13 C NMR (75.45 MHz, CDCl₃) δ (ppm) 56.1 (2-O<u>C</u>H₃-C₆H₄), 112.3 (2-OCH₃-C₆H₄), 117.8 (C⁴), 120.7, 121.2 (2-OCH₃-C₆H₄), 121.3 (*q*, <u>C</u>F₃, 1 J_{C-F} = 270.1 Hz), 125.6 (C₆H₅), 126.4 (4-Cl-C₆H₄), 126.9 (2-OCH₃-C₆H₄), 128.8, 128.9 (C₆H₅), 129.4, 132.3, 135.8 (4-Cl-C₆H₄), 138.5 (C₆H₅), 141.6 (2-OCH₃-C₆H₄), 142.0 (*q*, C³, 2 J_{C-F} = 38.1 Hz), 144.2 (C⁵), 151.1 (<u>C</u>H), 152.3 (2-OCH₃-C₆H₄); **HRMS** (ESI+): calcd for C₂₄H₁₈ClF₃N₃O⁺, [M+H]⁺: 456.1085, found 456.1102.

(*E*)-5-(4-Chlorophenyl)-3-trifluoromethyl-4-[(4-fluorophenyl)iminomethyl]-1-phenyl-1*H*-pyrazole (5ed): Light brown solid; 60% yield (0.268 g); mp 155.1-157.2 $^{\circ}$ C; 1 H NMR (300.06 MHz, CDCl₃) δ (ppm) 7.01-7.05 (m, 4H, 4-F-C₆H₄), 7.24-7.28 (m, 2H, C₆H₅), 7.27-7.28 (m, 2H, 4-Cl-C₆H₄), 7.34-.737 (m, 5H, 4-Cl-C₆H₄ and C₆H₅), 8.35 (s, 1H, C_H); 13 C NMR (75.45 MHz, CDCl₃) δ (ppm) 115.9 (d, 4-F-C₆H₄, 2 J_{C-F} = 22.5 Hz), 117.5 (C⁴), 121.3 (q, C_F3, 1 J_{C-F} = 270.0 Hz), 122.3 (d, 4-F-C₆H₄, 3 J_{C-F} = 8.2 Hz), 125.6 (C₆H₅), 126.5 (4-Cl-C₆H₄), 129.0, 129.0 (C₆H₅), 129.4, 132.1, 136.1 (4-Cl-C₆H₄), 138.4 (C₆H₅), 141.9 (q, C³, 2 J_{C-F} = 38.1 Hz), 144.4 (C⁵), 147.8 (d, 4-F-C₆H₄, 4 J_{C-F} = 2.9 Hz), 149.3 (C_H), 161.5 (d, 4-F-C₆H₄, 1 J_{C-F} = 245.1 Hz); HRMS (ESI+): calcd for C₂₃H₁₅ClF₄N₃+, [M+H]+: 444.0885, found 444.0912.

(*E*)-5-(4-Chlorophenyl)-4-[(4-chlorophenyl)iminomethyl]-3-trifluoromethyl-1-phenyl-1*H*-pyrazole (5ee): Light yellow solid; 54% yield (0.251 g); mp 163.8-165.7 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 7.00 (*d*, 2H, 4-Cl-C₆H₄ – B, *J* = 8.7 Hz), 7.23-7.25 (*m*, 2H, C₆H₅), 7.28-7.38 (*m*, 9H, 4-Cl-C₆H₄ – A and B, and C₆H₅), 8.33 (*s*, 1H, C<u>H</u>); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 117.3 (C⁴), 121.2 (*q*, CF₃, 1 J_{C-F} = 270.0 Hz), 122.2 (4-Cl-C₆H₄ – B), 125.6 (C₆H₅), 126.4 (4-Cl-C₆H₄ – A), 129.1, 129.1 (C₆H₅), 129.4, 131.9, 132.1, 136.2 (4-Cl-C₆H₄ – A)

and B), 138.3 (C_6H_5), 141.9 (q, C^3 , $^2J_{C-F}$ = 38.3 Hz), 144.6 (C^5), 150.0 ($\underline{C}H$), 150.3 (4-Cl- C_6H_4 – B); **HRMS** (ESI+): calcd for $C_{23}H_{15}Cl_2F_3N_3^+$, [M+H][†]: 460.0590, found 460.0615.

(*E*)-4-[(4-Bromophenyl)iminomethyl]-5-(4-chlorophenyl)-3-trifluoromethyl-1-phenyl-1*H*-pyrazole (5ef): Light yellow solid; 52% yield (0.261 g); mp 168.9-173.5 $^{\rm o}$ C; $^{\rm 1}$ H NMR (300.06 MHz, CDCl₃) δ (ppm) 6.94 (*d*, 2H, 4-Br-C₆H₄, *J* = 8.8 Hz), 7.23-7.27 (*m*, 3H, 4-Cl-C₆H₄ and C₆H₅), 7.34-7.38 (*m*, 6H, 4-Cl-C₆H₄ and C₆H₅), 7.45 (*d*, 2H, 4-Br-C₆H₄, *J* = 8.8 Hz), 8.33 (*s*, 1H, C<u>H</u>); $^{\rm 13}$ C NMR (75.45 MHz, CDCl₃) δ (ppm) 117.3 (C⁴), 119.8 (4-Br-C₆H₄), 121.3 (*q*, C₇F₃, $^{\rm 1}$ J_{C-F} = 270.1 Hz), 122.5 (4-Br-C₆H₄), 125.6 (C₆H₅), 126.4 (4-Cl-C₆H₄), 129.1, 129.1 (C₆H₅), 129.4, 132.1 (4-Cl-C₆H₄), 132.3 (4-Br-C₆H₄), 136.2 (4-Cl-C₆H₄), 138.3 (C₆H₅), 142.0 (*q*, C³, $^{\rm 2}$ J_{C-F} = 38.2 Hz), 144.6 (C⁵), 150.0 (C₂H), 150.8 (4-Br-C₆H₄); HRMS (ESI+): calcd for C₂₃H₁₅BrClF₃N₃+, [M+H]+: 504.0084, found 504.0110.

(*E*)-5-(4-Bromophenyl)-3-trifluoromethyl-4-[(4-methoxyphenyl)iminomethyl]-1-phenyl-1*H*-pyrazole (5fa): White solid; 74% yield (0.369 g); mp 172.6-176.1 $^{\circ}$ C; 1 H NMR (300.06 MHz, CDCl₃) δ (ppm) 3.81 (*s*, 3H, 4-OCH₃-C₆H₄), 6.88 (*d*, 2H, 4-OCH₃-C₆H₄, *J* = 9.0 Hz), 7.08 (*d*, 2H, 4-OCH₃-C₆H₄, *J* = 9.0 Hz), 7.19-7.25 (*m*, 4H, C₆H₅ and 4-Br-C₆H₄), 7.35-7.37 (*m*, 3H, C₆H₅), 7.50 (*d*, 2H, 4-Br-C₆H₄, *J* = 8.6 Hz), 8.39 (*s*, 1H, C<u>H</u>); 13 C NMR (75.45 MHz, CDCl₃) δ (ppm) 55.6 (4-OCH₃-C₆H₄), 114.4 (4-OCH₃-C₆H₄), 117.8 (C⁴), 121.4 (*q*, <u>C</u>F₃, 1 J_{C-F} = 270.1 Hz), 122.2 (4-OCH₃-C₆H₄), 124.3 (4-Br-C₆H₄), 125.6 (C₆H₅), 127.1 (4-Br-C₆H₄), 128.9, 129.4 (C₆H₅), 131.9, 132.4 (4-Br-C₆H₄), 138.5 (C₆H₅), 141.9 (*q*, C³, 2 J_{C-F} = 38.1 Hz), 144.0 (C⁵), 144.7 (4-OCH₃-C₆H₄), 147.4 (<u>C</u>H), 158.6 (4-OCH₃-C₆H₄); HRMS (ESI+): calcd for C₂₄H₁₈BrF₃N₃O⁺, [M+H]⁺: 500.0580, found 500.0609.

(*E*)-5-(4-Bromophenyl)-3-trifluoromethyl-4-[(phenyl)iminomethyl]-1-phenyl-1*H*-pyrazole (5fb): White solid; 57% yield (0.269 g); mp 179.3-184.2 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 7.05-7.08 (m, 2H, C₆H₅), 7.18-7.24 (m, 5H, C₆H₅ A, B and 4-Br-C₆H₄), 7.32-7.38 (m, 5H, C₆H₅ A, B and 4-Br-C₆H₄), 7.50 (d, 2H, 4-Br-C₆H₄, J = 8.7 Hz), 8.37 (s, 1H, C_H); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 117.6 (C⁴), 120.8 (C₆H₅ – A or B), 121.3 (q, C₅, ¹J_{C-F} = 270.1 Hz), 124.4 (4-Br-C₆H₄), 125.6, 126.3 (C₆H₅ – A and B), 127.0 (4-Br-C₆H₄), 129.0, 129.2, 129.4 (C₆H₅ – A and B) 131.9, 132.4 (4-Br-C₆H₄), 138.4 (C₆H₅ – A), 142.0 (q, C³, ²J_{C-F} = 38.2 Hz), 144.4 (C⁵), 149.6 (C₂H), 151.9 (C₆H₅ – B); HRMS (ESI+): calcd for C₂₃H₁₆BrF₃N₃+, [M+H]+: 470.0474, found 470.0506.

(*E*)-5-(4-Bromophenyl)-3-trifluoromethyl-4-[(2-methoxyphenyl)iminomethyl]-1-phenyl-1*H*-pyrazole (5fc): Light Yellow solid; 68% yield (0.341 g); mp 177.5-179.4 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 3.82 (s, 3H, 2-OCH₃-C₆H₄), 6.87-6.95 (m, 4H, 2-OCH₃-C₆H₄ and 4-Br-C₆H₄), 7.12-7.18 (m, 1H, 2-OCH₃-C₆H₄), 7.23-7.25 (m, 2H, 2-OCH₃-C₆H₄ and C₆H₅), 7.35-7.38 (m, 4H, 2-OC<u>H₃-C₆H₄</u> and C₆H₅), 7.48 (d, 2H, 4-Br-C₆H₄, J = 8.5 Hz), 8.44 (s, 1H, C<u>H</u>); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 56.1 (2-OCH₃-C₆H₄), 112.3 (2-OCH₃-C₆H₄), 117.8 (C⁴), 120.7, 121.2 (2-OCH₃-C₆H₄), 121.3 (g, C_F3, ¹J_{C-F} = 270.1 Hz), 124.2 (4-Br-C₆H₄), 125.6 (C₆H₅), 126.9 (2-OCH₃-C₆H₄), 128.9, 129.4 (C₆H₅), 131.8, 132.5 (4-Br-C₆H₄), 138.5 (C₆H₅), 141.6 (2-OCH₃-C₆H₄), 142.0 (g, C³, ²J_{C-F} = 38.0 Hz), 144.2 (C⁵), 151.0 (C₂H), 152.3 (2-OCH₃-C₆H₄); HRMS (ESI+): calcd for C₂₄H₁₈BrF₃N₃O⁺, [M+H]⁺: 500.0580, found 500.0605.

(*F*)-5-(4-Bromophenyl)-3-trifluoromethyl-4-[(4-fluorophenyl)iminomethyl]-1-phenyl-1*H*-pyrazole (5fd): Light brown solid; 65% yield (0.316 g); mp 143.9-147.0 °C; 1 H NMR (300.06 MHz, CDCl₃) δ (ppm) 6.99-7.05 (*m*, 4H, 4-F-C₆H₄), 7.18-7.25 (*m*, 4H, 4-Br-C₆H₄ and C₆H₅), 7.35-7.38 (*m*, 3H, C₆H₅), 7.51 (*d*, 2H, 4-Br-C₆H₄, *J* = 8.6 Hz), 8.35 (*s*, 1H, C<u>H</u>); 13 C NMR (75.45 MHz, CDCl₃) δ (ppm) 115.9 (*d*, 4-F-C₆H₄, 2 *J*_{C-F} = 22.6 Hz), 117.4 (C⁴), 121.3 (*q*, C₅, 1 *J*_{C-F} = 269.9 Hz), 122.3 (*d*, 4-F-C₆H₄, 3 *J*_{C-F} = 8.3 Hz), 124.5 (4-Br-C₆H₄), 125.6 (C₆H₅), 127.0 (4-Br-C₆H₄), 129.0, 129.4 (C₆H₅), 132.0, 132.3 (4-Br-C₆H₄), 138.4 (C₆H₅), 141.9 (*q*, C³, 2 *J*_{C-F} = 38.1 Hz), 144.4 (C⁵), 147.8 (*d*, 4-F-C₆H₄, 4 *J*_{C-F} = 2.9 Hz), 149.3 (CH), 161.5 (*d*, 4-F-C₆H₄, 1 *J*_{C-F} = 245.1 Hz); HRMS (ESI+): calcd for C₂₃H₁₅BrF₄N₃+, [M+H]+: 488.0380, found 488.0417.

(*E*)-5-(4-Bromophenyl)-4-[(4-chlorophenyl)iminomethyl]-3-trifluoromethyl-1-phenyl-1*H*-pyrazole (5fe): White solid; 66% yield (0.334 g); mp 163.2-164.4 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 7.00 (*d*, 2H, 4-Cl-C₆H₄, *J* = 8.8 Hz), 7.19 (*d*, 2H, 4-Br-C₆H₄, *J* = 8.7 Hz), 7.23-7.25 (*m*, 2H, C₆H₅), 7.30 (*d*, 2H, 4-Cl-C₆H₄, *J* = 8.8 Hz), 7.36-7.38 (*m*, 3H C₆H₅), 7.51 (*d*, 2H, 4-Br-C₆H₄, *J* = 8.7 Hz), 8.33 (*s*, 1H, C<u>H</u>); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 117.3 (C⁴), 121.2 (*q*, \underline{C} F₃, 1 *J*_{C-F} = 270.1 Hz), 122.2 (4-Cl-C₆H₄), 124.5 (4-Br-C₆H₄), 125.6 (C₆H₅), 126.9 (4-Br-C₆H₄), 129.0, 129.3 (C₆H₅), 129.4, 131.9 (4-Cl-C₆H₄), 132.0, 132.3 (4-Br-C₆H₄), 138.3 (C₆H₅), 142.0 (*q*, C³, 2 *J*_{C-F} = 38.1 Hz), 144.6 (C⁵), 149.9 (CH), 150.3 (4-Cl-C₆H₄); HRMS (ESI+): calcd for C₂₃H₁₅BrClF₃N₃+, [M+H]+: 504.0084, found 504.0111.

(*E*)-5-(4-Bromophenyl)-4-[(4-bromophenyl)iminomethyl]-3-trifluoromethyl-1-phenyl-1*H*-pyrazole (5ff): White solid; 60% yield (0.330 g); mp 171.5-174.3 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 6.93 (*d*, 2H, 4-Br-C₆H₄ – B, J = 8.8 Hz), 7.19 (*d*, 2H, 4-Br-C₆H₄ – A, J = 8.7 Hz), 7.23-7.25 (*m*, 2H, C₆H₅), 7.35-7.38 (*m*, 3H, C₆H₅), 7.45 (*d*, 2H, 4-Br-C₆H₄ – B, J = 8.8 Hz), 7.51 (*d*, 2H, 4-Br-C₆H₄ – A, J = 8.7 Hz), 8.33 (*s*, 1H, C<u>H</u>); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 117.3 (C⁴), 119.8 (4-Br-C₆H₄ – B), 121.2 (*q*, <u>C</u>F₃, ${}^{1}J_{\text{C-F}}$ = 270.1 Hz), 122.5 (4-Br-C₆H₄ – B), 124.5 (4-Br-C₆H₄ – A), 125.6 (C₆H₅), 126.8 (4-Br-C₆H₄ – A), 129.0, 129.4 (C₆H₅), 132.0, 132.3, 132.3 (4-Br-C₆H₄ – A and B), 138.3 (C₆H₅), 142.0 (*q*, C³, ${}^{2}J_{\text{C-F}}$ = 38.2 Hz), 144.6 (C⁵), 150.0 (<u>C</u>H), 150.8 (4-Br-C₆H₄ – B); **HRMS** (ESI+): calcd for C₂₃H₁₅Br₂F₃N₃+, [M+H]+: 547.9579, found 547.9600.

General procedure of synthesis of 5-aryl-4-[(aryl)iminomethyl]-3-trifluoromethylisoxazoles 6(aa-af)-6(fa-ff).

General method. The compound 2 (2a: $0.344 \, g$; 2b: $0.229 \, g$; 2c: $0.329 \, g$; 2d: $0.317 \, g$; 2e: $0.334 \, g$; 2f: $0.378 \, g$, 1.0 mmol, 1.0 equiv) was solubilized in MeCN (8 mL), then added hydroxylamine hydrochloride (0.083 g, 1.2 mmol, 1.2 equiv) and boron trifluoride diethyl etherate solution 46.5% (0.530 mL, 2.0 mmol, 2.0 equiv). The mixture was stirred under reflux for 5 h. After that, reaction mixture was cooled to room temperature, added substituted anilines (3.0 mmol, 3.0 equiv) and stirred for 15 min. Then, the solvent was evaporated under vacuum and the residue was washed with a solution of 3% of K_2CO_3 (25 mL), extracted with dichloromethane (3x20 mL) and dried with anhydrous sodium sulfate. The solvent was evaporated under reduced pressure and the obtained residue was dissolved in hot ethyl ether (5 mL) and cooled to 0 °C which induced crystallization. The solid was filtered, washed with cold ethyl ether (20 mL) and dried under vacuum.

6(aa-af)-6(fa-ff)

(*E*)-3-Trifluoromethyl-4-[(4-methoxyphenyl)iminomethyl]-5-(4-nitrophenyl)isoxazole (6aa): Yellow solid; 75% yield (0.292 g); mp 159.8-161.5 $^{\rm o}$ C; $^{\rm t}$ H NMR (300.06 MHz, CDCl₃) δ (ppm) 3.85 (*s*, 3H, 4-OCH₃-C₆H₄), 6.96 (*d*, 2H, 4-OCH₃-C₆H₄, *J* = 9.0 Hz), 7.24 (*d*, 2H, 4-OCH₃-C₆H₄, *J* = 9.0 Hz), 8.39 (*d*, 2H, 4-NO₂-C₆H₄, *J* = 9.2 Hz), 8.45 (*d*, 2H, 4-NO₂-C₆H₄, *J* = 9.2 Hz), 8.50 (*s*, 1H, CH); $^{\rm 13}$ C NMR (75.45 MHz, CDCl₃) δ (ppm) 55.7 (4-OCH₃-C₆H₄), 114.2 (C⁴), 114.8 (4-OCH₃-C₆H₄), 119.7 (*q*, CF₃, $^{\rm 1}$ J_{C-F} = 272.4 Hz), 122.6 (4-NO₂-C₆H₄), 124.0 (4-OCH₃-C₆H₄), 130.1, 131.9 (4-NO₂-C₆H₄), 143.1 (4-OCH₃-C₆H₄), 143.6 (CH), 149.5 (4-NO₂-C₆H₄), 155.1 (*q*, C³, $^{\rm 2}$ J_{C-F} = 37.9 Hz), 159.8 (4-OCH₃-C₆H₄), 168.6 (C⁵); HRMS (ESI+): calcd for C₁₈H₁₃F₃N₃O₄+, [M+H]+: 392.0853, found 392.0877.

(*E*)-3-Trifluoromethyl-5-(4-nitrophenyl)-4-[(phenyl)iminomethyl]isoxazole (6ab): Yellow solid; 71% yield (0.256 g); mp 141.3-142.8 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 7.19-7.22 (m, 2H, C₆H₅), 7.30-7.35 (m, 1H, C₆H₅), 7.45-7.47 (m, 2H, C₆H₅), 8.40 (d, 2H, 4-NO₂-C₆H₄, J = 9.2 Hz), 8.46 (d, 2H, 4-NO₂-C₆H₄, J = 9.2 Hz), 8.50 (s, 1H, C<u>H</u>); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 113.9 (C⁴), 119.7 (q, C_{F3}, ¹J_{C-F} = 272.5 Hz), 121.0 (C₆H₅), 124.1 (4-NO₂-C₆H₄), 127.8, 129.6 (C₆H₅), 130.2, 131.7 (4-NO₂-C₆H₄), 146.4 (C₂H), 149.6 (4-NO₂-C₆H₄), 150.4 (C₆H₅), 155.1 (q, C³, ²J_{C-F} = 37.9 Hz), 169.2 (C⁵); **HRMS** (ESI+): calcd for C₁₇H₁₁F₃N₃O₃+, [M+H]+: 362.0747, found 362.0769.

(*E*)-3-Trifluoromethyl-4-[(2-methoxyphenyl)iminomethyl]-5-(4-nitrophenyl)isoxazole (6ac): Yellow solid; 73% yield (0.287 g); mp 175.5-177.2 $^{\circ}$ C; 1 H NMR (300.06 MHz, CDCl₃) δ (ppm) 3.94 (*s*, 3H, 2-OCH₃), 6.98-7.08 (*m*, 3H, 2-OCH₃-C₆H₄), 7.27-7.31 (*m*, 1H, 2-OCH₃-C₆H₄), 8.38 (*d*, 2H, 4-NO₂-C₆H₄, *J* = 9.2 Hz), 8.62 (*s*, 1H, C<u>H</u>), 8.65 (*d*, 2H, 4-NO₂-C₆H₄, *J* = 9.2 Hz); 13 C NMR (75.45 MHz, CDCl₃) δ (ppm) 56.1 (2-O<u>C</u>H₃-C₆H₄), 112.0 (2-OCH₃-C₆H₄), 114.1 (C⁴), 119.7 (*q*, <u>C</u>F₃, 1 *J*_{C-F} = 272.5 Hz), 120.9, 121.3 (2-OCH₃-C₆H₄), 123.9 (4-NO₂-C₆H₄), 128.6 (2-OCH₃-C₆H₄), 130.2, 131.8 (4-NO₂-C₆H₄), 139.6 (2-OCH₃-C₆H₄), 147.5 (<u>C</u>H), 149.5 (4-NO₂-C₆H₄), 152.7 (2-OCH₃-C₆H₄), 155.2 (*q*, C³, 2 *J*_{C-F} = 37.7 Hz), 168.8 (C⁵); HRMS (ESI+): calcd for C₁₈H₁₃F₃N₃O₄+, [M+H]⁺: 392.0853, found 392.0883.

(*E*)-3-Trifluoromethyl-4-[(4-fluorophenyl)iminomethyl]-5-(4-nitrophenyl)isoxazole (6ad): Yellow solid; 70% yield (0.266 g); mp 157.7-159.6 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 7.10-7.23 (m, 4H, 4-F-C₆H₄), 8.41 (s, 4H, 4-NO₂-C₆H₄), 8.47 (s, 1H, C<u>H</u>); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 113.8 (C⁴), 116.5 (d, 4-F-C₆H₄, 2 /_{C-F} = 22.9 Hz), 119.7 (d, C_{F3}, 1 /_{C-F} = 272.4 Hz), 122.7 (d, 4-F-C₆H₄, 3 /_{C-F} = 8.5 Hz), 124.1, 130.1, 131.7 (4-NO₂-

- C_6H_4), 146.0 (<u>C</u>H), 146.4 (*d*, 4-F- C_6H_4 , ${}^4J_{C-F}$ = 3.1 Hz), 149.6 (4-NO₂- C_6H_4), 155.0 (*q*, C^3 , ${}^2J_{C-F}$ = 38.2 Hz), 162.3 (*d*, 4-F- C_6H_4 , ${}^1J_{C-F}$ = 247.6 Hz) 169.2 (C^5); **HRMS** (ESI+): calcd for $C_{17}H_{10}F_4N_3O_3^+$, [M+H]+: 380.0653, found 380.0662.
- (*E*)-4-[(4-Chlorophenyl)iminomethyl]-3-trifluoromethyl-5-(4-nitrophenyl)isoxazole (6ae): Yellow solid; 72% yield (0.283 g); mp 162.8-165.6 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 7.14 (*d*, 2H, 4-Cl-C₆H₄, J = 8.8 Hz), 7.40 (*d*, 2H, 4-Cl-C₆H₄, J = 8.8 Hz), 8.41 (s, 4H, 4-NO₂-C₆H₄), 8.47 (s, 1H, C<u>H</u>); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 113.7 (C⁴), 119.6 (*q*, <u>C</u>F₃, ¹J_{C-F} = 272.4 Hz), 122.3 (4-Cl-C₆H₄), 124.1 (4-NO₂-C₆H₄), 129.8 (4-Cl-C₆H₄), 130.2, 131.6 (4-NO₂-C₆H₄), 133.5 (4-Cl-C₆H₄), 146.7 (<u>C</u>H), 148.8 (4-Cl-C₆H₄), 149.7 (4-NO₂-C₆H₄), 155.0 (*q*, C³, ²J_{C-F} = 38.2 Hz), 169.4 (C⁵); HRMS (ESI+): calcd for C₁₇H₁₀ClF₃N₃O₃+, [M+H]+: 396.0357, found 396.0380.
- (*E*)-4-[(4-Bromophenyl)iminomethyl]-3-trifluoromethyl-5-(4-nitrophenyl)isoxazole (6af): Yellow solid; 73% yield (0.319 g); mp 170.7-173.5 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 7.08 (*d*, 2H, 4-Br-C₆H₄, J = 8.8 Hz), 7.55 (*d*, 2H, 4-Br-C₆H₄, J = 8.8 Hz), 8.40 (*s*, 4H, 4-NO₂-C₆H₄), 8.47 (*s*, 1H, C<u>H</u>); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 113.7 (C⁴), 119.6 (*q*, <u>C</u>F₃, ¹J_{C-F} = 272.4 Hz), 121.4, 122.6 (4-Br-C₆H₄), 124.1, 130.2, 131.6 (4-NO₂-C₆H₄), 132.7 (4-Br-C₆H₄), 146.8 (<u>C</u>H), 149.3 (4-Br-C₆H₄), 149.7 (4-NO₂-C₆H₄), 155.0 (*q*, C³, ²J_{C-F} = 38.3 Hz), 169.5 (C⁵); HRMS (ESI+): calcd for C₁₇H₁₀BrF₃N₃O₃+, [M+H]*: 439.9852, found 439.9882.
- (*E*)-3-Trifluoromethyl-4-[(4-methoxyphenyl)iminomethyl]-5-phenylisoxazole (6ba): White solid; 78% yield (0.269 g); mp 77.6-78.5 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 3.84 (s, 3H, 4-OCH₃), 6.94 (d, 2H, 4-OCH₃-C₆H₄, J = 8.9 Hz), 7.22 (d, 2H, 4-OCH₃-C₆H₄, J = 8.9 Hz), 7.53-7.60 (m, 3H, C₆H₅), 7.97-8.00 (m, 2H, C₆H₅), 8.49 (s, 1H, CH); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 55.7 (4-OCH₃-C₆H₄), 112.6 (C⁴), 114.6 (4-OCH₃-C₆H₄), 119.9 (g, CF₃, ¹J_{C-F} = 271.9 Hz), 122.4 (4-OCH₃-C₆H₄), 126.2, 128.8, 129.2, 132.0 (C₆H₅), 143.9 (4-OCH₃-C₆H₄), 144.8 (CH), 154.2 (g, C³, ²J_{C-F} = 37.7 Hz), 159.2 (4-OCH₃-C₆H₅) 172.1 (C⁵); HRMS (ESI+): calcd for C₁₈H₁₄F₃N₂O₂+, [M+H]+: 347.1002, found 347.1027.
- (*E*)-3-Trifluoromethyl-5-phenyl-4-[(phenyl)iminomethyl]isoxazole (6bb): White solid; 74% yield (0.234 g); mp 103.0-104.3 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 7.17-7.20 (m, 2H, C₆H₅ B), 7.27-7.30 (m, 1H, C₆H₅ B), 7.39-7.44 (m, 2H, C₆H₅ B), 7.53-7.60 (m, 3H, C₆H₅ A), 7.97-8.01 (m, 2H, C₆H₅ A), 8.48 (s, 1H, C<u>H</u>); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 112.4 (C⁴), 119.8 (q, q-F₃, q-F₂ = 272.0 Hz), 120.9, 126.1, 127.1, 128.8, 129.2, 129.4, 132.1 (C₆H₅ A and B), 147.3 (q-CH), 151.2 (C₆H₅ B), 154.2 (q, C³, q-F_{2-F} = 37.9 Hz), 172.6 (C⁵); HRMS (ESI+): calcd for C₁₇H₁₂F₃N₂O⁺, [M+H]⁺: 317.0896, found 317.0915.
- (*E*)-3-Trifluoromethyl-4-[(4-fluorophenyl)iminomethyl]-5-phenylisoxazole (6bd): Light yellow solid; 72% yield (0.242 g); mp 72.5-73.6 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 7.07-7.13 (m, 2H, 4-F-C₆H₄, J = 8.6 Hz), 7.17-7.22 (m, 2H, 4-F-C₆H₄), 7.54-7.62 (m, 3H, C₆H₅), 7.94-7.98 (m, 2H, C₆H₅), 8.46 (s, 1H, C<u>H</u>); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 112.3 (C⁴), 116.2 (d, 4-F-C₆H₄, ${}^2J_{C-F}$ = 22.6 Hz), 119.8 (q, C_{F3}, ${}^1J_{C-F}$ = 272.0 Hz), 122.5 (d, 4-F-C₆H₄, ${}^3J_{C-F}$ = 8.4 Hz), 126.0, 128.8, 129.3, 132.2 (C₆H₅), 146.9 (CH), 147.8 (d, 4-F-C₆H₄, ${}^4J_{C-F}$ = 3.0 Hz), 154.1 (q, C³, ${}^2J_{C-F}$ = 37.9 Hz), 161.9 (d, 4-F-C₆H₄, ${}^1J_{C-F}$ = 246.3 Hz), 172.7 (C⁵); HRMS (ESI+): calcd for C₁₇H₁₁F₄N₂O⁺, [M+H]⁺: 335.0802, found 335.0824.
- (*E*)-4-[(4-Chlorophenyl)iminomethyl]-3-trifluoromethyl-5-phenylisoxazole (6be): White solid; 76% yield (0.265 g); mp 57.8-59.5 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 7.13 (d, 2H, 4-Cl-C₆H₄, J = 8.8 Hz), 7.37 (d, 2H, 4-Cl-C₆H₄, J = 8.8 Hz), 7.54-7.62 (m, 3H, C₆H₅), 7.93-7.97 (m, 2H, C₆H₅), 8.45 (s, 1H, C<u>H</u>); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 112.2 (C⁴), 119.8 (q, <u>C</u>F₃, ¹J_{C-F} = 271.9 Hz), 122.3 (4-Cl-C₆H₄), 126.0, 128.8, 129.3 (C₆H₅), 129.5 (4-Cl-C₆H₄), 132.2 (C₆H₅), 132.7 (4-Cl-C₆H₄), 147.6 (<u>C</u>H), 149.5 (4-Cl-C₆H₄), 154.1 (q, C³, ²J_{C-F} = 37.9 Hz), 172.9 (C⁵); HRMS (ESI+): calcd for C₁₇H₁₁ClF₃N₂O+, [M+H]+: 351.0507, found 351.0535.
- (E)-4-[(4-Bromophenyl)iminomethyl]-3-trifluoromethyl-5-phenylisoxazole (6bf): Yellow solid; 71% yield (0.279 g); mp 100.7-101.4 °C; 1 H NMR (300.06 MHz, CDCl₃) δ (ppm) 7.07 (d, 2H, 4-Br-C₆H₄, J = 8.8 Hz), 7.52

- $(d, 2H, 4-Br-C_6H_4, J=8.8 \text{ Hz}), 7.57-7.62 \ (m, 3H, C_6H_5), 7.93-7.97 \ (m, 2H, C_6H_5), 8.45 \ (s, 1H, C_H); ^{13}C NMR \ (75.45 \text{ MHz}, CDCl}_3) \ \delta \ (ppm) \ 112.2 \ (C^4), \ 119.8 \ (q, C_7, ^1J_{C-F} = 272.1 \text{ Hz}), 120.6, 122.6 \ (4-Br-C_6H_4), 125.9, 128.8, 129.3, 132.3 \ (C_6H_5), 132.5 \ (4-Br-C_6H_4), 147.7 \ (C_7H_1), 150.0 \ (4-Br-C_6H_5), 154.1 \ (q, C^3, ^2J_{C-F} = 38.0 \text{ Hz}), 172.9 \ (C^5); HRMS \ (ESI+): calcd for C_{17}H_{11}BrF_3N_2O^+, [M+H]^+: 395.0001, found 395.0029.$
- (*E*)-3-Trifluoromethyl-5-(4-methoxyphenyl)-4-[(4-methoxyphenyl)iminomethyl]isoxazole (6ca): Yellow solid; 78% yield (0.295 g); mp 86.5-87.1 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 3.86 (s, 3H, 4-OCH₃-C₆H₄ B), 3.90 (s, 3H, 4-OCH₃-C₆H₄ A), 6.94 (d, 2H, 4-OCH₃-C₆H₄ B, J = 9.0 Hz), 7.05 (d, 2H, 4-OCH₃-C₆H₄ A, J = 9.0 Hz), 7.22 (d, 2H, 4-OCH₃-C₆H₄ B, J = 9.0 Hz), 8.04 (d, 2H, 4-OCH₃-C₆H₄ A, J = 9.0 Hz), 8.46 (s, 1H, CH₂); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 55.6 (4-OCH₃-C₆H₄ A), 55.7 (4-OCH₃-C₆H₄ B), 111.3 (C⁴), 114.6, 114.6 (4-OCH₃-C₆H₄ A and B), 118.7 (4-OCH₃-C₆H₄ A), 119.9 (q, CF₃, 1 J_{C-F} = 272.0 Hz), 122.4 (4-OCH₃-C₆H₄ B), 130.6 (4-OCH₃-C₆H₄ A), 144.1 (4-OCH₃-C₆H₄ B), 145.2 (CH₂), 154.3 (q, C³, 2 J_{C-F} = 37.4 Hz), 159.1 (4-OCH₃-C₆H₄ B), 162.5 (4-OCH₃-C₆H₄ A), 171.9 (C⁵); HRMS (ESI+): calcd for C₁₉H₁₆F₃N₂O₃⁺, [M+H]⁺: 377.1108, found 377.1130.
- (*E*)-3-Trifluoromethyl-5-(4-methoxyphenyl)-4-[(phenyl)iminomethyl]isoxazole (6cb): Light Yellow solid; 73% yield (0.252 g); mp 88.7-89.9 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 3.90 (s, 3H, OC \underline{H}_3 -C₆H₄), 7.05 (*d*, 2H, 4-OCH₃-C₆H₄, *J* = 9.0 Hz), 7.17-7.21 (*m*, 2H, C₆H₅), 7.27-7.30 (*m*, 1H, C₆H₅), 7.39-7.44 (*m*, 2H, C₆H₅), 8.05 (*d*, 2H, 4-OCH₃-C₆H₄, *J* = 9.0 Hz), 8.45 (s, 1H, C \underline{H}); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 55.6 (4-OC \underline{H}_3 -C₆H₄), 111.1 (C⁴), 114.6, 118.5 (4-OCH₃-C₆H₄), 119.9 (*q*, C₇, ¹/_{2-F} = 272.0 Hz), 120.9, 126.9, 129.4 (C₆H₅), 130.6 (4-OCH₃-C₆H₄), 147.7 (C \underline{H}), 151.3 (C₆H₅), 154.3 (*q*, C³, ²/_{2-F} = 37.7 Hz), 162.7 (4-OCH₃-C₆H₄), 172.4 (C⁵); HRMS (ESI+): calcd for C₁₈H₁₄F₃N₂O₂+, [M+H]+: 347.1002, found 347.1030.
- (*E*)-3-Trifluoromethyl-5-(4-methoxyphenyl)-4-[(2-methoxyphenyl)iminomethyl]isoxazole (6cc): White solid; 77% yield (0.291 g); mp 81.8-82.9 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 3.89 (s, 3H, 4-OC<u>H</u>₃-C₆H₄), 3.91 (s, 3H, 2-OC<u>H</u>₃-C₆H₄), 6.96-7.05 (m, 5H, 2-OCH₃-C₆H₄ and 4-OCH₃-C₆H₄), 7.20-7.26 (m, 1H, 2-OCH₃-C₆H₄), 8.18 (d, 2H, 4-OCH₃-C₆H₄, J = 9.1 Hz), 8.56 (s, 1H, C<u>H</u>); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 55.6 (4-O<u>C</u>H₃-C₆H₄), 56.1 (2-O<u>C</u>H₃-C₆H₄), 111.1 (C⁴), 112.1 (2-OCH₃-C₆H₄), 114.4 (4-OCH₃-C₆H₄), 118.7 (2-OCH₃-C₆H₄), 119.9 (q, <u>C</u>F₃, ¹J_{C-F} = 272.0 Hz), 121.2, 122.1, 127.6 (2-OCH₃-C₆H₄), 130.7, 140.7 (4-OCH₃-C₆H₄), 149.2 (<u>C</u>H), 152.3 (2-OCH₃-C₆H₄), 154.4 (q, C³, ²J_{C-F} = 37.5 Hz), 162.6 (4-OCH₃-C₆H₄), 172.0 (C⁵); HRMS (ESI+): calcd for C₁₉H₁₆F₃N₂O₃+, [M+H]⁺: 377.1108, found 377.1135.
- (*E*)-3-Trifluoromethyl-4-[(4-fluorophenyl)iminomethyl]-5-(4-methoxyphenyl)isoxazole (6cd): White solid; 72% yield (0.263 g); mp 98.3-99.0 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 3.90 (*s*, 3H, 4-OCH₃-C₆H₄), 7.04-7.21 (*m*, 6H, 4-F-C₆H₄ and 4-OCH₃-C₆H₄), 8.01 (*d*, 2H, 4-OCH₃-C₆H₄, J = 9.0 Hz), 8.43 (*s*, 1H, CH); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 55.7 (4-OCH₃-C₆H₄), 111.0 (C⁴), 114.6 (4-OCH₃-C₆H₄), 116.2 (*d*, 4-F-C₆H₄, $^2J_{C-F}$ = 22.6 Hz), 118.5 (4-OCH₃-C₆H₄), 119.9 (*q*, CF₃, $^1J_{C-F}$ = 272.0 Hz), 122.5 (*d*, 4-F-C₆H₄, $^3J_{C-F}$ = 8.4 Hz), 130.6 (4-OCH₃-C₆H₄), 147.3 (*d*, 4-F-C₆H₄, $^4J_{C-F}$ = 4.4 Hz), 147.3 (CH), 154.2 (*q*, C³, $^2J_{C-F}$ = 37.6 Hz), 161.8 (*d*, 4-F-C₆H₄, $^1J_{C-F}$ = 246.0 Hz), 162.7 (4-OCH₃-C₆H₄), 172.6 (C⁵); HRMS (ESI+): calcd for C₁₈H₁₃F₄N₂O₂+, [M+H]+: 365.0908, found 365.0938.
- (*E*)-4-[(4-Chlorophenyl)iminomethyl]-3-trifluoromethyl-5-(4-methoxyphenyl)isoxazole (6ce): Yellow solid; 70% yield (0.265 g); mp 95.5-98.8 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 3.90 (*s*, 3H, 4-OCH₃-C₆H₄), 7.06 (*d*, 2H, 4-OCH₃-C₆H₄, J = 9.0 Hz), 7.13 (*d*, 2H, 4-Cl-C₆H₄, J = 8.8 Hz), 7.37 (*d*, 2H, 4-Cl-C₆H₄, J = 8.8 Hz), 8.00 (*d*, 2H, 4-OCH₃-C₆H₄, J = 9.0 Hz), 8.42 (*s*, 1H, CH); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 55.7 (4-OCH₃-C₆H₄), 110.9 (C⁴), 114.7, 118.4 (4-OCH₃-C₆H₄), 119.8 (*q*, CF₃, ¹J_{C-F} = 272.0 Hz), 122.3 (4-Cl-C₆H₄), 129.5 (4-Cl-C₆H₄), 130.7 (4-OCH₃-C₆H₄), 132.6 (4-Cl-C₆H₄), 148.0 (CH), 149.7 (4-Cl-C₆H₄), 154.2 (*q*, C³, ²J_{C-F} = 37.6 Hz), 162.8 (4-OCH₃-C₆H₄), 172.7 (C⁵); HRMS (ESI+): calcd for C₁₈H₁₃ClF₃N₂O₂+, [M+H]+: 381.0612, found 381.0637.
- (*E*)-4-[(4-Bromophenyl)iminomethyl]-3-trifluoromethyl-5-(4-methoxyphenyl)isoxazole (6cf): Yellow solid; 69% yield (0.291 g); mp 123.5-124.6 $^{\rm o}$ C; $^{\rm t}$ H NMR (300.06 MHz, CDCl₃) δ (ppm) 3.90 (*s*, 3H, 4-OCH₃-C₆H₄), 7.04-7.08 (*m*, 4H, 4-OCH₃-C₆H₄ and 4-Br-C₆H₄), 7.52 (*d*, 2H, 4-Br-C₆H₄, *J* = 8.8 Hz), 8.00 (*d*, 2H, 4-OCH₃-C₆H₄, *J* = 9.0 Hz), 8.42 (*s*, 1H, CH); $^{\rm t3}$ C NMR (75.45 MHz, CDCl₃) δ (ppm) 55.7 (4-OCH₃-C₆H₄), 110.9 (C⁴), 114.7, 118.4 (4-OCH₃-C₆H₄), 119.8 (*q*, CF₃, $^{\rm t}$ J_{C-F} = 272.1 Hz), 120.4, 122.6 (4-Br-C₆H₄), 130.7 (4-OCH₃-C₆H₄), 132.5 (4-Br-C₆H₄), 148.1 (CH), 150.2 (4-Br-C₆H₄), 154.2 (*q*, C³, $^{\rm t}$ J_{C-F} = 37.9 Hz), 162.8 (4-OCH₃-C₆H₄), 172.8 (C⁵); HRMS (ESI+): calcd for C₁₈H₁₃BrF₃N₂O₂+, [M+H]+: 425.0107, found 425.0129.
- (*E*)-3-Trifluoromethyl-5-(4-fluorophenyl)-4-[(4-methoxyphenyl)iminomethyl]isoxazole (6da): White solid; 81% yield (0.295 g); mp 108.7-109.5 $^{\circ}$ C; $^{\circ}$ H NMR (300.06 MHz, CDCl₃) $^{\circ}$ (ppm) 3.84 (s, 3H, 4-OCH₃-C₆H₄),

6.95 $(d, 2H, 4-OCH_3-C_6H_4, J=8.9 \text{ Hz}), 7.20-7.27 \ (m, 4H, 4-F-C_6H_4 \text{ and } 4-OCH_3-C_6H_4), 8.13-8.17 \ (m, 2H, 4-F-C_6H_4), 8.46 <math>(s, 1H, C_H); ^{13}C$ NMR $(75.45 \text{ MHz}, CDCI_3)$ δ $(ppm) 55.7 <math>(4-O\underline{C}H_3-C_6H_4), 112.2 \ (C^4), 114.7 \ (4-O\underline{C}H_3-C_6H_4), 116.4 \ (d, 4-F-C_6H_4, ^2J_{C-F}=22.1 \text{ Hz}), 119.8 \ (q, \underline{C}F_3, ^1J_{C-F}=272.1 \text{ Hz}), 122.4 \ (4-O\underline{C}H_3-C_6H_4), 122.5 \ (d, 4-F-C_6H_4, ^4J_{C-F}=3.5 \text{ Hz}), 131.3 \ (d, 4-F-C_6H_4, ^3J_{C-F}=8.9 \text{ Hz}), 143.7 \ (4-O\underline{C}H_3-C_6H_4), 144.5 \ (\underline{C}H), 154.5 \ (q, C^3, ^2J_{C-F}=37.9 \text{ Hz}), 159.3 \ (4-O\underline{C}H_3-C_6H_4), 164.8 \ (d, 4-F-C_6H_4, ^1J_{C-F}=254.3 \text{ Hz}), 170.7 \ (C^5); \text{HRMS} \ (ESI+): calcd for $C_{18}H_{13}F_4N_2O_2^+$, [M+H]^+: 365.0908, found 365.0926.$

(*E*)-3-Trifluoromethyl-5-(4-fluorophenyl)-4-[(phenyl)iminomethyl]isoxazole (6db): White solid; 75% yield (0.251 g); mp 111.8-112.4 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 7.17-7.22 (m, 3H, C₆H₅), 7.25-7.32 (m, 2H, C₆H₅), 7.40-7.45 (m, 2H, 4-F-C₆H₄), 8.13-8.18 (m, 2H, 4-F-C₆H₄), 8.45 (s, 1H, C_H); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 112.0 (C⁴), 116.5 (d, 4-F-C₆H₄, 2 J_{C-F} = 22.2 Hz), 119.8 (d, d-F-C₆H₄, 3 J_{C-F} = 272.2 Hz), 120.9 (C₆H₅), 122.4 (d, 4-F-C₆H₄, 4 J_{C-F} = 3.3 Hz), 127.2, 129.5 (C₆H₅), 131.4 (d, 4-F-C₆H₄, 3 J_{C-F} = 9.0 Hz), 147.2 (CH), 151.0 (C₆H₅), 154.6 (d, C³, 2 J_{C-F} = 37.9 Hz), 164.9 (d, 4-F-C₆H₄, 1 J_{C-F} = 254.6 Hz), 171.2 (C⁵); HRMS (ESI+): calcd for C₁₇H₁₁F₄N₂O⁺, [M+H]⁺: 335.0802, found 335.0829.

(*E*)-3-Trifluoromethyl-5-(4-fluorophenyl)-4-[(2-methoxyphenyl)iminomethyl]isoxazole (6dc): Yellow solid; 79% yield (0.287 g); mp 107.5-108.7 $^{\rm o}$ C; $^{\rm t}$ H NMR (300.06 MHz, CDCl₃) δ (ppm) 3.91 (*s*, 3H, 2-OCH₃-C₆H₄), 6.98-7.04 (*m*, 3H, 2-OCH₃-C₆H₄), 7.21-7.25 (*m*, 3H, 4-F-C₆H₄ and 2-OCH₃-C₆H₄), 8.32-8.35 (*m*, 2H, 4-F-C₆H₄), 8.57 (*s*, 1H, CH); $^{\rm 13}$ C NMR (75.45 MHz, CDCl₃) δ (ppm) 56.1 (2-OCH₃-C₆H₄), 112.1 (C⁴), 112.1 (2-OCH₃-C₆H₄), 116.2 (*d*, 4-F-C₆H₄, $^{\rm 2}$ J_{C-F} = 22.0 Hz), 119.8 (*q*, CF₃, $^{\rm 1}$ J_{C-F} = 272.2 Hz), 121.1, 121.3 (2-OCH₃-C₆H₄), 122.6 (*d*, 4-F-C₆H₄, $^{\rm 4}$ J_{C-F} = 3.3 Hz), 128.0 (2-OCH₃-C₆H₄), 131.5 (*d*, 4-F-C₆H₄, $^{\rm 3}$ J_{C-F} = 8.9 Hz), 140.3 (2-OCH₃-C₆H₄), 148.5 (CH), 152.4 (2-OCH₃-C₆H₄), 154.7 (*q*, C³, $^{\rm 2}$ J_{C-F} = 37.7 Hz), 164.9 (*d*, 4-F-C₆H₄, $^{\rm 1}$ J_{C-F} = 254.3 Hz), 170.8 (C⁵); HRMS (ESI+): calcd for C₁₈H₁₃F₄N₂O₂+, [M+H]+: 365.0908, found 365.0923.

(*E*)-3-Trifluoromethyl-5-(4-fluorophenyl)-4-[(4-fluorophenyl)iminomethyl]isoxazole (6dd): White solid; 76% yield (0.268 g); mp 92.6-94.2 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 7.08-7.29 (m, 6H, 4-F-C₆H₄ – A and B), 8.09-8.14 (m, 2H, 4-F-C₆H₄ – A), 8.43 (s, 1H, C<u>H</u>); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 111.9 (C⁴), 116.3 (d, 4-F-C₆H₄ – A, $^2J_{\text{C-F}}$ = 22.8 Hz), 116.5 (d, 4-F-C₆H₄ – A, $^2J_{\text{C-F}}$ = 22.1 Hz), 119.7 (q, $\underline{\text{C}}$ F₃, $^1J_{\text{C-F}}$ = 272.1 Hz), 122.4 (d, 4-F-C₆H₄ – A, $^4J_{\text{C-F}}$ = 3.4 Hz), 122.5 (d, 4-F-C₆H₄ – B, $^3J_{\text{C-F}}$ = 8.5 Hz), 131.4 (d, 4-F-C₆H₄ – A, $^3J_{\text{C-F}}$ = 9.0 Hz), 146.7 ($\underline{\text{C}}$ H), 146.9 (d, 4-F-C₆H₄ – B, $^4J_{\text{C-F}}$ = 3.1 Hz), 154.5 (q, C³, $^2J_{\text{C-F}}$ = 37.9 Hz), 162.0 (d, 4-F-C₆H₄ – B, $^4J_{\text{C-F}}$ = 254.7 Hz), 171.3 (C⁵); HRMS (ESI+): calcd for C₁₇H₁₀F₅N₂O⁺, [M+H]⁺: 353.0708, found 353.0734.

(*E*)-4-[(4-Chlorophenyl)iminomethyl]-3-trifluoromethyl-5-(4-fluorophenyl)isoxazole (6de): Light Yellow solid; 71% yield (0.260 g); mp 100.1-101.7 $^{\circ}$ C; 1 H NMR (300.06 MHz, CDCl₃) δ (ppm) 7.12 (*d*, 2H, 4-Cl-C₆H₄, *J* = 8.8 Hz), 7.23-7.28 (*m*, 2H, 4-F-C₆H₄), 7.38 (*d*, 2H, 4-Cl-C₆H₄, *J* = 8.8 Hz), 8.09-8.13 (*m*, 2H, 4-F-C₆H₄), 8.42 (*s*, 1H, C<u>H</u>); 13 C NMR (75.45 MHz, CDCl₃) δ (ppm) 111.8 (C⁴), 116.5 (*d*, 4-F-C₆H₄, 2 *J*_{C-F} = 22.2 Hz), 119.7 (*q*, $^{\circ}$ CF₃, 1 *J*_{C-F} = 272.2 Hz), 122.3 (4-Cl-C₆H₄), 122.3 (4-F-C₆H₄), 129.6 (4-Cl-C₆H₄), 131.4 (*d*, 4-F-C₆H₄, 3 *J*_{C-F} = 9.0 Hz), 132.9 (4-Cl-C₆H₄), 147.4 ($^{\circ}$ CH), 149.4 (4-Cl-C₆H₄), 154.5 (*q*, C³, 2 *J*_{C-F} = 38.0 Hz), 165.0 (*d*, 4-F-C₆H₄, 1 *J*_{C-F} = 254.9 Hz), 171.5 (C⁵); HRMS (ESI+): calcd for C₁₇H₁₀ClF₄N₂O⁺, [M+H]⁺: 369.0412, found 369.0439.

(*E*)-4-[(4-Bromophenyl)iminomethyl]-3-trifluoromethyl-5-(4-fluorophenyl)isoxazole (6df): Yellow solid; 64% yield (0.265 g); mp 114.7-115.8 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 7.06 (*d*, 2H, 4-Br-C₆H₄, J = 8.8 Hz), 7.23-7.29 (*m*, 2H, 4-F-C₆H₄), 7.53 (*d*, 2H, 4-Br-C₆H₄, J = 8.8 Hz), 8.08-8.13 (*m*, 2H, 4-F-C₆H₄), 8.42 (*s*, 1H, CH); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 111.8 (C⁴), 116.5 (*d*, 4-F-C₆H₄, $^2J_{C-F}$ = 22.2 Hz), 119.7 (*q*, 2 CF₃, $^1J_{C-F}$ = 272.2 Hz), 120.8 (4-Br-C₆H₄), 122.3 (*d*, 4-F-C₆H₄, $^4J_{C-F}$ = 3.5 Hz), 122.6 (4-Br-C₆H₄), 131.4 (*d*, 4-F-C₆H₄, $^3J_{C-F}$ = 8.9 Hz), 132.6 (4-Br-C₆H₄), 147.5 (2 CH), 149.8 (4-Br-C₆H₄), 154.5 (*q*, 3 C, 3 C_{1-F} = 37.9 Hz), 165.0 (*d*, 4-F-C₆H₄, $^1J_{C-F}$ = 254.9 Hz), 171.6 (C⁵); HRMS (ESI+): calcd for C₁₇H₁₀BrF₄N₂O⁺, [M+H]⁺: 412.9907, found 412.9935.

(*E*)-5-(4-Chlorophenyl)-3-trifluoromethyl-4-[(4-methoxyphenyl)iminomethyl]isoxazole (6ea): Yellow solid; 78% yield (0.297 g); mp 98.2-98.8 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 3.85 (*s*, 3H, 4-OCH₃-C₆H₄), 6.95 (*d*, 2H, 4-OCH₃-C₆H₄, J = 9.0 Hz), 7.22 (*d*, 2H, 4-OCH₃-C₆H₄, J = 9.00 Hz), 7.53 (*d*, 2H, 4-Cl-C₆H₄, J = 8.8 Hz), 8.08 (*d*, 2H, 4-Cl-C₆H₄, J = 8.8 Hz), 8.46 (*s*, 1H, C<u>H</u>); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 55.7 (4-OCH₃-C₆H₄), 112.6 (C⁴), 114.7 (4-OCH₃-C₆H₄), 119.8 (*q*, CF₃, ¹J_{C-F} = 272.1 Hz), 122.5 (4-OCH₃-C₆H₄), 124.7, 129.4, 130.2, 138.4 (4-Cl-C₆H₄), 143.6 (4-OCH₃-C₆H₄), 144.3 (CH), 154.6 (*q*, C³, ²J_{C-F} = 37.5 Hz), 159.4 (4-OCH₃-C₆H₄), 170.5 (C⁵); HRMS (ESI+): calcd for C₁₈H₁₃ClF₃N₂O₂⁺, [M+H]⁺: 381.0612, found 381.0629.

(*E*)-5-(4-Chlorophenyl)-3-trifluoromethyl-4-[(phenyl)iminomethyl]isoxazole (6eb): White solid; 73% yield (0.255 g); mp 90.1-90.8 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 7.17-7.20 (m, 2H, C₆H₅), 7.27-7.32 (m,

- (*E*)-5-(4-Chlorophenyl)-3-trifluoromethyl-4-[(2-methoxyphenyl)iminomethyl]isoxazole (6ec): Yellow solid; 76% yield (0.290 g); mp 118.2-120.2 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 3.91 (*s*, 3H, 4-OCH₃-C₆H₄), 6.97-7.06 (*m*, 3H, 2-OCH₃-C₆H₄), 7.22-7.26 (*m*, 1H, 2-OCH₃-C₆H₄), 7.51 (*d*, 2H, 4-Cl-C₆H₄, *J* = 8.9 Hz), 8.26 (*d*, 2H, 4-Cl-C₆H₄, *J* = 8.9 Hz), 8.57 (*s*, 1H, C<u>H</u>); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 56.1 (2-OCH₃-C₆H₄), 112.0 (2-OCH₃-C₆H₄), 112.5 (C⁴), 119.8 (*q*, C₅, ¹*J*_{C-F} = 272.4 Hz), 121.0, 121.3 (2-OCH₃-C₆H₄), 124.7 (4-Cl-C₆H₄), 128.0 (2-OCH₃-C₆H₄), 129.3, 130.3, 138.4 (4-Cl-C₆H₄), 140.1 (2-OCH₃-C₆H₄), 148.4 (C₂H), 152.4 (2-OCH₃-C₆H₄), 154.7 (*q*, C³, ²*J*_{C-F} = 37.5 Hz), 170.6 (C⁵); HRMS (ESI+): calcd for C₁₈H₁₃ClF₃N₂O₂+, [M+H]+: 381.0612, found 381.0626.
- (*E*)-5-(4-Chlorophenyl)-3-trifluoromethyl-4-[(4-fluorophenyl)iminomethyl]isoxazole (6ed): White solid; 69% yield (0.255 g); mp 101.4-103.8 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 7.08-7.21 (m, 4H, 4-F-C₆H₄), 7.54 (d, 2H, 4-Cl-C₆H₄, J = 8.9 Hz), 8.05 (d, 2H, 4-Cl-C₆H₄, J = 8.9 Hz), 8.43 (s, 1H, C<u>H</u>); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 112.3 (C⁴), 116.3 (d, 4-F-C₆H₄, ²J_{C-F} = 22.8 Hz), 119.8 (q, C_F3, ¹J_{C-F} = 272.1 Hz), 122.6 (d, 4-F-C₆H₄, ³J_{C-F} = 8.5 Hz), 124.5, 129.5, 130.2, 138.6 (4-Cl-C₆H₄), 146.6 (C₂H), 146.8 (d, 4-F-C₆H₄, ⁴J_{C-F} = 3.1 Hz), 154.5 (q, C³, ²J_{C-F} = 37.9 Hz), 162.1 (d, 4-F-C₆H₄, ¹J_{C-F} = 246.7 Hz), 171.1 (C⁵); HRMS (ESI+): calcd for C₁₇H₁₀CIF₄N₂O⁺, [M+H]⁺: 369.0412, found 369.0441.
- (*E*)-5-(4-Chlorophenyl)-4-[(4-chlorophenyl)iminomethyl]-3-trifluoromethylisoxazole (6ee): Yellow solid; 64% yield (0.247 g); mp 86.8-88.0 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 7.13 (d, 2H, 4-Cl-C₆H₄ − B, J = 8.7 Hz), 7.38 (d, 2H, 4-Cl-C₆H₄ − B, J = 8.7 Hz), 7.55 (d, 2H, 4-Cl-C₆H₄ − A, J = 8.7 Hz), 8.04 (d, 2H, 4-Cl-C₆H₄ − A, J = 8.7 Hz), 8.43 (d, 1H, C<u>H</u>); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 112.2 (C⁴), 119.7 (d, C_F3, ¹d-C_F = 272.2 Hz), 122.3 (4-Cl-C₆H₄ − B), 124.4, 129.5 (4-Cl-C₆H₄ − A), 129.6 (4-Cl-C₆H₄ − B), 130.2 (4-Cl-C₆H₄ − A), 133.0 (4-Cl-C₆H₄ − B), 138.7 (4-Cl-C₆H₄ − A), 147.3 (C_BH), 149.3 (4-Cl-C₆H₄ − B), 154.5 (d, C³, ²d-C_F = 38.0 Hz), 171.3 (C⁵); **HRMS** (ESI+): calcd for C₁₇H₁₀Cl₂F₃N₂O⁺, [M+H]⁺: 385.0117, found 385.0130.
- (*E*)-4-[(4-Bromophenyl)iminomethyl]-5-(4-chlorophenyl)-3-trifluoromethylisoxazole (6ef): White solid; 63% yield (0.270 g); mp 95.5-96.3 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 7.06 (*d*, 2H, 4-Br-C₆H₄, J = 8.6 Hz), 7.52-7.56 (*m*, 4H, 4-Cl-C₆H₄ and 4-Br-C₆H₄), 8.04 (*d*, 2H, 4-Cl-C₆H₄, J = 8.7 Hz), 8.42 (*s*, 1H, C<u>H</u>); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 112.2 (C⁴), 119.7 (*q*, <u>C</u>F₃, ¹J_{C-F} = 272.2 Hz), 120.9, 122.6 (4-Br-C₆H₄), 124.4, 129.5, 130.2 (4-Cl-C₆H₄), 132.6 (4-Br-C₆H₄), 138.7 (4-Cl-C₆H₄), 147.4 (<u>C</u>H), 149.8 (4-Br-C₆H₄), 154.5 (*q*, C³, ²J_{C-F} = 38.1 Hz), 171.4 (C⁵); HRMS (ESI+): calcd for C₁₇H₁₀BrClF₃N₂O⁺, [M+H]⁺: 428.9612, found 428.9641.
- (*E*)-5-(4-Bromophenyl)-3-trifluoromethyl-4-[(4-methoxyphenyl)iminomethyl]isoxazole (6fa): Yellow solid; 72% yield (0.306 g); mp 105.4-106.1 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 3.84 (s, 3H, 4-OCH₃-C₆H₄), 6.94 (d, 2H, 4-OCH₃-C₆H₄, J = 9.0 Hz), 7.22 (d, 2H, 4-OCH₃-C₆H₄, J = 9.0 Hz), 7.69 (d, 2H, 4-Br-C₆H₄, J = 8.8 Hz), 8.01 (d, 2H, 4-Br-C₆H₄, J = 8.8 Hz), 8.46 (s, 1H, CH); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 55.7 (4-OCH₃-C₆H₄), 112.7 (C⁴), 114.7 (4-OCH₃-C₆H₄), 119.8 (q, CF₃, ¹J_{C-F} = 272.2 Hz), 122.5 (4-OCH₃-C₆H₄), 125.2, 126.9, 130.3, 132.4 (4-Br-C₆H₄), 143.6 (4-OCH₃-C₆H₄), 144.3 (CH), 154.6 (q, C³, ²J_{C-F} = 37.7 Hz), 159.4 (4-OCH₃-C₆H₄), 170.6 (C⁵); HRMS (ESI+): calcd for C₁8 H₁₃BrF₃N₂O₂+, [M+H]+: 425.0107, found 425.0135.
- (*E*)-5-(4-Bromophenyl)-3-trifluoromethyl-4-[(phenyl)iminomethyl]isoxazole (6fb): Yellow solid; 69% yield (0.272 g); mp 108.4-109.1 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 7.17-7.20 (m, 2H, C₆H₅), 7.27-7.32 (m, 1H, C₆H₅), 7.40-7.45 (m, 2H, C₆H₅), 7.70 (d, 2H, 4-Br-C₆H₄, J = 8.8Hz), 8.01 (d, 2H, 4-Br-C₆H₄, J = 8.8 Hz), 8.45 (s, 1H, C<u>H</u>); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 112.4 (C⁴), 119.7 (q, <u>C</u>F₃, ¹J_{C-F} = 272.3 Hz), 120.9 (C₆H₅), 125.0, 127.1 (4-Br-C₆H₄), 127.3, 129.5 (C₆H₅), 130.4, 132.4 (4-Br-C₆H₄), 147.0 (<u>C</u>H), 150.9 (C₆H₅), 154.6 (q, C³, 2J _{C-F} = 37.8 Hz), 171.1 (C⁵); HRMS (ESI+): calcd for C₁₇H₁₁BrF₃N₂O⁺, [M+H]⁺: 395.0001, found 395.0016.
- (*E*)-5-(4-Bromophenyl)-3-trifluoromethyl-4-[(2-methoxyphenyl)iminomethyl]isoxazole (6fc): Yellow solid; 70% yield (0.297 g); mp 126.8-127.4 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 3.91 (s, 3H, 2-OCH₃-C₆H₄), 6.97-7.05 (m, 3H, 2-OCH₃-C₆H₄), 7.22-7.27 (m, 1H, 2-OCH₃-C₆H₄), 7.67 (d, 2H, 4-Br-C₆H₄, J = 8.8 Hz), 8.57 (s, 1H, CH); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 56.1 (2-OCH₃-C₆H₄), 112.1 (2-OCH₃-C₆H₄), 112.6 (C⁴), 119.8 (q, CF₃, 1 J_{C-F} = 272.3 Hz), 121.1, 121.3 (2-OCH₃-C₆H₄), 125.1, 127.0 (4-Br-C₆H₄), 128.0

 $(2-OCH_3-C_6H_4)$, 130.4, 132.2 (4-Br-C₆H₄), 140.1 (2-OCH₃-C₆H₄), 148.4 (<u>C</u>H), 152.4 (2-OCH₃-C₆H₄), 154.8 (q, C³, $^2J_{C-F} = 37.8$ Hz), 170.7 (C⁵); **HRMS** (ESI+): calcd for $C_{18}H_{13}BrF_3N_2O_2^+$, [M+H]⁺: 425.0107, found 425.0142.

(*E*)-5-(4-Bromophenyl)-3-trifluoromethyl-4-[(4-fluorophenyl)iminomethyl]isoxazole (6fd): Light Yellow solid; 69% yield (0.286 g); mp 105.1-106.2 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 7.07-7.21 (m, 4H, 4-F-C₆H₄), 7.70 (d, 2H, 4-Br-C₆H₄, J = 8.8 Hz), 7.98 (d, 2H, 4-Br-C₆H₄, J = 8.8 Hz), 8.43 (s, 1H, C<u>H</u>); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 112.4 (C⁴), 116.3 (d, 4-F-C₆H₄, ${}^2J_{\text{C-F}}$ = 22.7 Hz), 119.7 (q, ${}^{\text{C}}$ F₃, ${}^{\text{L}}$ F₂-F = 272.2 Hz), 122.5 (d, 4-F-C₆H₄, ${}^{\text{L}}$ F₂-F = 8.5 Hz), 124.9, 127.1, 130.3, 132.5 (4-Br-C₆H₄), 146.6 (${}^{\text{C}}$ H), 146.8 (d, 4-F-C₆H₄, ${}^{\text{L}}$ F₂-F = 2.9 Hz), 154.6 (q, C³, ${}^{\text{L}}$ F₂-F = 37.9 Hz), 162.1 (d, 4-F-C₆H₄, ${}^{\text{L}}$ F₂-F = 246.8 Hz), 171.2 (C⁵); HRMS (ESI+): calcd for C₁₇H₁₀BrF₄N₂O⁺, [M+H][†]: 412.9907, found 412.9932.

(*E*)-5-(4-Bromophenyl)-4-[(4-chlorophenyl)iminomethyl]-3-trifluoromethylisoxazole (6fe): Light Yellow solid; 66% yield (0.284 g); mp 91.2-92.6 $^{\rm o}$ C; $^{\rm 1}$ H NMR (300.06 MHz, CDCl₃) δ (ppm) 7.12 (*d*, 2H, 4-Cl-C₆H₄, *J* = 8.8 Hz), 7.38 (*d*, 2H, 4-Cl-C₆H₄, *J* = 8.8 Hz), 7.71 (*d*, 2H, 4-Br-C₆H₄, *J* = 8.8 Hz), 7.97 (*d*, 2H, 4-Br-C₆H₄, *J* = 8.8 Hz), 8.42 (*s*, 1H, C<u>H</u>); $^{\rm 13}$ C NMR (75.45 MHz, CDCl₃) δ (ppm) 112.3 (C⁴), 119.7 (*q*, $^{\rm C}$ F₃, $^{\rm 1}$ J_{C-F} = 272.3 Hz), 122.3 (4-Cl-C₆H₄), 124.9, 127.2 (4-Br-C₆H₄), 129.6 (4-Cl-C₆H₄), 130.3, 132.5 (4-Br-C₆H₄), 133.0 (4-Cl-C₆H₄), 147.3 (<u>C</u>H), 149.3 (4-Cl-C₆H₄), 154.5 (*q*, $^{\rm C}$ 3, $^{\rm 2}$ J_{C-F} = 37.9 Hz), 171.4 (C⁵); HRMS (ESI+): calcd for C₁₇H₁₀BrClF₃N₂O⁺, [M+H]⁺: 428.9612, found 428.9638.

(*E*)-5-(4-Bromophenyl)-4-[(4-bromophenyl)iminomethyl]-3-trifluoromethylisoxazole (6ff): Yellow solid; 67% yield (0.318 g); mp 102.6-106.1 °C; ¹H NMR (300.06 MHz, CDCl₃) δ (ppm) 7.06 (d, 2H, 4-Br-C₆H₄ – B, J = 8.8 Hz), 7.53 (d, 2H, 4-Br-C₆H₄ – B, J = 8.8 Hz), 7.70 (d, 2H, 4-Br-C₆H₄ – A, J = 8.8 Hz), 7.96 (d, 2H, 4-Br-C₆H₄ – A, J = 8.8 Hz), 8.42 (g, 1H, Cg); ¹³C NMR (75.45 MHz, CDCl₃) δ (ppm) 112.3 (g), 119.7 (g, g), g) 120.9, 122.6, 124.8, 127.2, 130.3, 132.5, 132.6 (4-Br-C₆H₄ – A and B), 147.3 (g), 149.8 (4-Br-C₆H₄ – B), 154.5 (g, C³, ²g)-g-g 37.8 Hz), 171.4 (C⁵); HRMS (ESI+): calcd for C₁₇H₁₀Br₂F₃N₂O⁺, [M+H]⁺: 472.9106, found 472.9135.

Table S1 – X-ray crystallographic data of compound **2f**

Bond precision:	C-C = 0.0091 A		Wavelength=0.71073					
Cell:	a=16.298(10)	b=8.588(6) beta=103.311(17)		C=12.152(8)				
Temperature:	alpha=90 297 K			gamma=90				
Sum formula Mr Dx,g cm-3 Z Mu (mm-1) F000 F000' h,k,lmax	P 21/c -P 2ybc C15 H15 Br F3 N C15 H15 Br F3 N 378.18 1.518 4 2.518 760.0 759.31 22,11,16 4520	O2 O2	Reported 1655.2(18) P 1 21/c 1 -P2ybc C15 H15 Br C15 H15 Br 378.19 1.518 4 2.518 760.0	F3 N O2				
Correction method= # Reported T Limits: Tmin=0.593 Tmax=0.874 AbsCorr = MULTI-SCAN								
Data completeness= 0.996 Theta(max)= 29.260								
R(reflections) = 0.0693(2034)								
S = 0.893 Npar= 199								

The crystal structure **2f** has been deposited at the Cambridge Crystallographic

Data Centre and allocated the deposition number: CCDC-1959494.

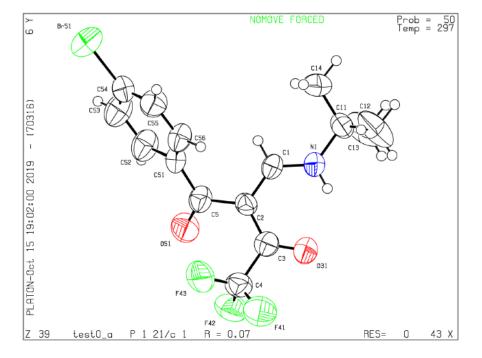


Figure S1 – ORTEP diagram of compound 2f

Table S2 – X-ray crystallographic data of compound **5dc**

Bond precision:	C-C = 0.0015 A	Wavelength=0.71073						
	a=9.0678(4)							
Temperature:	alpha=103.200(2) 100 K	beta=92.950(2)	gamma=110.440(2)					
	Calculated	Report	ed					
Volume	997.94(8)	997.94	(8)					
Space group	P -1	P-1						
Hall group		-P1						
Moiety formula	C24 H17 F4 N3 O	C24 H1	7 F4 N3 O					
	C24 H17 F4 N3 O		7 F4 N3 O					
	439.41	439.41						
Dx,g cm-3	1.462	1.462						
Z	2	2						
Mu (mm-1)	0.117	0.117						
F000	452.0	452.0						
F000'	452.27							
h,k,lmax	12,14,15	12,14,	15					
	5417	5396						
Tmin, Tmax	0.974,0.980	0.950,	0.980					
Tmin'	0.950							
Correction method= # Reported T Limits: Tmin=0.950 Tmax=0.980 AbsCorr = MULTI-SCAN								
Data completene	ess= 0.996	Theta(max) = 29.190						
R(reflections) = 0.0354(4849)								
S = 1.027 Npar= 289								

The crystal structure **5dc** has been deposited at the Cambridge Crystallographic

Data Centre and allocated the deposition number: CCDC-1959495.

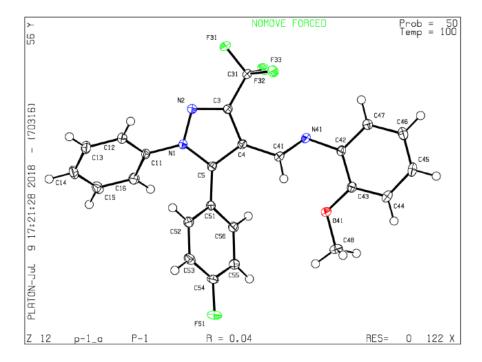


Figure S2 – ORTEP diagram of compound 5dc

Table S3 – X-ray crystallographic data of compound **6fc**

Bond precision:	C-C = 0.0044 A	Wavelength=0.71073					
Cell:		b=5.2686(10) beta=97.851(6)					
Temperature:	295 K	2004 37.1031(07	gamma 30				
	Calculated	Reporte	ed				
Volume	1692.1(5)	1692.0(5)				
Space group	P 21/n	P21/n					
Hall group	-P 2yn	-P2yn					
		O2 C18 H12	Br F3 N2 O2				
Sum formula	C18 H12 Br F3 N2	O2 C18 H12	Br F3 N2 O2				
Mr	425.20	425.21					
Dx,g cm-3	1.669	1.669					
Z	4	4					
Mu (mm-1)	2.476	2.476					
F000	848.0	848.0					
F000'	847.33						
h,k,lmax	16,6,32	16,6,32					
Nref	3764	3750					
Tmin, Tmax	0.574,0.690	0.575,0	.718				
Tmin'	0.520						
Correction method= # Reported T Limits: Tmin=0.575 Tmax=0.718 AbsCorr = MULTI-SCAN							
Data completeness= 0.996 Theta(max)= 27.200							
R(reflections) = 0.0463(2246)							
S = 1.019 Npar= 235							

The crystal structure **6fc** has been deposited at the Cambridge Crystallographic

Data Centre and allocated the deposition number: CCDC-1959496.

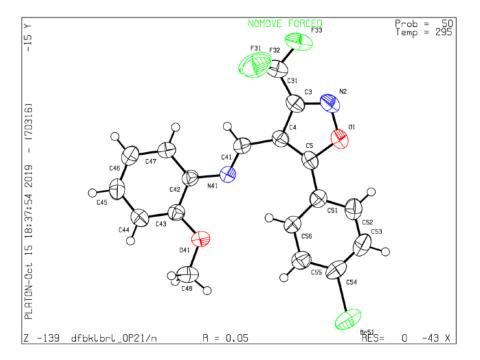


Figure S3 – ORTEP diagram of compound 6fc

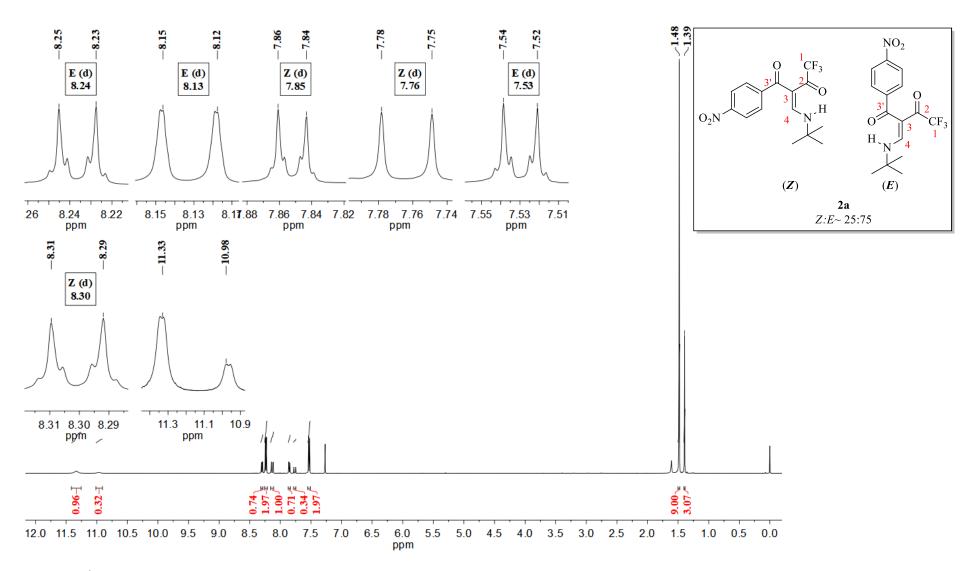


Figure S4 – ¹H NMR spectrum of compound 2a in CDCl₃ at 500.13 MHz.

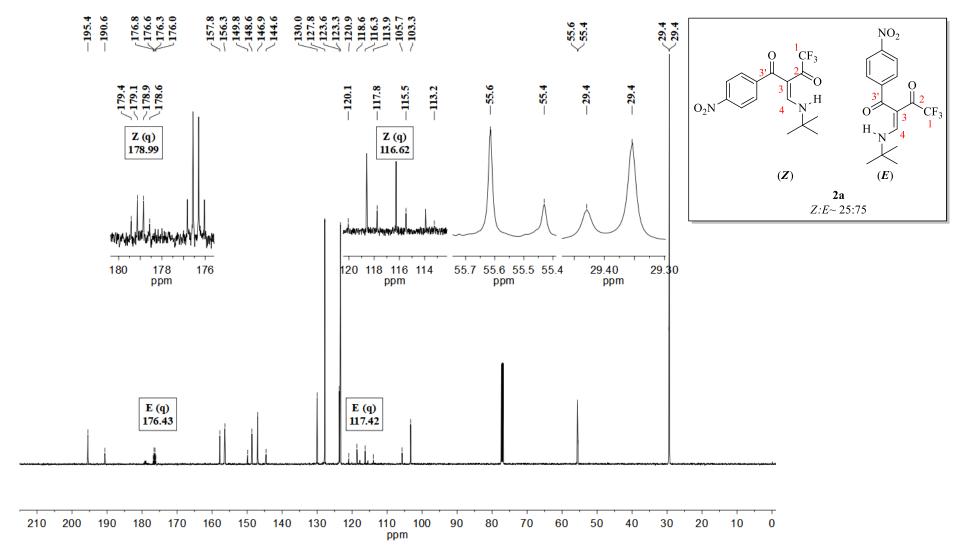


Figure S5 – ¹³C NMR spectrum of compound 2a in CDCl₃ at 125.76 MHz.

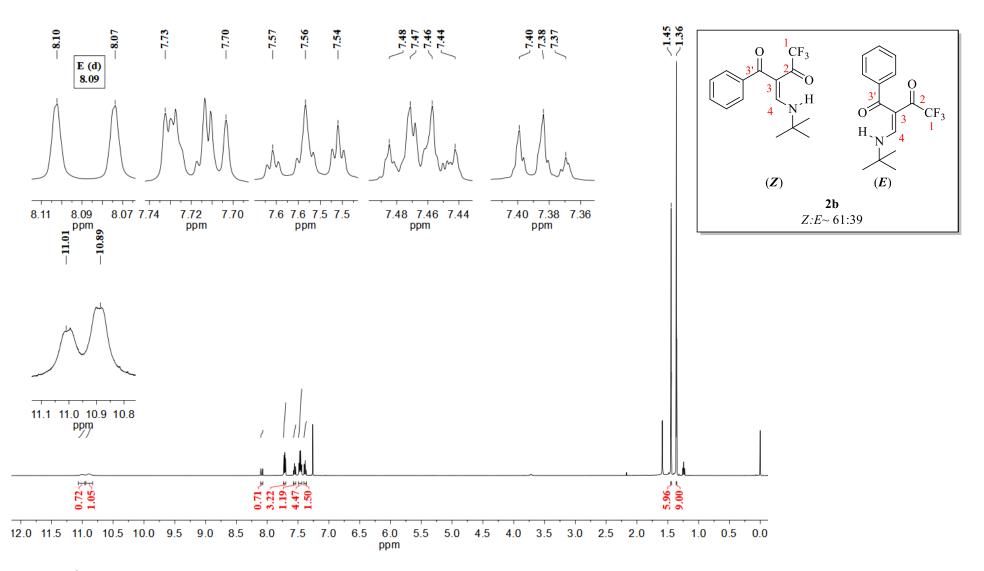


Figure S6 – 1 H NMR spectrum of compound **2b** in CDCl₃ at 500.13 MHz.

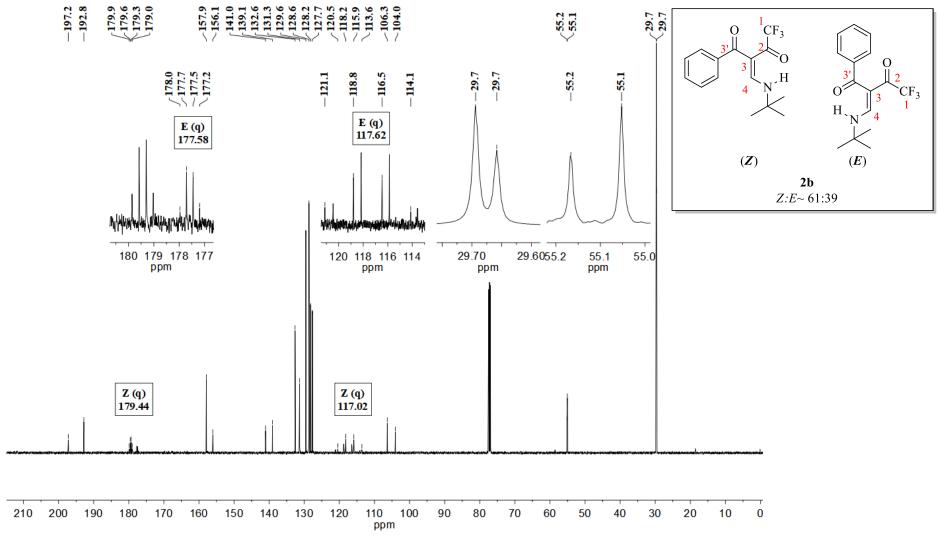
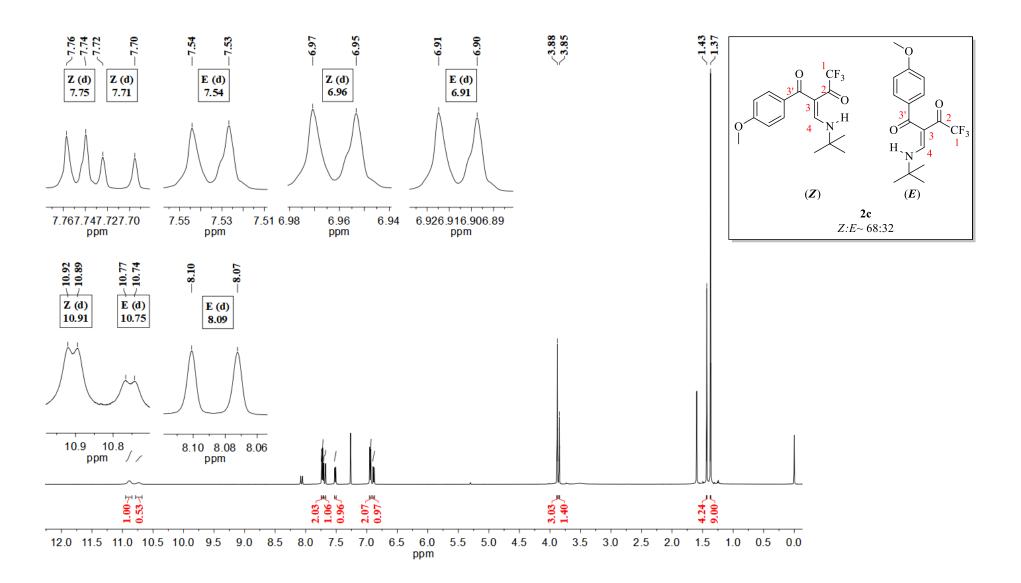



Figure S7 − ¹³C NMR spectrum of compound **2b** in CDCl₃ at 125.76 MHz.

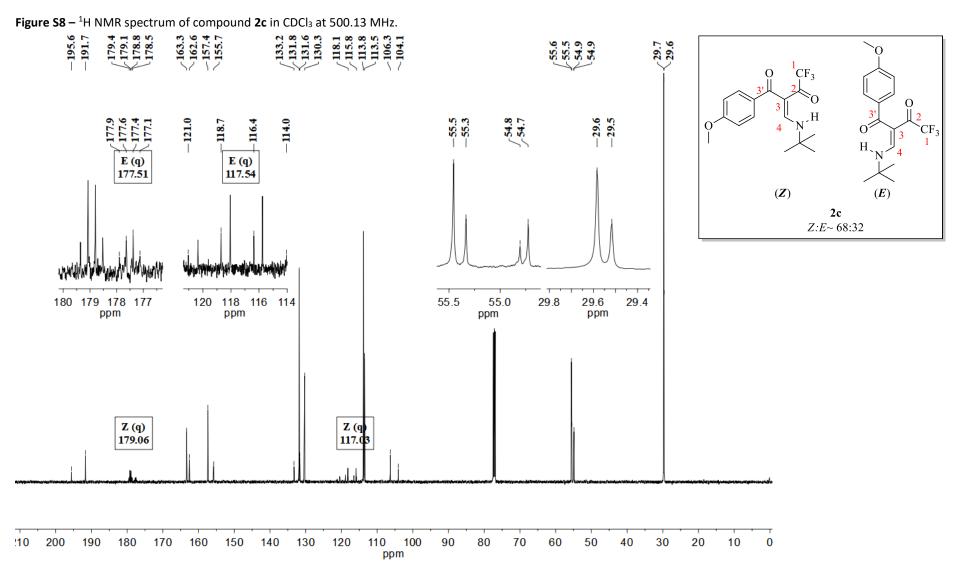
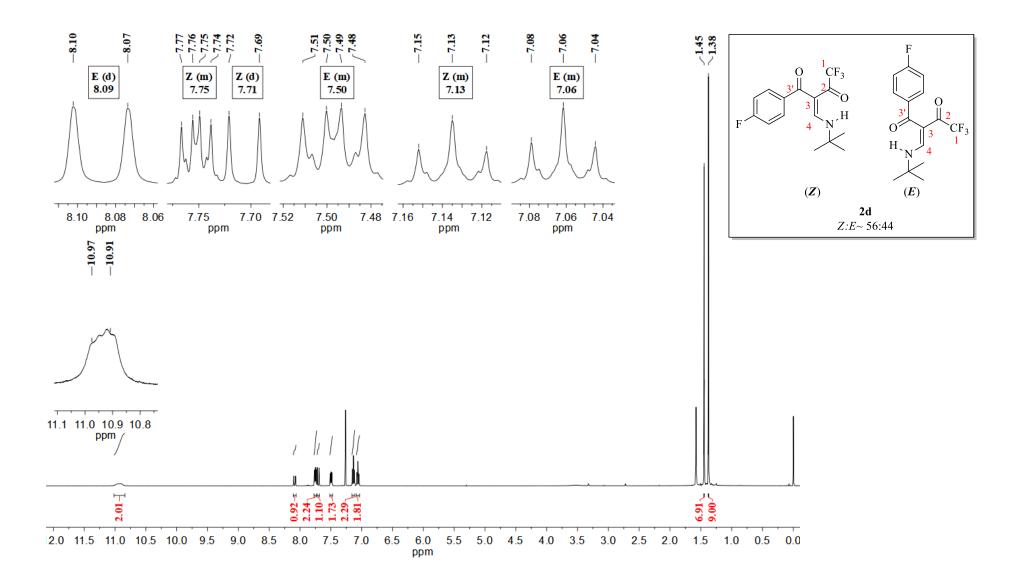



Figure S9 – ¹³C NMR spectrum of compound 2c in CDCl₃ at 125.76 MHz.

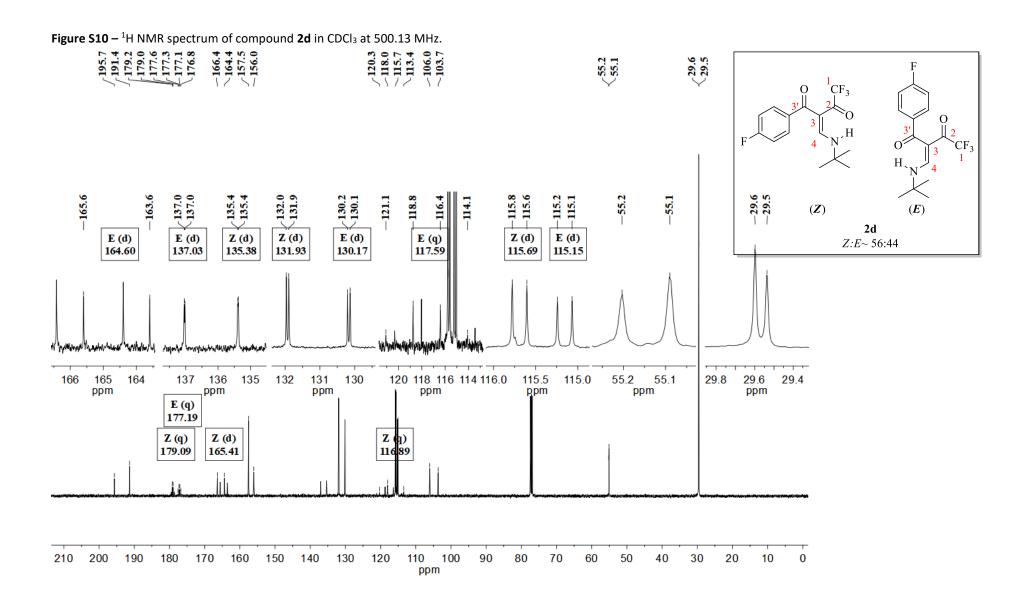
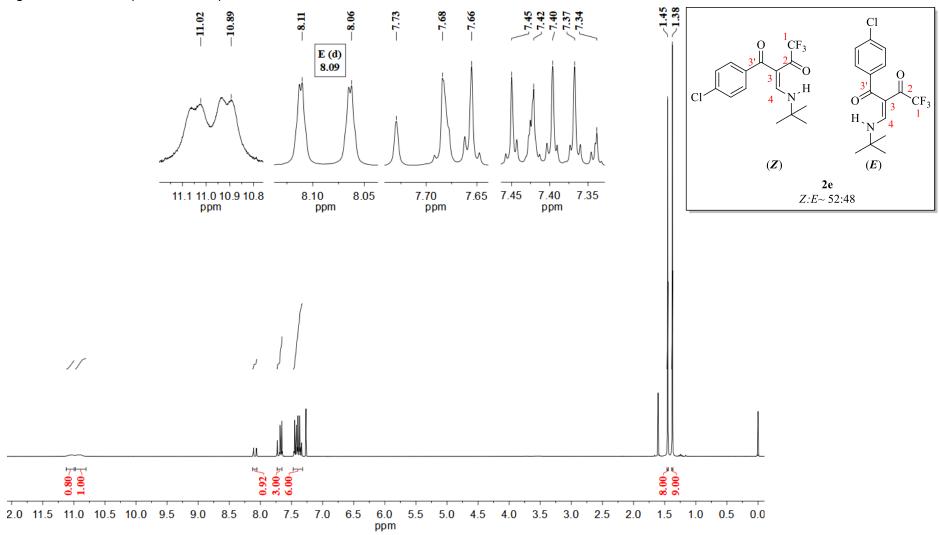



Figure S11 – 13 C NMR spectrum of compound 2d in CDCl₃ at 125.76 MHz.

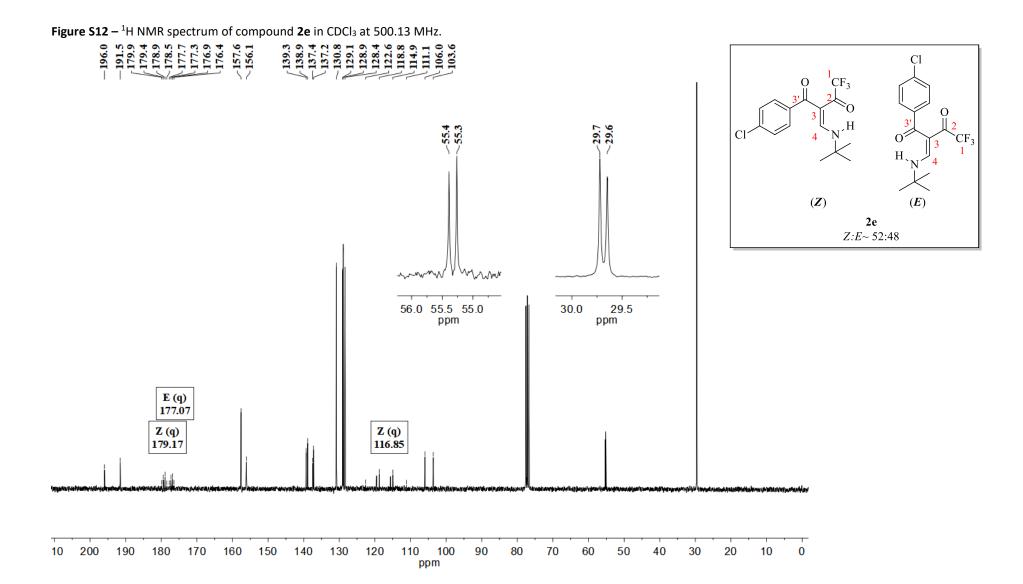


Figure S13 – ¹³C NMR spectrum of compound 2e in CDCl₃ at 125.76 MHz. E (d) 11.05 Z (d) 7.70 Z (d) E (d) 8.08 Z (d) 7.52 10.90 7.33 (Z)2f 11.1 11.0 10.9 ppm 8.09 ppm 7.70 ppm 7.68 7.53 7.52 7.51 7.507.35 ppm 8.11 8.07 7.72 7.33 7.31 *Z:E*∼ 51:49 ppm // 2.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ppm

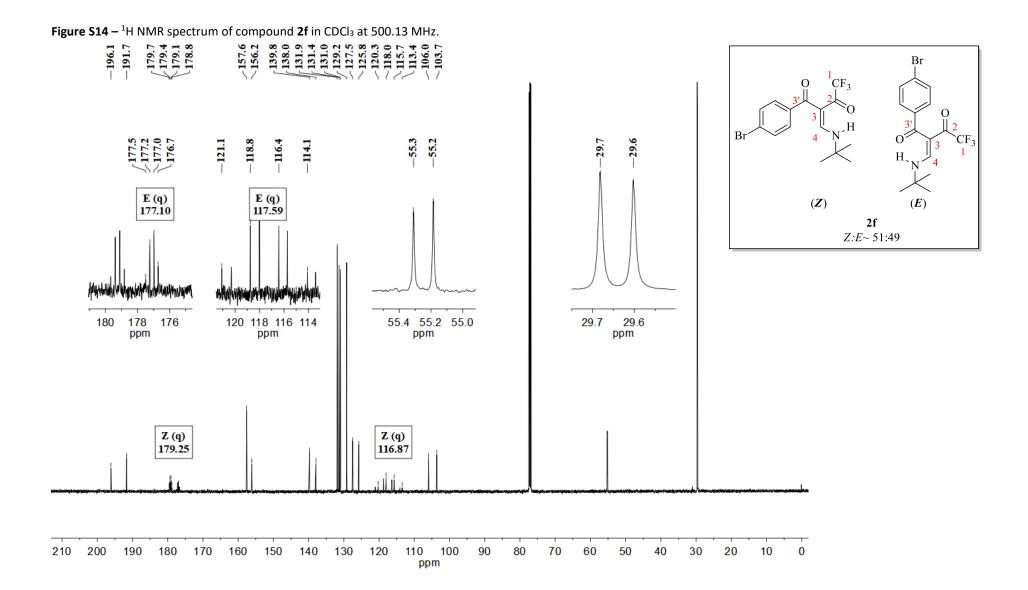
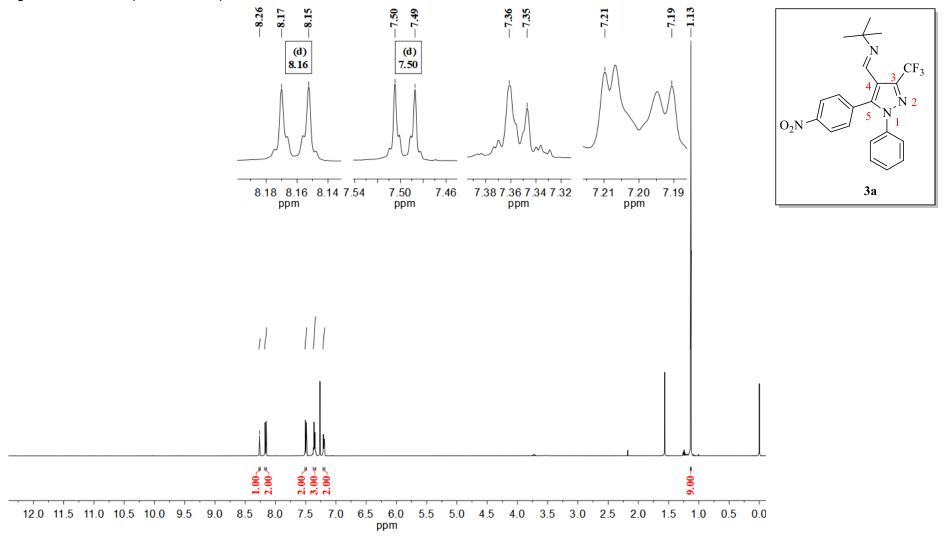



Figure S15 – 13 C NMR spectrum of compound 2f in CDCl₃ at 125.76 MHz.

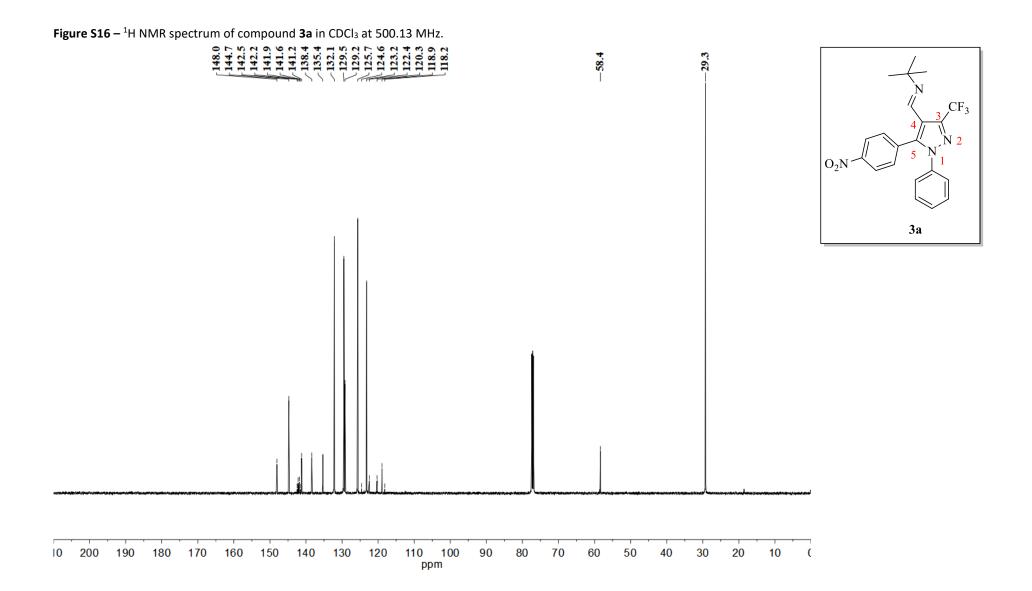


Figure S17 – 13 C NMR spectrum of compound 3a in CDCl₃ at 125.76 MHz.

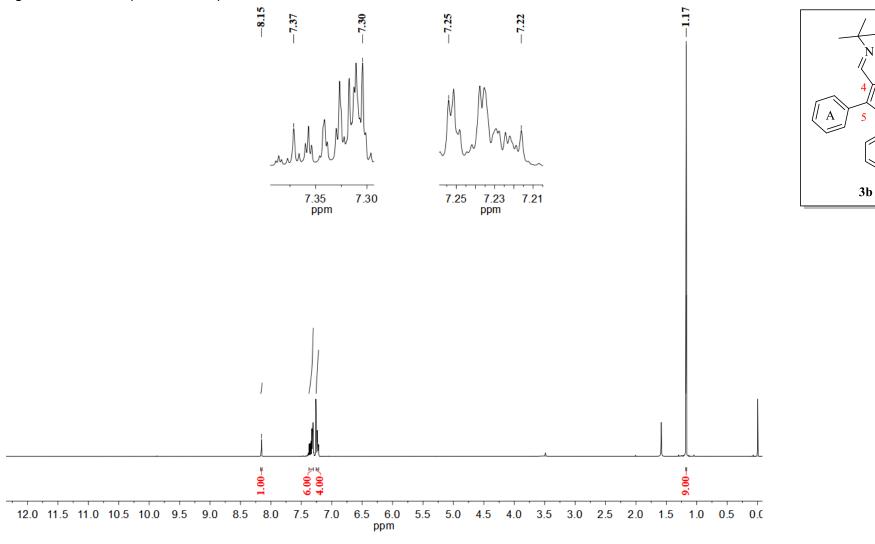
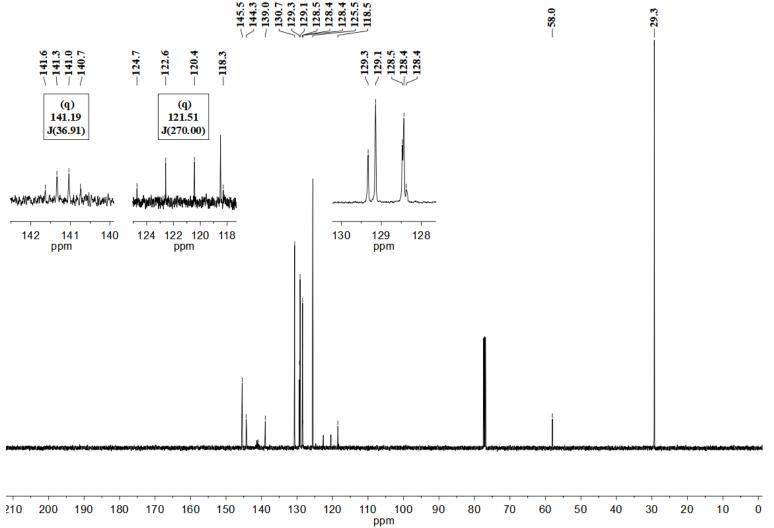
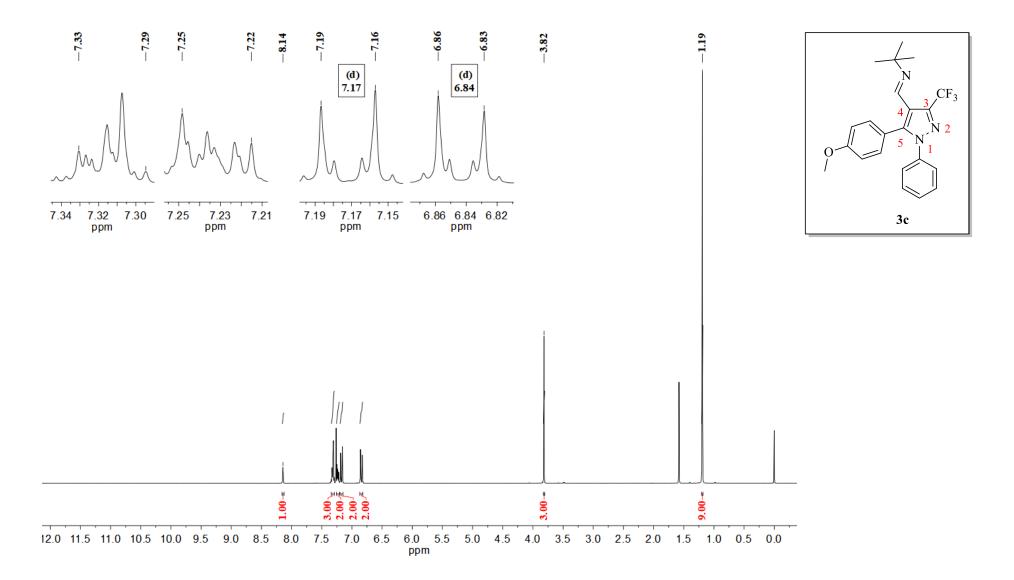



Figure S18 – ¹H NMR spectrum of compound 3b in CDCl₃ at 500.13 MHz.



 CF_3

3b

Figure S19 – 13 C NMR spectrum of compound 3b in CDCl₃ at 125.76 MHz.

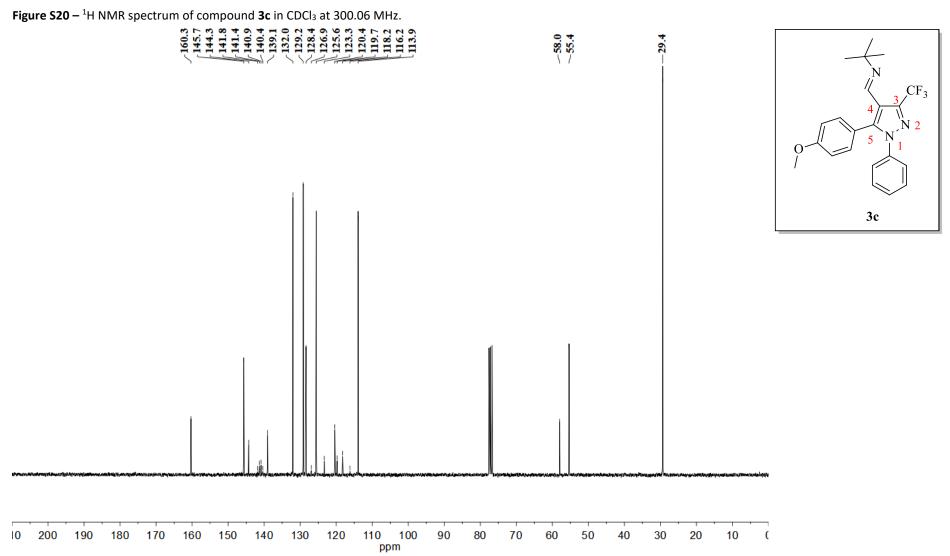


Figure S21 – 13 C NMR spectrum of compound 3c in CDCl₃ at 75.45 MHz.

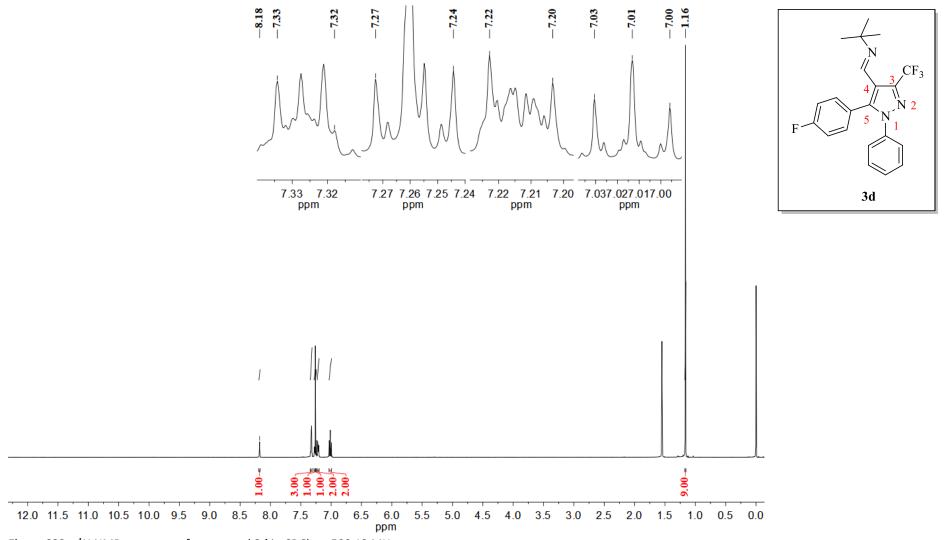


Figure S22 – 1 H NMR spectrum of compound 3d in CDCl₃ at 500.13 MHz.

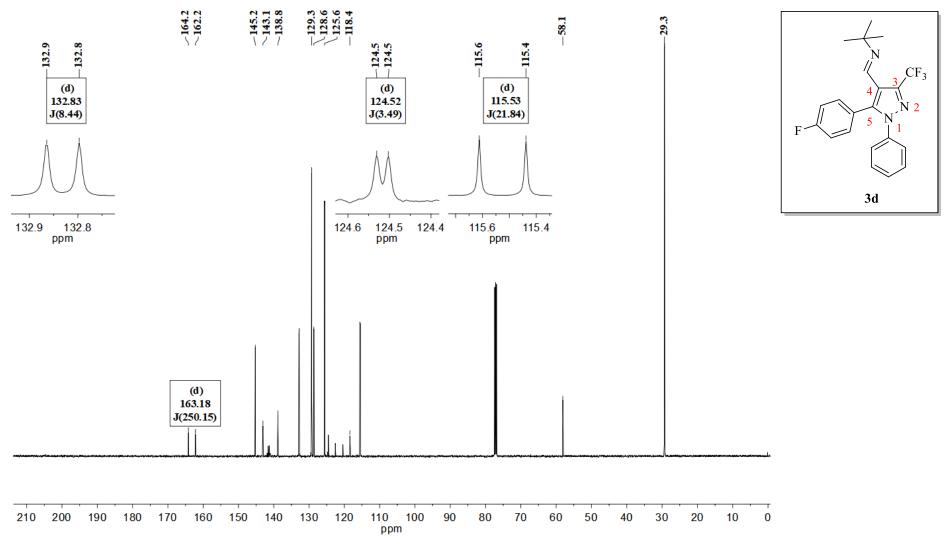
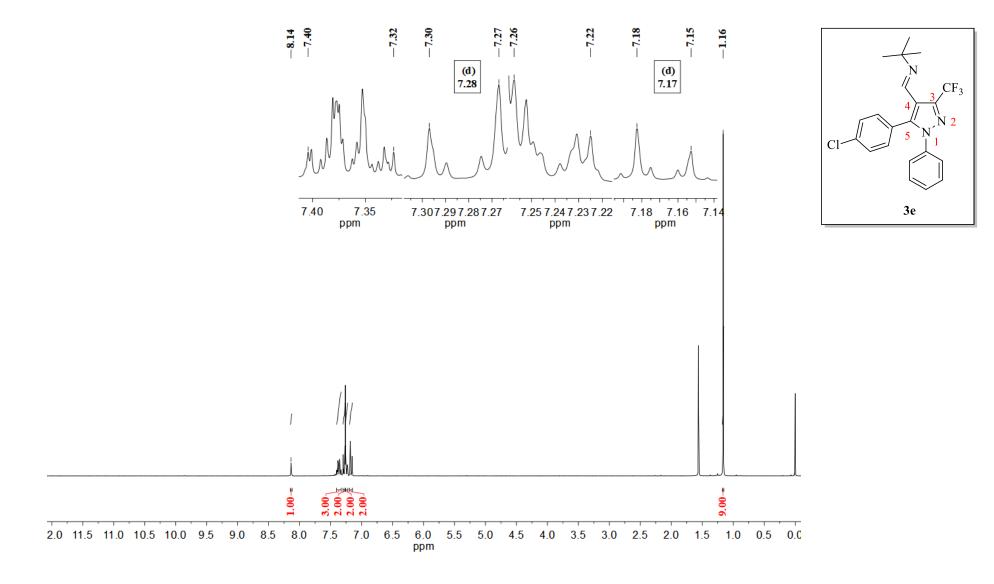



Figure S23 – 13 C NMR spectrum of compound 3d in CDCl₃ at 125.76 MHz.

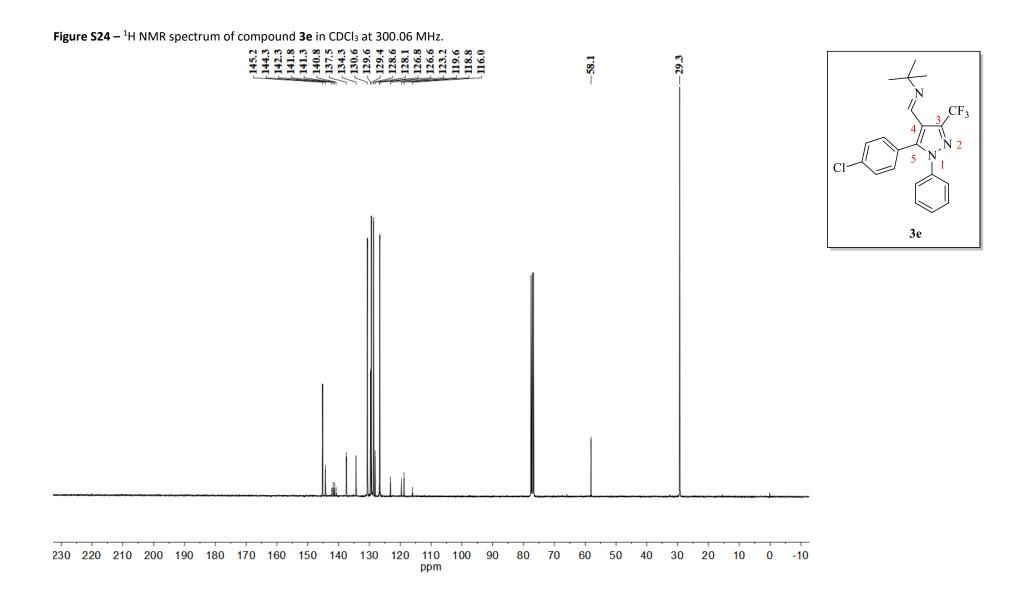
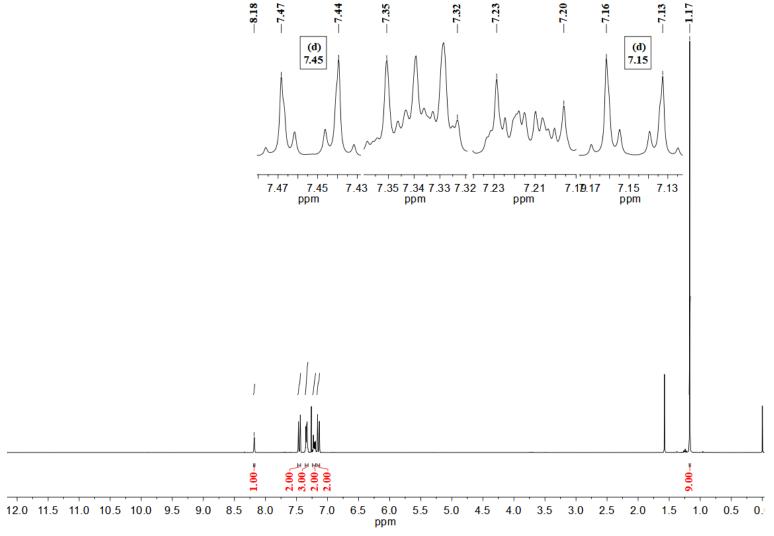
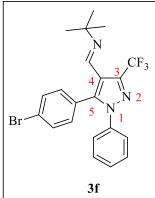




Figure S25 – 13 C NMR spectrum of compound 3e in CDCl₃ at 75.45 MHz.

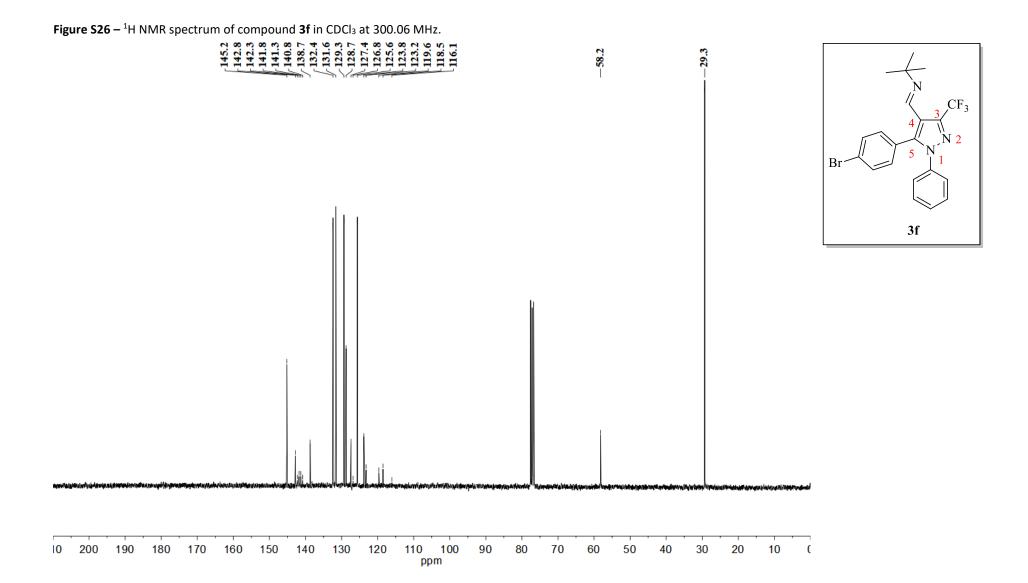


Figure S27 – 13 C NMR spectrum of compound 3f in CDCl₃ at 75.45 MHz. (d) 8.43 (d) 8.35 8.43 ppm 8.378.368.358.34 ppm 8.45 8.41 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ppm

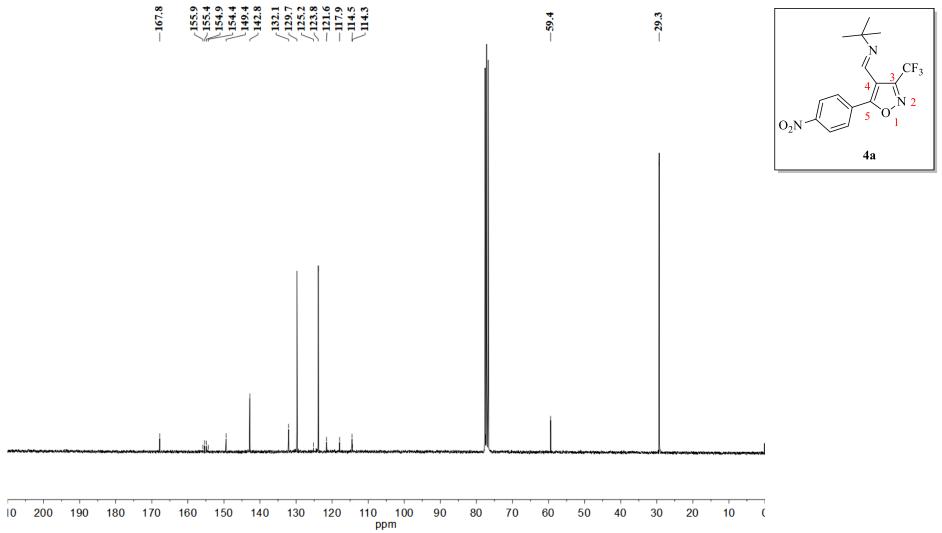
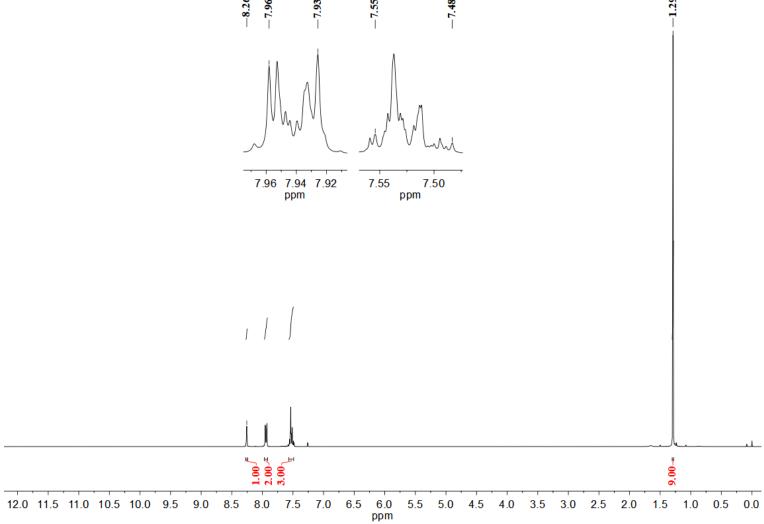
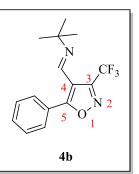
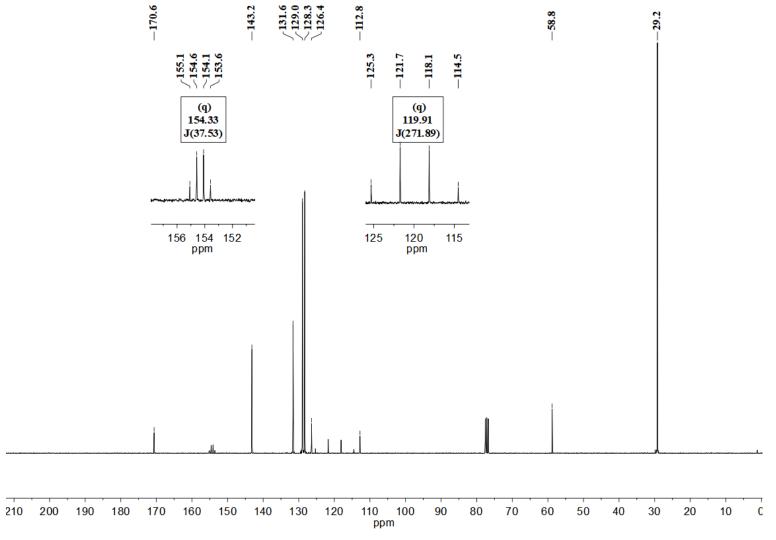





Figure S29 – ¹³C NMR spectrum of compound 4a in CDCl₃ at 75.45 MHz.

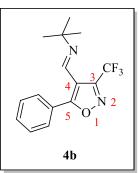
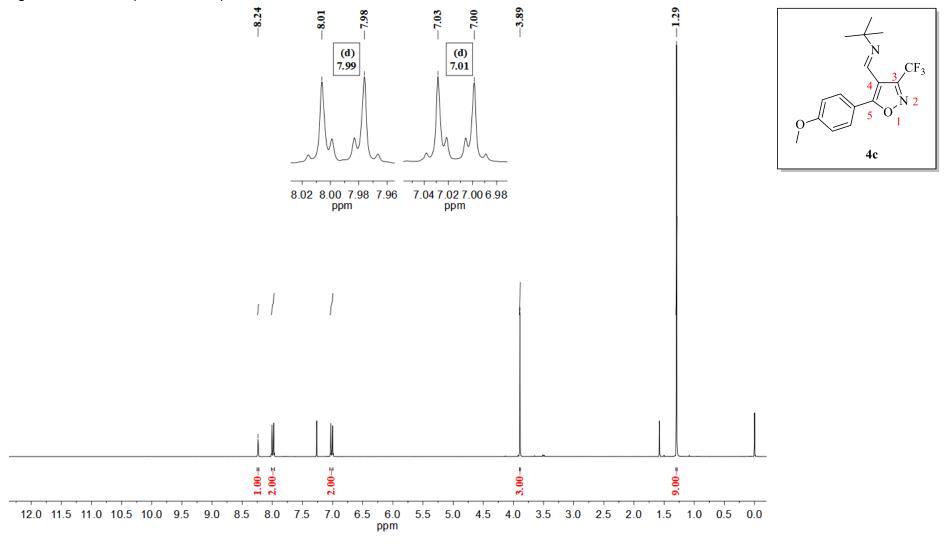



Figure S31 – 13 C NMR spectrum of compound 4b in CDCl₃ at 75.45 MHz.

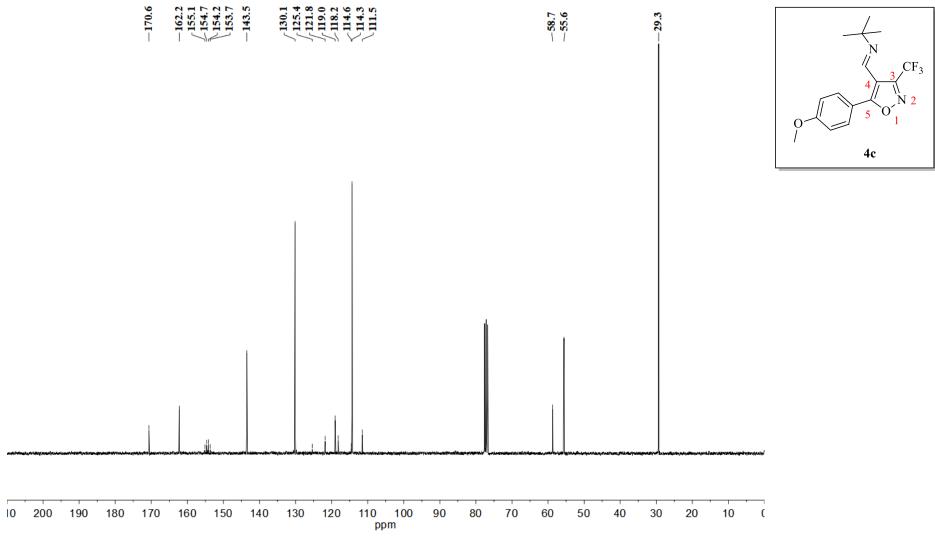
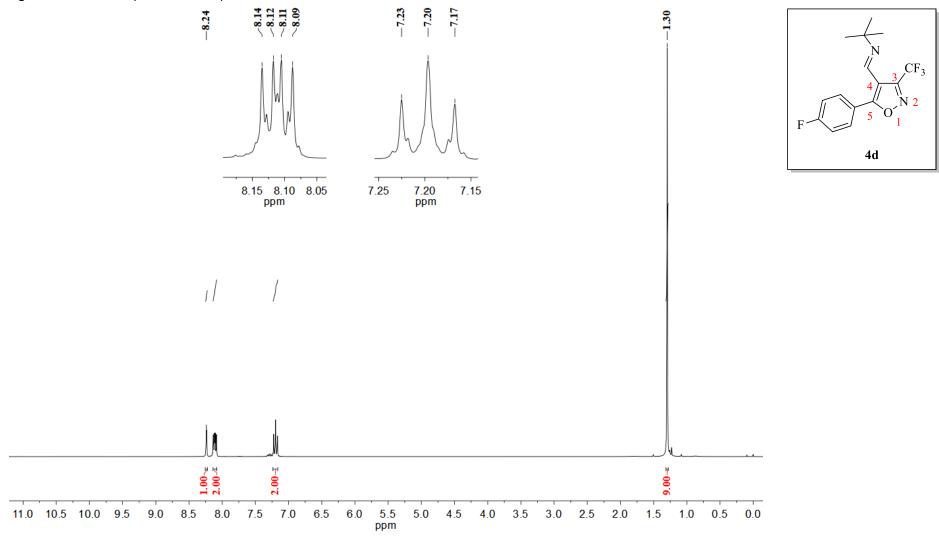
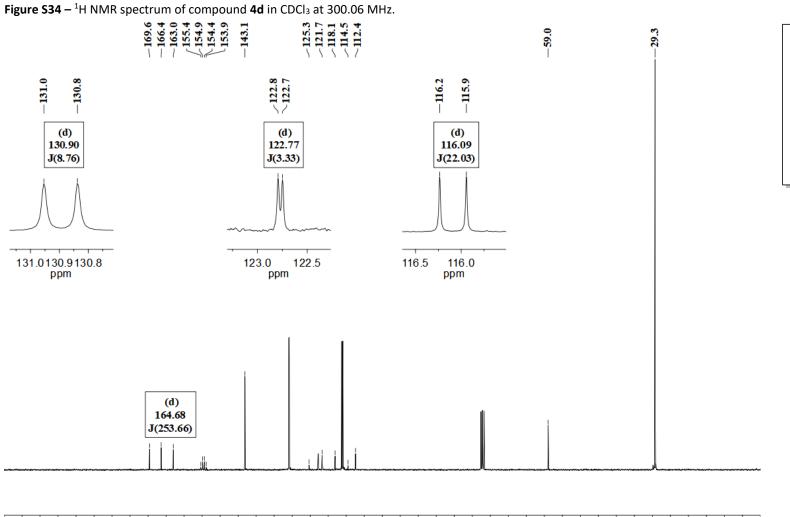




Figure S33 – 13 C NMR spectrum of compound 4c in CDCl₃ at 75.45 MHz.

110 100

4d

Figure S35 – ¹³C NMR spectrum of compound 4d in CDCl₃ at 75.45 MHz.

160 150 140 130 120

10 200 190 180 170

80

70

60

50

40

30

20

10

90

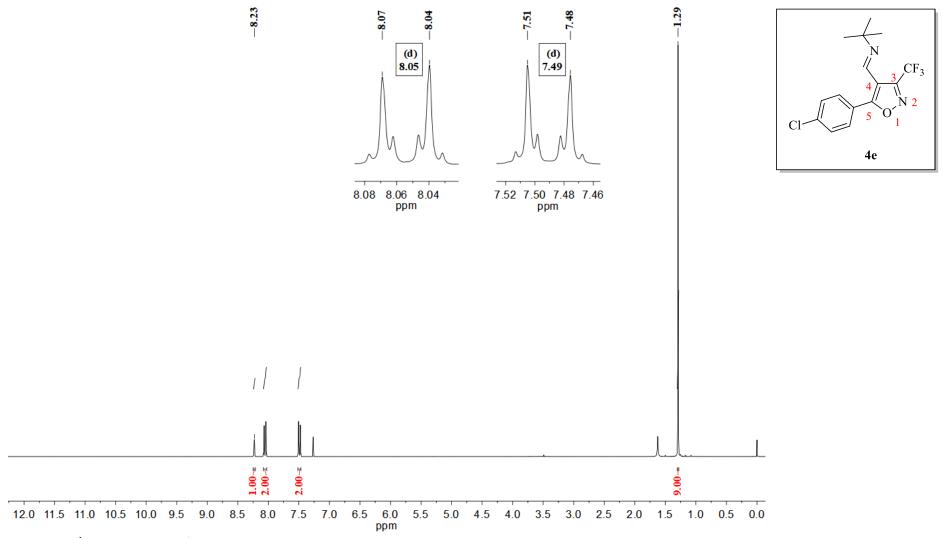
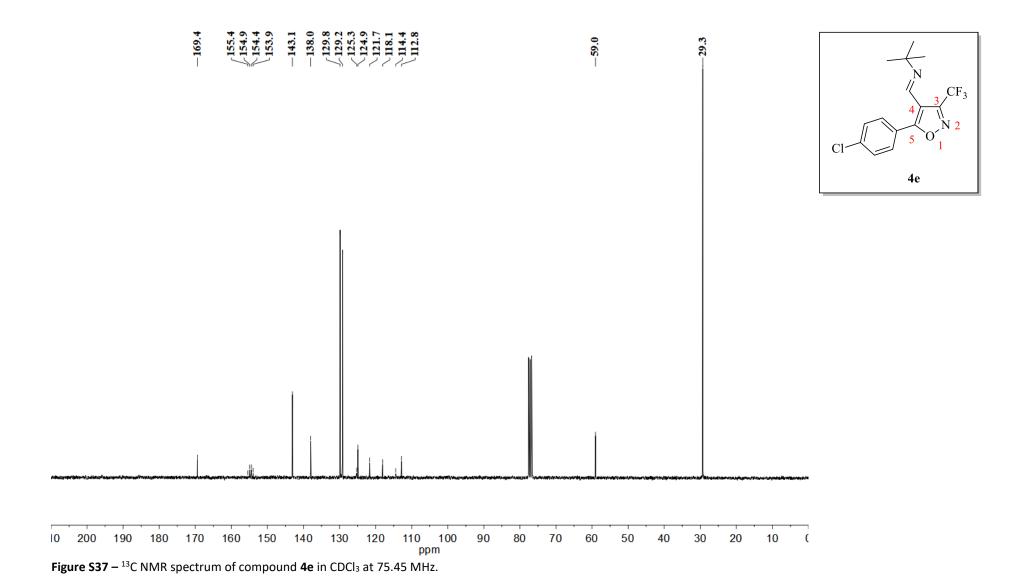



Figure S36 – 1 H NMR spectrum of compound 4e in CDCl₃ at 300.06 MHz.

S54

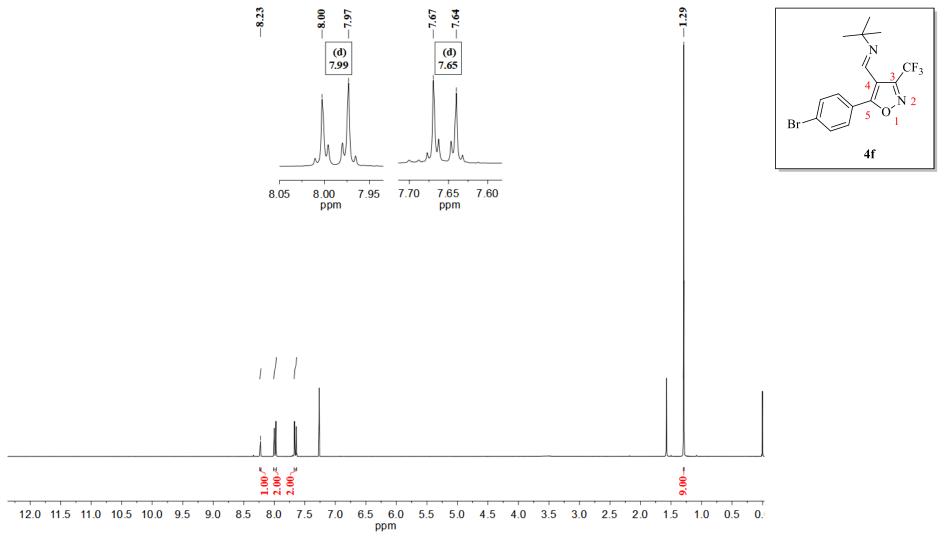


Figure S38 – ¹H NMR spectrum of compound 4f in CDCl₃ at 300.06 MHz.

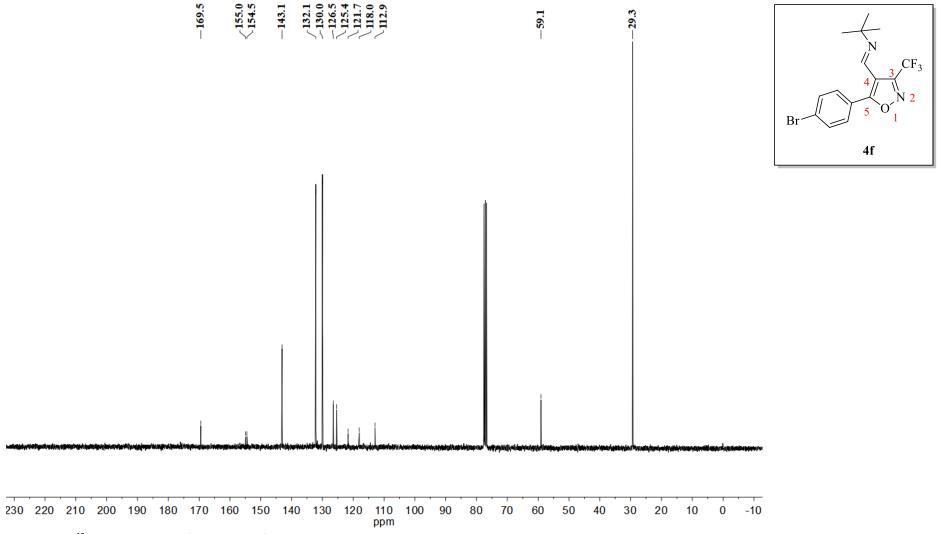


Figure S39 – 13 C NMR spectrum of compound 4f in CDCl₃ at 75.45 MHz.

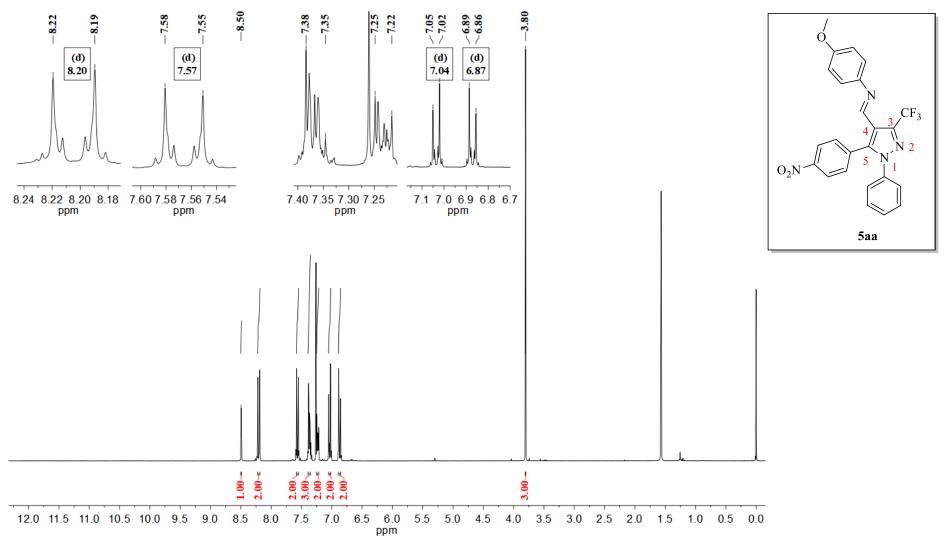


Figure S40 – ¹H NMR spectrum of compound 5aa in CDCl₃ at 300.06 MHz.

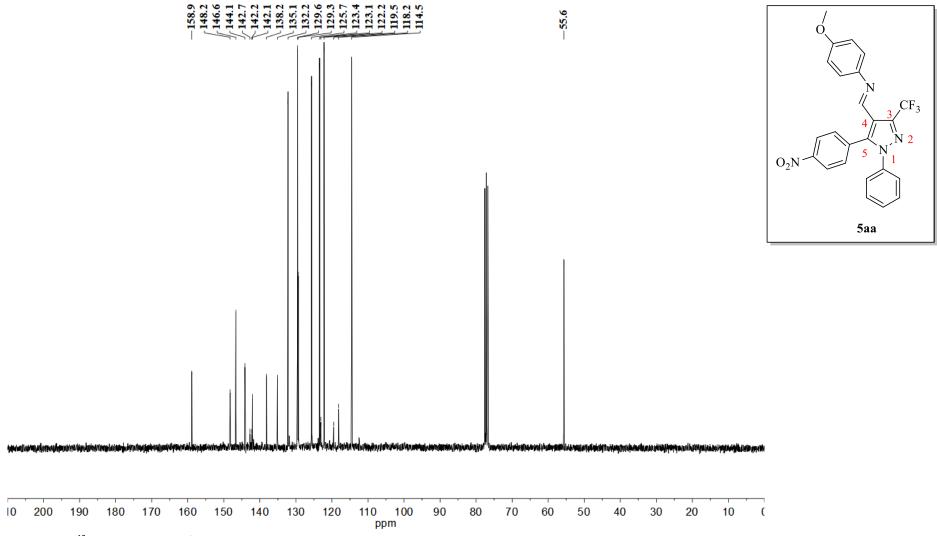


Figure S41 − ¹³C NMR spectrum of compound 5aa in CDCl₃ at 75.45 MHz.

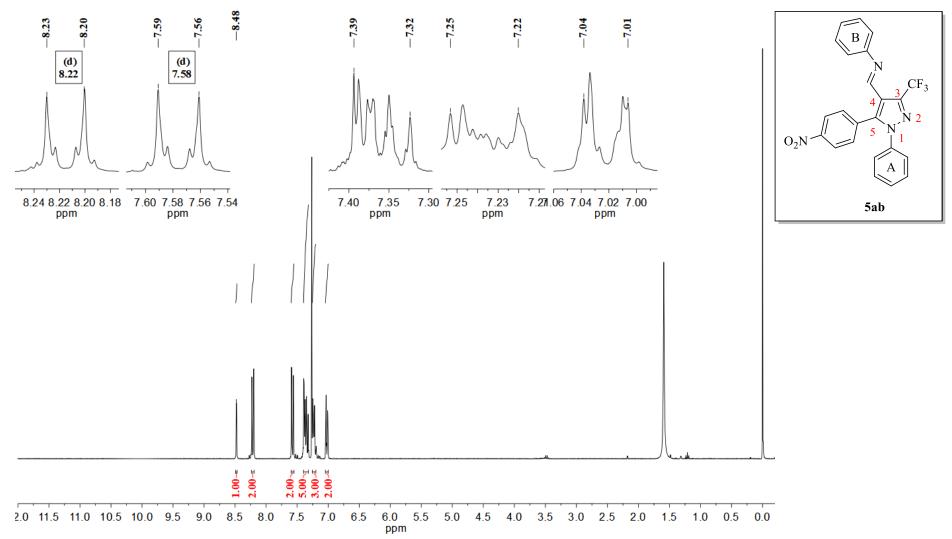


Figure S42 – ¹H NMR spectrum of compound 5ab in CDCl₃ at 300.06 MHz.

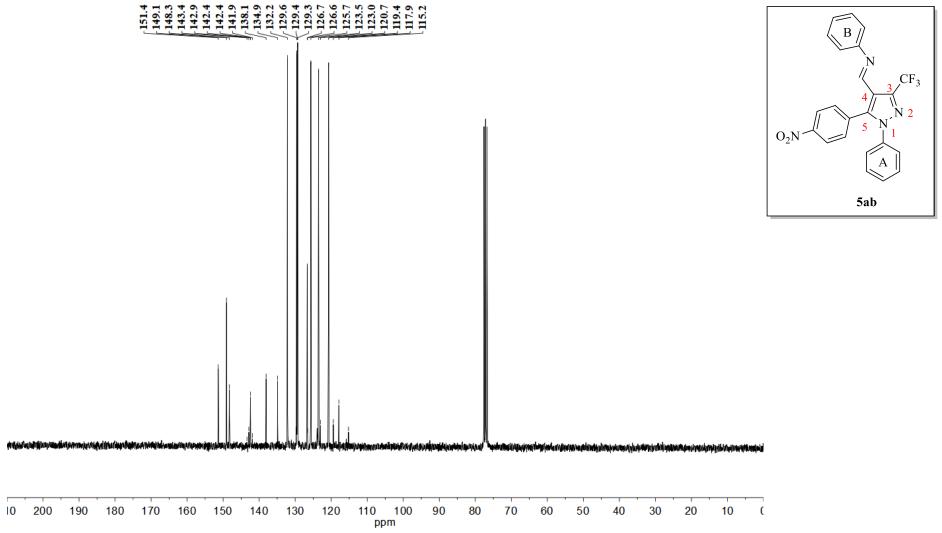


Figure S43 – 13 C NMR spectrum of compound 5ab in CDCl₃ at 75.45 MHz.

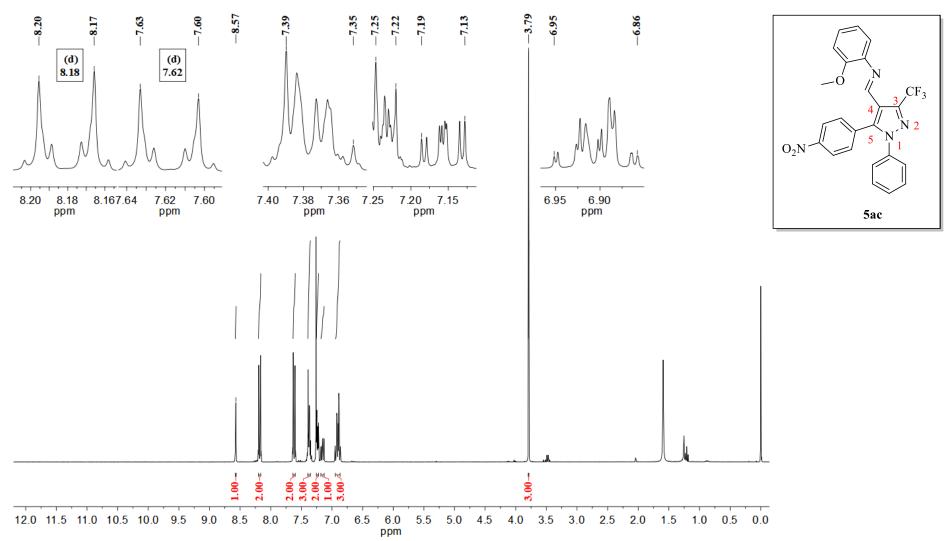


Figure S44 – ¹H NMR spectrum of compound 5ac in CDCl₃ at 300.06 MHz.

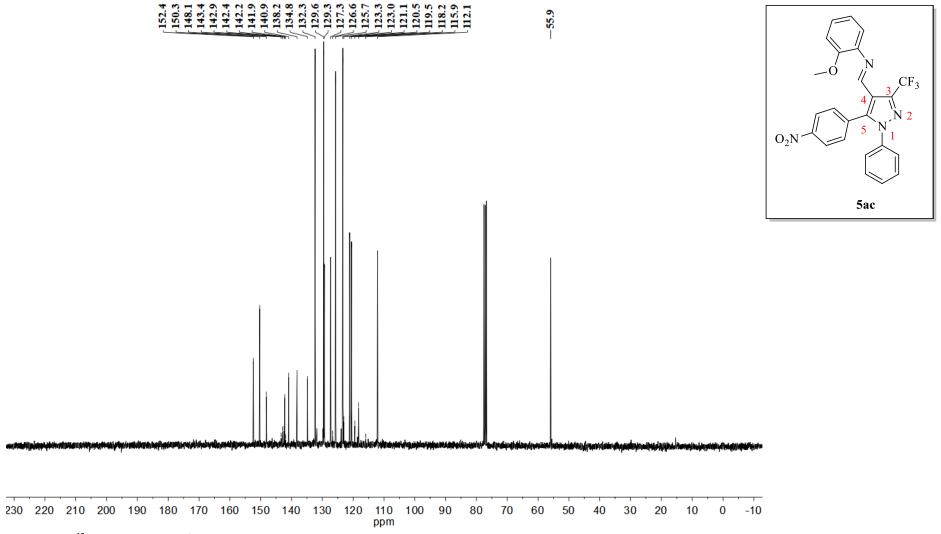


Figure S45 – 13 C NMR spectrum of compound **5ac** in CDCl₃ at 75.45 MHz.

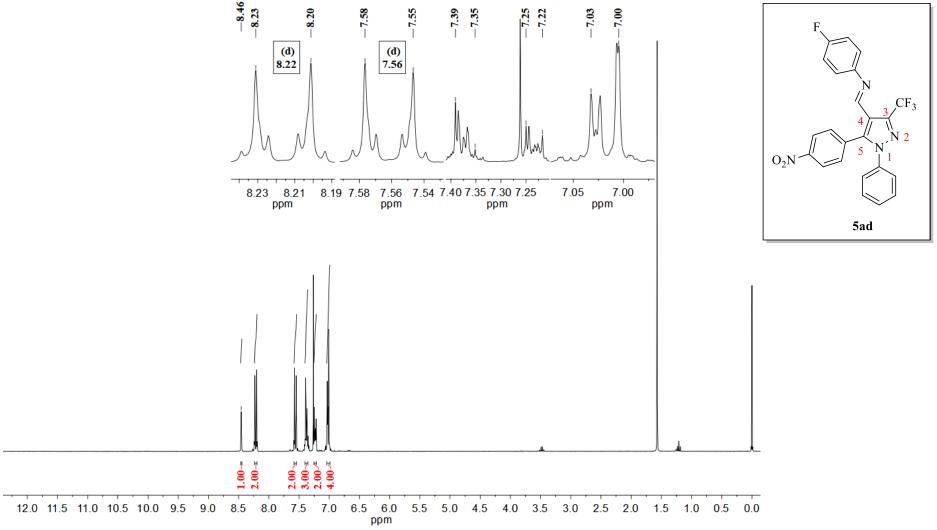


Figure S46 – ¹H NMR spectrum of compound 5ad in CDCl₃ at 300.06 MHz.

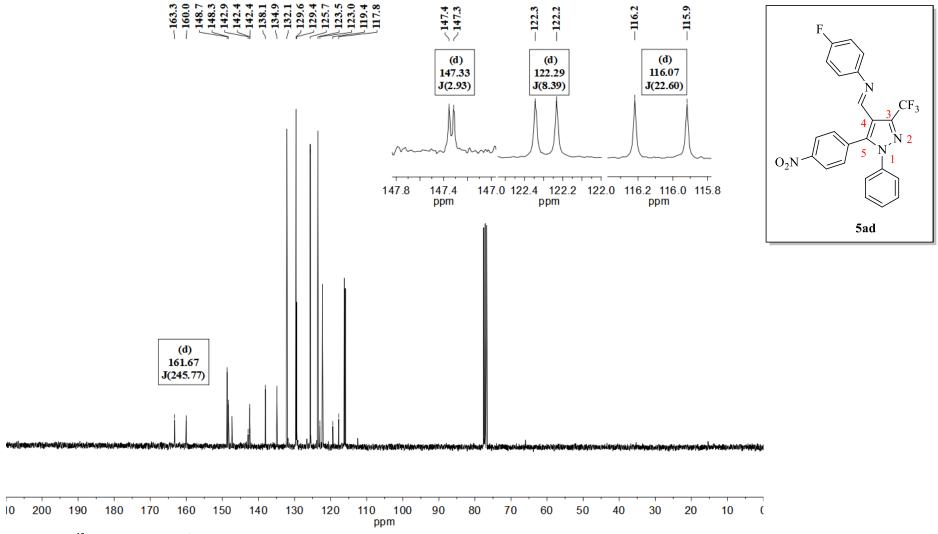


Figure S47 – 13 C NMR spectrum of compound 5ad in CDCl₃ at 75.45 MHz.

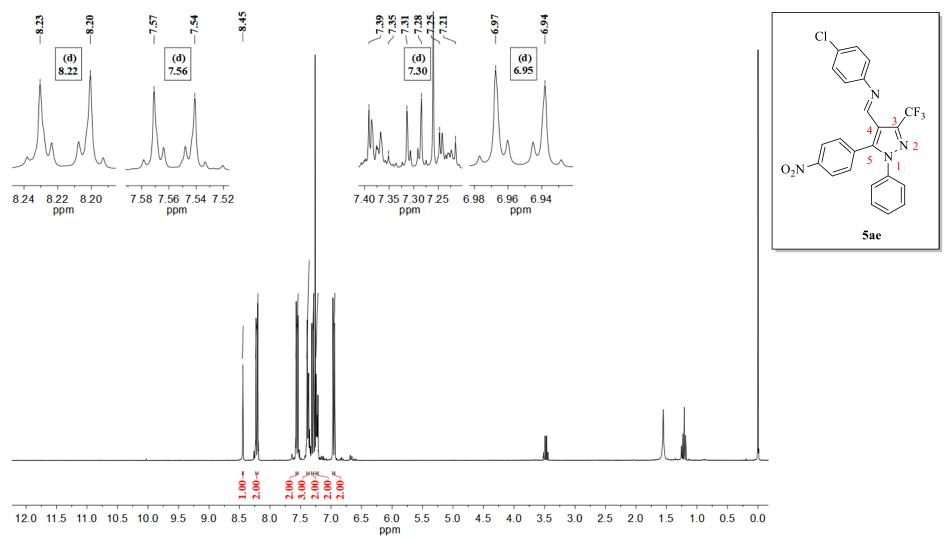


Figure S48 – ¹H NMR spectrum of compound 5ae in CDCl₃ at 300.06 MHz.

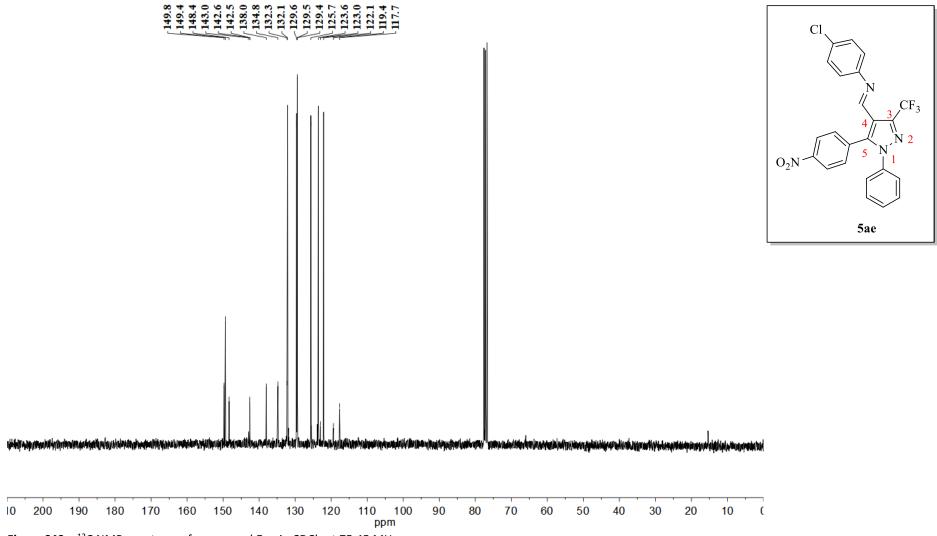


Figure S49 – 13 C NMR spectrum of compound 5ae in CDCl₃ at 75.45 MHz.

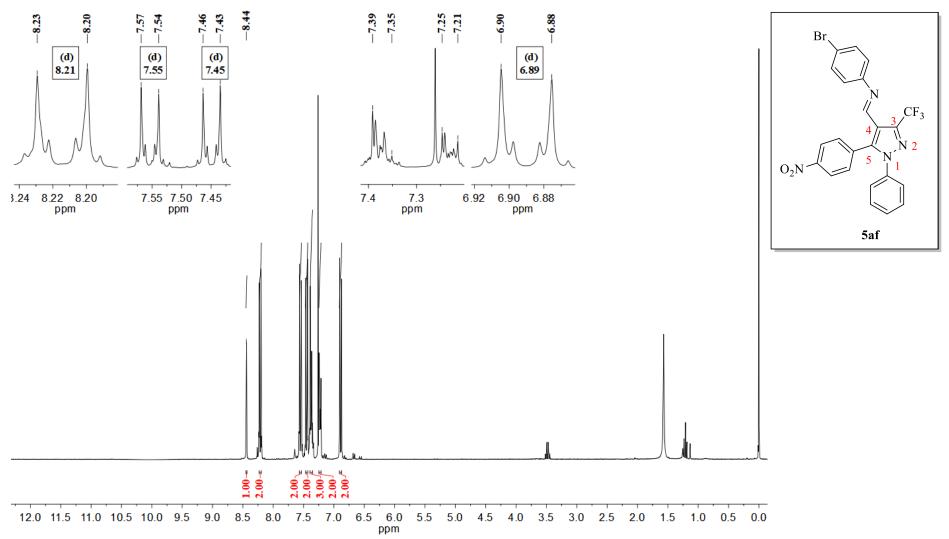


Figure S50 – ¹H NMR spectrum of compound 5af in CDCl₃ at 300.06 MHz.

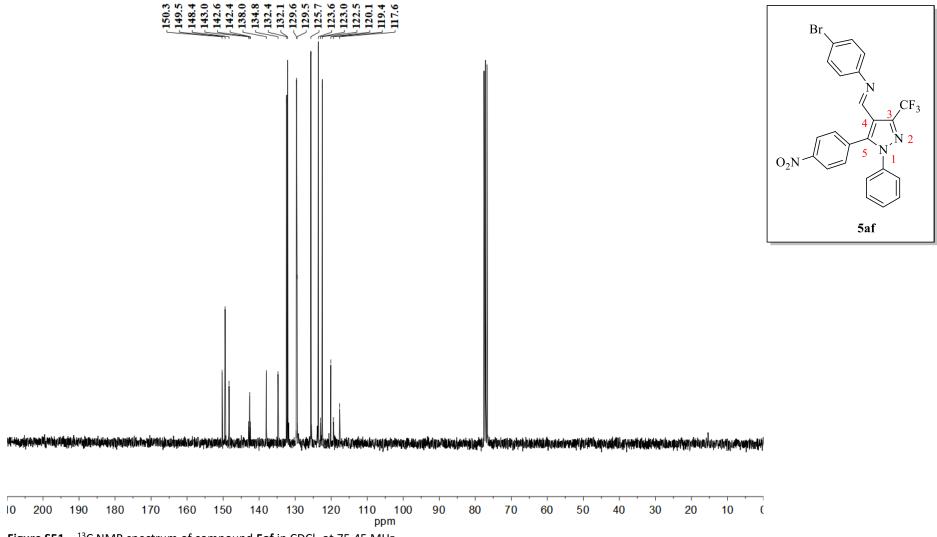
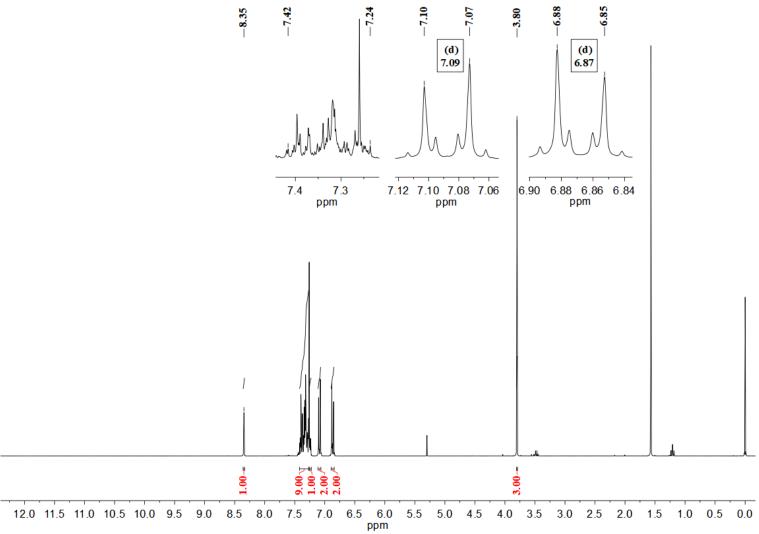
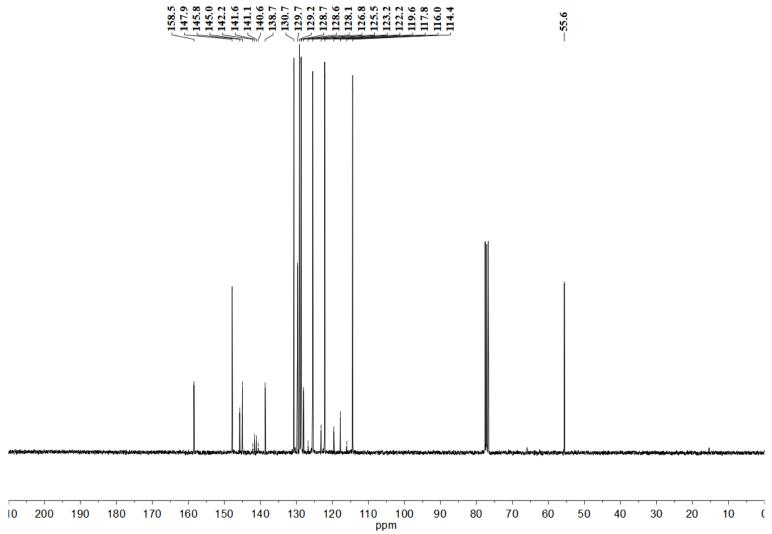




Figure S51 – 13 C NMR spectrum of compound 5af in CDCl₃ at 75.45 MHz.

5ba

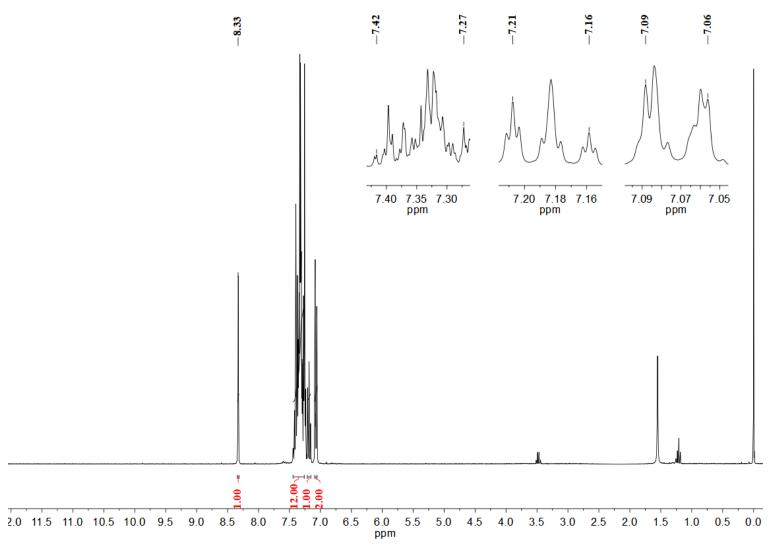
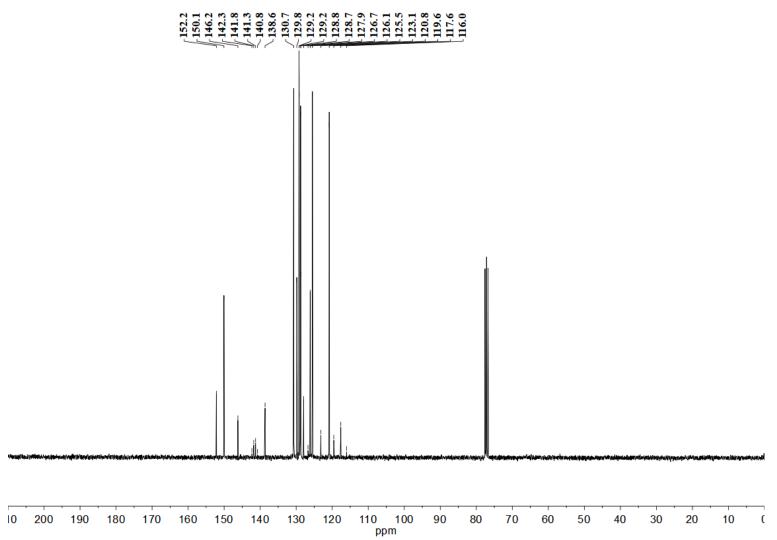

Figure S52 – 1 H NMR spectrum of compound 5ba in CDCl₃ at 300.06 MHz.

Figure S53 − ¹³C NMR spectrum of compound **5ba** in CDCl₃ at 75.45 MHz.

 $\mathcal{C}F_3$

5ba



CF₃

A

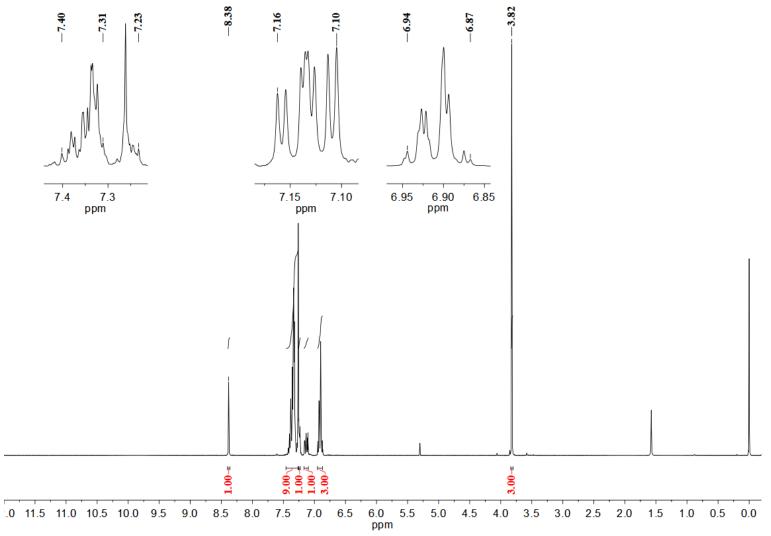
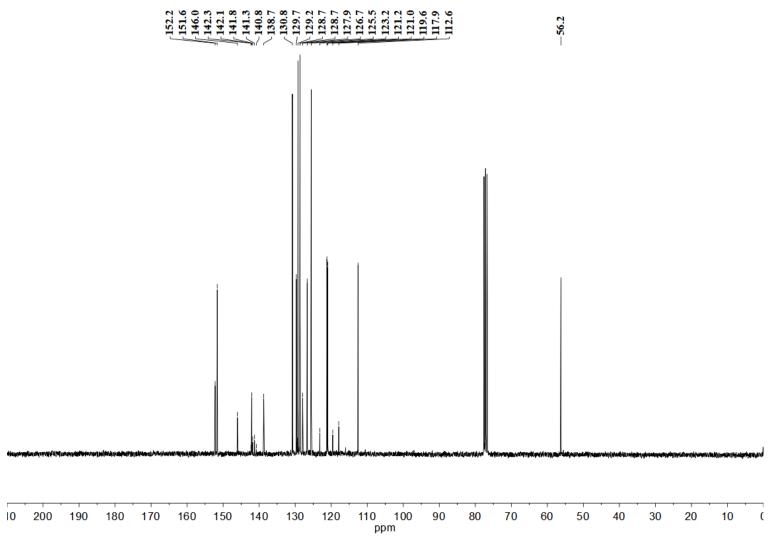
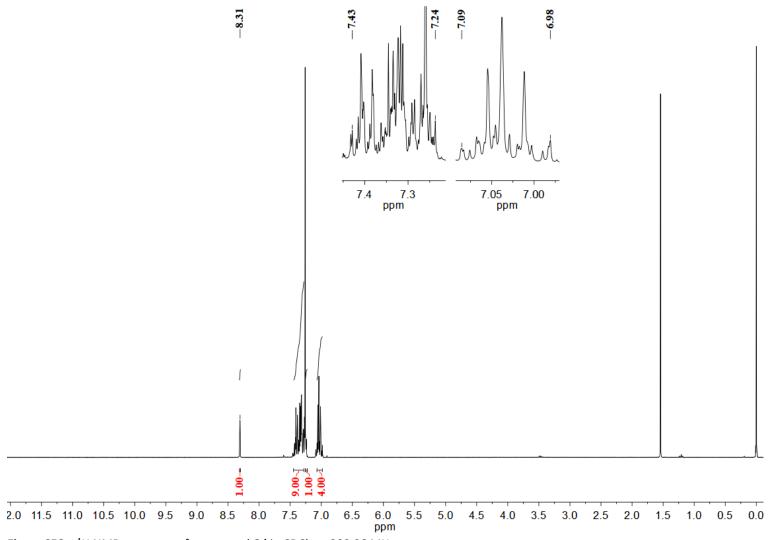

Sbb

Figure S54 – ¹H NMR spectrum of compound 5bb in CDCl₃ at 300.06 MHz.


Figure S55 – 13 C NMR spectrum of compound **5bb** in CDCl₃ at 75.45 MHz.

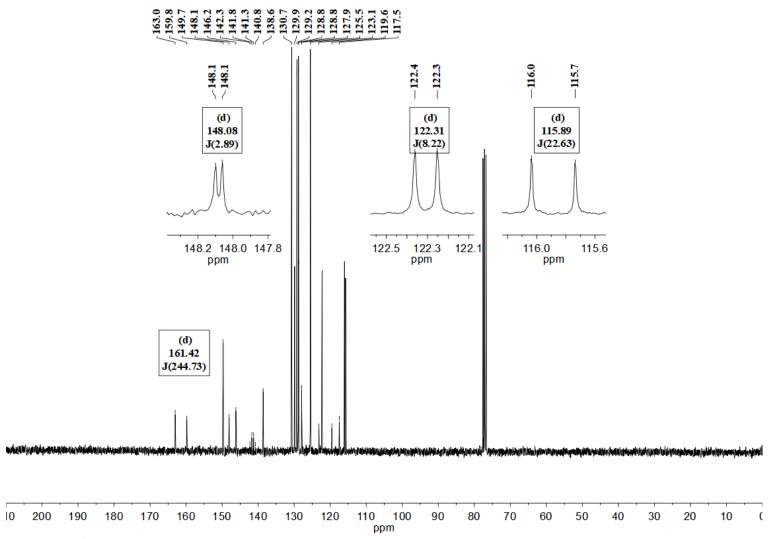
5bb


Figure S56 − ¹H NMR spectrum of compound **5bc** in CDCl₃ at 300.06 MHz.

5bc

Figure S57 – 13 C NMR spectrum of compound **5bc** in CDCl₃ at 75.45 MHz.

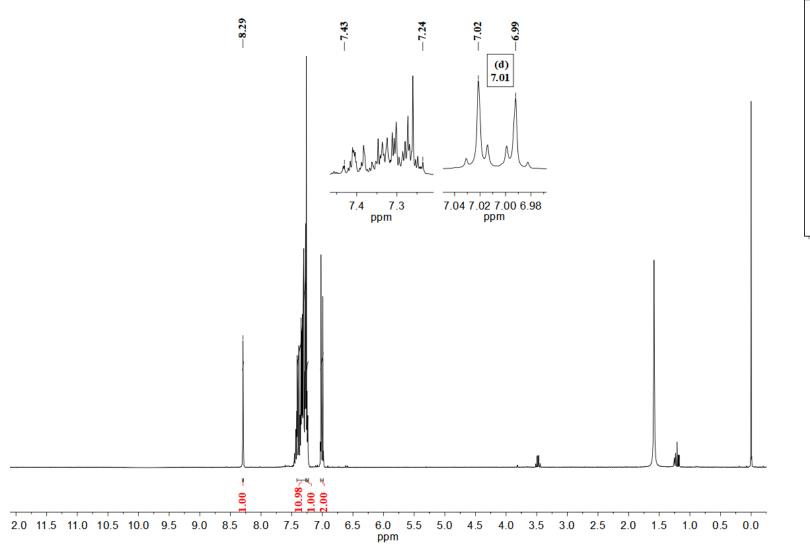
5bc



F N CF₃

A 5 N 1

B 5 bd


Figure S58 – 1 H NMR spectrum of compound 6d in CDCl₃ at 300.06 MHz.

 CF_3

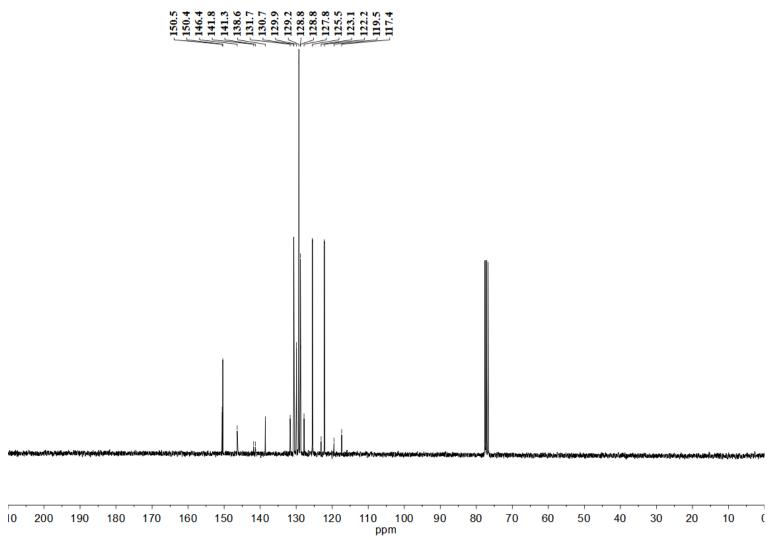
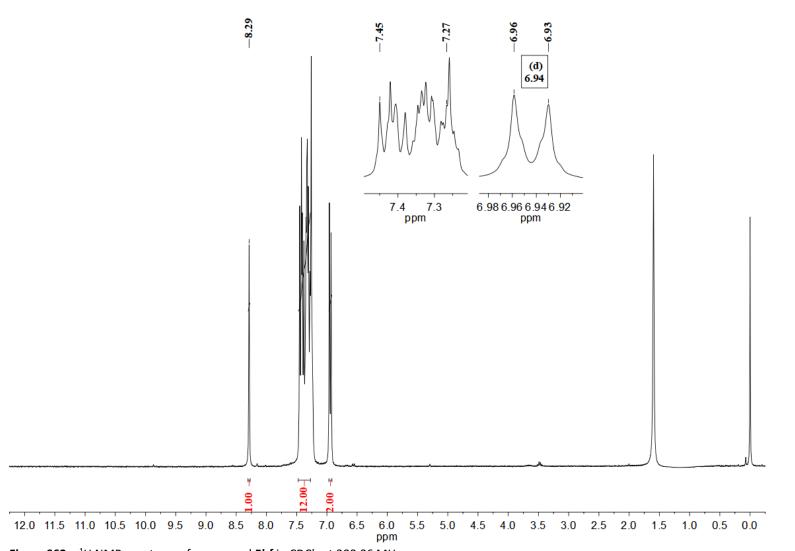
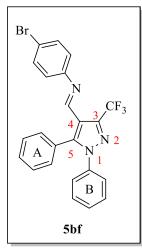
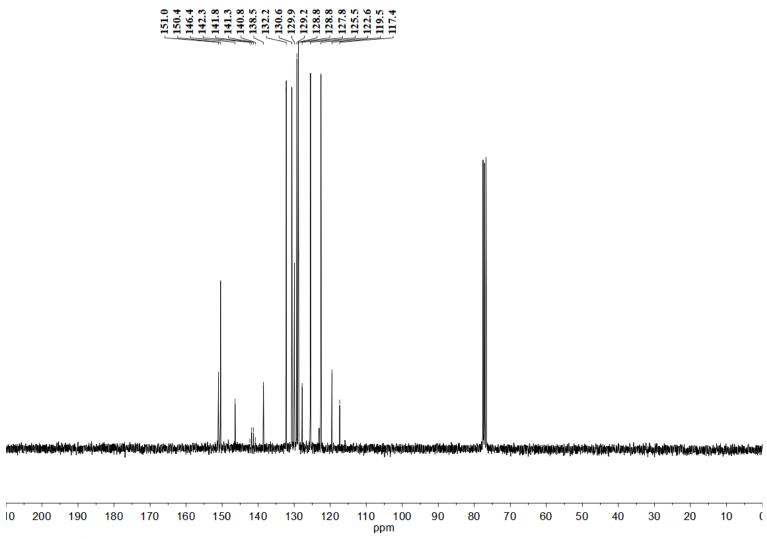

5bd

Figure S59 – 13 C NMR spectrum of compound 5bd in CDCl₃ at 75.45 MHz.


Figure S60 − ¹H NMR spectrum of compound **5be** in CDCl₃ at 300.06 MHz.


5be


Figure S61 – 13 C NMR spectrum of compound **5be** in CDCl₃ at 75.45 MHz.

5be

Figure S62 − ¹H NMR spectrum of compound **5bf** in CDCl₃ at 300.06 MHz.

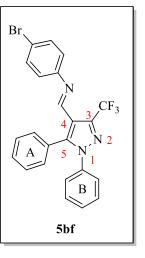


Figure S63 – 13 C NMR spectrum of compound 5bf in CDCl₃ at 75.45 MHz.

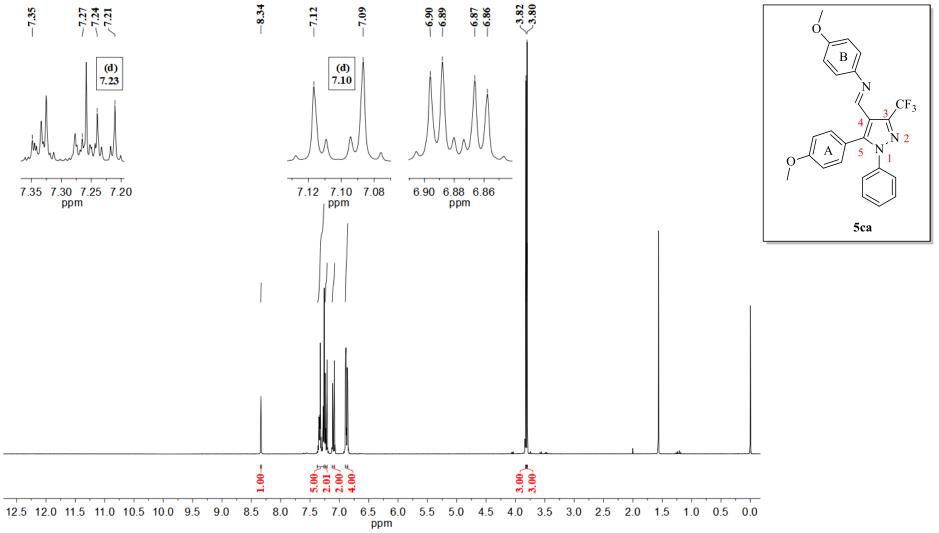
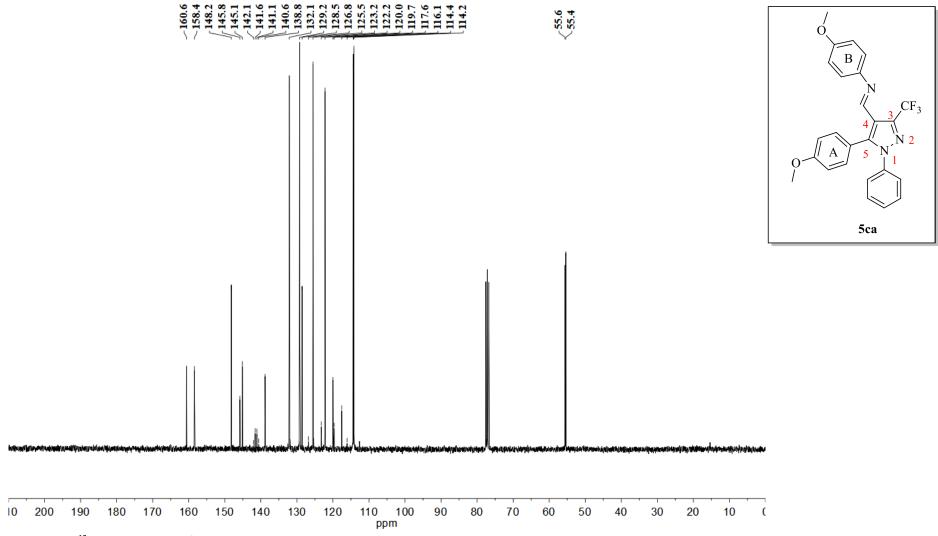



Figure S64 – ¹H NMR spectrum of compound 5ca in CDCl₃ at 300.06 MHz.

Figure S65 − ¹³C NMR spectrum of compound **5ca** in CDCl₃ at 75.45 MHz.

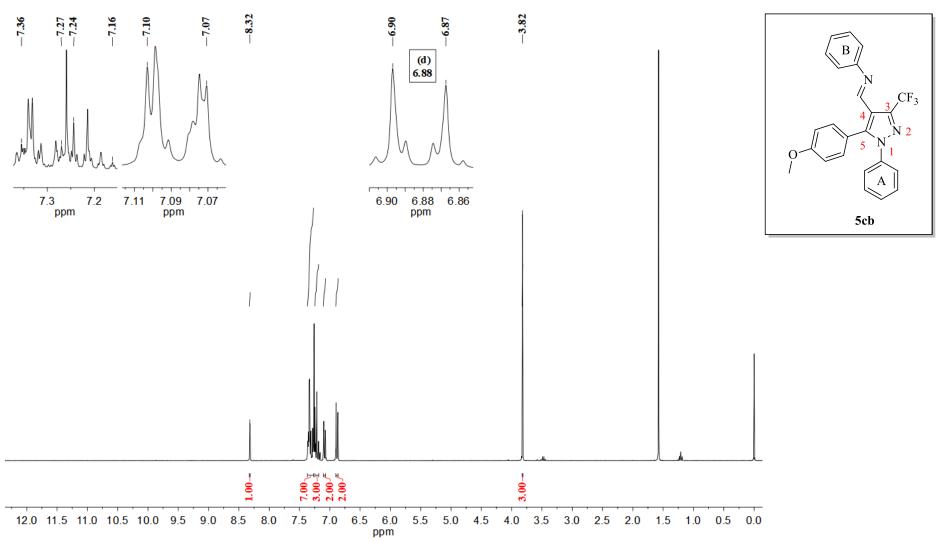
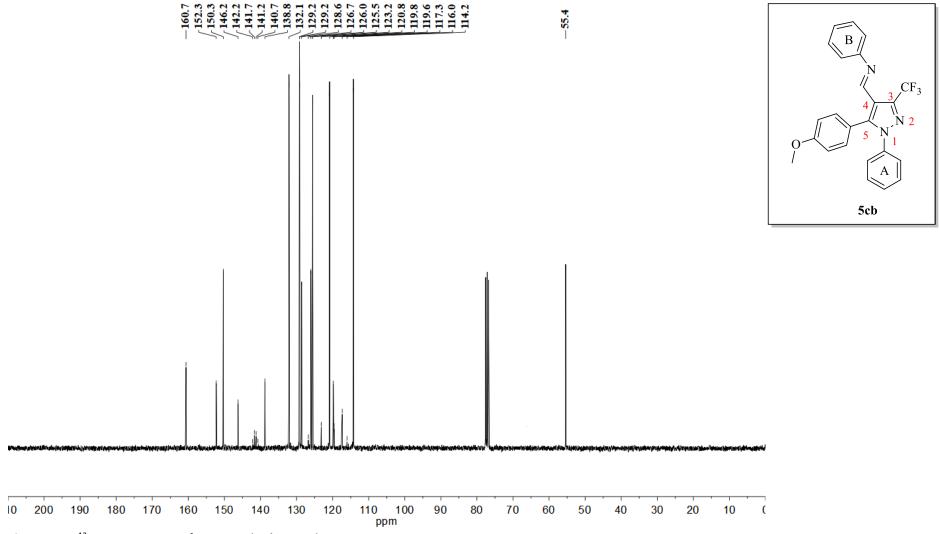



Figure S66 – ¹H NMR spectrum of compound 5cb in CDCl₃ at 300.06 MHz.

Figure S67 − ¹³C NMR spectrum of compound **5cb** in CDCl₃ at 75.45 MHz.

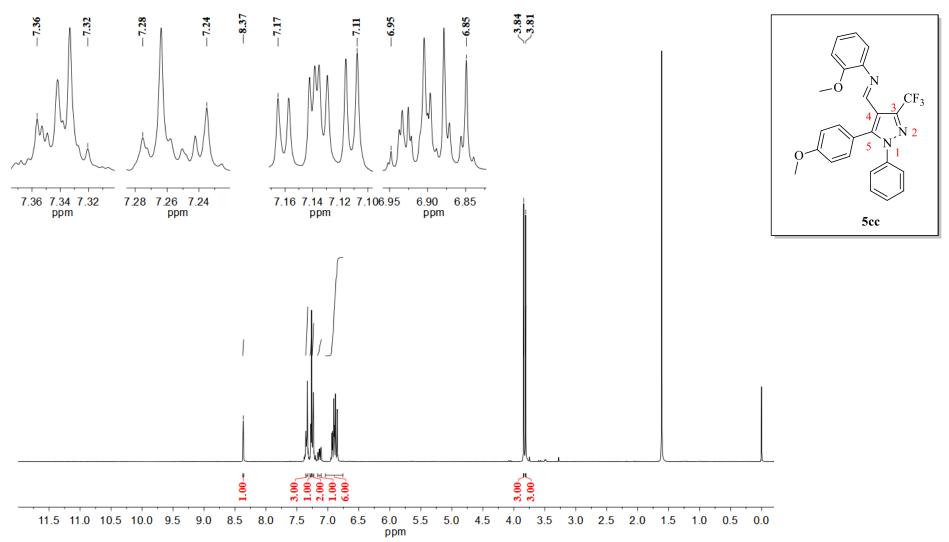


Figure S68 – ¹H NMR spectrum of compound 5cc in CDCl₃ at 300.06 MHz.

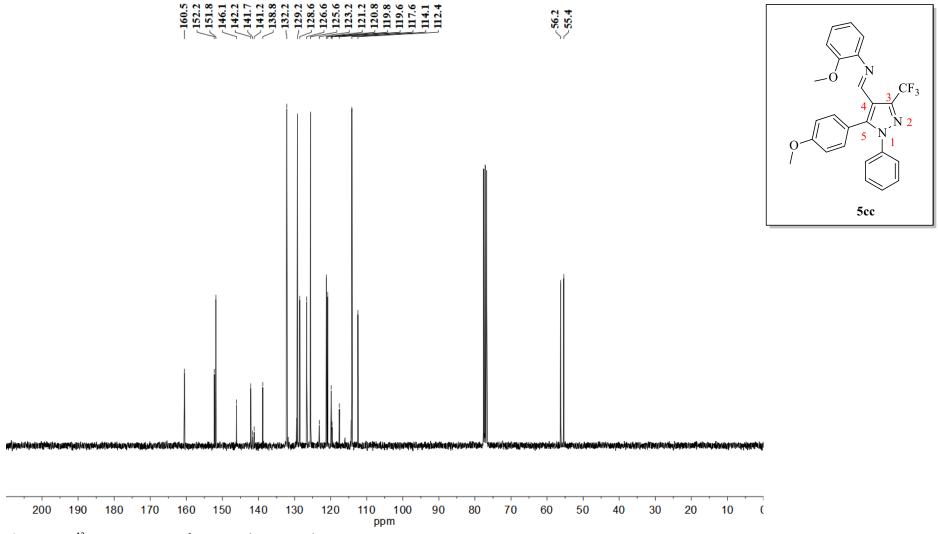
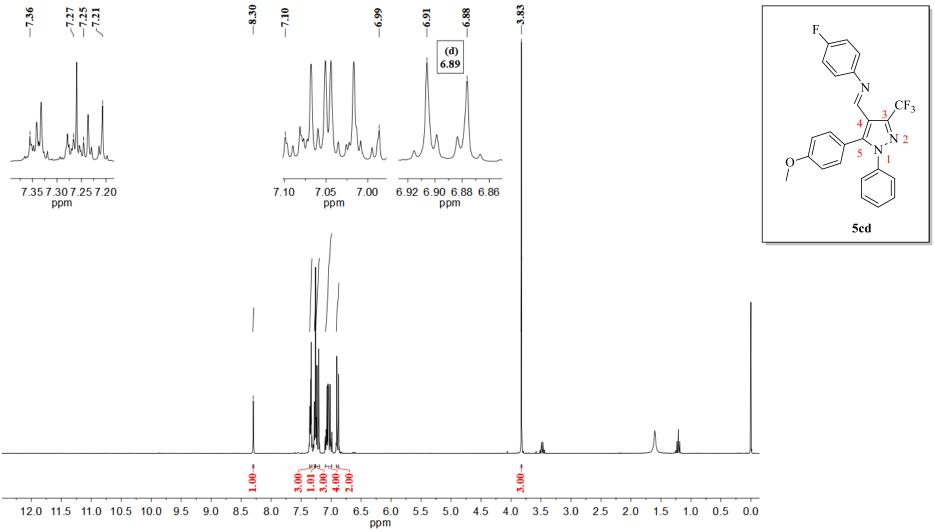



Figure S69 – 13 C NMR spectrum of compound 5cc in CDCl₃ at 75.45 MHz.

Figure S70 − ¹H NMR spectrum of compound **5cd** in CDCl₃ at 300.06 MHz.

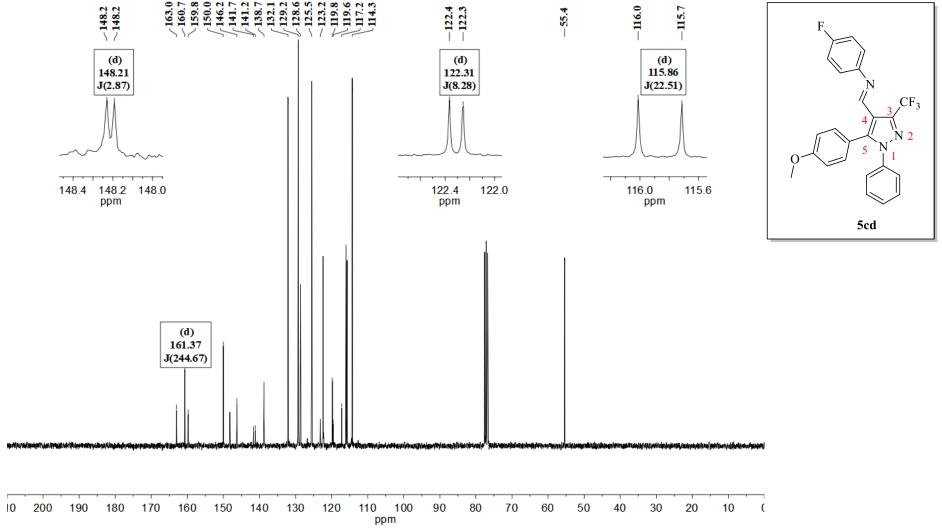


Figure S71 – 13 C NMR spectrum of compound 5cd in CDCl₃ at 75.45 MHz.

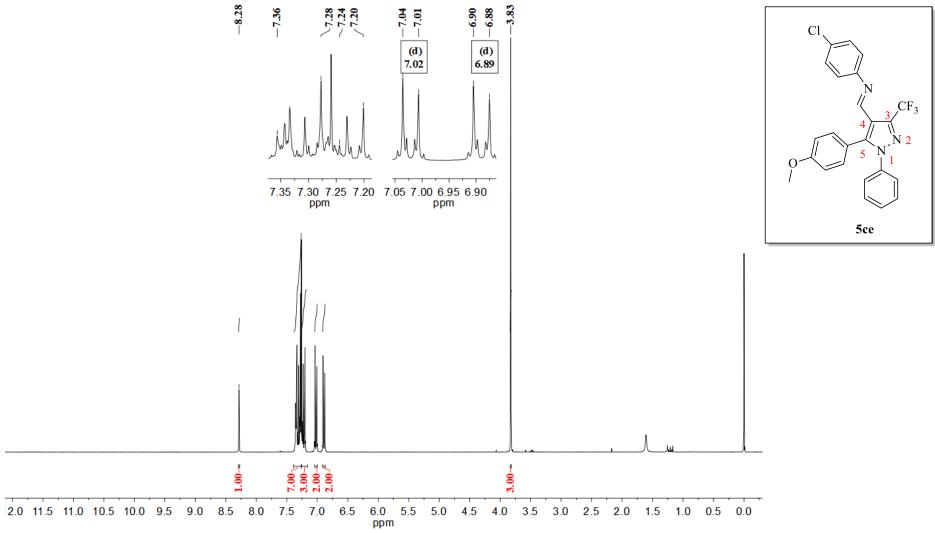


Figure S72 – ¹H NMR spectrum of compound 5ce in CDCl₃ at 300.06 MHz.

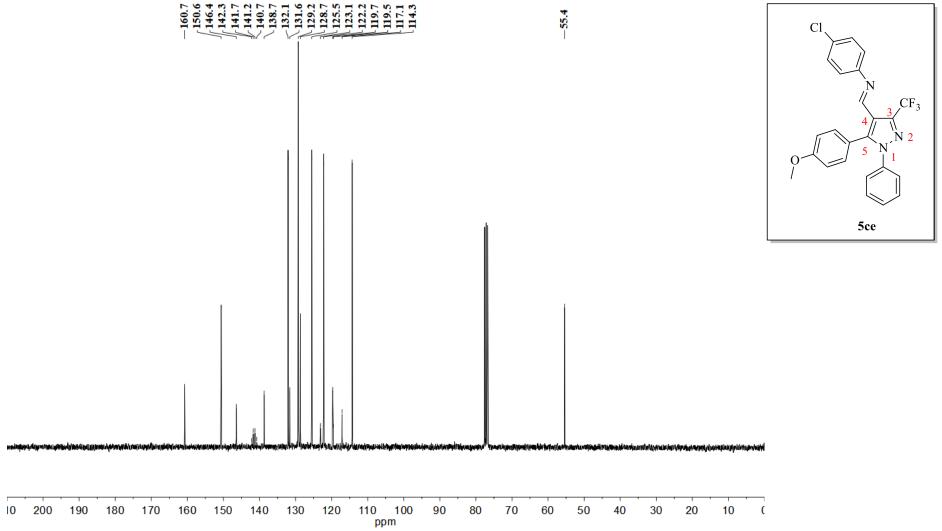


Figure S73– 13 C NMR spectrum of compound 5ce in CDCl₃ at 75.45 MHz.

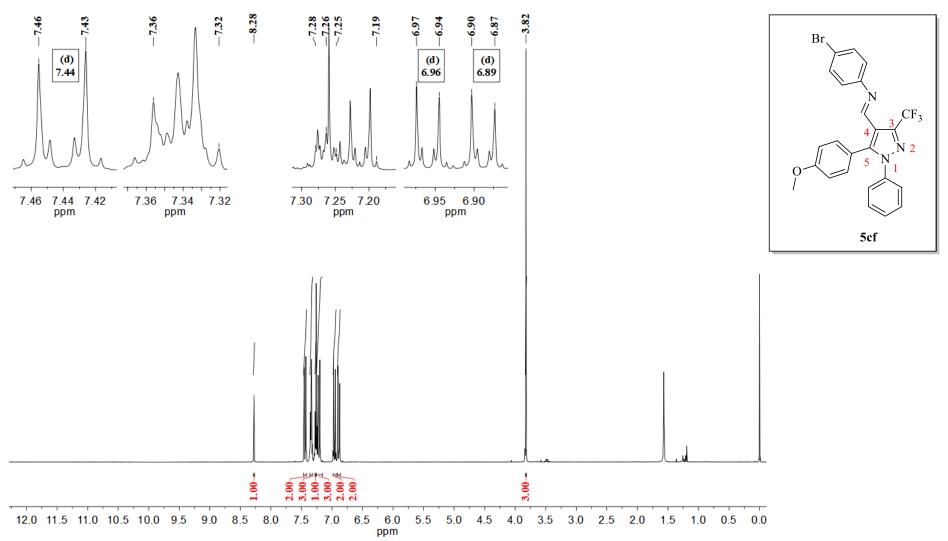


Figure S74 – ¹H NMR spectrum of compound 5cf in CDCl₃ at 300.06 MHz.

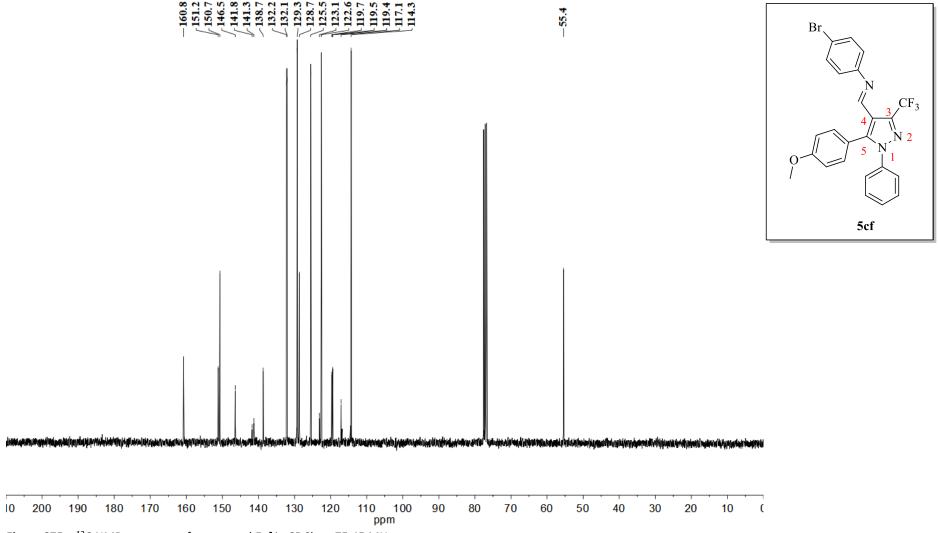


Figure S75 – 13 C NMR spectrum of compound 5cf in CDCl₃ at 75.45 MHz.

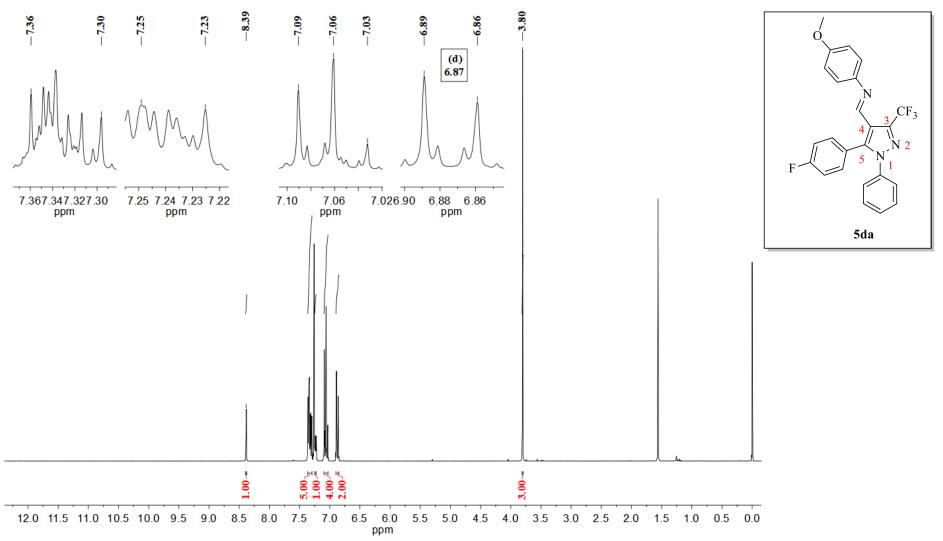


Figure S76 – 1 H NMR spectrum of compound 5da in CDCl₃ at 300.06 MHz.

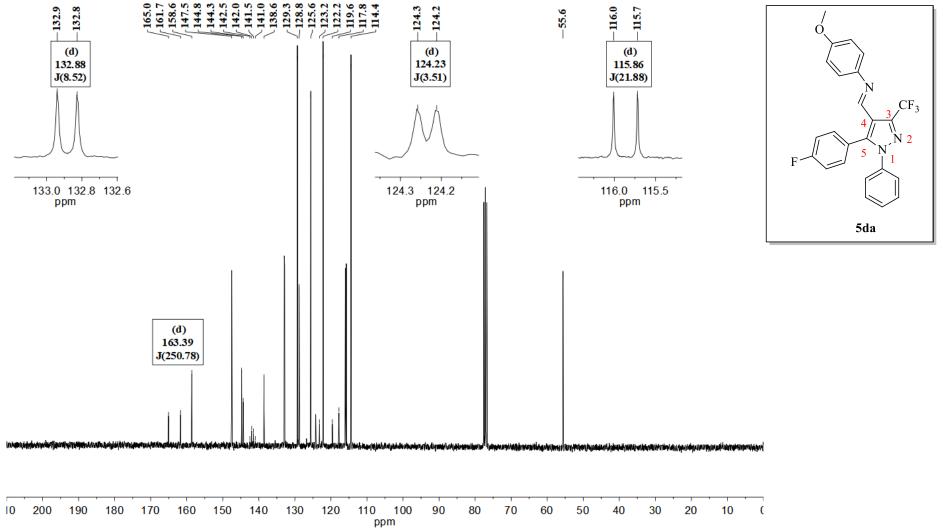


Figure S77 – ¹³C NMR spectrum of compound **5da** in CDCl₃ at 75.45 MHz.

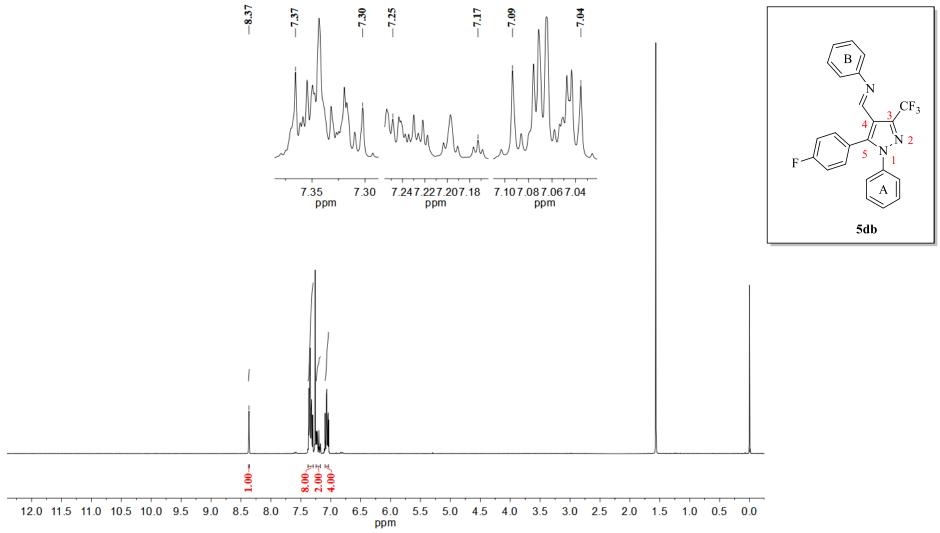
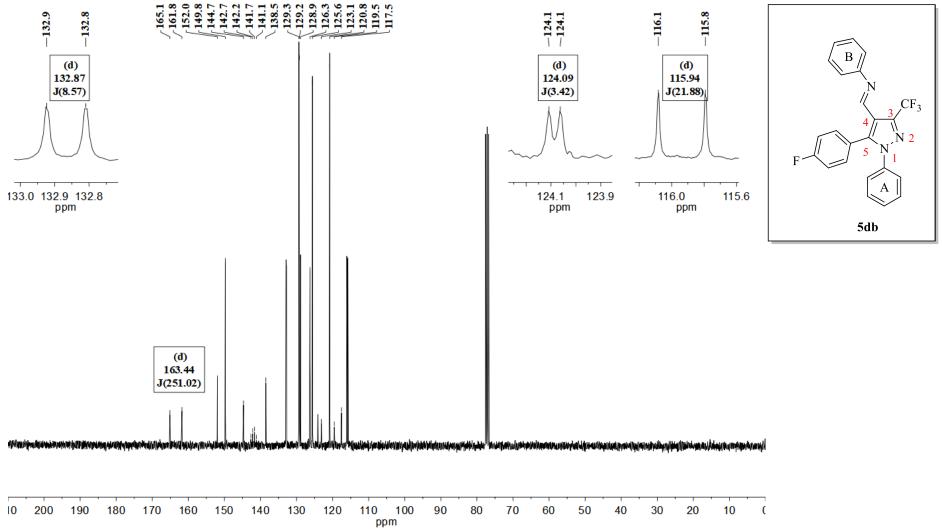
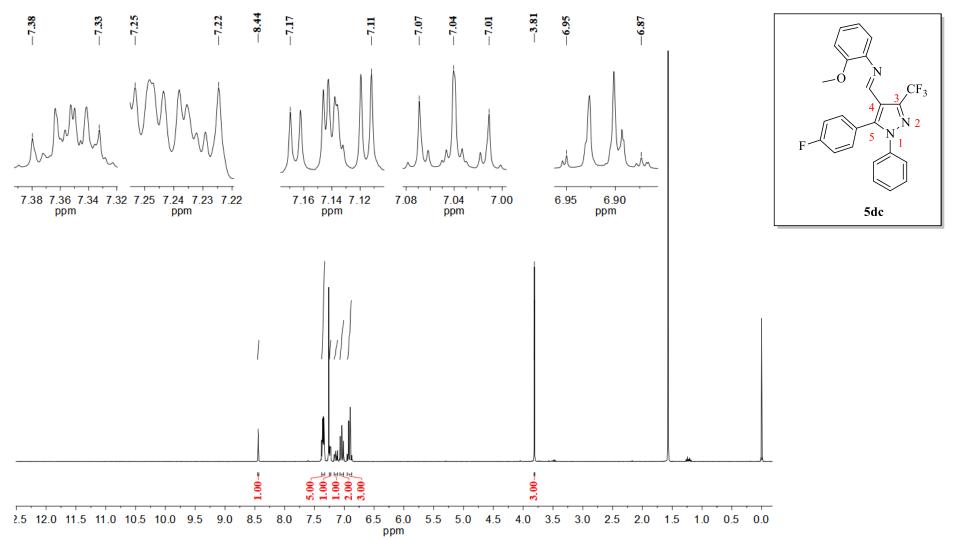




Figure S78 – ¹H NMR spectrum of compound 5db in CDCl₃ at 300.06 MHz.

Figure S79 – 13 C NMR spectrum of compound **5db** in CDCl₃ at 75.45 MHz.

Figure S80 − ¹H NMR spectrum of compound **5dc** in CDCl₃ at 300.06 MHz.

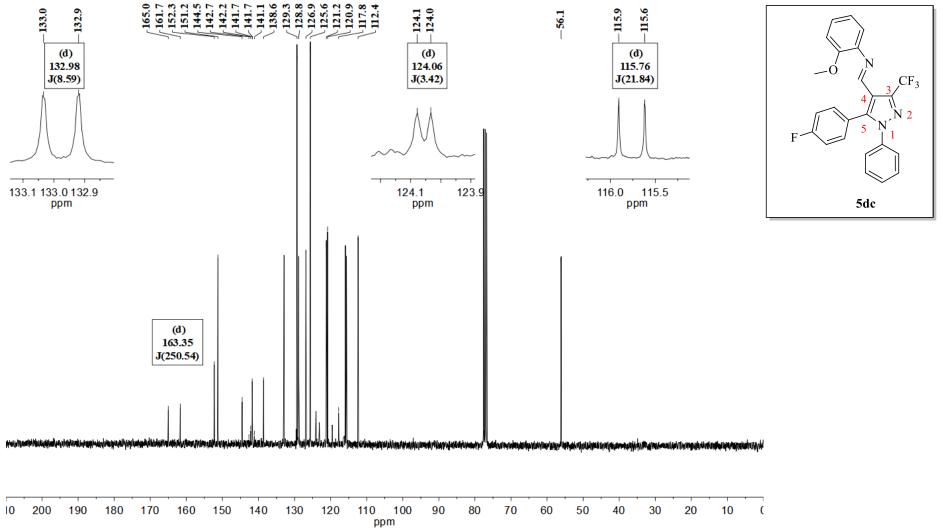


Figure S81 – 13 C NMR spectrum of compound 5dc in CDCl₃ at 75.45 MHz.

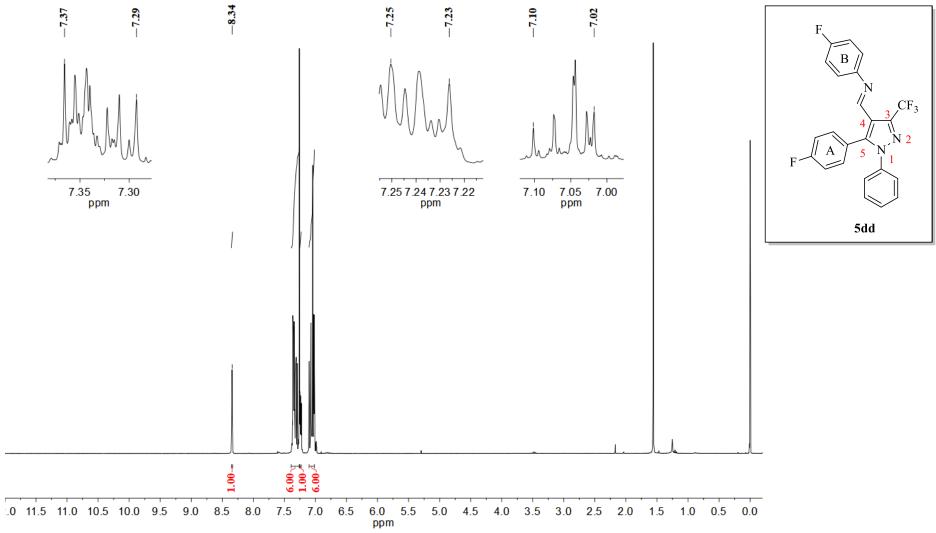


Figure S82 – ¹H NMR spectrum of compound 5dd in CDCl₃ at 300.06 MHz.

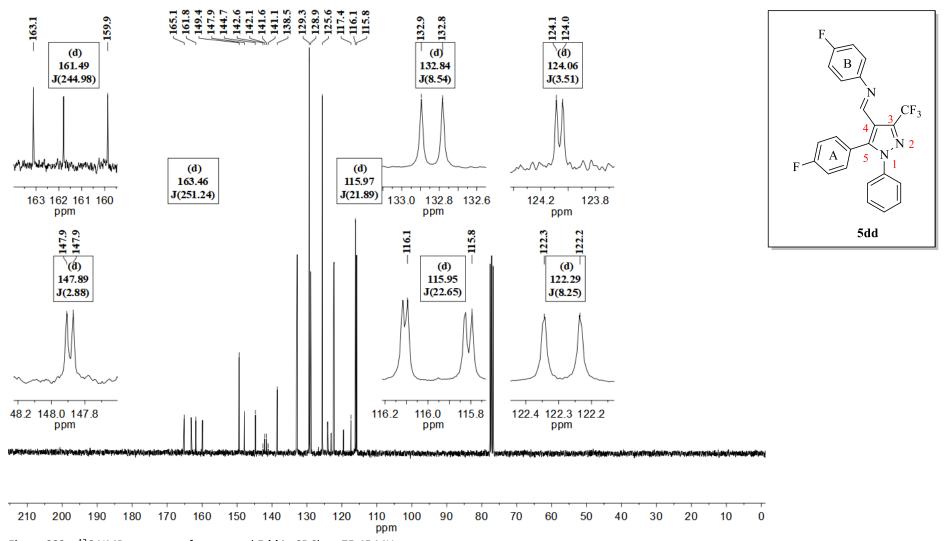


Figure S83 – 13 C NMR spectrum of compound 5dd in CDCl₃ at 75.45 MHz.

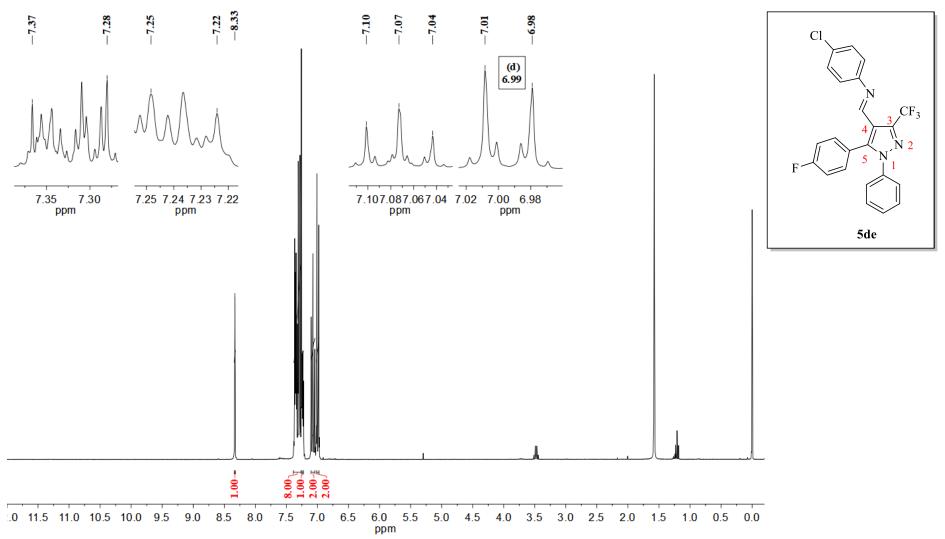
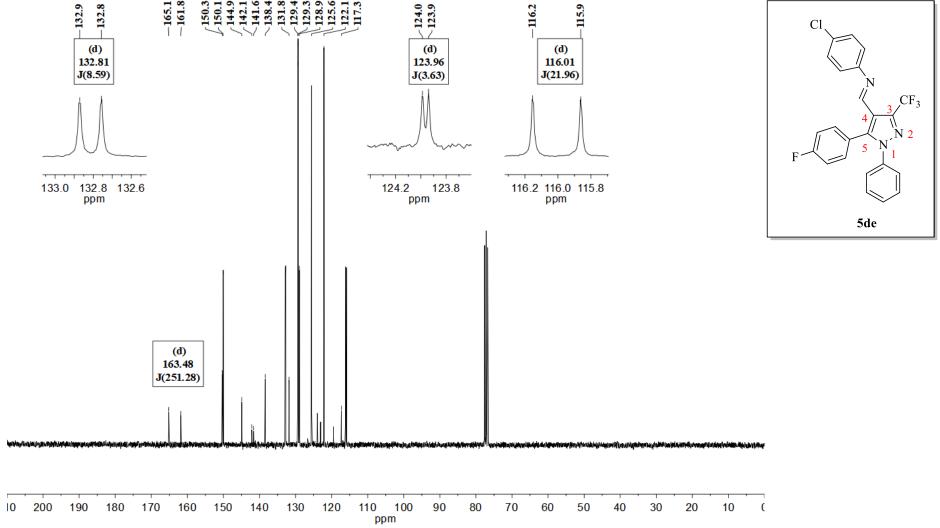



Figure S84 – ¹H NMR spectrum of compound 5de in CDCl₃ at 300.06 MHz.

Figure S85 – 13 C NMR spectrum of compound **5de** in CDCl₃ at 75.45 MHz.

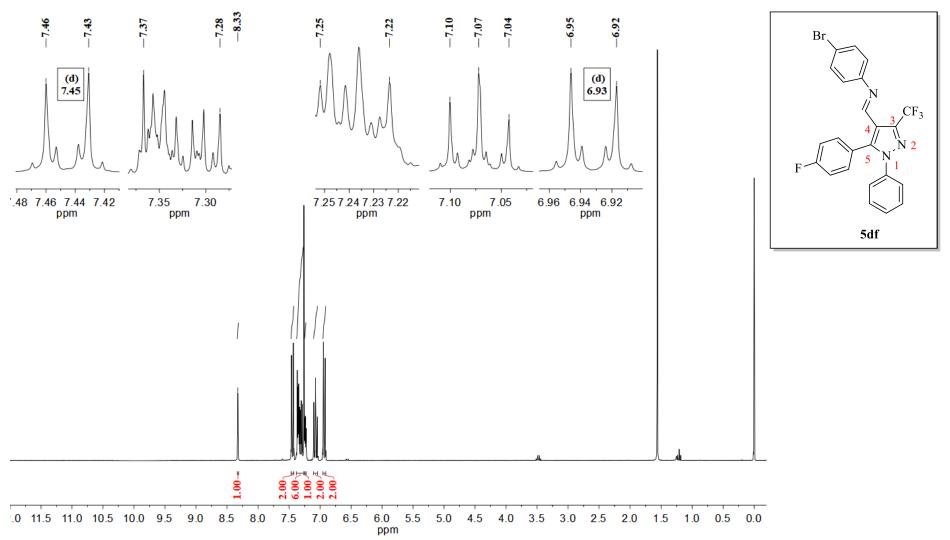


Figure S86 – ¹H NMR spectrum of compound **5df** in CDCl₃ at 300.06 MHz.

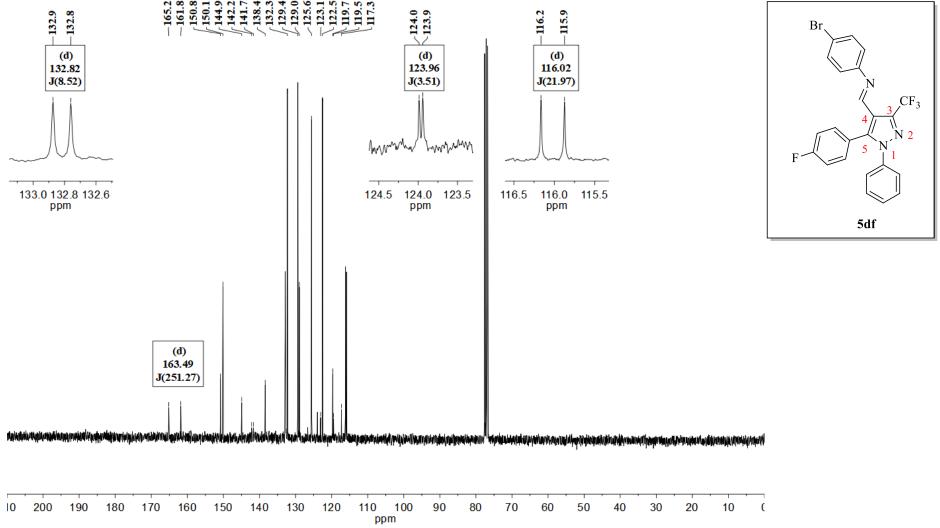


Figure S87 – 13 C NMR spectrum of compound 5df in CDCl₃ at 75.45 MHz.

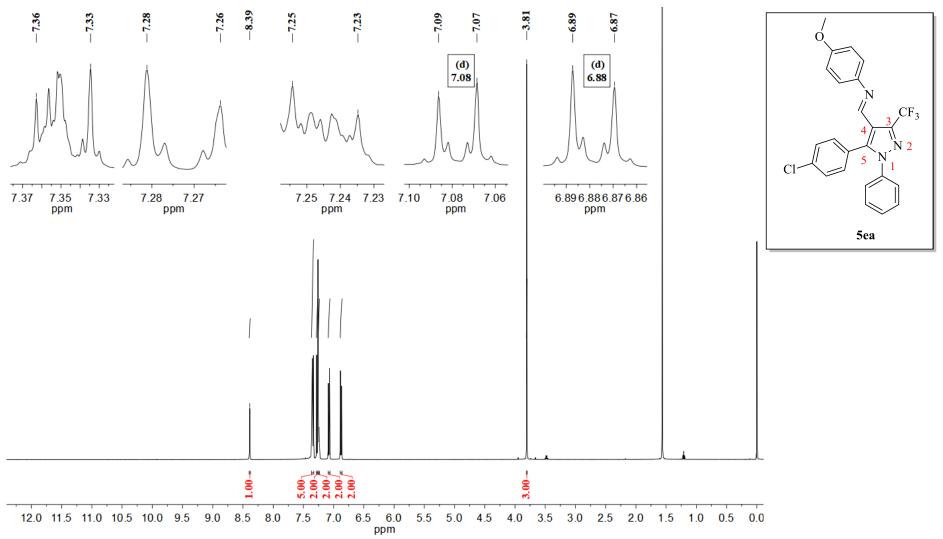
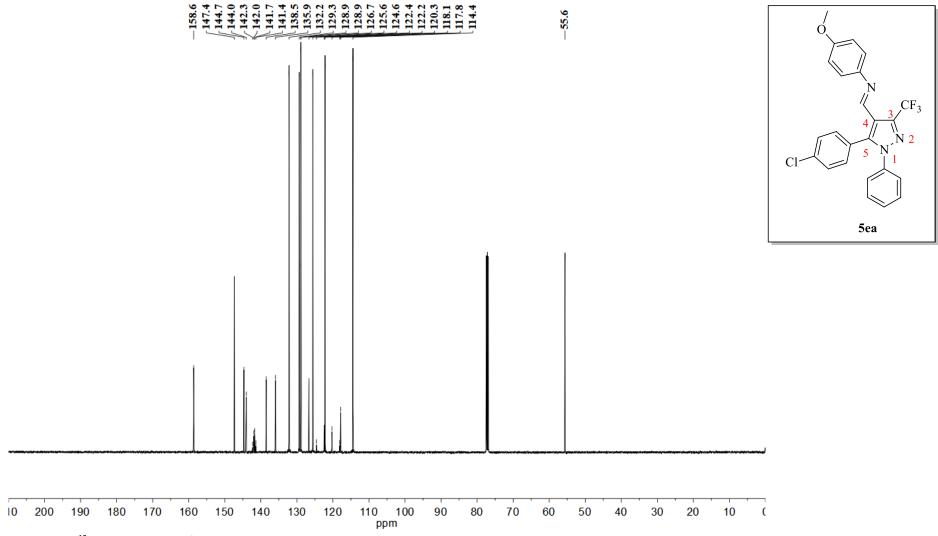



Figure S88– ¹H NMR spectrum of compound **5ea** in CDCl₃ at 500.13 MHz.

Figure S89 − ¹³C NMR spectrum of compound **5ea** in CDCl₃ at 125.76 MHz.

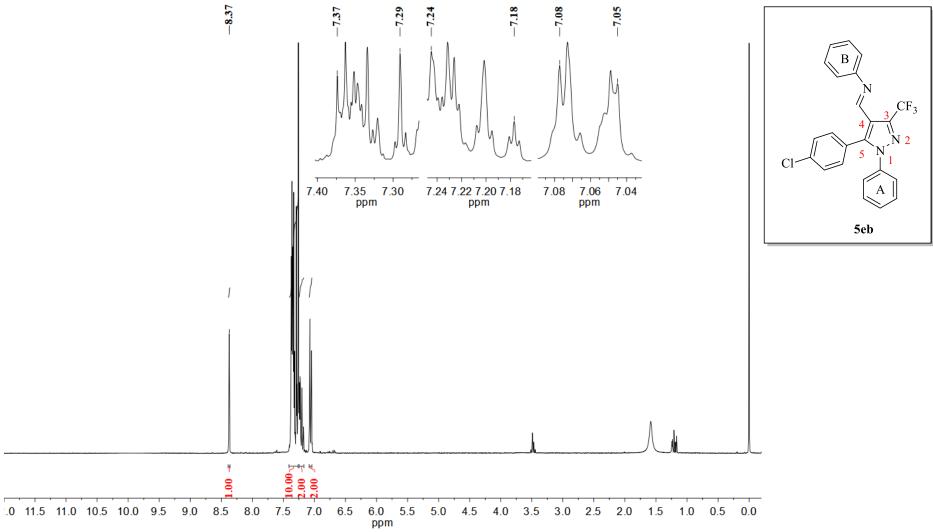
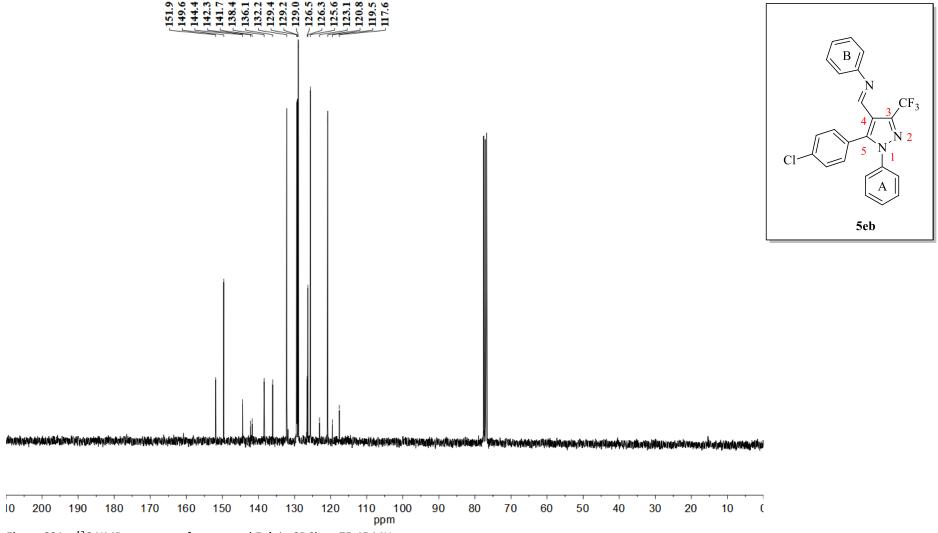



Figure S90 – ¹H NMR spectrum of compound **5eb** in CDCl₃ at 300.06 MHz.

Figure S91 – 13 C NMR spectrum of compound **5eb** in CDCl₃ at 75.45 MHz.

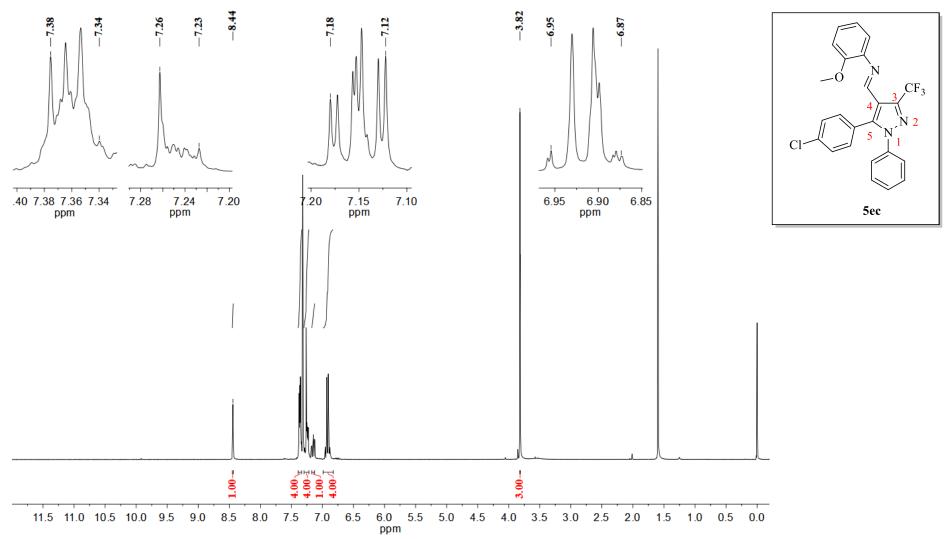


Figure S92 – ¹H NMR spectrum of compound **5ec** in CDCl₃ at 300.06 MHz.

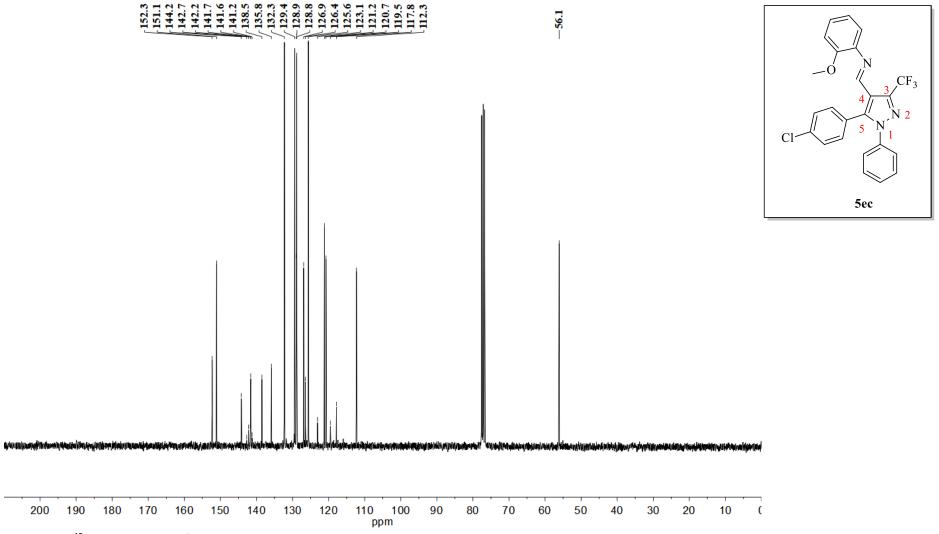


Figure S93 – 13 C NMR spectrum of compound **5ec** in CDCl₃ at 75.45 MHz.

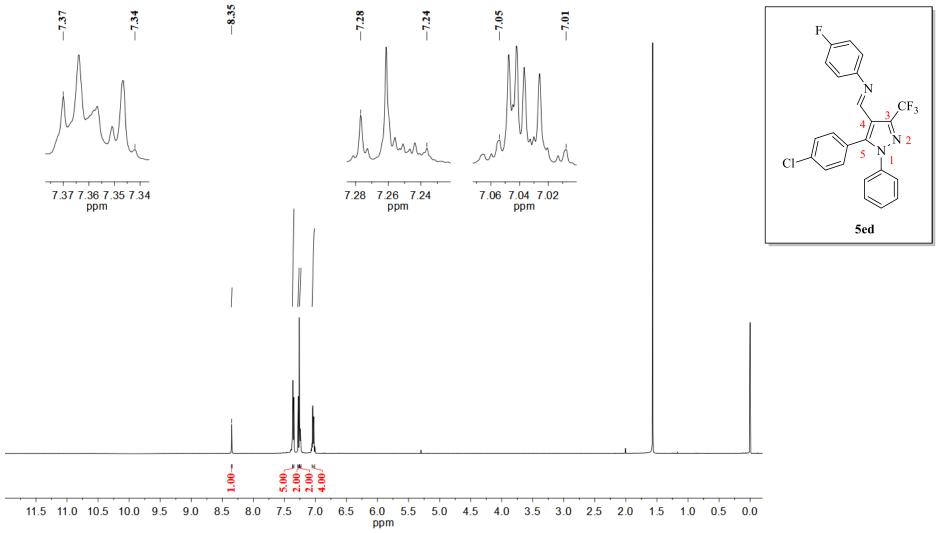


Figure S94 – ¹H NMR spectrum of compound 5ed in CDCl₃ at 300.06 MHz.

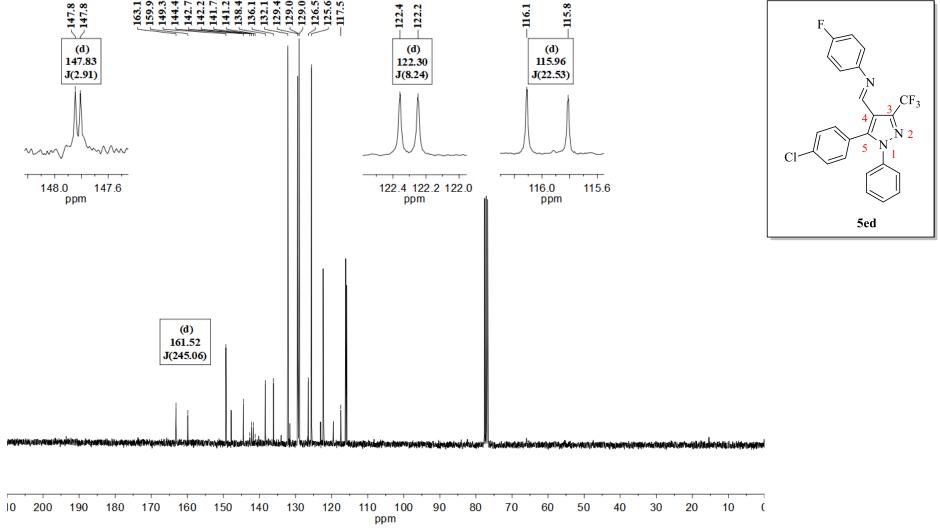
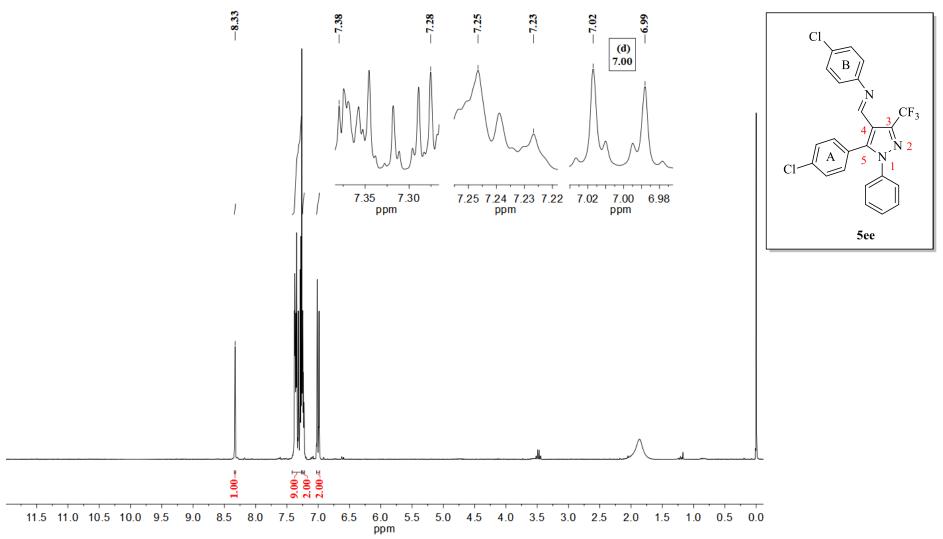



Figure S95 – 13 C NMR spectrum of compound 5ed in CDCl₃ at 75.45 MHz.

Figure S96 – 1 H NMR spectrum of compound **5ee** in CDCl₃ at 300.06 MHz.

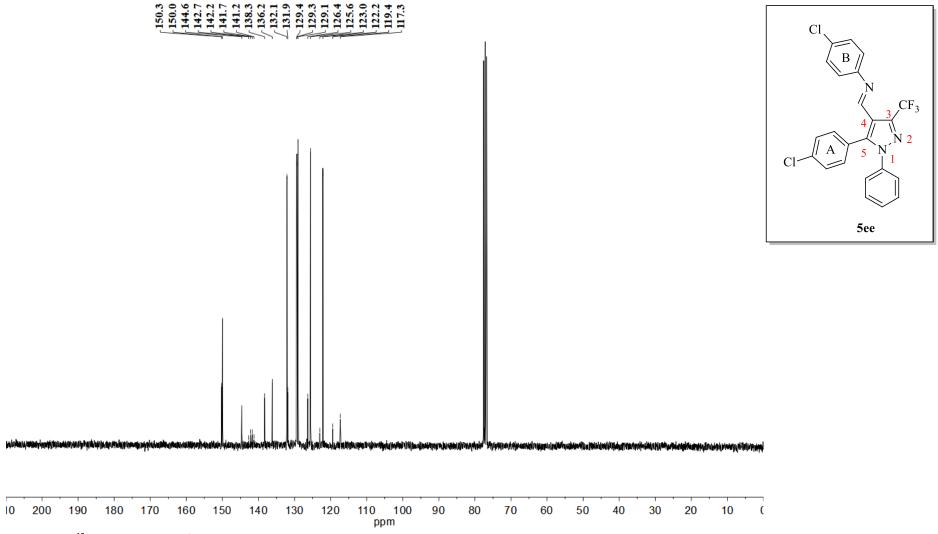


Figure S97 – 13 C NMR spectrum of compound **5ee** in CDCl₃ at 75.45 MHz.

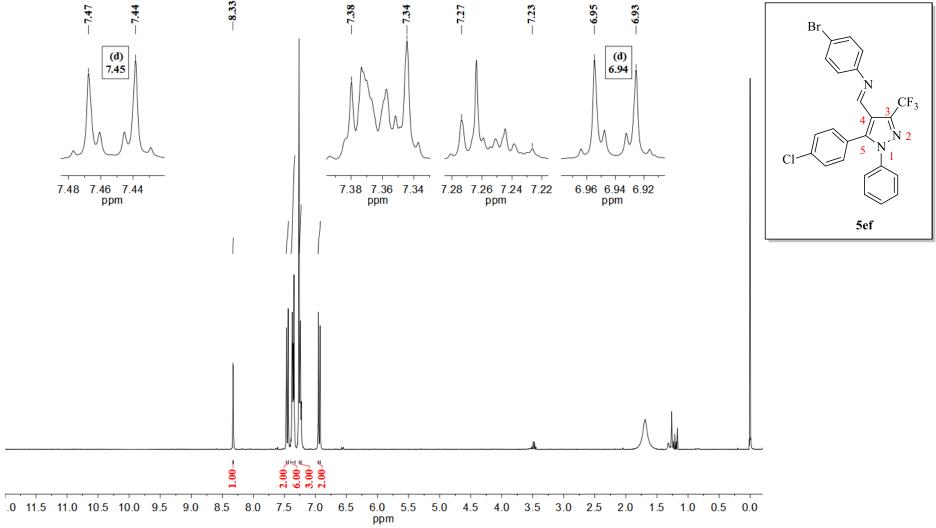


Figure S98 – ¹H NMR spectrum of compound **5ef** in CDCl₃ at 300.06 MHz.

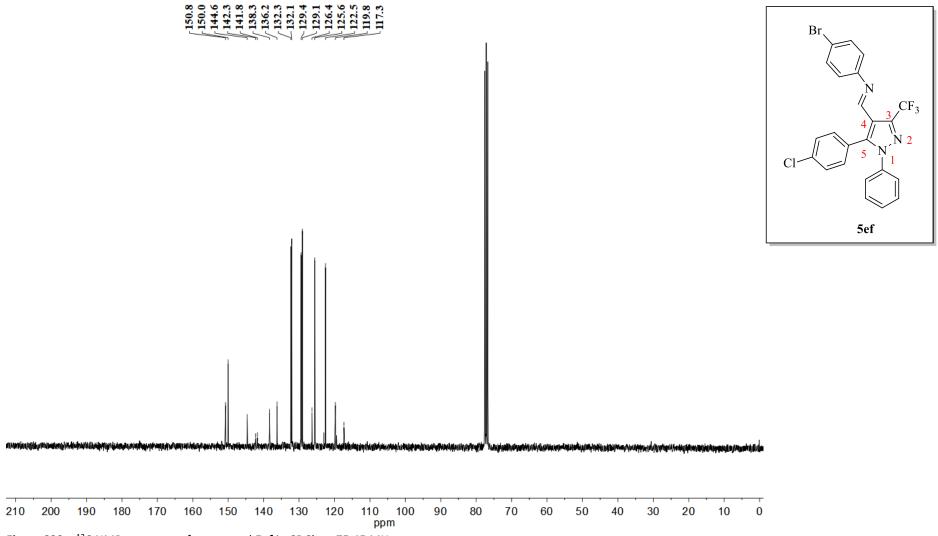


Figure S99 – 13 C NMR spectrum of compound **5ef** in CDCl₃ at 75.45 MHz.

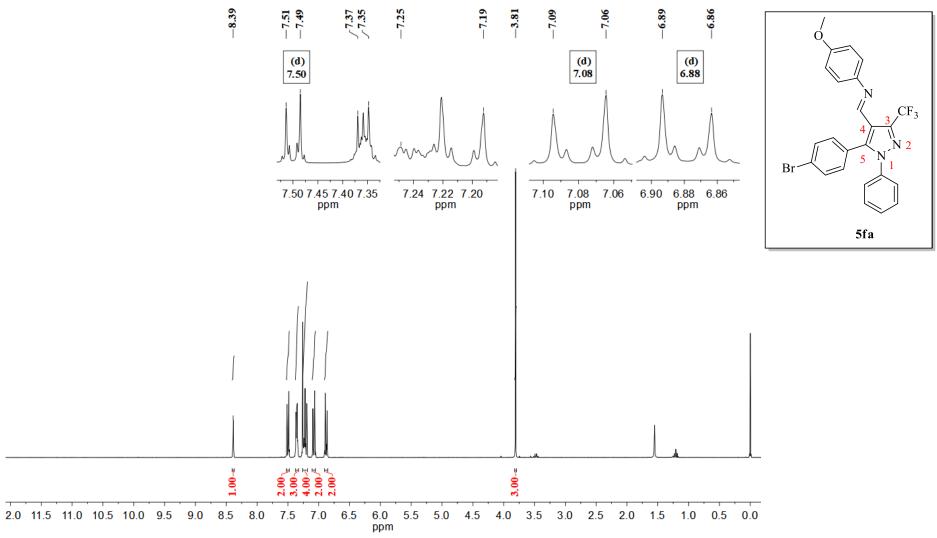
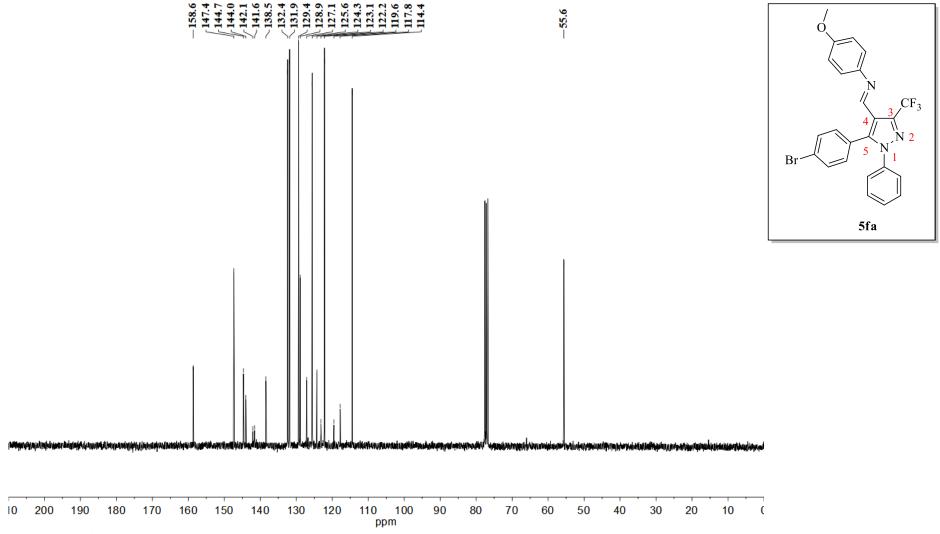



Figure S100 – ¹H NMR spectrum of compound 5fa in CDCl₃ at 300.06 MHz.

Figure S101 − ¹³C NMR spectrum of compound **5fa** in CDCl₃ at 75.45 MHz.

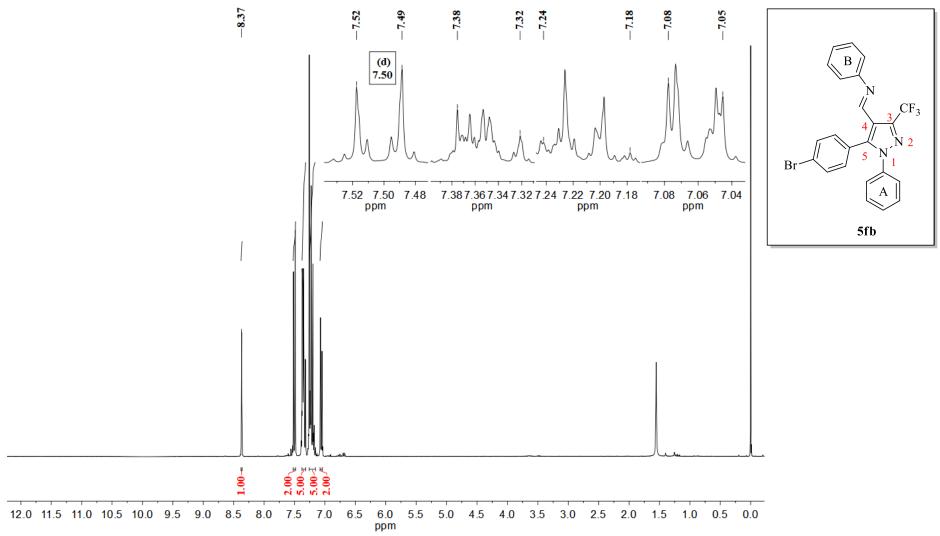
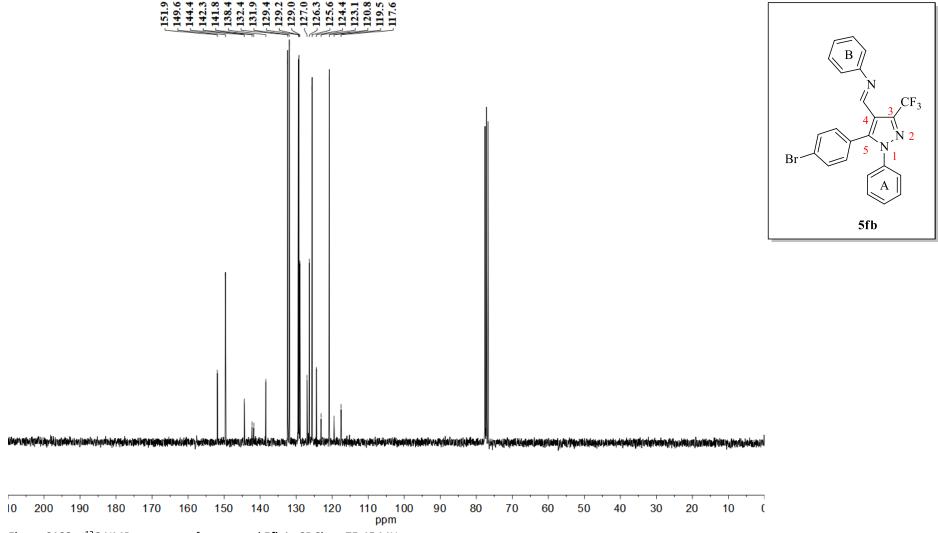



Figure S102 – ¹H NMR spectrum of compound 5fb in CDCl₃ at 300.06 MHz.

Figure S103 – 13 C NMR spectrum of compound **5fb** in CDCl₃ at 75.45 MHz.

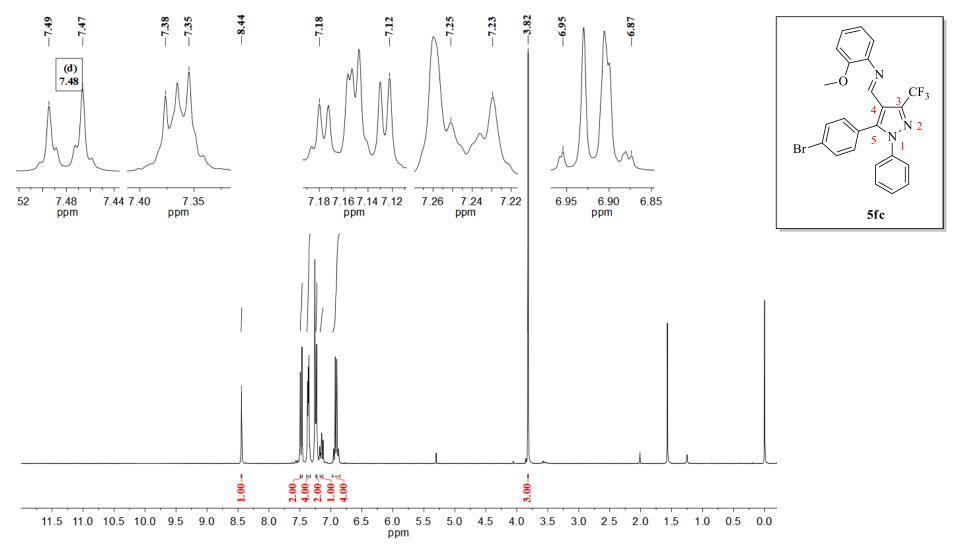
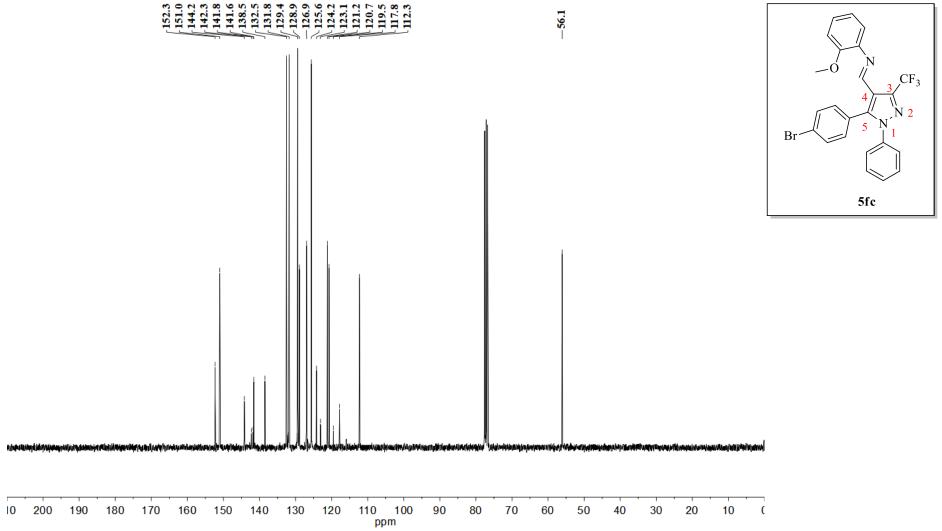



Figure S104 – ¹H NMR spectrum of compound 5fc in CDCl₃ at 300.06 MHz.

Figure S105 − ¹³C NMR spectrum of compound **5fc** in CDCl₃ at 75.45 MHz.

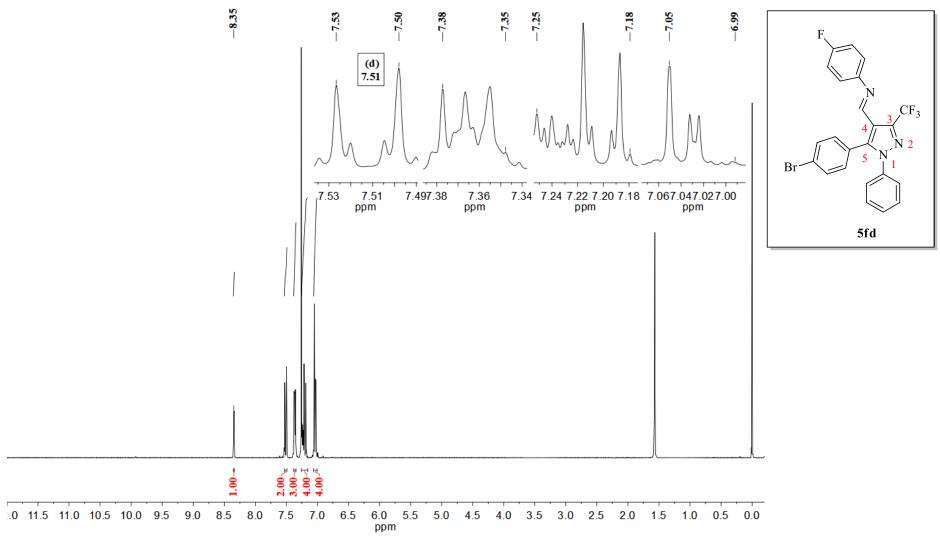


Figure S106 – ¹H NMR spectrum of compound 5fd in CDCl₃ at 300.06 MHz.

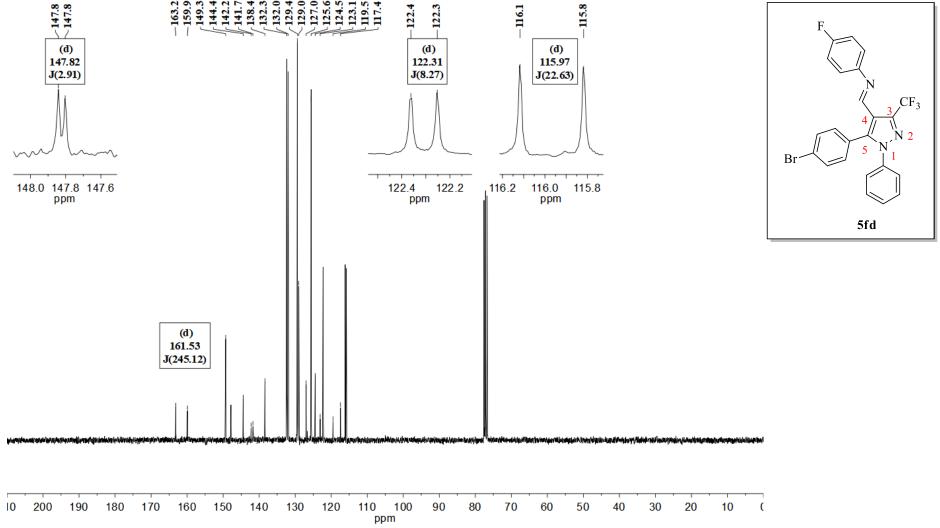


Figure S107 – 13 C NMR spectrum of compound 5fd in CDCl₃ at 75.45 MHz.

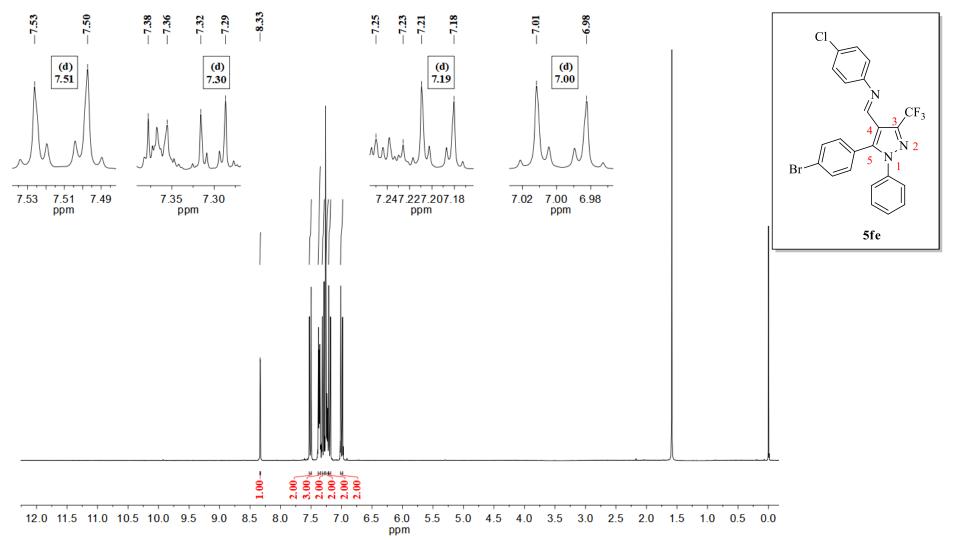
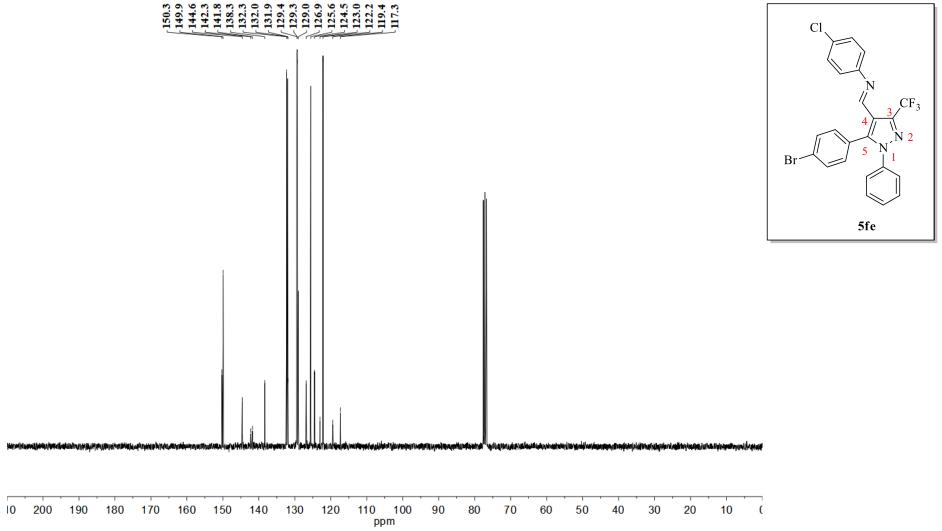



Figure S108 – ¹H NMR spectrum of compound 5fe in CDCl₃ at 300.06 MHz.

Figure S109 − ¹³C NMR spectrum of compound **5fe** in CDCl₃ at 75.45 MHz.

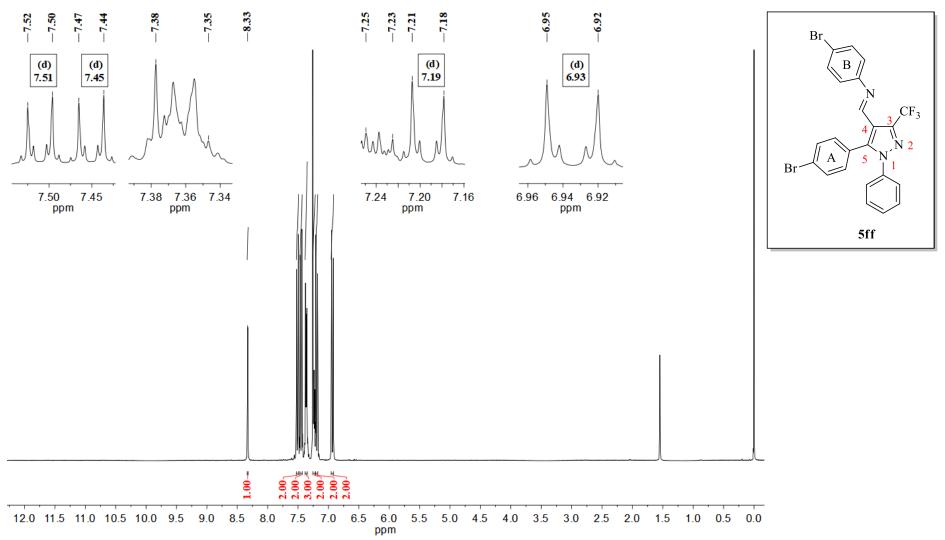
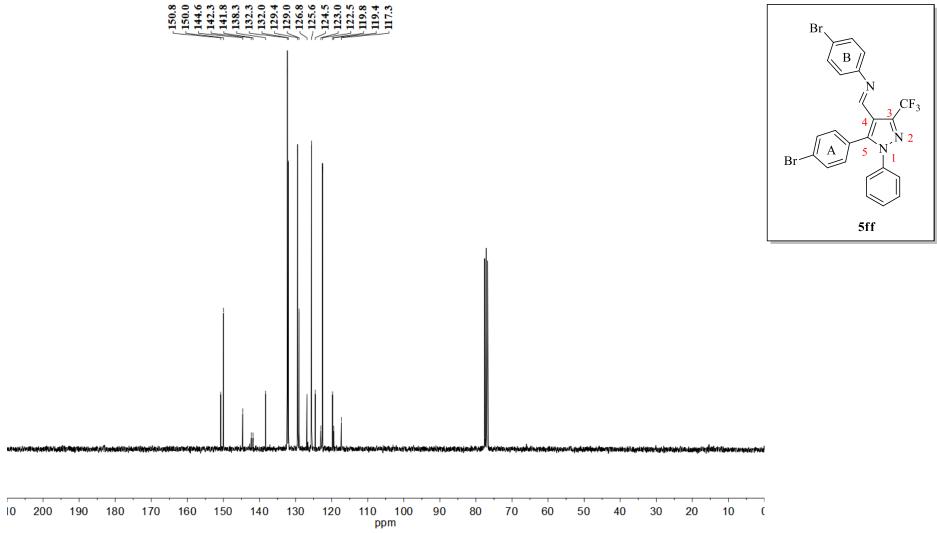



Figure S110 – ¹H NMR spectrum of compound 5ff in CDCl₃ at 300.06 MHz.

Figure S111 − ¹³C NMR spectrum of compound **5ff** in CDCl₃ at 75.45 MHz.

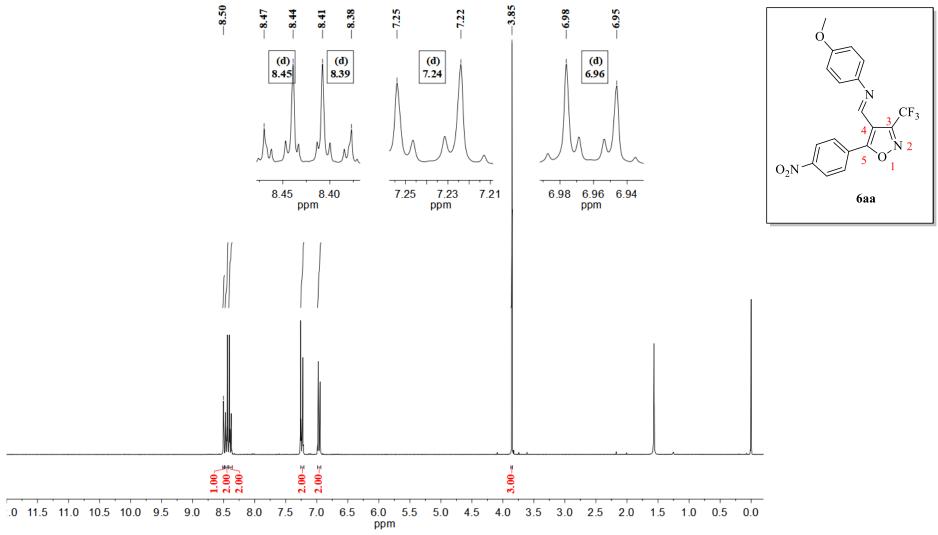
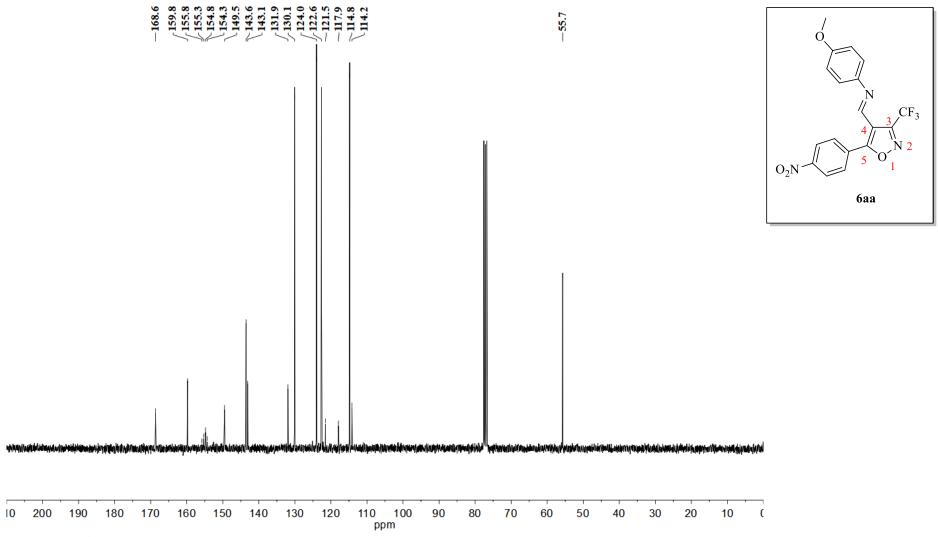
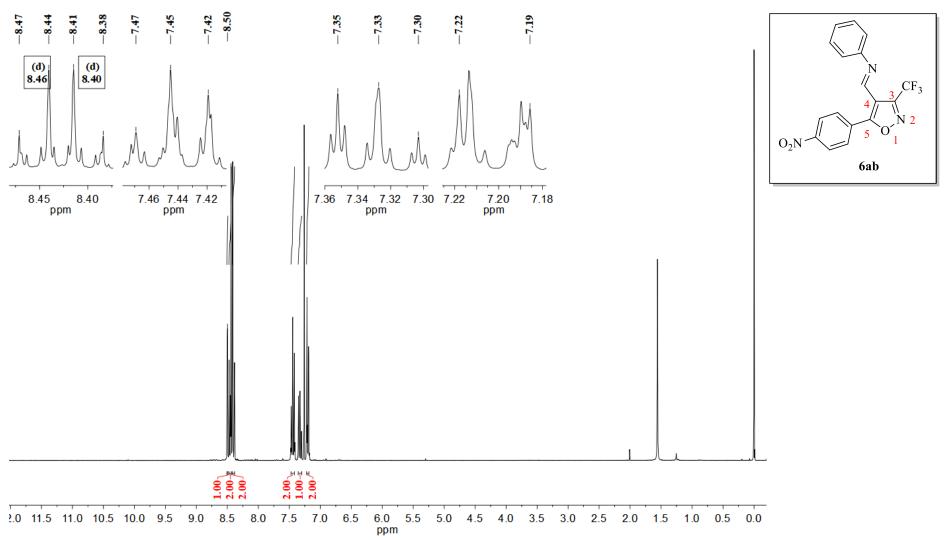




Figure S112 – ¹H NMR spectrum of compound 6aa in CDCl₃ at 300.06 MHz.

Figure S113 − ¹³C NMR spectrum of compound **6aa** in CDCl₃ at 75.45 MHz.

Figure S114 − ¹H NMR spectrum of compound **6ab** in CDCl₃ at 300.06 MHz.

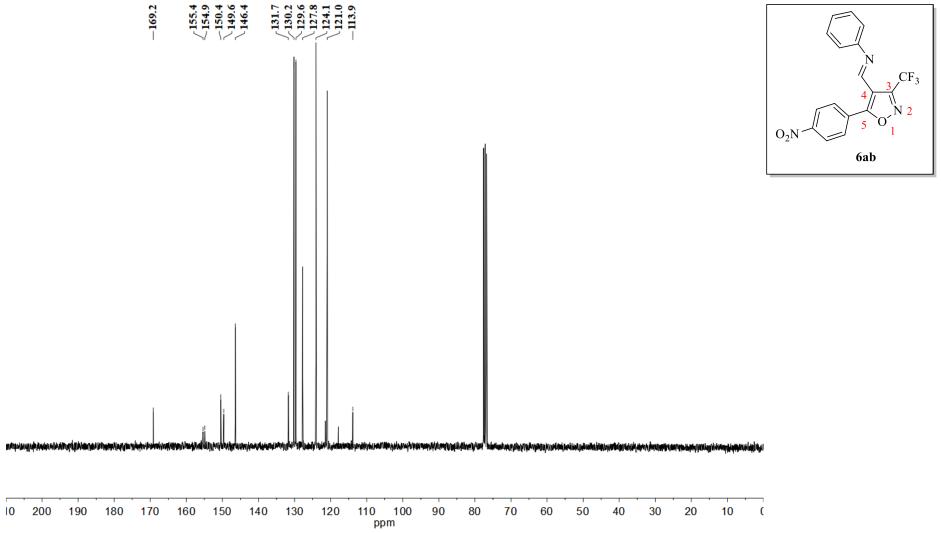


Figure S115 – ¹³C NMR spectrum of compound **6ab** in CDCl₃ at 75.45 MHz.

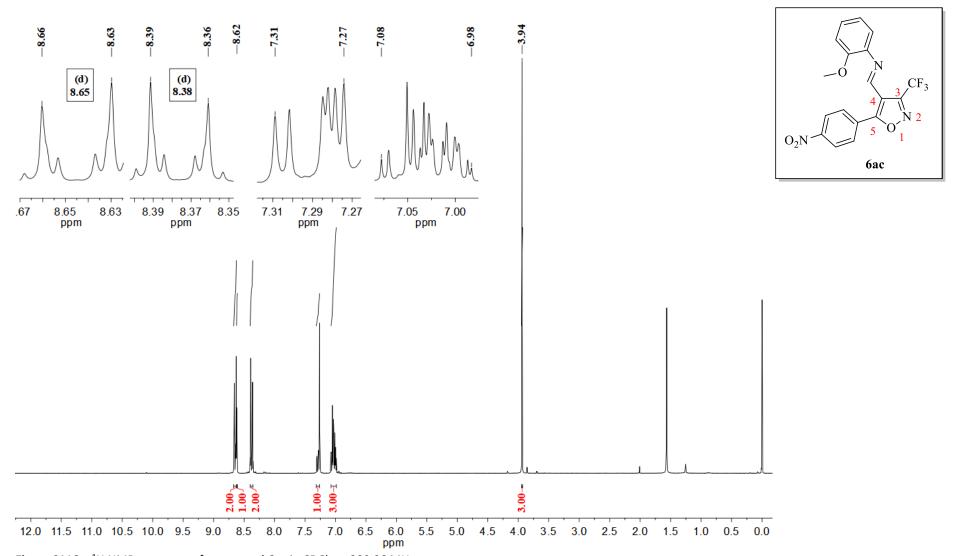
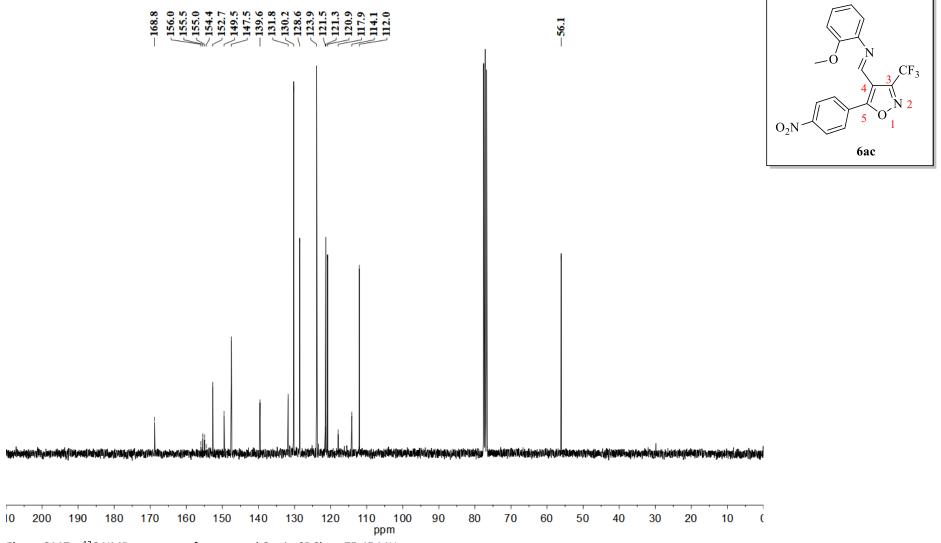



Figure S116 − ¹H NMR spectrum of compound 6ac in CDCl₃ at 300.06 MHz.

Figure S117 - ¹³C NMR spectrum of compound **6ac** in CDCl₃ at 75.45 MHz.

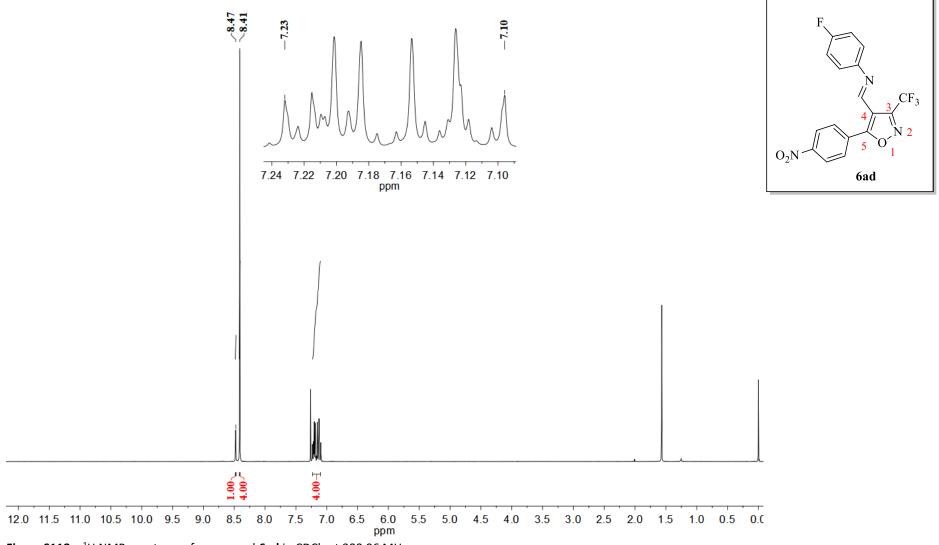


Figure S118 – ¹H NMR spectrum of compound 6ad in CDCl₃ at 300.06 MHz.

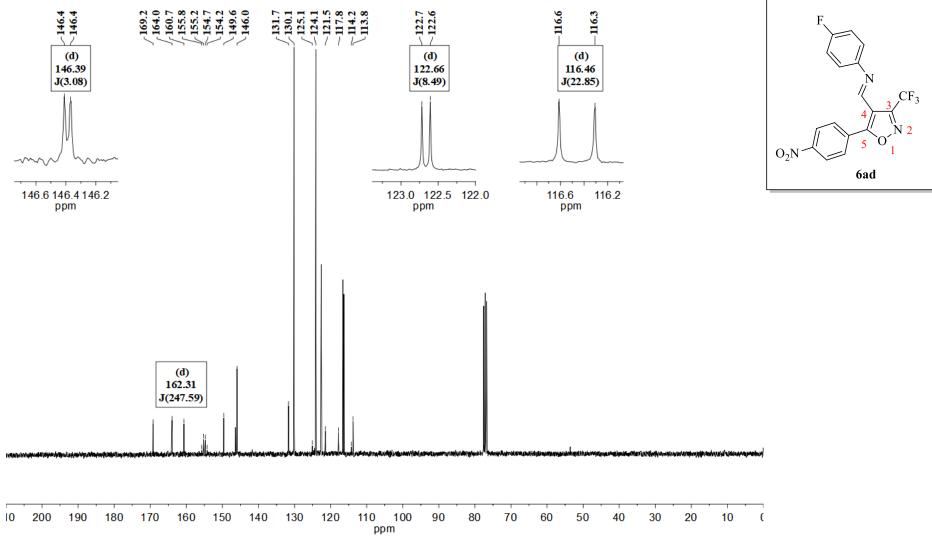


Figure S119 – ¹³C NMR spectrum of compound 6ad in CDCl₃ at 75.45 MHz.

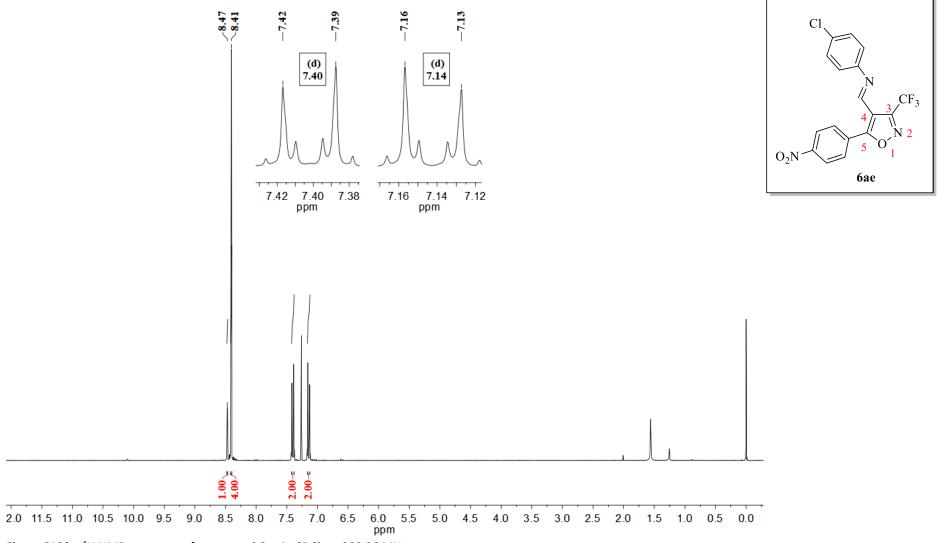


Figure S120 − ¹H NMR spectrum of compound 6ae in CDCl₃ at 300.06 MHz.

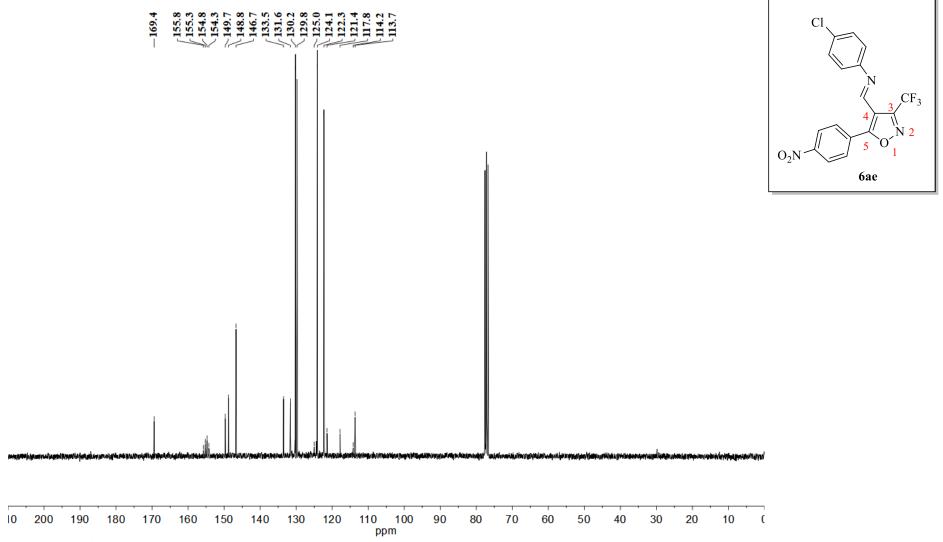


Figure S121 – ¹³C NMR spectrum of compound 6ae in CDCl₃ at 75.45 MHz.

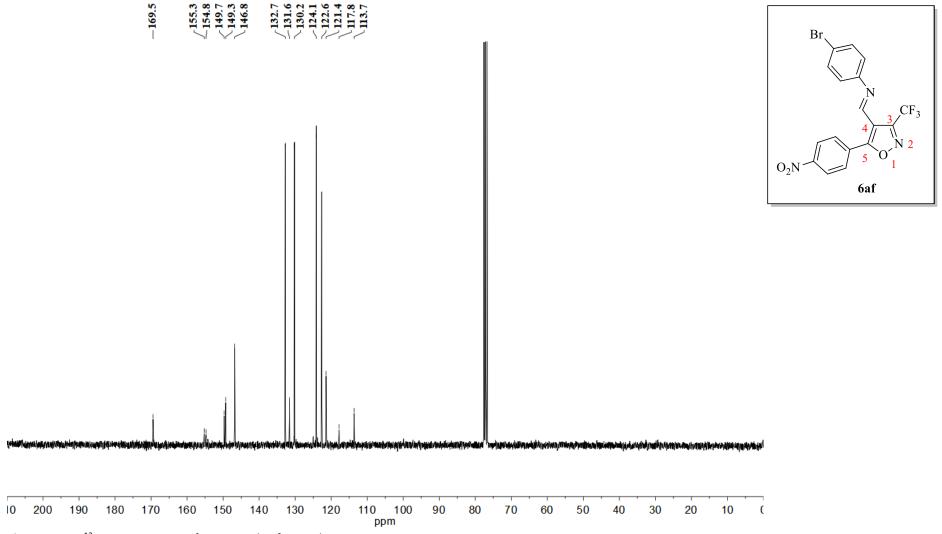



Figure S122 – ¹H NMR spectrum of compound 6af in CDCl₃ at 300.06 MHz.

Figure S123 − ¹³C NMR spectrum of compound **6af** in CDCl₃ at 75.45 MHz.

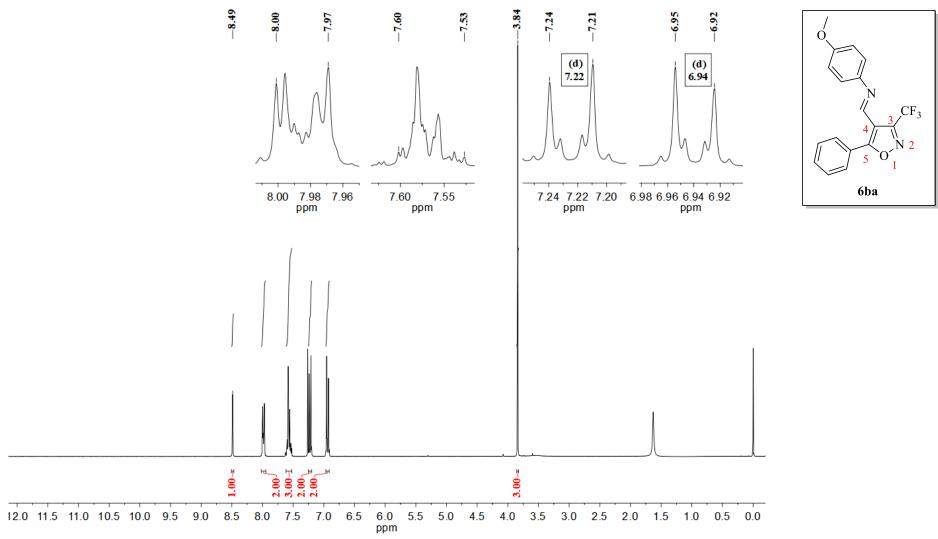
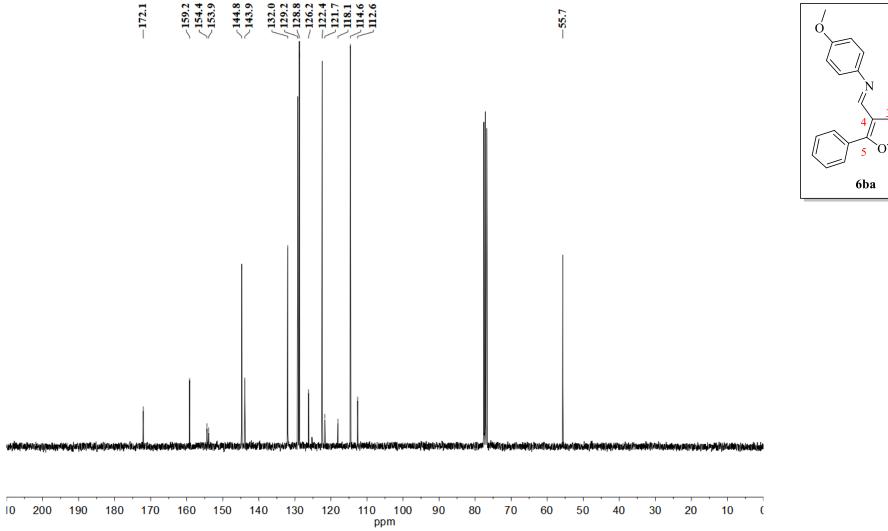
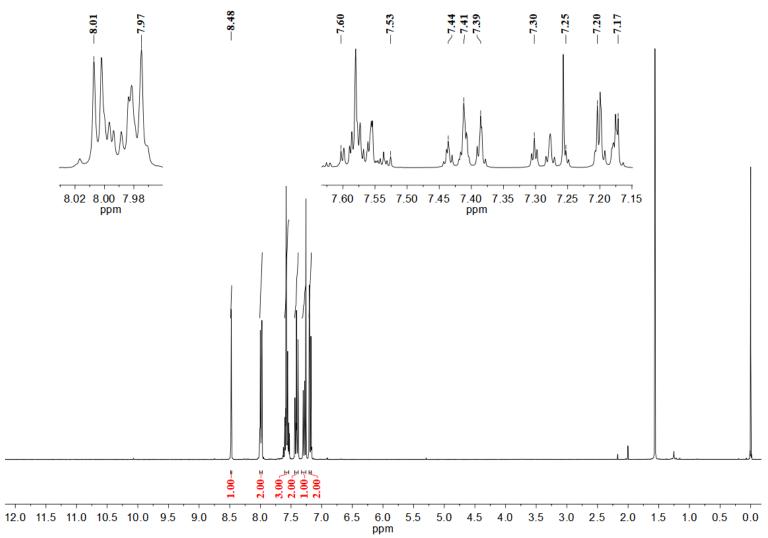
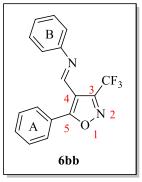
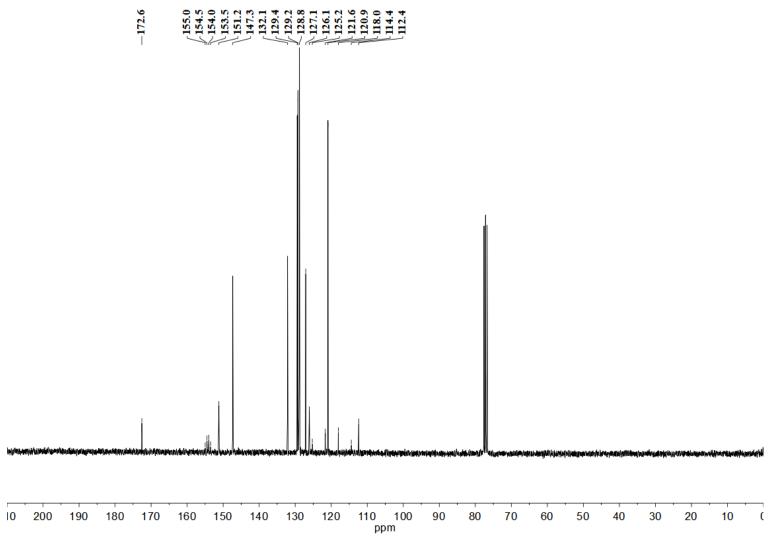
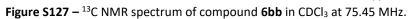


Figure S124 – ¹H NMR spectrum of compound 6ba in CDCl₃ at 300.06 MHz.


Figure S125 − ¹³C NMR spectrum of compound 6ba in CDCl₃ at 75.45 MHz.

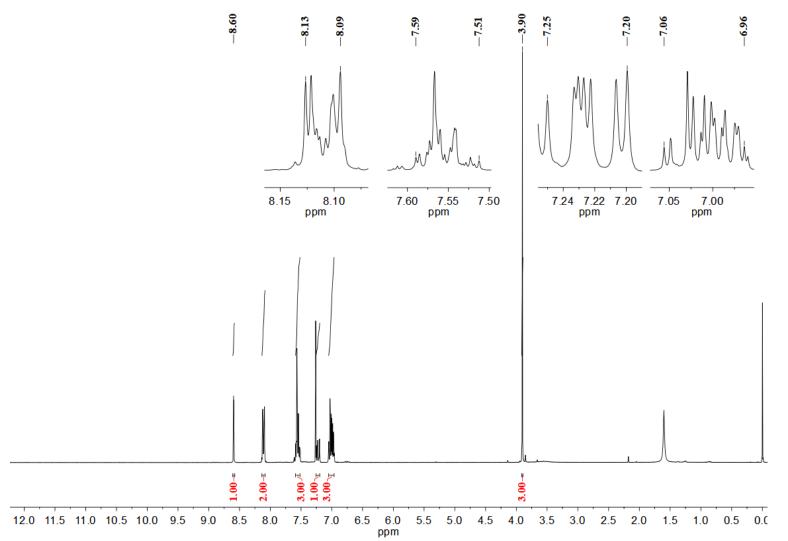


Figure S126 − ¹H NMR spectrum of compound **6bb** in CDCl₃ at 300.06 MHz.

Figure S128 − ¹H NMR spectrum of compound **6bc** in CDCl₃ at 300.06 MHz.

6bc

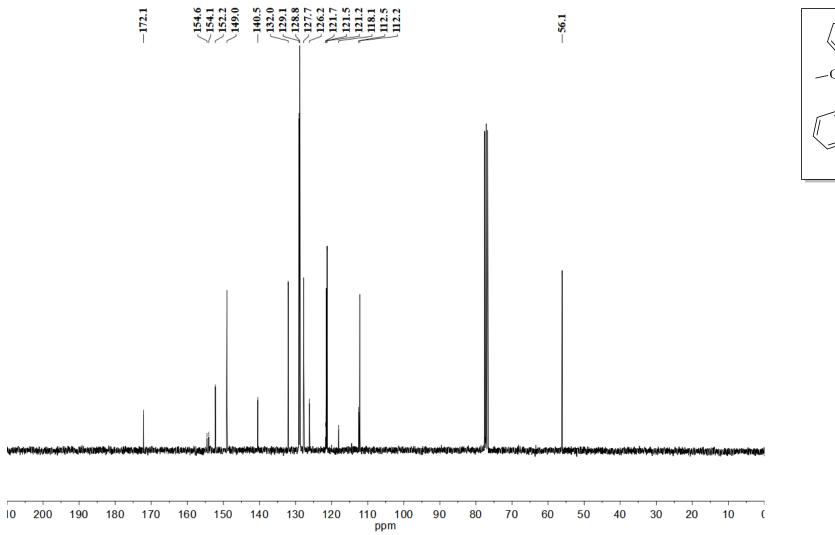
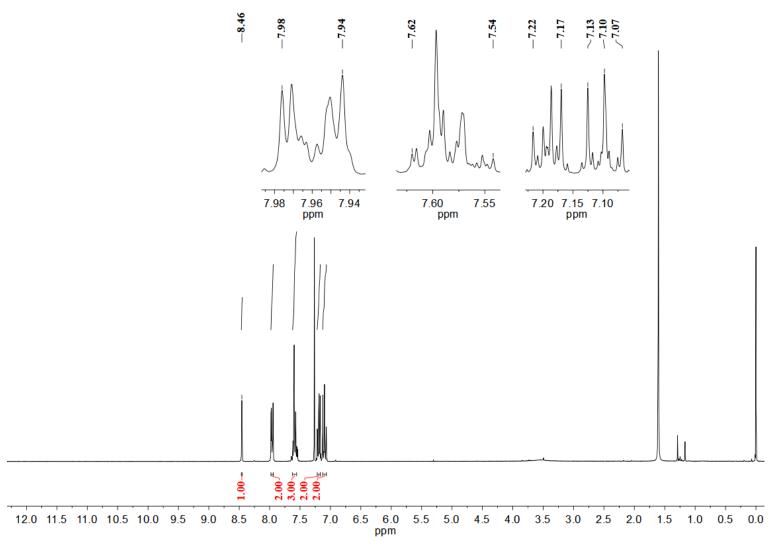
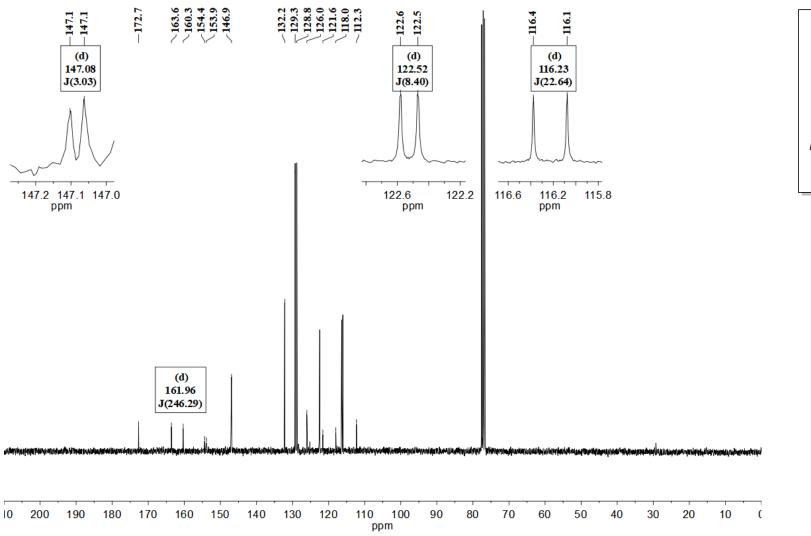
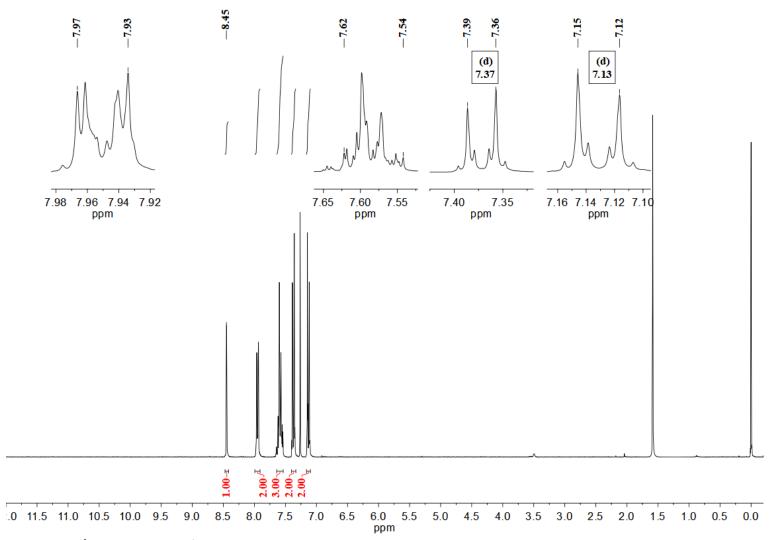




Figure S129 – 13 C NMR spectrum of compound 6bc in CDCl₃ at 75.45 MHz.


Figure S130 − ¹H NMR spectrum of compound **6bd** in CDCl₃ at 300.06 MHz.

6bd

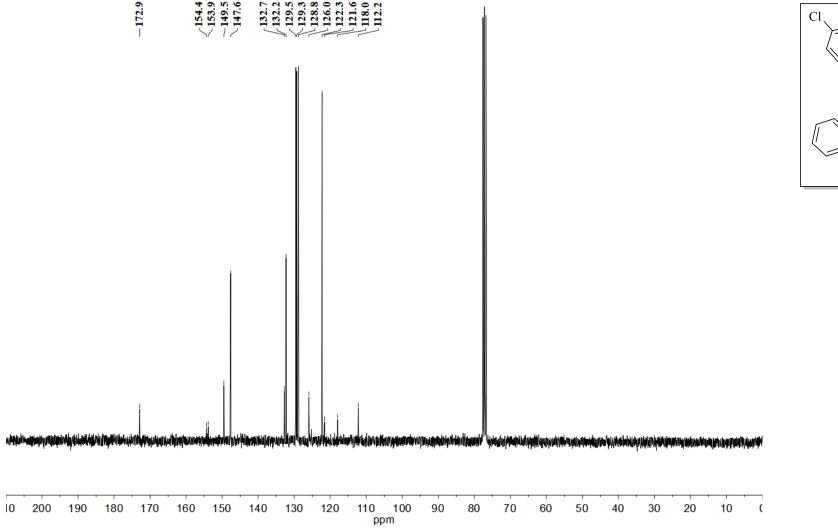

6bd

Figure S131 − ¹³C NMR spectrum of compound **6bd** in CDCl₃ at 75.45 MHz.

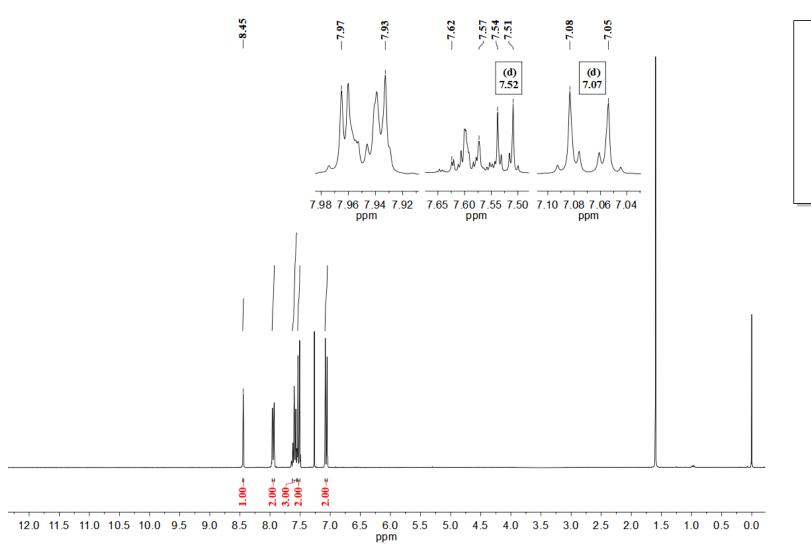


Figure S132 − ¹H NMR spectrum of compound **6be** in CDCl₃ at 300.06 MHz.

6be

Figure S133 − ¹³C NMR spectrum of compound **6be** in CDCl₃ at 75.45 MHz.

6bf

Figure S134 – ¹H NMR spectrum of compound 6bf in CDCl₃ at 300.06 MHz.



Figure S135 – 13 C NMR spectrum of compound 6bf in CDCl₃ at 75.45 MHz.

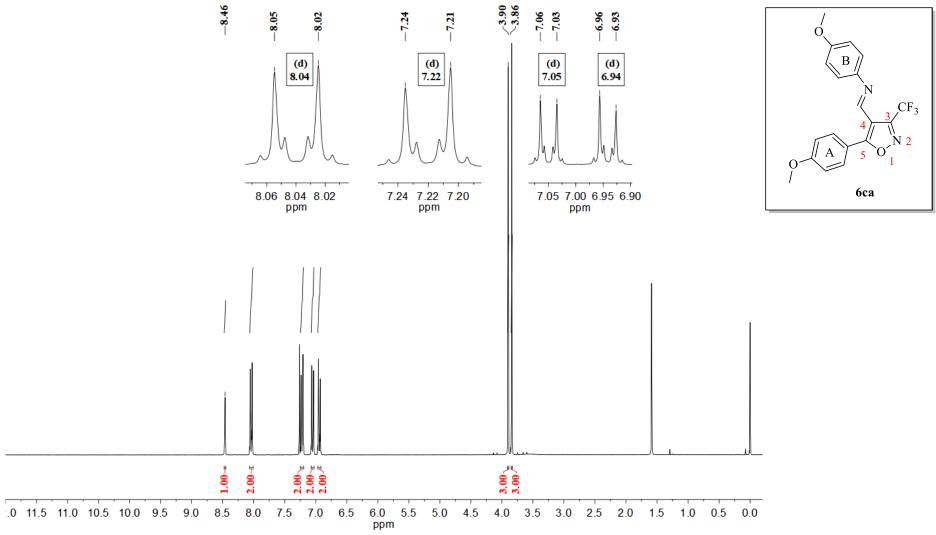


Figure S136 – ¹H NMR spectrum of compound 6ca in CDCl₃ at 300.06 MHz.

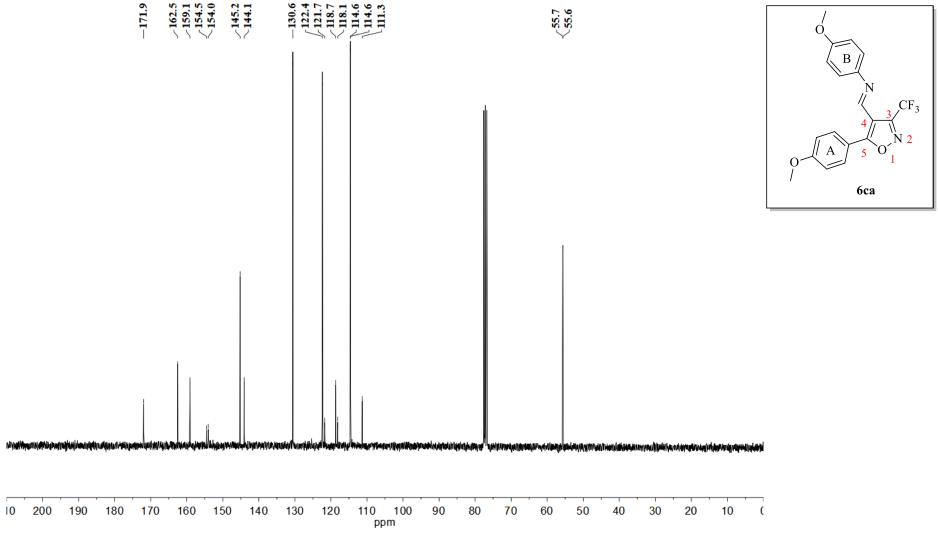
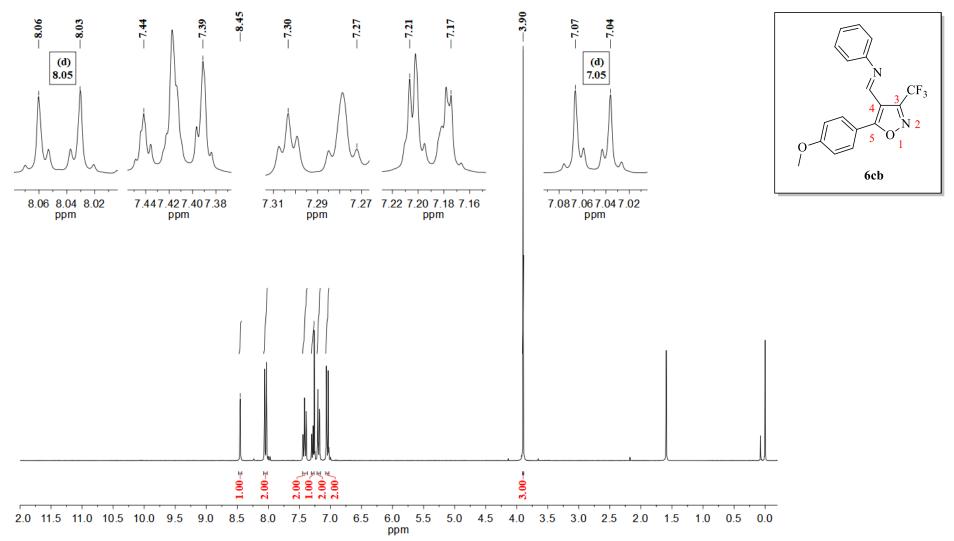
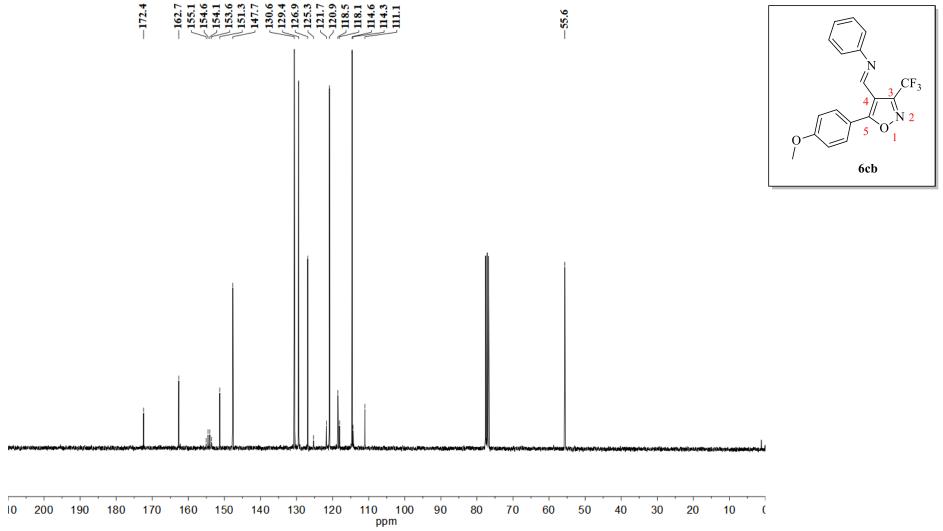




Figure S137 – ¹³C NMR spectrum of compound 6ca in CDCl₃ at 75.45 MHz.

Figure S138 − ¹H NMR spectrum of compound **6cb** in CDCl₃ at 300.06 MHz.

Figure S139 − ¹³C NMR spectrum of compound **6cb** in CDCl₃ at 75.45 MHz.

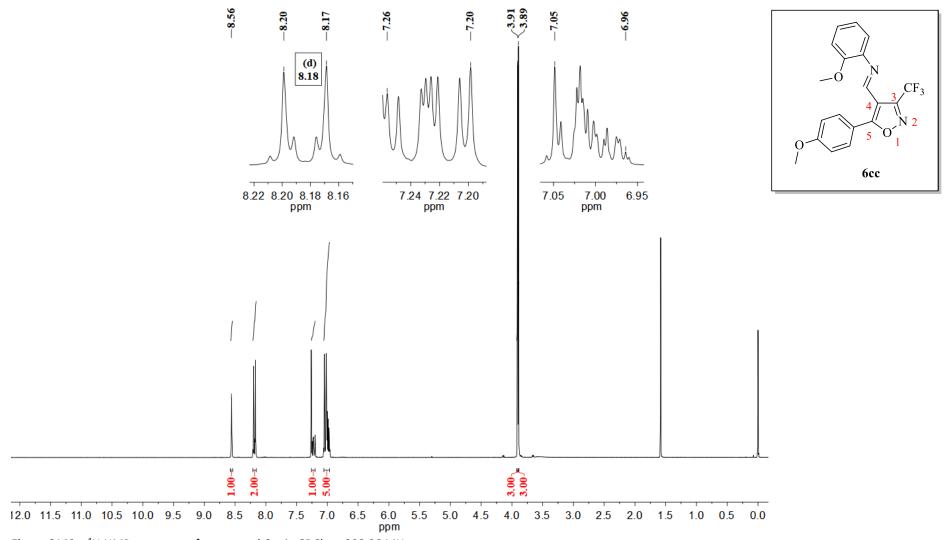
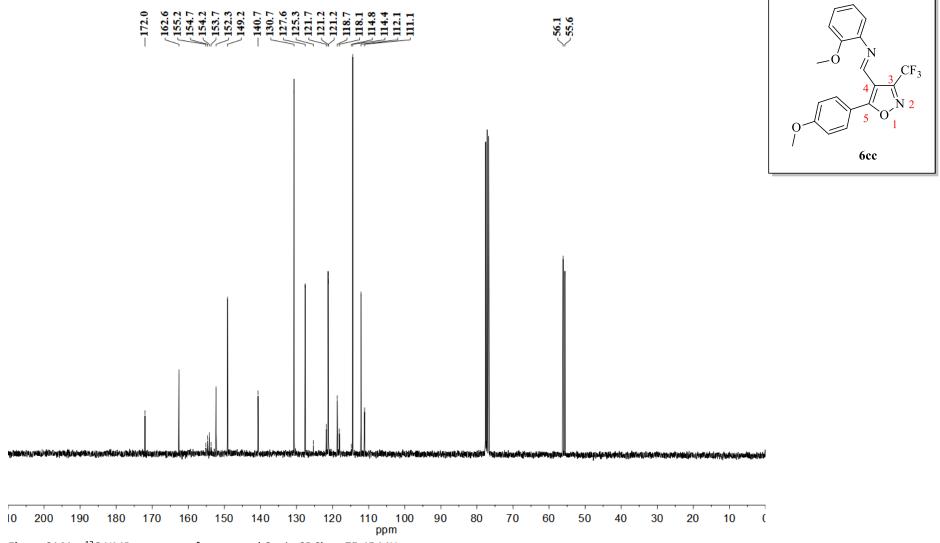



Figure S140 − ¹H NMR spectrum of compound 6cc in CDCl₃ at 300.06 MHz.

Figure S141 − ¹³C NMR spectrum of compound **6cc** in CDCl₃ at 75.45 MHz.

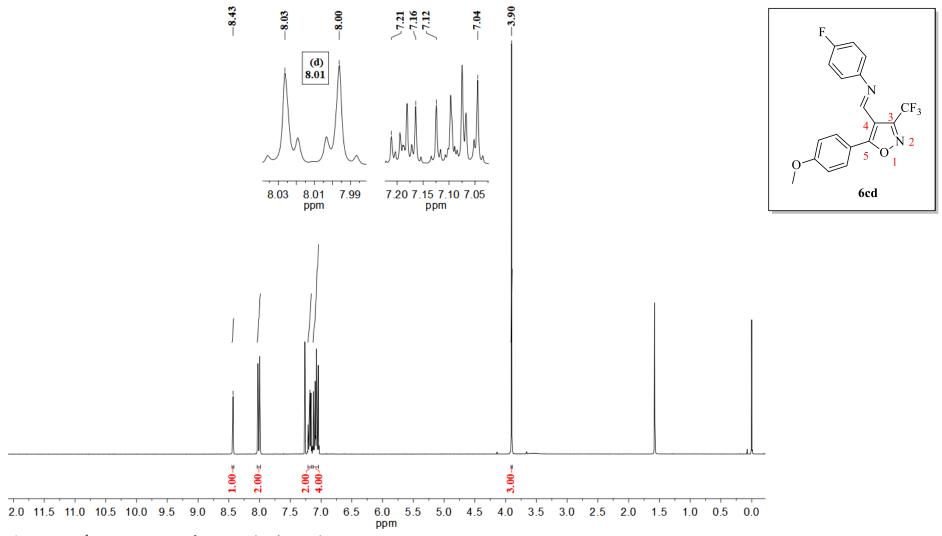
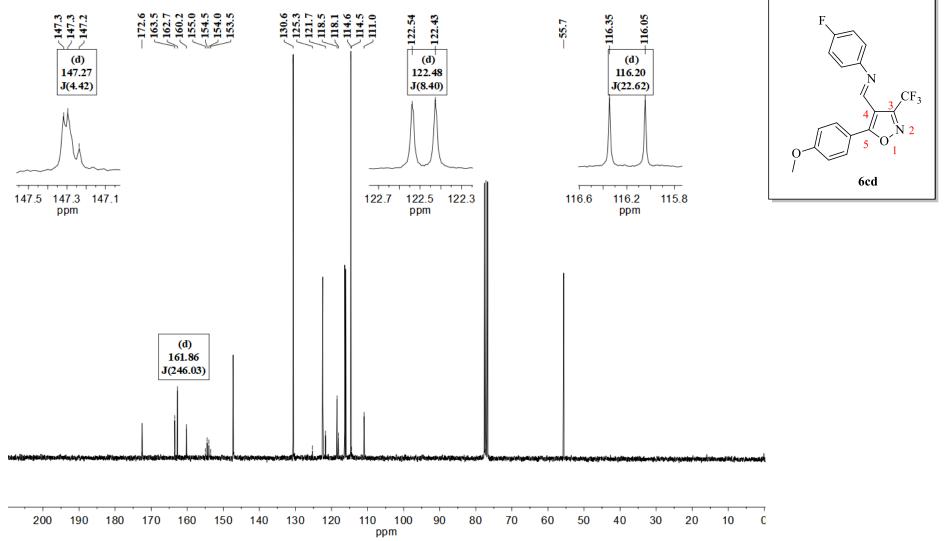



Figure S142 – ¹H NMR spectrum of compound 6cd in CDCl₃ at 300.06 MHz.

Figure S143 − ¹³C NMR spectrum of compound **6cd** in CDCl₃ at 75.45 MHz.

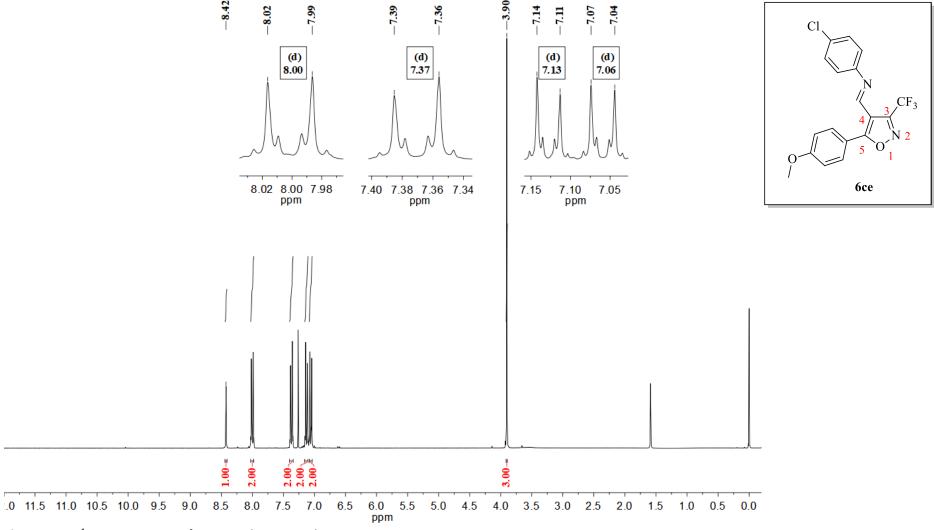


Figure S144 – ¹H NMR spectrum of compound 6ce in CDCl₃ at 300.06 MHz.

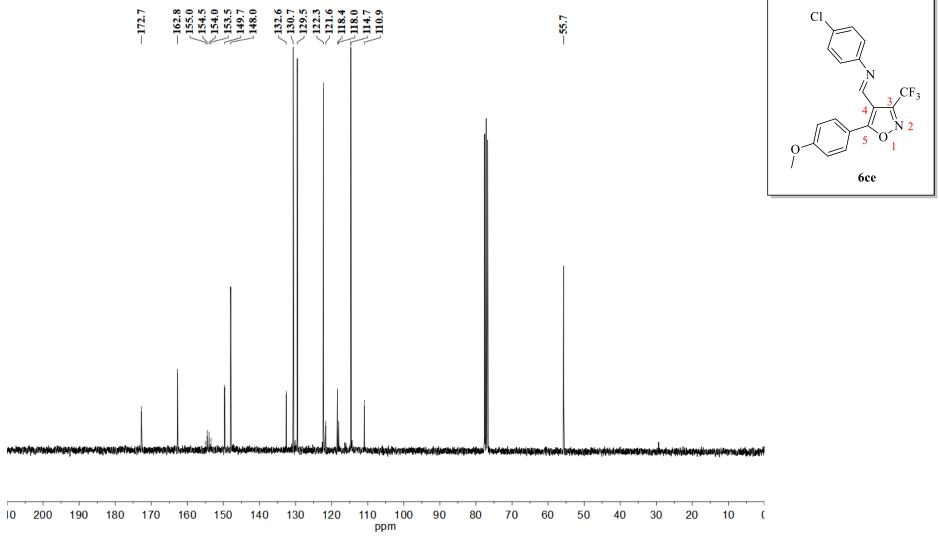


Figure S145 - ¹³C NMR spectrum of compound 6cee in CDCl₃ at 75.45 MHz.

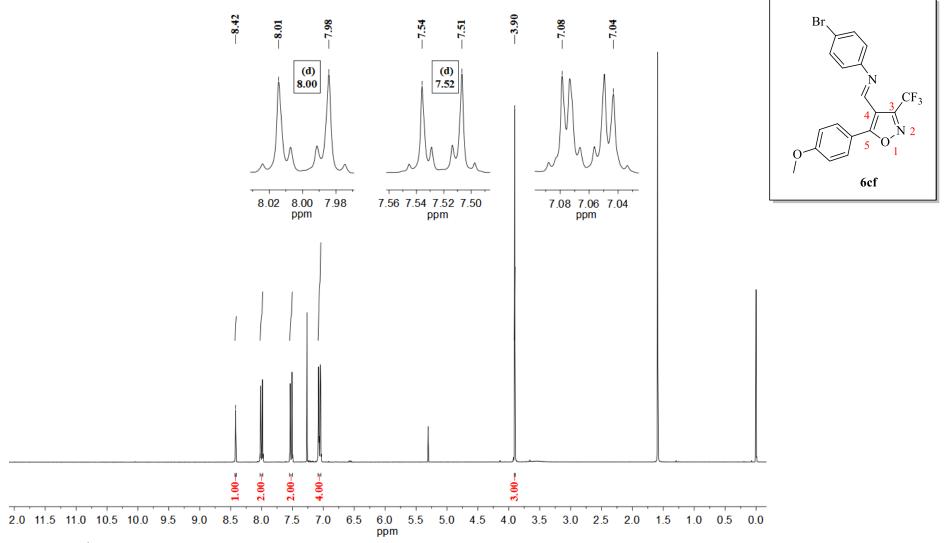


Figure S146 – ¹H NMR spectrum of compound 6cf in CDCl₃ at 300.06 MHz.

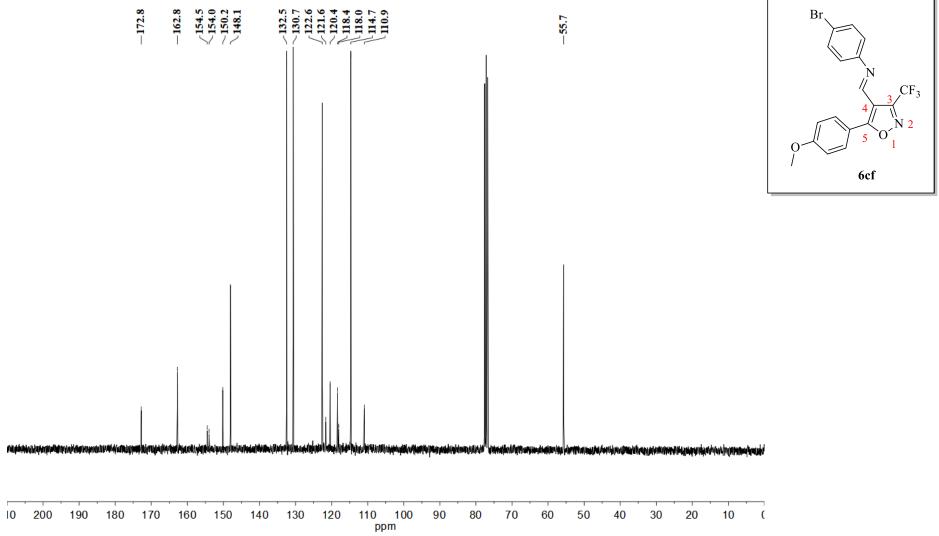


Figure S147 – 13 C NMR spectrum of compound 6cf in CDCl₃ at 75.45 MHz.

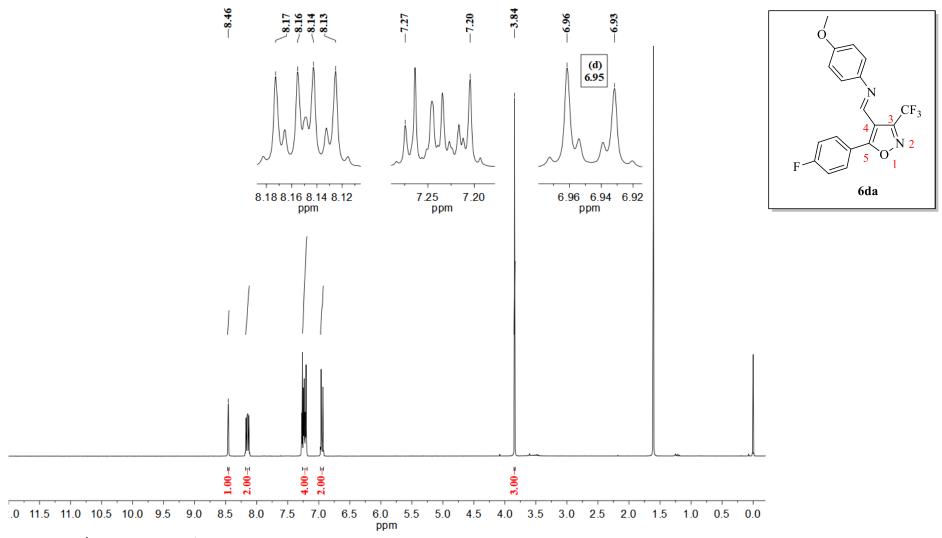


Figure S148 – ¹H NMR spectrum of compound 6da in CDCl₃ at 300.06 MHz.

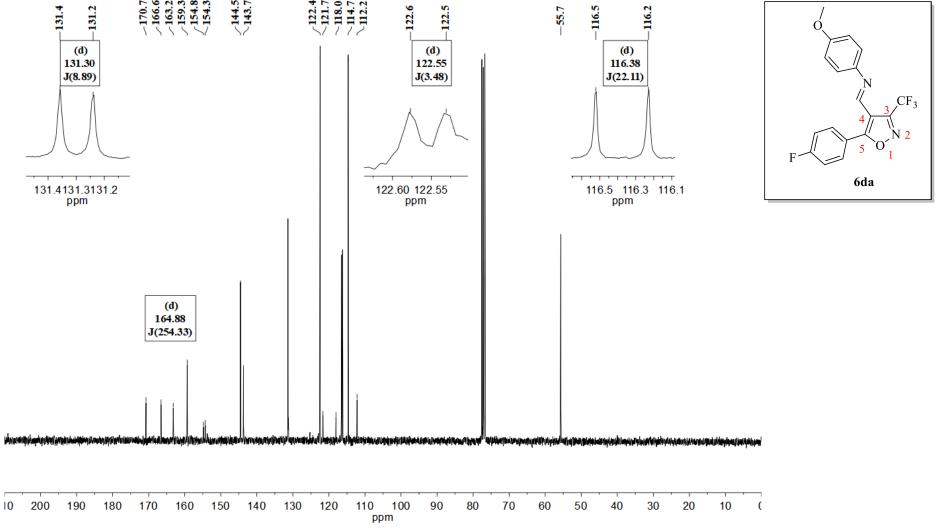
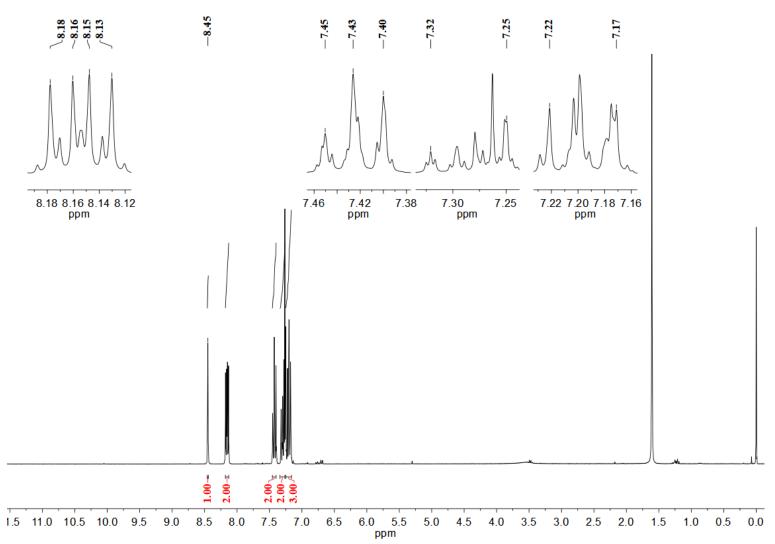



Figure S149 – ¹³C NMR spectrum of compound 6da in CDCl₃ at 75.45 MHz.

Figure S150 − ¹H NMR spectrum of compound **6db** in CDCl₃ at 300.06 MHz.

6db

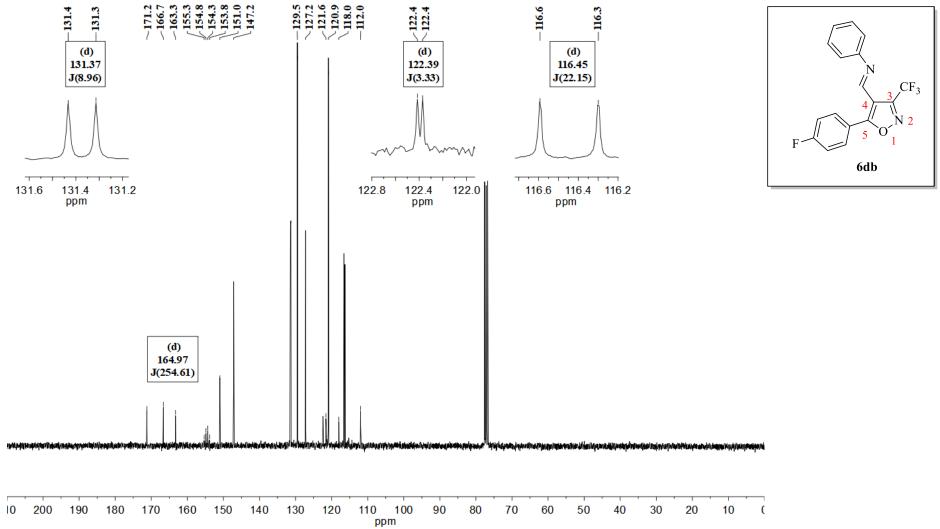


Figure S151 – ¹³C NMR spectrum of compound 6db in CDCl₃ at 75.45 MHz.

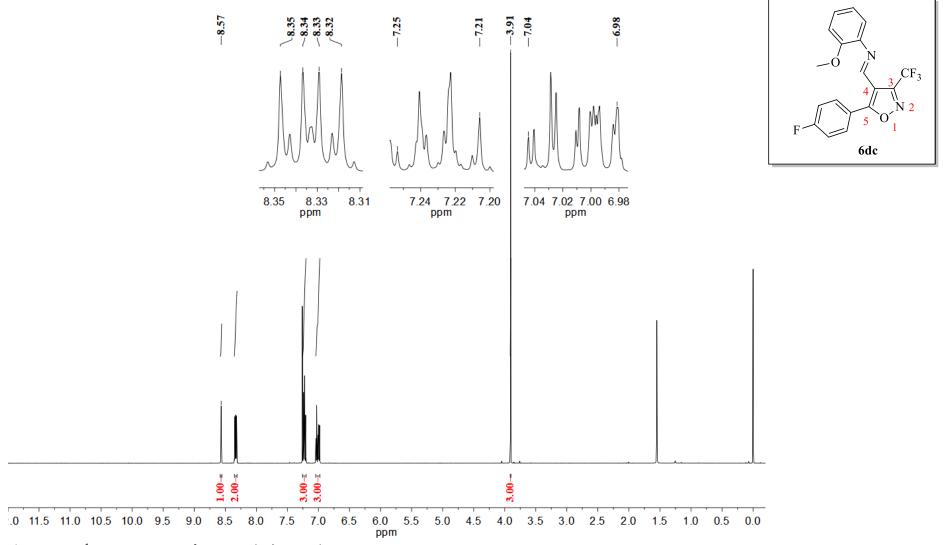


Figure S152 – ¹H NMR spectrum of compound 6dc in CDCl₃ at 300.06 MHz.

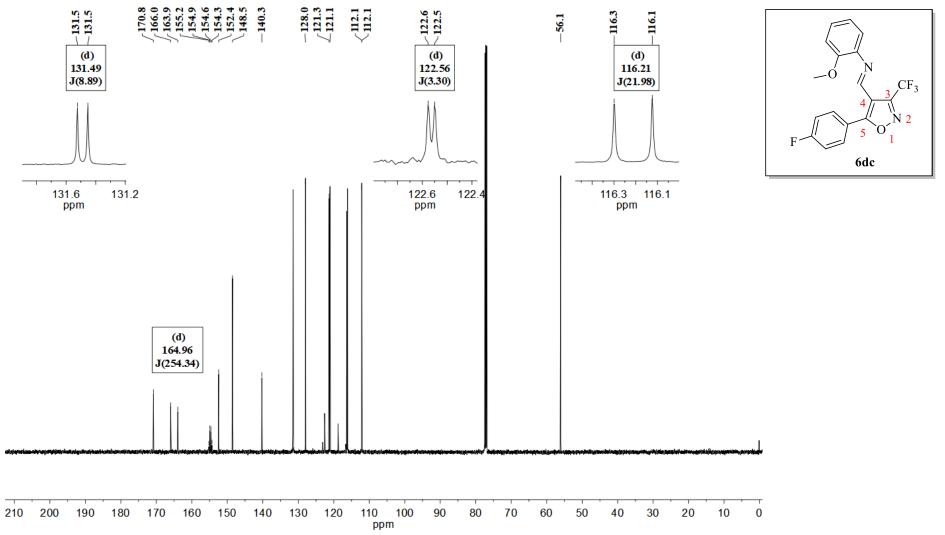


Figure S153 - ¹³C NMR spectrum of compound 6dc in CDCl₃ at 75.45 MHz.

Figure S154 – ¹H NMR spectrum of compound 6dd in CDCl₃ at 300.06 MHz.

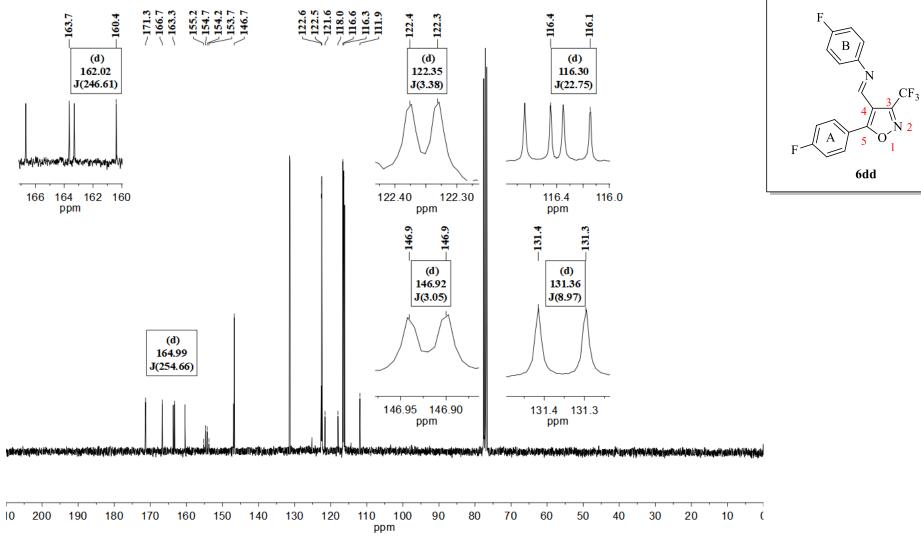


Figure S155 – 13 C NMR spectrum of compound 6dd in CDCl₃ at 75.45 MHz.

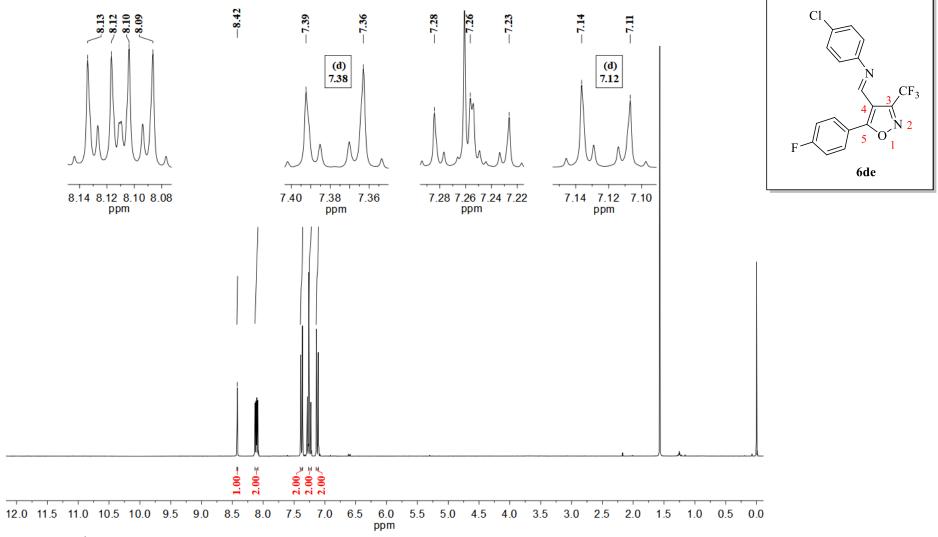


Figure S156 – ¹H NMR spectrum of compound 6de in CDCl₃ at 300.06 MHz.

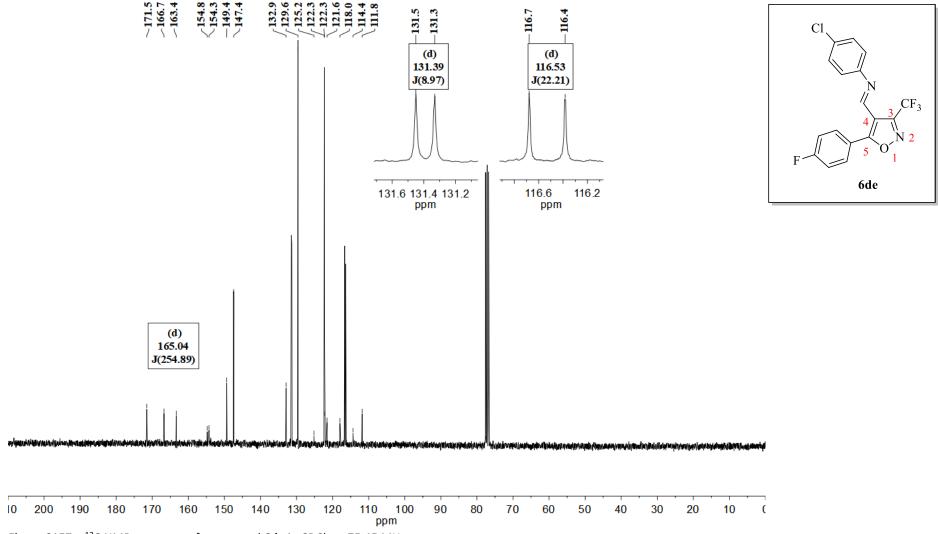
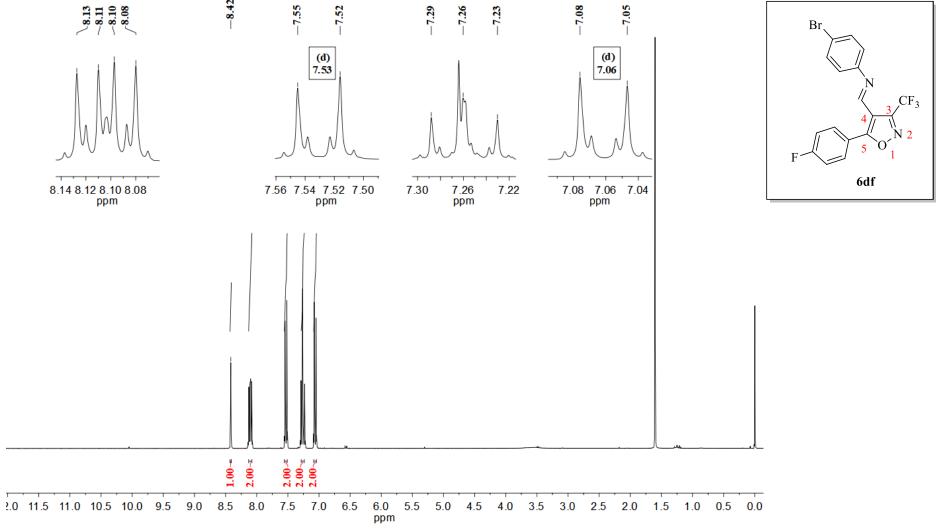



Figure S157 – ¹³C NMR spectrum of compound 6de in CDCl₃ at 75.45 MHz.

Figure S158 − ¹H NMR spectrum of compound **6df** in CDCl₃ at 300.06 MHz.

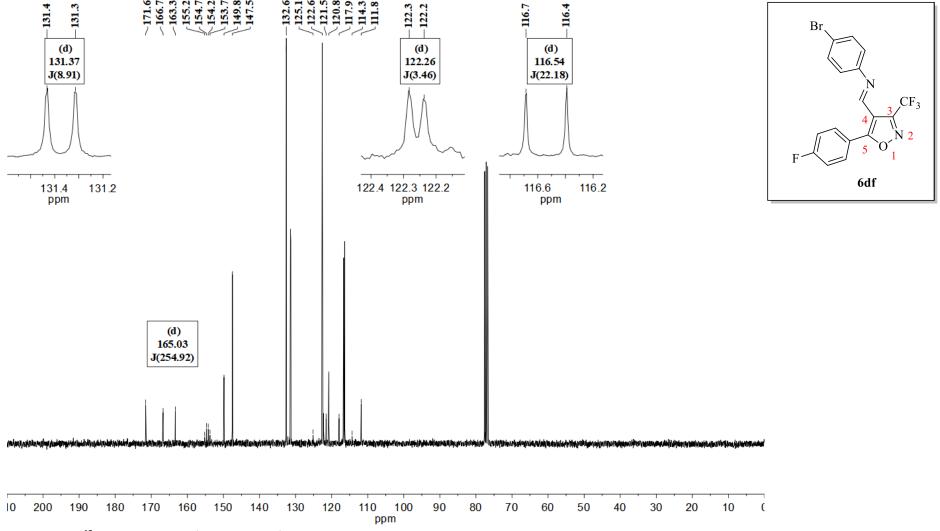


Figure S159 – 13 C NMR spectrum of compound 6df in CDCl₃ at 75.45 MHz.

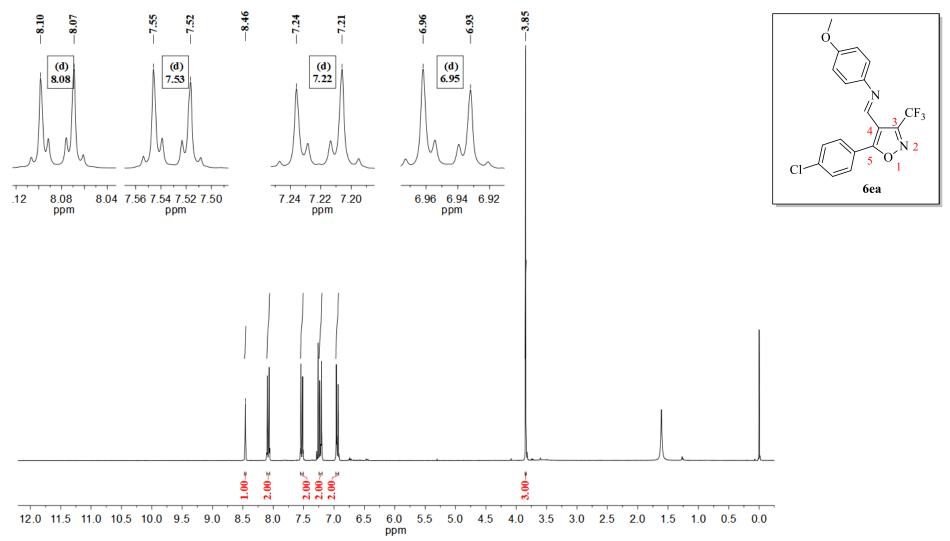


Figure S160 − ¹H NMR spectrum of compound 6ea in CDCl₃ at 300.06 MHz.

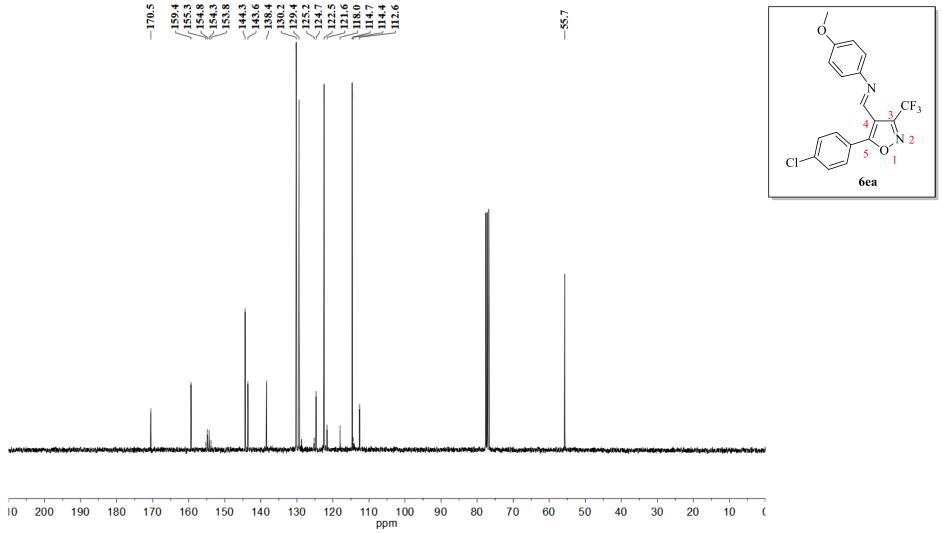


Figure S161 – ¹³C NMR spectrum of compound 6ea in CDCl₃ at 75.45 MHz.

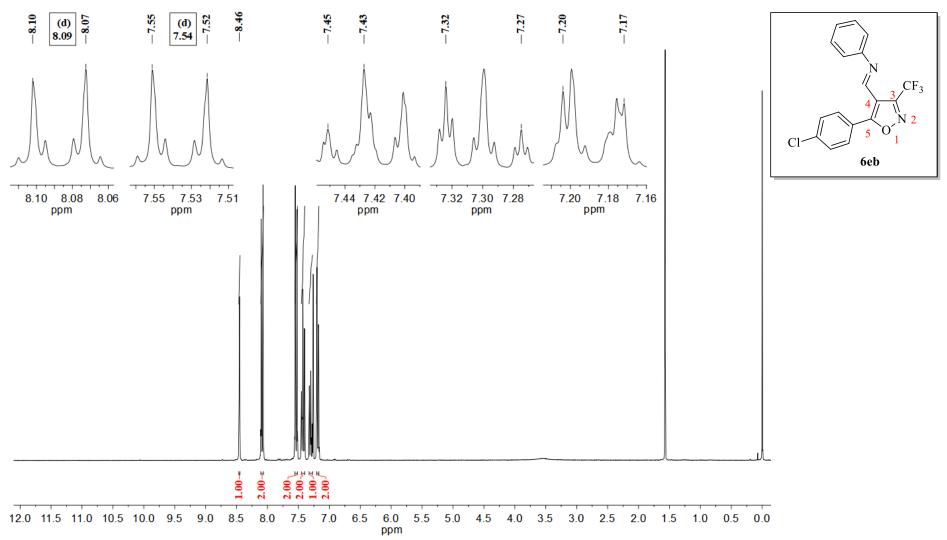


Figure S162 − ¹H NMR spectrum of compound 6eb in CDCl₃ at 300.06 MHz.

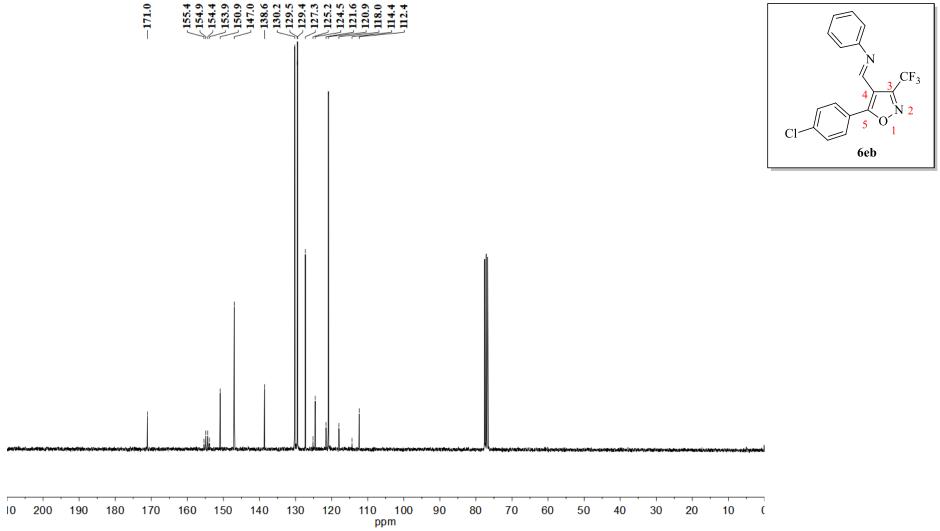


Figure S163 – 13 C NMR spectrum of compound 6eb in CDCl₃ at 75.45 MHz.

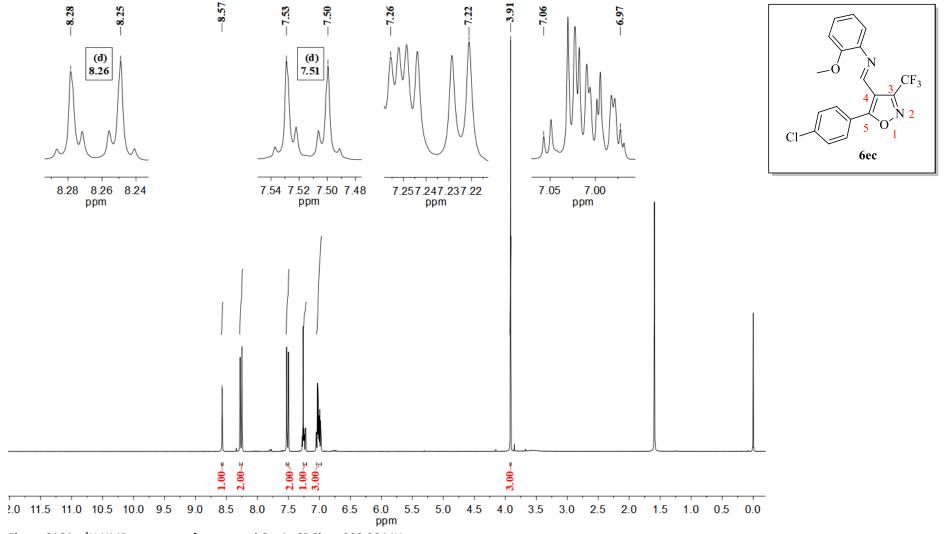
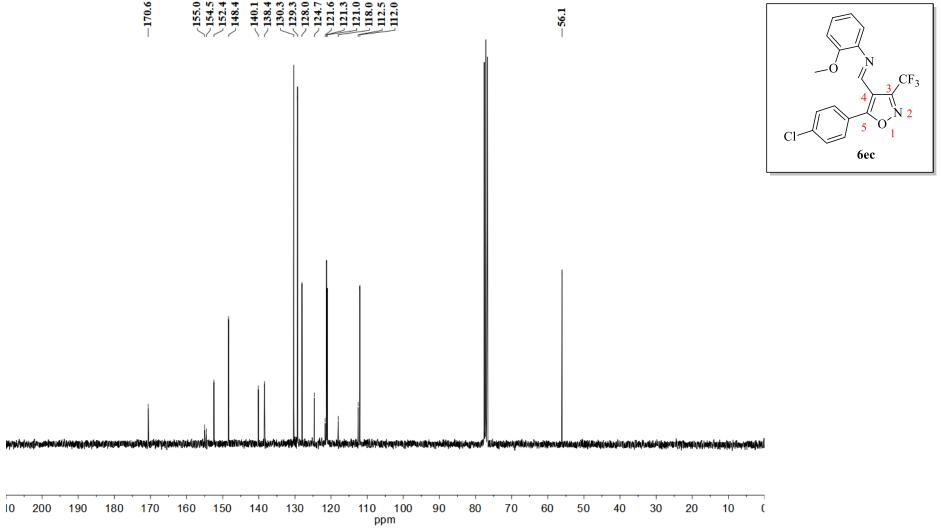
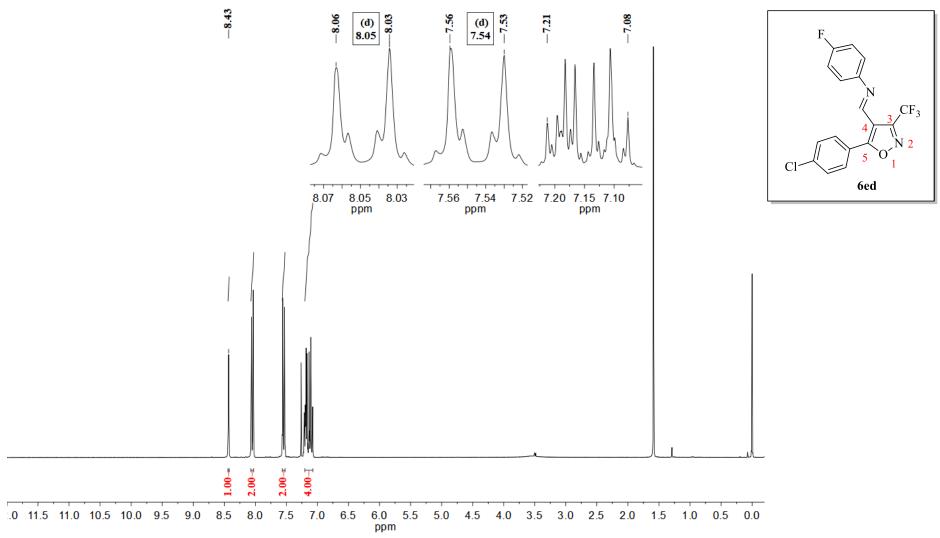




Figure S164 − ¹H NMR spectrum of compound 6ec in CDCl₃ at 300.06 MHz.

Figure S165 – 13 C NMR spectrum of compound **6ec** in CDCl₃ at 75.45 MHz.

Figure S166 − ¹H NMR spectrum of compound **6ed** in CDCl₃ at 300.06 MHz.

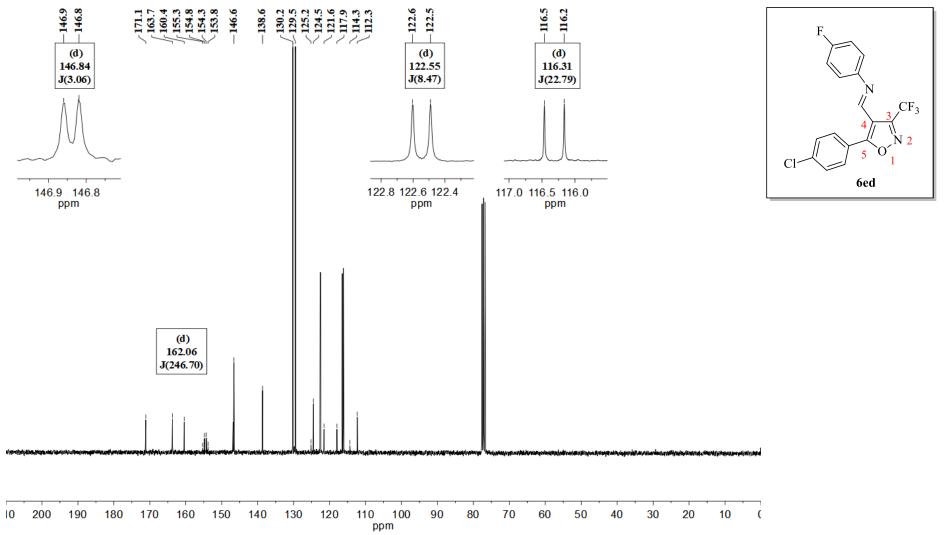


Figure S167 – ¹³C NMR spectrum of compound 6ed in CDCl₃ at 75.45 MHz.

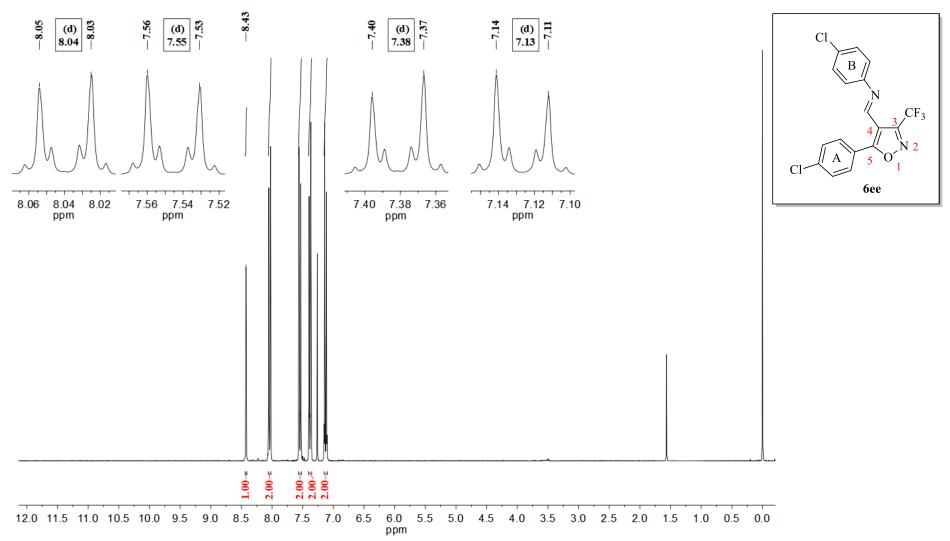


Figure S168 – ¹H NMR spectrum of compound 6ee in CDCl₃ at 300.06 MHz.

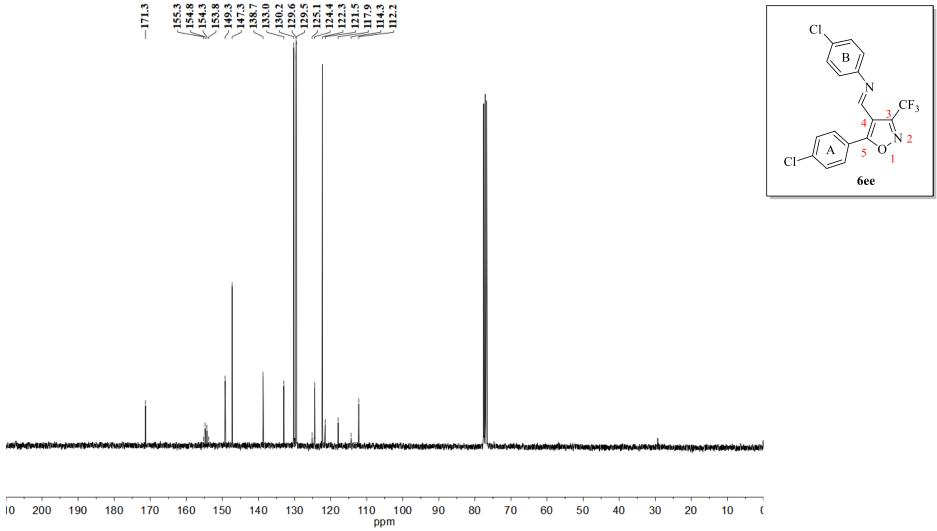


Figure S169 – ¹³C NMR spectrum of compound 6ee in CDCl₃ at 75.45 MHz.

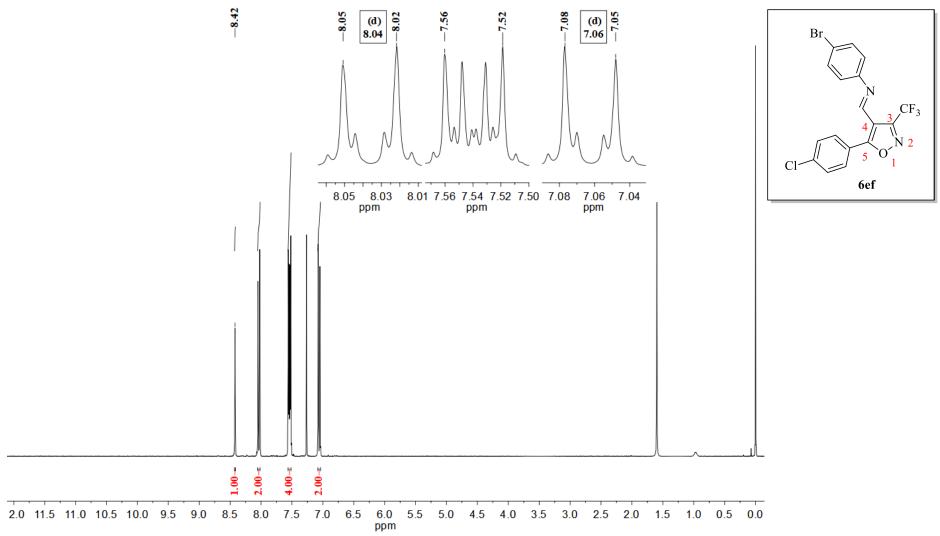
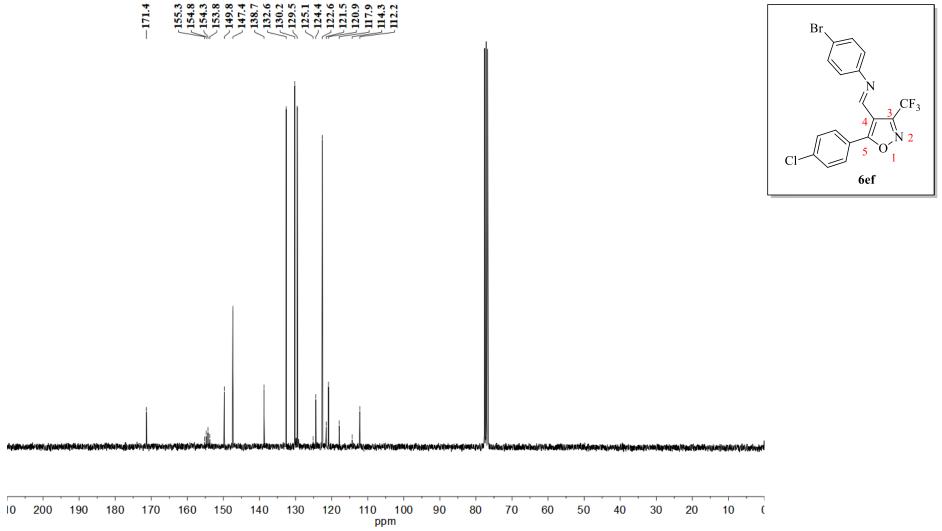



Figure S170 − ¹H NMR spectrum of compound 6ef in CDCl₃ at 300.06 MHz.

Figure S171 − ¹³C NMR spectrum of compound **6ef** in CDCl₃ at 75.45 MHz.

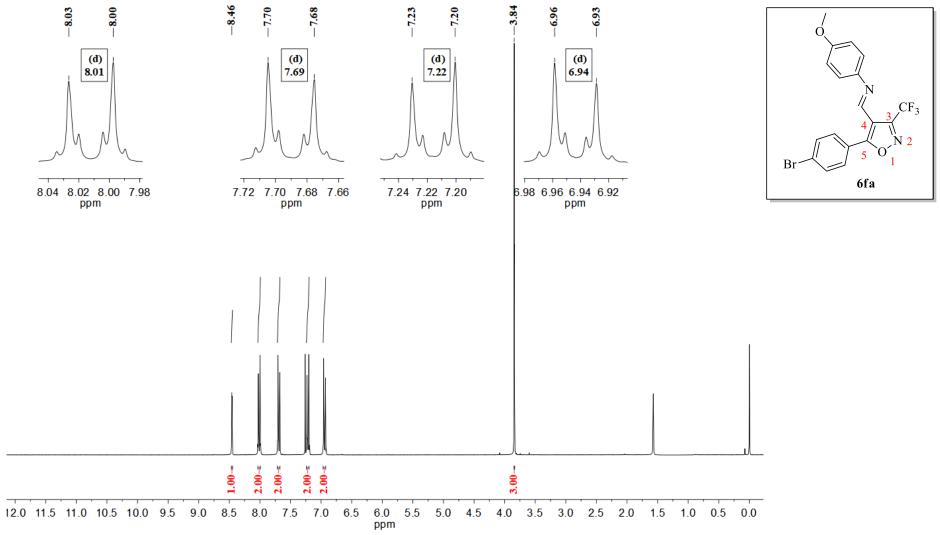


Figure S172 – ¹H NMR spectrum of compound 6fa in CDCl₃ at 300.06 MHz.

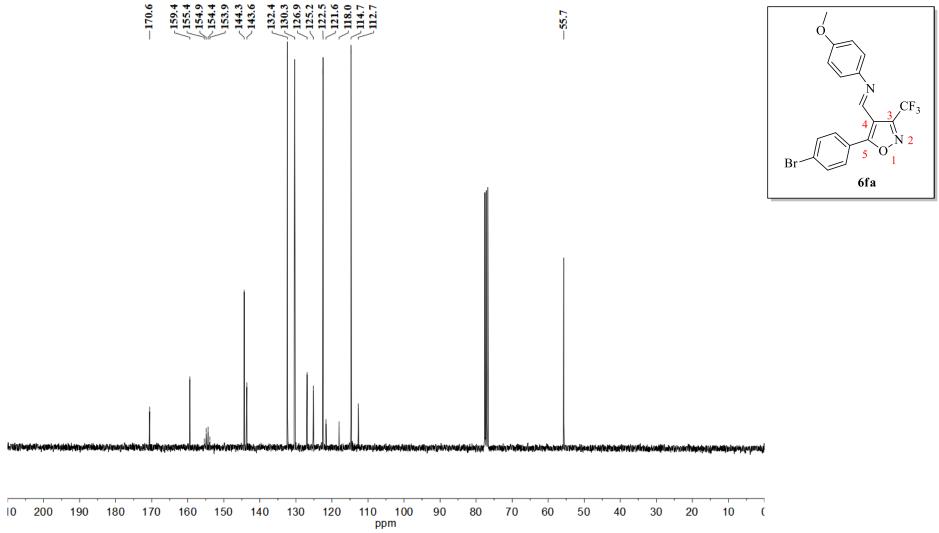


Figure S173 – ¹³C NMR spectrum of compound 6fa in CDCl₃ at 75.45 MHz.

Figure S174 – ¹H NMR spectrum of compound 6fb in CDCl₃ at 300.06 MHz.

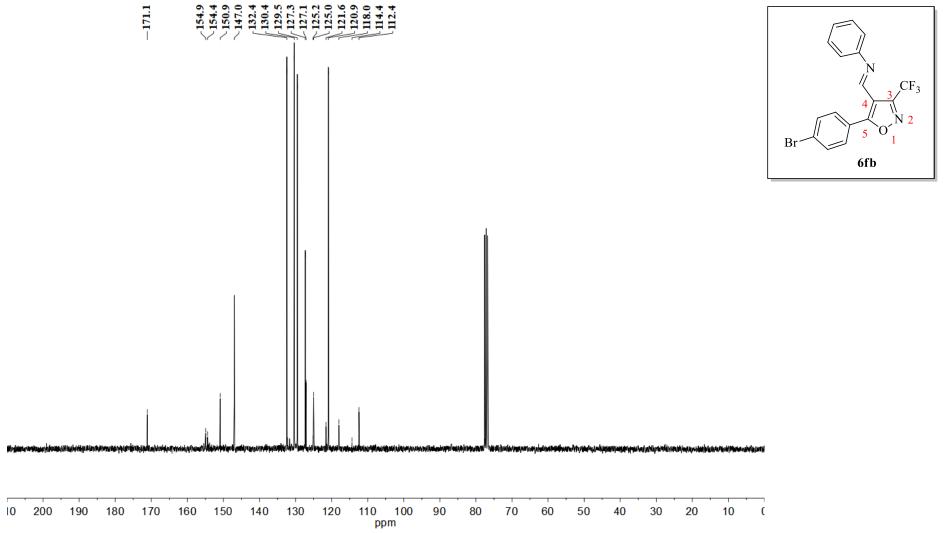


Figure S175 – 13 C NMR spectrum of compound 6fb in CDCl₃ at 75.45 MHz.

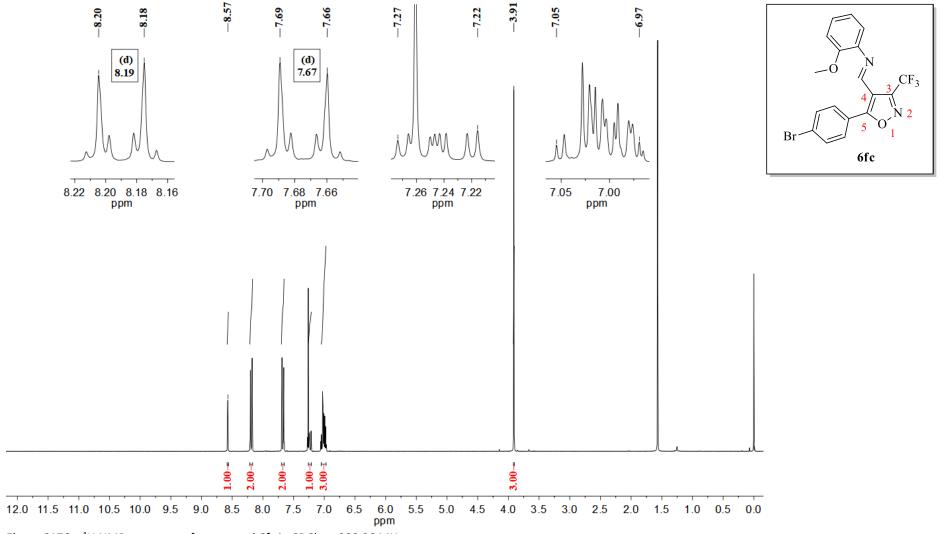


Figure S176 – ¹H NMR spectrum of compound 6fc in CDCl₃ at 300.06 MHz.

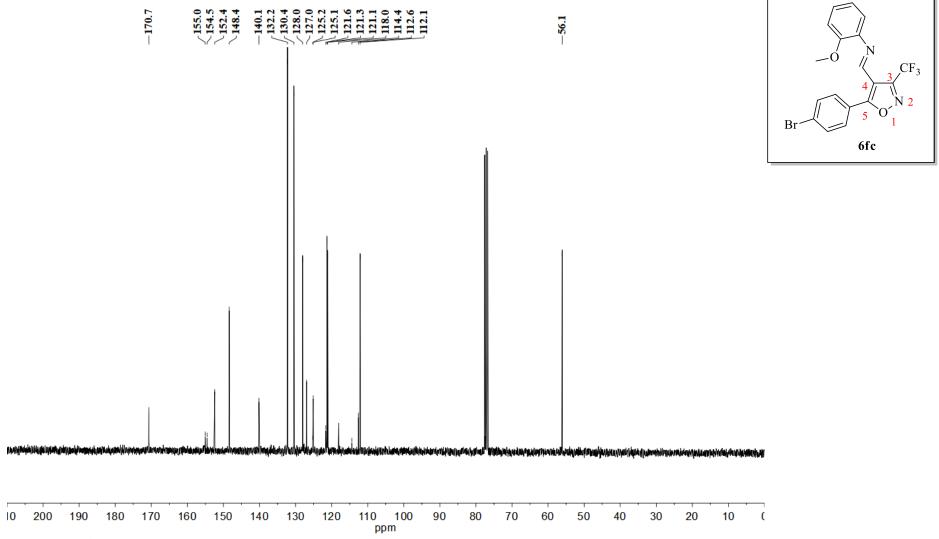


Figure S177 – ¹³C NMR spectrum of compound 6fc in CDCl₃ at 75.45 MHz.

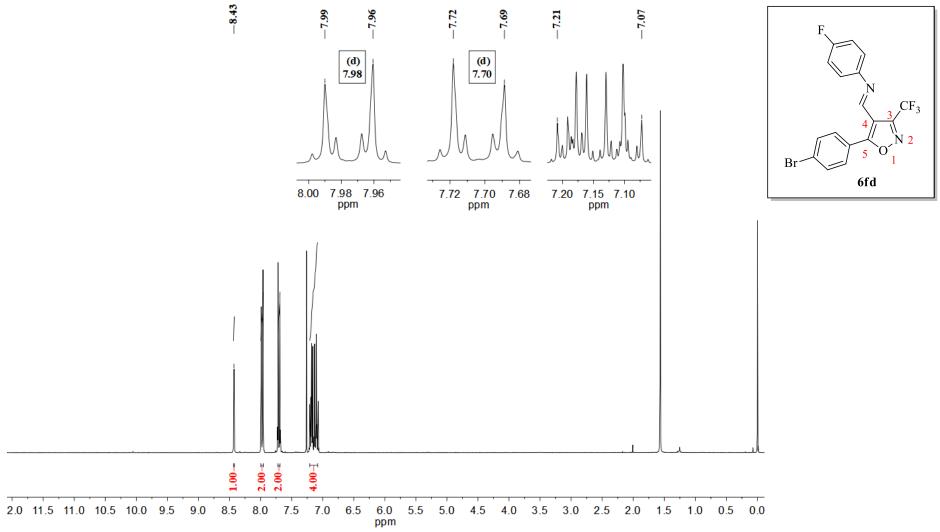


Figure S178 – ¹H NMR spectrum of compound 6fd in CDCl₃ at 300.06 MHz.

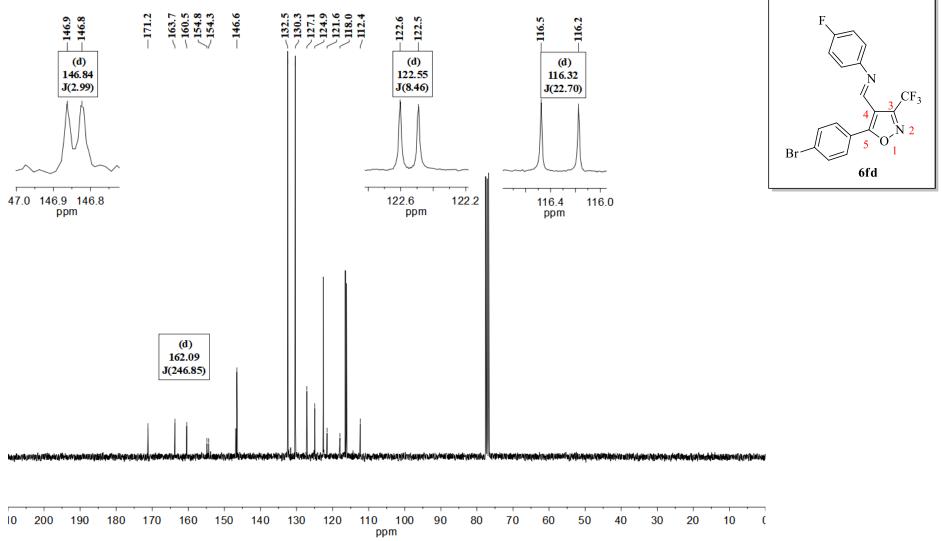


Figure S179 – 13 C NMR spectrum of compound 6fd in CDCl₃ at 75.45 MHz.

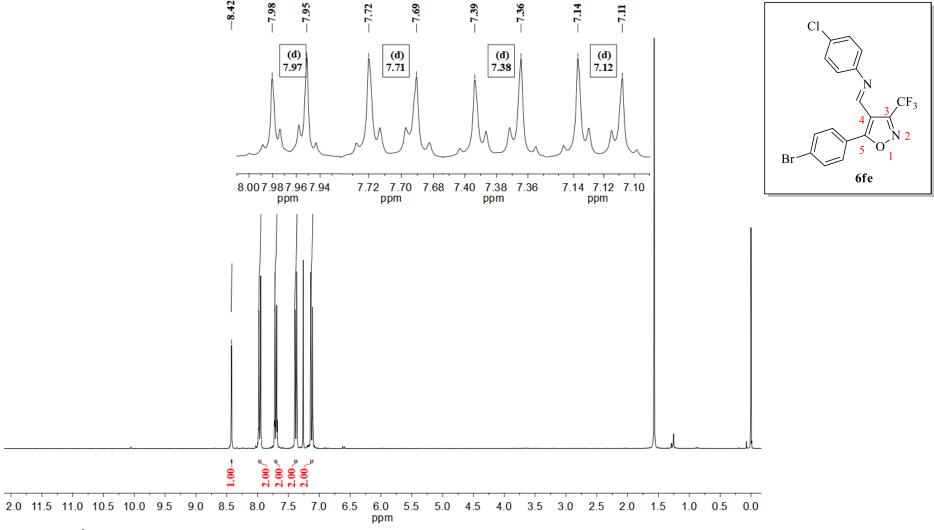
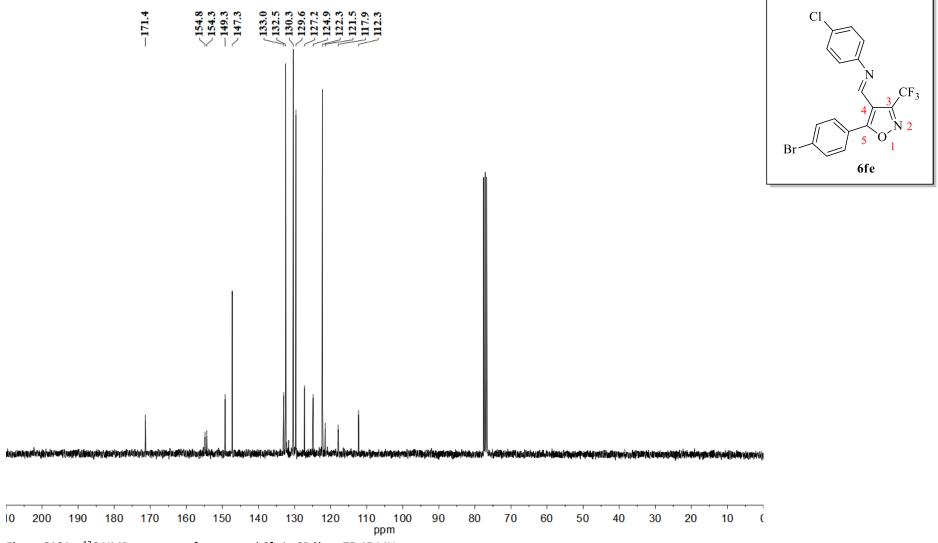



Figure S180 – ¹H NMR spectrum of compound 6fe in CDCl₃ at 300.06 MHz.

Figure S181 − ¹³C NMR spectrum of compound **6fe** in CDCl₃ at 75.45 MHz.

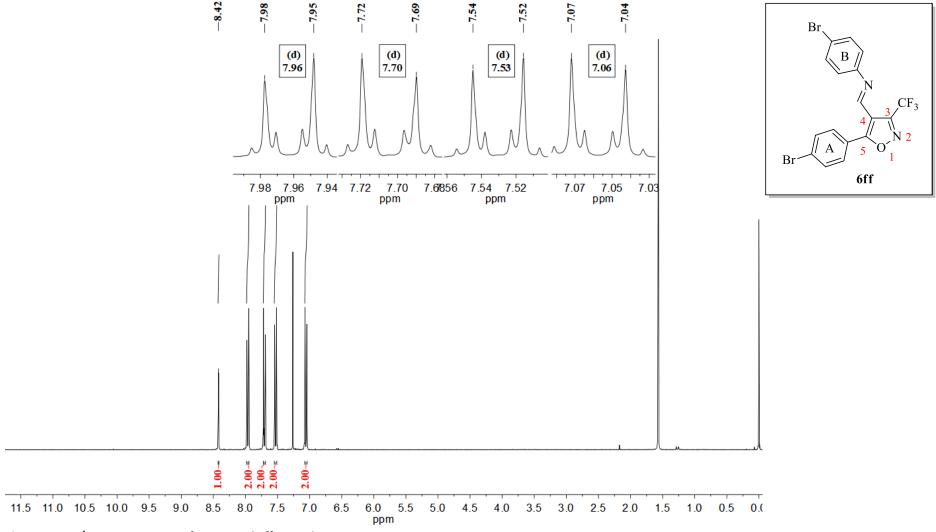


Figure S182 - ¹H NMR spectrum of compound 6ff in CDCl₃ at 300.06 MHz.

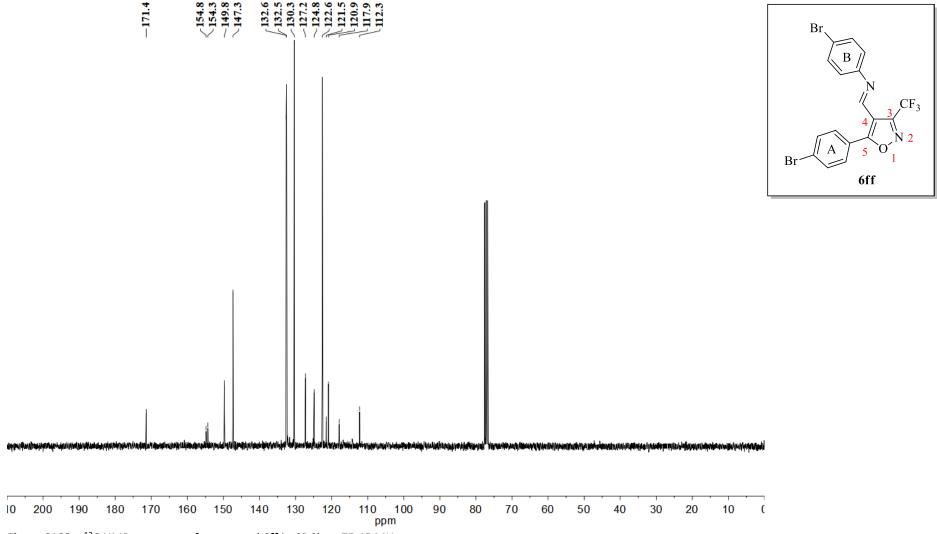


Figure S183 – ¹³C NMR spectrum of compound 6ff in CDCl₃ at 75.45 MHz.

References

- 1 W. L. Armarego, D. Perrin, *Molecules*, 1997, **2**, 152.
- 2 (a) CCDC: 1959494 (for **2f**); (b) CCDC: 1959495 (for **5dc**); (c) CCDC: 1959496 (for **6fc**) contains the supplementary crystallographic data for this paper that can be obtained from The Cambridge Crystallographic Data Centre.
- G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Crystallogr., 2008, **64**, 112–122.
- 4 L. J. Farrugia, J. Appl. Crystallogr., 1997, **30**, 565–565.
- 5 F. A. Rosa, P. Machado, M. Rossatto, P. S. Vargas, H. G. Bonacorso, N. Zanatta, M. A. P. Martins, *Synlett*, 2007, 3165–3171.
- 6 a) M. Soufyane, C. Mirand, J. Levy, *Tetrahedron Lett.*, 1993, **34**, 7737–7740;
- 7 T. F. Souza, M. J. V. Silva, R. G. M. Silva, D. S. Gonçalves, P. A. Simon, A. P. Jacomini, E. A. Basso, S. Moura, M. A. P. Martins, D. F. Back, et al., *Asian J. Org. Chem.*, 2017, **6**, 627–633.
- 8 M. J. V. Da Silva, J. Poletto, A. P. Jacomini, K. E. Pianoski, D. S. Gonçalves, G. M. Ribeiro, S. M. D. S. Melo, D. F. Back, S. Moura, F. A. Rosa, *J. Org. Chem.*, 2017, **82**, 12590–12602.