Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Metal-free cascade reactions of aziridines with arylalkynes and aryldiazoniums: facial access to arylazopyrrolines

Jing Rong, Hao Jiang, Sijing Wang, Zhenni Su, Huiyan Wang and Chuanzhou Tao*

School of Chemical Engineering, Jiangsu Ocean University, Lianyungang 222000, P. R. China

E-mail: taocz@jou.edu.cn

Table of contents

Supporting Information	1
1. Preparation of aziridines	2
2. Preparation of aryldiazonium tetrafluoroborates	3
3. Supplementary notes on the optimization of conditions for the synthesizing arylazopyrrolines	; 3
4. X-ray crystal structure and crystal data	4
5. References	17
6. Spectral data	18

1. Preparation of aziridines^[1]

To a mixture of an olefin (3 mmol) and TsNClNa \cdot 3H₂O (0.93 g, 3.3 mmol) in MeCN (15 mL), was added phenyltrimethyl-ammonium tribromide (PTAB) (0.113 g, 0.3 mmol) at room temperature. After vigorous stirring for 12 h, the reaction mixture was diluted with ethyl acetate (30 mL) and water (20 mL). The organic layer was separated, washed with brine, and dried over anhydrous sodium sulfate. After evaporation of solvent, the resultant solid was purified by flash column chromatography to yield the corresponding aziridine.

2-Phenyl-1-tosylaziridine (1a):^[2]

¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, *J* = 7.9 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.30 – 7.24 (m, 3H), 7.23-7.18 (m, 2H), 3.77 (dd, *J* = 7.0, 4.6 Hz, 1H), 2.98 (d, *J* = 7.2 Hz, 1H), 2.42 (s, 3H), 2.38 (d, *J* = 4.4 Hz, 1H).

2-(p-Tolyl)-1-tosylaziridine (1b):^[3]

¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, *J* = 8.3 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.09 (s, 4H), 3.74 (dd, *J* = 7.2, 4.5 Hz, 1H), 2.96 (d, *J* = 7.2 Hz, 1H), 2.42 (s, 3H), 2.37 (d, *J* = 4.5 Hz, 1H), 2.30 (s, 3H).

2-(4-Chlorophenyl)-1-tosylaziridine (1c):^[2]

¹H NMR (500 MHz, CDCl₃) δ 7.89 – 7.83 (m, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.28 – 7.25 (m, 2H), 7.18 – 7.13 (m, 2H), 3.73 (dd, *J* = 7.1, 4.4 Hz, 1H), 2.98 (d, *J* = 7.2 Hz, 1H), 2.44 (s, 3H), 2.34 (d, *J* = 4.4 Hz, 1H).

2-(2-Chlorophenyl)-1-tosylaziridine (1d):^[3]

¹H NMR (500 MHz, CDCl₃) δ 7.93 – 7.87 (m, 2H), 7.38 – 7.31 (m, 3H), 7.23 – 7.15 (m, 3H), 4.04 (dd, *J* = 7.2, 4.4 Hz, 1H), 3.03 (d, *J* = 7.3 Hz, 1H), 2.45 (s, 3H), 2.29 (d, *J* = 4.4 Hz, 1H).

(trans)-2-Methyl-3-phenyl-1-tosylaziridine (1e):^[2]

¹H NMR (500 MHz, CDCl₃) δ 7.85 – 7.79 (m, 2H), 7.28 – 7.22 (m, 5H), 7.17 – 7.11 (m, 2H), 3.79 (d, *J* = 4.3 Hz, 1H), 2.91 (qd, *J* = 6.0, 4.4 Hz, 1H), 2.38 (s, 3H), 1.84 (d, *J* = 6.0 Hz, 3H).

7-tosyl-7-azabicyclo [4.1.0] heptane (1f):^[2]

¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 8.1 Hz, 2H), 2.96 (s, 2H), 2.43 (s, 3H), 1.78 (t, J = 5.8 Hz, 4H), 1.45 – 1.34 (m, 2H), 1.25 – 1.17 (m, 2H).

2. Preparation of aryldiazonium tetrafluoroborates^[4]

Arylamine (50 mmol) was dissolved in a mixture of hydrofluoroboric acid (48 wt.%, 17 mL) and distilled water (20 mL). After cooling the reaction mixture to 0°C, the solution of sodium nitrite (3.4 g in 7.5 mL distilled water) was added dropwise into the reaction system (5 min interval of time). The resulting mixture was stirred for 1 h and the precipitate was collected by filtration and redissolved in minimum amount of acetone. Diethyl ether was added until precipitation of aryldiazonium tetrafluoroborate, which is filtered, washed several times with diethyl ether and dried under vacuum.

3. Supplementary notes on the optimization of conditions for the synthesizing arylazopyrrolines^a

To an oven-dried 25 mL Schlenk tube equipped with a magnetic stir bar, aziridine (0.2 mmol, 1.0 equiv.), alkyne (0.5 mmol, 2.5 equiv., if the alkyne is solid) and aryl diazonium tetrafluoroborate (0.3 mmol, 1.5 equiv.) were added. The Schlenk tube was evacuated and backfilled with argon for three times. Under argon atmosphere, alkyne (0.5 mmol, 2.5 equiv., if the alkyne is liquid) and solvent (2.0 mL, anhydrous and degassed) were added into the tube and the mixture was stirred for the given time. After cooling to room temperature, Et₃N (0.5 mL) was used to quench the reaction. The volatiles were evaporated under vacuum and the residue was purified with column chromatography on silica gel using ethyl acetate/petroleum ether as the eluent to give azo products. All the silica gel was dealt with 5% Et₃N (the solution in petroleum ether) overnight.

Ph	Ts N 	ArN ₂ BF ₄ –	Solvent T °C	P → TsN	
1	a 2a	3		Ai -	4
Entry ^a	Substrate	Solvent	T (°C)	t (h)	Yield ^b (%)
1	p-CO ₂ EtC ₆ H ₄ N ₂ BF ₄	DCM	40	48	60
2	p-ClC ₆ H ₄ N ₂ BF ₄	DCM	40	48	48
3	p-ClC ₆ H ₄ N ₂ BF ₄	DCM	40	60	65
4	p-CO2EtC6H4N2BF4	DCE	60	24	50

^{*a*} Reaction conditions: **1a** 0.2 mmol, **2a** 0.5 mmol, **3** 0.3 mmol, Solvent 2.0 mL. ^{*b*} The yields are isolated yields with flash chromatography.

4. X-ray crystal structure and crystal data

4.1 X-ray crystal structure and crystal data of 4aaa (CCDC: 1975117)

Figure 1.X-Ray crystal structure of 4aaa

Crystal data	Compound 4aaa
Identification code	rj_0m
Empirical formula	C ₃₂ H ₂₉ N ₃ O ₄ S
Formula weight	551.64
Temperature	296(2) K
Wavelength	71.073 pm
Crystal system, space group	Monoclinic, P2 ₁ /c
Unit cell dimensions	$a = 1481.8(6) \text{ pm}$ $alpha = 90^{\circ}$
	$b = 1192.0(5) \text{ pm}$ $beta = 91.828(7)^{\circ}$

Table 1-1 Crystal data and structure refinement for 4aaa

	c = 1655.7(7) pm gamma= 90°
Volume	2.923(2) nm ³
Z, Calculated density	4, 1.254 Mg/m ³
Absorption coefficient	0.151 mm ⁻¹
F(000)	1160
Theta range for data collection	4.212 to 55.792°.
Limiting indices	-18<=h<=19, -15<=k<=14, -21<=l<=19
Reflections collected / unique	18161, 6834 [R(int) = 0.0469]
Completeness to theta = 25.242°	99.5 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	6834 / 0 / 363
Goodness-of-fit on F ²	0.987
Final R indices [I>2sigma(I)]	R1 = 0.0496, wR2 = 0.1137
R indices (all data)	R1 = 0.1153, wR2 = 0.1434
Largest diff. peak and hole	0.167 and -0.345 e.Å ⁻³

Table 1-2 Bond lengths [pm] and angles [°] for 4aaa

S(1)-O(1)	142.05(16)
S(1)-O(3)	142.82(16)
S(1)-N(1)	166.82(18)
S(1)-C(20)	175.4(2)
O(2)-C(11)	120.3(3)
O(4)-C(11)	133.0(3)
O(4)-C(12)	145.0(3)
N(1)-C(1)	140.2(2)
N(1)-C(4)	150.6(2)
N(2)-N(3)	127.7(2)
N(2)-C(2)	137.9(2)
N(3)-C(5)	142.9(3)
C(1)-C(2)	136.3(3)
C(1)-C(27)	148.2(3)
C(2)-C(3)	150.6(3)
C(3)-C(14)	152.3(3)
C(3)-C(4)	153.9(3)
C(3)-H(3)	98.00
C(4)-H(4A)	97.00
C(4)-H(4B)	97.00
C(5)-C(6)	138.3(3)
C(5)-C(10)	138.7(3)

C(6)-C(7)	137.5(3)
C(6)-H(6)	93.00
C(7)-C(8)	139.1(3)
C(7)-H(7)	93.00
C(8)-C(9)	138.6(3)
C(8)-C(11)	148.4(3)
C(9)-C(10)	139.0(3)
C(9)-H(9)	93.00
C(10)-H(10)	93.00
C(12)-C(13)	147.1(4)
C(12)-H(12A)	97.00
C(12)-H(12B)	97.00
C(13)-H(13A)	96.00
C(13)-H(13B)	96.00
C(13)-H(13C)	96.00
C(14)-C(19)	135.9(3)
C(14)-C(15)	136.3(3)
C(15)-C(16)	138.9(4)
C(15)-H(15)	93.00
C(16)-C(17)	134.1(5)
C(16)-H(16)	93.00
C(17)-C(18)	135.5(4)
C(17)-H(17)	93.00
C(18)-C(19)	139.3(4)
C(18)-H(18)	93.00
C(19)-H(19)	93.00
C(20)-C(25)	137.5(3)
C(20)-C(21)	138.3(3)
C(21)-C(22)	137.4(3)
C(21)-H(21)	93.00
C(22)-C(23)	137.3(4)
C(22)-H(22)	93.00
C(23)-C(24)	139.2(4)
C(23)-C(26)	152.5(4)
C(24)-C(25)	138.1(3)
C(24)-H(24)	93.00
C(25)-H(25)	93.00
C(26)-H(26A)	96.00

C(26)-H(26B)	96.00
C(26)-H(26C)	96.00
C(27)-C(28)	138.4(3)
C(27)-C(32)	139.1(3)
C(28)-C(29)	138.2(3)
C(28)-H(28)	93.00
C(29)-C(30)	137.0(4)
C(29)-H(29)	93.00
C(30)-C(31)	137.3(4)
C(30)-H(30)	93.00
C(31)-C(32)	137.4(3)
C(31)-H(31)	93.00
C(32)-H(32)	93.00
O(1)-S(1)-O(3)	120.40(10)
O(1)-S(1)-N(1)	107.37(9)
O(3)-S(1)-N(1)	104.18(10)
O(1)-S(1)-C(20)	109.27(10)
O(3)-S(1)-C(20)	108.82(10)
N(1)-S(1)-C(20)	105.77(9)
C(11)-O(4)-C(12)	118.7(2)
C(1)-N(1)-C(4)	108.87(15)
C(1)-N(1)-S(1)	126.53(14)
C(4)-N(1)-S(1)	117.26(13)
N(3)-N(2)-C(2)	113.49(17)
N(2)-N(3)-C(5)	112.29(17)
C(2)-C(1)-N(1)	110.30(17)
C(2)-C(1)-C(27)	124.32(19)
N(1)-C(1)-C(27)	125.37(17)
C(1)-C(2)-N(2)	120.91(18)
C(1)-C(2)-C(3)	112.10(18)
N(2)-C(2)-C(3)	126.97(18)
C(2)-C(3)-C(14)	111.16(18)
C(2)-C(3)-C(4)	102.01(16)
C(14)-C(3)-C(4)	114.69(18)
C(2)-C(3)-H(3)	109.6
C(14)-C(3)-H(3)	109.6
C(4)-C(3)-H(3)	109.6

N(1)-C(4)-C(3)	105.57(16)
N(1)-C(4)-H(4A)	110.6
C(3)-C(4)-H(4A)	110.6
N(1)-C(4)-H(4B)	110.6
C(3)-C(4)-H(4B)	110.6
H(4A)-C(4)-H(4B)	108.8
C(6)-C(5)-C(10)	119.8(2)
C(6)-C(5)-N(3)	124.73(18)
C(10)-C(5)-N(3)	115.49(19)
C(7)-C(6)-C(5)	120.05(19)
C(7)-C(6)-H(6)	120.0
C(5)-C(6)-H(6)	120.0
C(6)-C(7)-C(8)	120.9(2)
C(6)-C(7)-H(7)	119.5
C(8)-C(7)-H(7)	119.5
C(9)-C(8)-C(7)	119.0(2)
C(9)-C(8)-C(11)	121.9(2)
C(7)-C(8)-C(11)	119.1(2)
C(8)-C(9)-C(10)	120.23(19)
C(8)-C(9)-H(9)	119.9
C(10)-C(9)-H(9)	119.9
C(5)-C(10)-C(9)	120.0(2)
C(5)-C(10)-H(10)	120.0
C(9)-C(10)-H(10)	120.0
O(2)-C(11)-O(4)	123.3(2)
O(2)-C(11)-C(8)	124.3(2)
O(4)-C(11)-C(8)	112.4(2)
O(4)-C(12)-C(13)	108.7(2)
O(4)-C(12)-H(12A)	109.9
C(13)-C(12)-H(12A)	109.9
O(4)-C(12)-H(12B)	109.9
C(13)-C(12)-H(12B)	109.9
H(12A)-C(12)-H(12B)	108.3
C(12)-C(13)-H(13A)	109.5
C(12)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5
C(12)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13C)	109.5

H(13B)-C(13)-H(13C)	109.5
C(19)-C(14)-C(15)	116.6(3)
C(19)-C(14)-C(3)	121.7(2)
C(15)-C(14)-C(3)	121.8(3)
C(14)-C(15)-C(16)	121.2(3)
C(14)-C(15)-H(15)	119.4
C(16)-C(15)-H(15)	119.4
C(17)-C(16)-C(15)	121.2(3)
C(17)-C(16)-H(16)	119.4
C(15)-C(16)-H(16)	119.4
C(16)-C(17)-C(18)	119.1(3)
C(16)-C(17)-H(17)	120.5
C(18)-C(17)-H(17)	120.5
C(17)-C(18)-C(19)	119.3(3)
C(17)-C(18)-H(18)	120.3
C(19)-C(18)-H(18)	120.3
C(14)-C(19)-C(18)	122.6(3)
C(14)-C(19)-H(19)	118.7
C(18)-C(19)-H(19)	118.7
C(25)-C(20)-C(21)	120.6(2)
C(25)-C(20)-S(1)	119.32(18)
C(21)-C(20)-S(1)	119.99(18)
C(22)-C(21)-C(20)	119.6(2)
C(22)-C(21)-H(21)	120.2
C(20)-C(21)-H(21)	120.2
C(23)-C(22)-C(21)	121.1(3)
C(23)-C(22)-H(22)	119.4
C(21)-C(22)-H(22)	119.4
C(22)-C(23)-C(24)	118.5(3)
C(22)-C(23)-C(26)	121.0(3)
C(24)-C(23)-C(26)	120.5(3)
C(25)-C(24)-C(23)	121.1(3)
C(25)-C(24)-H(24)	119.4
C(23)-C(24)-H(24)	119.4
C(20)-C(25)-C(24)	119.0(2)
C(20)-C(25)-H(25)	120.5
C(24)-C(25)-H(25)	120.5
C(23)-C(26)-H(26A)	109.5

C(23)-C(26)-H(26B)	109.5
H(26A)-C(26)-H(26B)	109.5
C(23)-C(26)-H(26C)	109.5
H(26A)-C(26)-H(26C)	109.5
H(26B)-C(26)-H(26C)	109.5
C(28)-C(27)-C(32)	118.8(2)
C(28)-C(27)-C(1)	118.51(19)
C(32)-C(27)-C(1)	122.57(19)
C(29)-C(28)-C(27)	120.8(2)
C(29)-C(28)-H(28)	119.6
C(27)-C(28)-H(28)	119.6
C(30)-C(29)-C(28)	119.6(3)
C(30)-C(29)-H(29)	120.2
C(28)-C(29)-H(29)	120.2
C(29)-C(30)-C(31)	120.3(2)
C(29)-C(30)-H(30)	119.8
C(31)-C(30)-H(30)	119.8
C(30)-C(31)-C(32)	120.4(3)
C(30)-C(31)-H(31)	119.8
C(32)-C(31)-H(31)	119.8
C(31)-C(32)-C(27)	120.0(2)
C(31)-C(32)-H(32)	120.0
C(27)-C(32)-H(32)	120.0

4.2 X-ray crystal structure and crystal data of 7 (CCDC: 1975115)

Figure S1.X-Ray crystal structure of 7

······································	-	
Crystal data	Compound 7	
Identification code	rj_1_0m	
Empirical formula	C ₃₂ H ₃₃ N ₅ O ₄ S	
Formula weight	583.69	
Temperature	296(2) K	
Wavelength	71.073 pm	
Crystal system, space group	Monoclinic, P21/c	
Unit cell dimensions	$a = 831.54(14) \text{ pm}$ $alpha = 90^{\circ}$	
	$b = 2034.0(4) \text{ pm}$ $beta = 101.759(3)^{\circ}$	
	c = 1796.2(3) pm gamma = 90°	
Volume	2.9743(9) nm ³	
Z, Calculated density	4, 1.303 Mg/m ³	
Absorption coefficient	0.154 mm ⁻¹	
F(000)	1232	
Theta range for data collection	1.531 to 27.567°.	
Limiting indices	-10<=h<=9, -26<=k<=26, -23<=l<=20	
Reflections collected / unique	18482, 6830 [R(int) = 0.0720]	
Completeness to theta = 25.242°	99.9 %	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	6830 / 0 / 389	
Goodness-of-fit on F ²	0.983	
Final R indices [I>2sigma(I)]	R1 = 0.0592, wR2 = 0.1285	
R indices (all data)	R1 = 0.1548, wR2 = 0.1675	
Largest diff. peak and hole	0.40 and -0.30 e.Å ⁻³	

Table 2-1	Crystal	data and	l structure	refinement	for	7
Table 2-1	Crystar	uata any	i su uctui c	1 CHIICHICHI	101	'

S(1)-O(4)	142.9(2)
S(1)-O(3)	143.3(2)
S(1)-N(5)	160.6(2)
S(1)-C(26)	175.5(3)
O(1)-C(11)	135.1(4)
O(1)-C(12)	148.3(4)
O(2)-C(11)	120.5(3)
N(1)-C(1)	129.2(3)
N(1)-N(2)	138.2(4)
N(2)-H(2C)	86(4)
N(2)-H(2D)	110(5)
N(3)-C(2)	129.2(3)
N(3)-N(4)	135.6(3)
N(4)-C(5)	138.0(3)
N(4)-H(4)	86.00
N(5)-C(4)	146.3(3)
N(5)-H(5)	86.00
C(1)-C(2)	148.0(4)
C(1)-C(20)	149.8(4)
C(2)-C(3)	151.8(4)
C(3)-C(14)	151.8(4)
C(3)-C(4)	153.0(4)
C(3)-H(3)	98.00
C(4)-H(4A)	97.00
C(4)-H(4B)	97.00
C(5)-C(10)	139.2(4)
C(5)-C(6)	140.0(4)
C(6)-C(7)	136.5(4)
C(6)-H(6)	93.00
C(7)-C(8)	138.8(4)
C(7)-H(7)	93.00
C(8)-C(9)	139.2(4)
C(8)-C(11)	147.6(4)
C(9)-C(10)	136.6(4)
C(9)-H(9)	93.00
C(10)-H(10)	93.00

Table 2-2. Bond lengths [pm] and angles [°] for 7

C(12)-C(13)	145.0(5)
C(12)-H(12A)	97.00
C(12)-H(12B)	97.00
C(13)-H(13A)	96.00
C(13)-H(13B)	96.00
C(13)-H(13C)	96.00
C(14)-C(19)	137.4(4)
C(14)-C(15)	138.1(4)
C(15)-C(16)	137.9(4)
C(15)-H(15)	93.00
C(16)-C(17)	136.9(4)
C(16)-H(16)	93.00
C(17)-C(18)	137.1(5)
C(17)-H(17)	93.00
C(18)-C(19)	139.1(4)
C(18)-H(18)	93.00
C(19)-H(19)	93.00
C(20)-C(25)	138.2(4)
C(20)-C(21)	138.2(4)
C(21)-C(22)	138.1(5)
C(21)-H(21)	93.00
C(22)-C(23)	136.4(6)
C(22)-H(22)	93.00
C(23)-C(24)	136.5(6)
C(23)-H(23)	93.00
C(24)-C(25)	137.8(5)
C(24)-H(24)	93.00
C(25)-H(25)	93.00
C(26)-C(27)	137.1(4)
C(26)-C(31)	138.9(4)
C(27)-C(28)	138.4(5)
C(27)-H(27)	93.00
C(28)-C(29)	137.4(4)
C(28)-H(28)	93.00
C(29)-C(30)	138.7(4)
C(29)-C(32)	150.7(4)
C(30)-C(31)	137.9(4)
C(30)-H(30)	93.00

C(31)-H(31)	93.00
C(32)-H(32A)	96.00
C(32)-H(32B)	96.00
C(32)-H(32C)	96.00
O(4)-S(1)-O(3)	119.48(14)
O(4)-S(1)-N(5)	106.77(14)
O(3)-S(1)-N(5)	107.23(14)
O(4)-S(1)-C(26)	108.00(14)
O(3)-S(1)-C(26)	106.25(15)
N(5)-S(1)-C(26)	108.77(14)
C(11)-O(1)-C(12)	117.1(3)
C(1)-N(1)-N(2)	118.1(3)
N(1)-N(2)-H(2C)	113(3)
N(1)-N(2)-H(2D)	112(2)
H(2C)-N(2)-H(2D)	115(3)
C(2)-N(3)-N(4)	120.9(2)
N(3)-N(4)-C(5)	119.2(2)
N(3)-N(4)-H(4)	120.4
C(5)-N(4)-H(4)	120.4
C(4)-N(5)-S(1)	120.9(2)
C(4)-N(5)-H(5)	119.6
S(1)-N(5)-H(5)	119.6
N(1)-C(1)-C(2)	118.4(3)
N(1)-C(1)-C(20)	121.8(3)
C(2)-C(1)-C(20)	119.7(3)
N(3)-C(2)-C(1)	127.3(3)
N(3)-C(2)-C(3)	115.1(2)
C(1)-C(2)-C(3)	117.6(2)
C(14)-C(3)-C(2)	112.9(2)
C(14)-C(3)-C(4)	109.1(2)
C(2)-C(3)-C(4)	112.3(2)
C(14)-C(3)-H(3)	107.4
C(2)-C(3)-H(3)	107.4
C(4)-C(3)-H(3)	107.4
N(5)-C(4)-C(3)	113.5(2)
N(5)-C(4)-H(4A)	108.9
C(3)-C(4)-H(4A)	108.9

N(5)-C(4)-H(4B)	108.9
C(3)-C(4)-H(4B)	108.9
H(4A)-C(4)-H(4B)	107.7
N(4)-C(5)-C(10)	120.0(3)
N(4)-C(5)-C(6)	122.0(3)
C(10)-C(5)-C(6)	118.0(3)
C(7)-C(6)-C(5)	120.4(3)
C(7)-C(6)-H(6)	119.8
C(5)-C(6)-H(6)	119.8
C(6)-C(7)-C(8)	121.5(3)
C(6)-C(7)-H(7)	119.3
C(8)-C(7)-H(7)	119.3
C(7)-C(8)-C(9)	118.2(3)
C(7)-C(8)-C(11)	123.0(3)
C(9)-C(8)-C(11)	118.8(3)
C(10)-C(9)-C(8)	120.6(3)
C(10)-C(9)-H(9)	119.7
C(8)-C(9)-H(9)	119.7
C(9)-C(10)-C(5)	121.2(3)
C(9)-C(10)-H(10)	119.4
C(5)-C(10)-H(10)	119.4
O(2)-C(11)-O(1)	122.4(3)
O(2)-C(11)-C(8)	125.2(3)
O(1)-C(11)-C(8)	112.3(3)
C(13)-C(12)-O(1)	107.5(3)
C(13)-C(12)-H(12A)	110.2
O(1)-C(12)-H(12A)	110.2
C(13)-C(12)-H(12B)	110.2
O(1)-C(12)-H(12B)	110.2
H(12A)-C(12)-H(12B)	108.5
C(12)-C(13)-H(13A)	109.5
C(12)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5
C(12)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
C(19)-C(14)-C(15)	117.8(3)
C(19)-C(14)-C(3)	121.2(3)

C(15)-C(14)-C(3)	120.9(3)
C(16)-C(15)-C(14)	121.4(3)
C(16)-C(15)-H(15)	119.3
C(14)-C(15)-H(15)	119.3
C(17)-C(16)-C(15)	120.2(3)
C(17)-C(16)-H(16)	119.9
C(15)-C(16)-H(16)	119.9
C(16)-C(17)-C(18)	119.3(3)
C(16)-C(17)-H(17)	120.3
C(18)-C(17)-H(17)	120.3
C(17)-C(18)-C(19)	120.2(3)
C(17)-C(18)-H(18)	119.9
C(19)-C(18)-H(18)	119.9
C(14)-C(19)-C(18)	120.9(3)
C(14)-C(19)-H(19)	119.5
C(18)-C(19)-H(19)	119.5
C(25)-C(20)-C(21)	119.1(3)
C(25)-C(20)-C(1)	121.4(3)
C(21)-C(20)-C(1)	119.4(3)
C(22)-C(21)-C(20)	120.4(4)
C(22)-C(21)-H(21)	119.8
C(20)-C(21)-H(21)	119.8
C(23)-C(22)-C(21)	119.7(4)
C(23)-C(22)-H(22)	120.1
C(21)-C(22)-H(22)	120.1
C(22)-C(23)-C(24)	120.4(4)
C(22)-C(23)-H(23)	119.8
C(24)-C(23)-H(23)	119.8
C(23)-C(24)-C(25)	120.5(4)
C(23)-C(24)-H(24)	119.8
C(25)-C(24)-H(24)	119.8
C(24)-C(25)-C(20)	119.8(3)
C(24)-C(25)-H(25)	120.1
C(20)-C(25)-H(25)	120.1
C(27)-C(26)-C(31)	119.1(3)
C(27)-C(26)-S(1)	120.5(3)
C(31)-C(26)-S(1)	120.4(2)
C(26)-C(27)-C(28)	120.0(3)

120.0
120.0
122.2(3)
118.9
118.9
117.1(3)
121.9(3)
121.0(3)
121.8(3)
119.1
119.1
119.9(3)
120.1
120.1
109.5
109.5
109.5
109.5
109.5
109.5

5. References

- [1]. M. Bera, S. Pratihar, S. Roy, J. Org. Chem. 2011, 76, 1475-1478.
- [2]. I. Saikia, B. Kashyap, P. Phukan, Chem. Commun. 2011, 47, 2967-2969.
- [3]. H. N. Sun, B. B. Huang, R. Lin, C. Yang, W. J. Xia, Beilstein J. Org. Chem. 2015, 11, 524-529.
- [4]. P. Hanson, J. R. Jones, A. B. Taylor, P. H. Walton, A. W. Timmsb, J. Chem. Soc., Perkin Trans. 2. 2002, 1135-1150.

T .	- · ·			· · · ·																				
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100 fl (ppm)	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22

			· ·		· ·		· ·		· ·	· · ·	· · ·	· ·	· · ·	· · ·	· · ·				· ·		· ·	· · ·	· · ·	
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-
												fl (ppm)											

8.0

