Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Silver-Catalyzed Direct C-H Oxidative Carbamoylation of

Quinolines with Oxamic Acids

Jinwei Yuan,^{a,*} Qian Chen,^a Chuang Li,^a Junliang Zhu,^a Liangru Yang,^a Shouren Zhang,^{b,*} Yongmei

Xiao,^a Pu Mao^a, Lingbo Qu^c

^a School of Chemistry & Chemical Engineering, Henan University of Technology; Academician Workstation for Natural Medicinal Chemistry of Henan Province, Zhengzhou 450001, P. R. China
^b Henan Key Laboratory of Nanocomposites and Applications; Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, P. R. China

^c College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China

*Corresponding authors:

E-mail: yuanjinweigs@126.com (Jin-Wei Yuan)

Contents

- 1. Screening the reaction conditions
- 2. Copies of spectra of products

1. Screening the reaction conditions

Table S1 Screening the amount of oxidant^a

Entry	Oxidant (eq.)	Yields (%) ^b
1	1.0	32
2	1.5	48
3	2.0	52
4	2.5	50

^a Reaction conditions: 4-methylquinoline **1a** (0.2 mmol, 28.6 mg), 2-oxo-2-(phenylamino)acetic acid **2a** (0.3 mmol,

49.5 mg), $(NH_4)_2S_2O_8$ in 2.0 mL DCE-H₂O (1:1, v/v) co-solvent at 90 °C for 4.0 h.

Table S2 Screening the amount of catalyst^a

Entry	AgNO₃ (eq.)	Yields (%) ^b
1	0.05	21
2	0.1	28
3	0.15	35
4	0.2	69

^a Reaction conditions: 4-methyl quinoline **1a** (0.2 mmol, 28.6 mg), 2-oxo-2-(phenylamino)acetic acid **2a** (0.3 mmol,

49.5 mg), (NH₄)₂S₂O₈ (0.4 mmol, 91.2 mg) in 2.0 mL DCE-H₂O (1:1, v/v) co-solvent at 90 °C for 4.0 h.

Table S3 Screening the amount of additive^a

Entry	TFA (eq.)	Yields (%) ^b
1	0.5	70
2	1.0	80
3	1.2	72
4	1.5	68
5	2.0	62

^{*a*} Reaction conditions: 4-methyl quinoline **1a** (0.2 mmol, 28.6 mg), 2-oxo-2-(phenylamino)acetic acid **2a** (0.3 mmol, 49.5 mg), $(NH_4)_2S_2O_8$ (0.4 mmol, 91.2 mg) and AgNO₃ (0.04 mmol, 6.8 mg) in 2.0 mL DCE-H₂O (1:1, v/v) co-solvent

at 90 °C for 4.0 h.

Table S4 Screening the molar ratio of reaction substrates^a

Entry	The molar ratio of 1a and 2a	Yields (%) ^b
1	1:1	63
2	1:1.2	68
3	1:1.5	80
4	1:2	78

^{*a*} Reaction conditions: 4-methyl quinoline **1a** (0.2 mmol, 28.6 mg), 2-oxo-2-(phenylamino)acetic acid **2a**, $(NH_4)_2S_2O_8$ (0.4 mmol, 91.2 mg), AgNO₃ (0.04 mmol, 6.8 mg) and TFA (0.2 mmol, 22.8 mg) in 2.0 mL DCE-H₂O (1:1, v/v) co-solvent at 90 °C for 4.0 h.

Table S5 Screening the effect of solvents^a

Entry	Solvents	Yields (%) ^b
1	H ₂ O	0
2	CH₃CN	0
3	DMF	65
4	DCE	0
5	DMSO	0
6	$CH_3CN:H_2O = 1:1$	76
7	DMSO:H ₂ O = 1:1	78
8	DCE:H ₂ O = 1:1	80

^{*a*} Reaction conditions: 4-methyl quinoline **1a** (0.2 mmol, 28.6 mg), 2-oxo-2-(phenylamino)acetic acid **2a** (0.3 mmol, 49.5 mg), $(NH_4)_2S_2O_8$ (0.4 mmol, 91.2 mg), AgNO₃ (0.04 mmol, 6.8 mg) and TFA (0.2 mmol, 22.8 mg) in 2.0 mL solvent at 90 °C for 4.0 h.

Table S6 Screening the reaction time^a

Entry	Time (h)	Yields (%) ^b
1	1.0	62
2	1.5	73
3	2.0	78
4	3.0	84
5	4.0	84

^{*a*} Reaction conditions: 4-methyl quinoline **1a** (0.2 mmol, 28.6 mg), 2-oxo-2-(phenylamino)acetic acid **2a** (0.3 mmol, 49.5 mg), $(NH_4)_2S_2O_8$ (0.4 mmol, 91.2 mg), AgNO₃ (0.04 mmol, 6.8 mg) and TFA (0.2 mmol, 22.8 mg) in 2.0 mL DCE-H₂O (1:1, v/v) co-solvent at 70 °C.

2. Copies of spectra of products

Fig. 2 ¹³C NMR spectrum of compound 3aa

Fig. 3 ¹H NMR spectrum of compound **3ab**

Fig. 4¹³C NMR spectrum of compound 3ab

Fig. 5 ¹H NMR spectrum of compound **3ac**

Fig. 6¹³C NMR spectrum of compound 3ac

Fig. 7 ¹H NMR spectrum of compound 3ad

Fig. 8 ¹³C NMR spectrum of compound 3ad

Fig. 9¹H NMR spectrum of compound 3ae

Fig. 10 ¹³C NMR spectrum of compound 3ae

Fig. 11 ¹H NMR spectrum of compound 3af

Fig. 12 ¹³C NMR spectrum of compound 3af

Fig. 13 ¹H NMR spectrum of compound 3ag

Fig. 14 ¹³C NMR spectrum of compound 3ag

Fig. 15 ¹⁹F NMR spectrum of compound 3ag

Fig. 16 ¹H NMR spectrum of compound 3ah

Fig. 17 ¹³C NMR spectrum of compound 3ah

Fig. 18 ¹H NMR spectrum of compound 3ai

Fig. 19 ¹³C NMR spectrum of compound 3ai

Fig. 21 ¹³C NMR spectrum of compound 3aj

Fig. 22 ¹H NMR spectrum of compound 3ak

Fig. 23 ¹³C NMR spectrum of compound 3ak

Fig. 24 ¹H NMR spectrum of compound 3al

Fig. 25 ¹³C NMR spectrum of compound 3al

Fig. 26 ¹H NMR spectrum of compound 3am

Fig. 27 ¹³C NMR spectrum of compound 3am

Fig. 28 ¹H NMR spectrum of compound 3an

Fig. 29 ¹³C NMR spectrum of compound 3an

Fig. 30 ¹H NMR spectrum of compound 3ao

Fig. 31 ¹³C NMR spectrum of compound 3ao

Fig. 32 ¹H NMR spectrum of compound 3ap

Fig. 33 ¹³C NMR spectrum of compound 3ap

Fig. 34 ¹H NMR spectrum of compound 3aq

Fig. 35 ¹³C NMR spectrum of compound 3aq

Fig. 36 ¹H NMR spectrum of compound 3ar

Fig. 37 ¹³C NMR spectrum of compound 3ar

Fig. 38 ¹H NMR spectrum of compound 3ba

Fig. 39 ¹³C NMR spectrum of compound 3ba

Fig. 40 ¹H NMR spectrum of compound 3ba'

Fig. 41 ¹³C NMR spectrum of compound 3ba'

Fig. 42 ¹H NMR spectrum of compound 3bl

Fig. 43 ¹³C NMR spectrum of compound 3bl

Fig. 44 ¹H NMR spectrum of compound 3cf

Fig. 45 ¹³C NMR spectrum of compound 3cf

Fig. 46 ¹H NMR spectrum of compound 3df

Fig. 47 ¹³C NMR spectrum of compound 3df

Fig. 48 ¹H NMR spectrum of compound 3ef

Fig. 49 ¹³C NMR spectrum of compound 3ef

Fig. 50 ¹H NMR spectrum of compound 3ff

Fig. 51 ¹³C NMR spectrum of compound 3ff

Fig. 52 ¹H NMR spectrum of compound 3gf

Fig. 53 ¹³C NMR spectrum of compound 3gf

Fig. 54 ¹H NMR spectrum of compound 3hf

Fig. 55 ¹³C NMR spectrum of compound 3hf

Fig. 56 ¹H NMR spectrum of compound 3if

Fig. 57 ¹³C NMR spectrum of compound 3if

Fig. 58 ¹H NMR spectrum of compound 5a

Fig. 59¹³C NMR spectrum of compound 5a

Fig. 60 ¹H NMR spectrum of compound 5b

Fig. 61 ¹³C NMR spectrum of compound 5b

Fig. 62 $^1\!\text{H}$ NMR spectrum of compound 5c

Fig. 63 ¹³C NMR spectrum of compound 5c