Electronic Supplementary Information

Enantioselective Synthesis of Chiral a-Alkynylated Thiazolidones

by Tandem S-Addition/Acetalization of Alkynyl Imines

Mei-Xin Wang,^{†a} Juan Liu,^{†a,b} Zhen Liu,^a Yingcheng Wang,^a Qi-Qiong Yang,^a Wen-Yu Shan,^a Yu-Hua Deng^{*a} and Zhihui Shao^{*a}

[†] These two authors contributed equally to this work.

E-mail: dengyuhua@ynu.edu.cn; zhihui_shao@hotmail.com

^a Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, China, 650091

^b Yunnan Baiyao Group CO., Ltd, Kunming, China, 650500.

Table of Contents

1. General Information	S2
2. Substrates of Alkynyl Imines	S2
3. Optimization Study	S4
4. General Procedure for the Tandem Asymmetric Annulation	S9
5. General Procedure for the Gram-Scale Syntheses	S26
6. Synthetic Applications	S28
7. Assignment of Absolute Configuration for Products	S32
8. References	S34
9. Copies of NMR and HPLC Spectrums	S36

1. General Information

Unless otherwise specified, all reactions were carried out under argon atmosphere in anhydrous conditions. All the solvents were purified according to the standard procedures. All chemicals which are commercially available were used without further purification unless otherwise noted. All the chiral phosphoric acids were directly used for the reaction, after they are bought from the *Daicel Chiral Technologies (China) Co., LTD.* 1,4-dithiane-2,5-diol **2** (CAS: 40018-26-6) and 1,4-dioxane-2,5-diol **2'** (CAS: 23147-58-2) bought from the *Energy-Chemical* were directly used for the reaction. Thin-layer chromatography (TLC) was performed on silica gel plates (60F-254) using UV-light (254 and 365nm).

¹H-NMR and ¹³C-NMR spectra were recorded at 400 MHz or 600 MHz spectrophotometer. Chemical shifts (δ) are expressed in ppm, and *J* values are given in Hz. NMR multiplicities are abbreviated as follows: s = singlet, br = broad signal, d = doublet, t = triplet, q = quartet, m = multiple, dd = doublet of doublet. Values of enantiomeric excess was determined by chiral HPLC (Agilent 1260 Infinity) with *n*hexane and *i*-propanol as eluents. High resolution mass spectrometry (HRMS) was were recorded on an ESI-ion trap Mass spectrometer (Agilent 1100 series LC/MSD, SL model). Optical rotations were measured on a Jasco P-2000 polarimeter. All chemicals and solvents were used as received without further purification unless otherwise stated. Column chromatography was performed on silica gel (200–300 mesh).

2. Substrates of Alkynyl Imines

According to the known procedures, *N*-Boc-protected *C*-alkynyl *N*,*O*-acetals **1a**-**1k** and *N*-Cbz-protected *C*-alkynyl *N*,*O*-acetals **11-1t** were synthesized (Figure S1).¹

Figure S1. All Precursors of Alkynyl Imines Employed.

3. Optimization Study

3	A1	PDC	DCM	40	6	32	0
4	A1	IBX	DCM	40	6	25	0
5	A1	PDC	DCM	RT	12	21	0
6	A1	LiAlH ₄	THF	0	12	complex	-
7	A1	TFA/Et ₃ SiH	DCM	0	12	complex	-
8	A1	BF ₃ .Et ₂ O/Et ₃ SiH	DCM	0	12	complex	-
9	A1	BF3.Et2O/Et3SiH	DCM	rt	12	complex	-
10	A2	PDC	DCM	40	6	50	13
11	A3	PDC	DCM	40	6	52	50
12	A4	PDC	DCM	40	6	47	32
13	A5	PDC	DCM	40	6	51	11
14	A6	PDC	DCM	40	6	46	15
15	A7	PDC	DCM	40	6	54	32
16	A8	PDC	DCM	40	6	53	11
17	A9	PDC	DCM	40	6	50	12
18	A10	PDC	DCM	40	6	34	9
19	A11	PDC	DCM	40	6	49	12
20	A12	PDC	DCM	40	6	46	11
21	A13	PDC	DCM	40	6	55	0
22	A14	PDC	DCM	40	6	34	27
23	B1	PDC	DCM	40	6	55	56
24	B2	PDC	DCM	40	6	49	50
25	B3	PDC	DCM	40	6	44	36
26	B4	PDC	DCM	40	6	30	0
27	C1	PDC	DCM	40	6	N.D.	-
28	C2	PDC	DCM	40	6	N.D.	-
29	D1	PDC	DCM	40	6	N.D.	-
30	E 1	PDC	DCM	40	6	N.D.	-
31	E2	PDC	DCM	40	6	N.D.	-

^a Unless otherwise noted, the reaction was performed with 1a (0.1 mmol), 2 (0.06 mmol),

indicated catalyst (5 mol %) in the THF (1.0 mL) at 40 °C; then oxidant or reductant (3.0 equiv.) in the indicated solvent and temperature. Yields of isolated products 4a are given. The ee values for 4a are determined by HPLC. ^b Yield refers to the isolated product 3a. The ee values are determined by HPLC for 3a. dr = 1.4:1.

Ph 1a	$ \begin{array}{c} B1 \\ S \\ Solvent \\ OH \\ 40 ^{\circ}C \end{array} $ $ \begin{array}{c} OH \\ Boc - N \\ Solvent \\ Ph \\ 3a \end{array} $	PDC (3.0 equiv.) DCM 40 °C, 6 h Ph 4a	iPr 0 ^{iPr} 0 ^{iPr}	Pr Pr
Entry	Solvent	yield of 4a (%)	ee of 4a (%)	
1	THF	55	56	
2	1,4-dioxane	40	0	
3	PhOMe	52	80	
4	toluene	61	90	
_	· ·		0.0	

Table S2. Evaluation and Screening of Solvents ^a

Entry	Solvent	yield of 4a (%)	ee of 4a (%)
1	THF	55	56
2	1,4-dioxane	40	0
3	PhOMe	52	80
4	toluene	61	90
5	xylene	56	89
6	EtC ₆ H ₅	50	86
7	ClC ₆ H ₅	56	84
8	BrC ₆ H ₅	59	88
9	CF ₃ C ₆ H ₅	57	85
10	DCE	56	72
11	DCM	42	77
12	CHCl ₃	58	85
13	CCl ₄	54	90
14	EtOAc	60	89
15	DMSO	32	0
16	DMF	39	14

^a Unless otherwise noted, the reaction was performed with **1a** (0.1 mmol), **2** (0.06 mmol), **B1**

(5 mol %) in the indicated solvent (1.0 mL) at 40 °C; then PDC (3.0 equiv.) in the DCM (1.0 mL) at 40 °C. Yields of isolated products **4a** are given. The ee values for **4a** are determined by HPLC.

Boc HN OEt Ph 1a (0.1 mmol)	HO = B1 = OH = O	PDC (3.0 equiv.) DCM 40 °C, 6 h Ph 40 °C, 6 h	^{iPr} O ^{iPr} O ^{iPr} O ^{iPr} O ^{iPr} O ^{iPr} O ^{iPr} O ^{iPr} O ^{iPr} O ^{iPr} O ^{iPr} O
Entry	2 (x mmol)	yield of 4a (%)	ee of 4a (%)
1	0.05	40	90
2	0.06	61	90
3	0.08	58	90
4	0.1	54	90

Table S3. Evaluation and Screening of the Loading of Substrates^a

^{*a*} Unless otherwise noted, the reaction was performed with **1a** (0.1 mmol), **2** (x mmol), **B1** (5 mol %) in the toluene (1.0 mL) at 40 °C; then PDC (3.0 equiv.) in the DCM (1.0 mL) at 40 °C. Yields of isolated products **4a** are given. The ee values for **4a** are determined by HPLC.

Table S4. Evaluation and Screening of Additives ^a

Entry	additives	yield of 4a (%)	ee of 4a (%)
1	none	61	90
2	3Å MS	72	90
3	4Å MS	70	89

4	5Å MS	70	89
5	MgSO ₄	66	84

^a Unless otherwise noted, the reaction was performed with **1a** (0.1 mmol), **2** (0.06 mmol), **B1** (5 mol %) and indicated additives (30 mg) in the toluene (1.0 mL) at 40 °C; then PDC (3.0 equiv.) in the DCM (1.0 mL) at 40 °C. Yields of isolated products **4a** are given. The ee values for **4a** are determined by HPLC.

Ph 1a	B1 (5 mol %) S S S toluene OH T (°C) 2	Boc-N-S -Ph 3a	PDC (3.0 equiv.) DCM 40 °C, 6 h Ph 44	Pr OPr OPr OP OH Pr B1 Pr Pr
Entry	T (°C)	<i>t</i> (h)	yield (%)	ee (%)
1	20	24	44	93
2	25	24	46	92
3	30	12	53	90
4	35	8	57	90
5	40	8	55	90
6	50	8	42	89

Table S5. Evaluation and Screening of Temperature^{*a*}

,-----

^a Unless otherwise noted, the reaction was performed with **1a** (0.1 mmol), **2** (0.06 mmol), **B1** (5 mol %) and 3Å MS (30 mg) in the toluene (1.0 mL) at the indicated temperature; then PDC (3.0 equiv.) in the DCM (1.0 mL) at 40 °C. Yields of isolated products **4a** are given. The ee values for **4a** are determined by HPLC.

4. General Procedure for the Tandem Asymmetric Annulation

General procedure for annulation: The freshly dry toluene (1 mL) was added to the dry 25-mL tube containing with alkynyl imines 1 (0.1 mmol), the chiral catalyst **B1** (5 mol %), 2,5-dihydroxy-1,4-dithiane 2 (9.2 mg, 0.06 mmol) and 3Å MS (30 mg). The reacting mixture was stirred at 40 °C for 8-12 hours. Upon the completion of alkynyl imines monitored by TLC analysis (*about 1:1 dr*), the mixture was directly purified by flash column chromatography (elution: ethyl acetate/petroleum ether = 1/15) to afford the crude chiral thiazolidines **3**.

Note: Chiral thiazolidines **3** readily occurred the racemization of *N*,*O*-acetals motif and some undefined side reaction in the solvent. Most of the chiral thiazolidines **3** could not be purified carefully, and only three chiral thiazolidines have been provided the good quality spectrums or data. In order to facilitate the further analyses, the crude products **3** was directly used for the next oxidation procedure.

General procedure for PDC-mediated oxidation: The solution of the obtained crude products **3** (1.0 equiv.) in DCM (1.0 mL) was added PDC (3.0 equiv.). The mixture was stirred at 40 °C for 6 hours. Then, the mixture was cooled to rt and added an appropriate amount of silica gel, which gave a good solid residue after the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether = 1/25 to 1/20) to afford the desired products **4**.

Tert-butyl (2*S*)-4-hydroxy-2-(phenylethynyl)thiazolidine-3-carboxylate. Following the *General Procedure* (without PDC-mediated oxidation procedure), **3a** was obtained as clear colorless oil (8 h, 29.4 mg, 92% yield, 1.4:1 dr, 90% (90%) ee) after flash chromatography (elution gradient: ethyl acetate/petroleum ether = 1/20); $[\alpha]_D^{20} =$ -160.1 (*c* 1.0, CHCl₃); **HRMS (ESI-TOF)** calculated for C₁₆H₁₉NO₃SNa [M + Na]⁺ : 328.0978, found: 328.0978; ¹**H NMR** (400 MHz, acetone-*d*⁶, ppm): δ 7.43-7.36 (m, 7H (5*1.4H) + 5H), 5.97 (d, *J* = 2.8 Hz, 1H), 5.88 (s, 1H), 5.82 (s, 1.4H), 5.70 (s, 1.4H), 5.17 (d, *J* = 4.6 Hz, 1H), 4.98 (d, *J* = 5.3 Hz, 1.4H), 3.58-3.53 (m, 1.4H), 3.43-3.39 (m, 1H), 3.23 (s, 1H), 3.04 (d, *J* = 12.1 Hz, 1.4H), 1.50 (s, 13H(9*1.4H) + 9H); ¹³C **NMR** (100 MHz, acetone-*d*⁶, ppm): δ 152.1, 152.0, 131.44, 131.41, 128.52, 128.48, 122.8, 122.7, 88.5, 83.8, 82.6, 82.2, 81.9, 80.7, 80.5, 51.4, 50.5, 38.1, 27.6; **HPLC analysis:** Daicel CHIRALPAK IC, *n*-Hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_R (minor isomer) = 8.02 min, t_R (major isomer) = 9.05 min; t_R (minor isomer) = 13.08 min, t_R (major isomer) = 14.78 min.

Tert-butyl (*S*)-4-oxo-2-(phenylethynyl)thiazolidine-3-carboxylate. Following the *General Procedure*, 4a was obtained as clear colorless oil (8 h, 23.5 mg, 72% yield of 2-steps, 90% ee) after flash chromatography (elution gradient: ethyl acetate/petroleum ether = 1/20); $[\alpha]_D^{25} = -5.3$ (*c* 0.1, CHCl₃); HRMS (ESI-TOF) calculated for C₁₆H₁₇NO₃SNa [M + Na]⁺: 326.0821, found: 326.0819; ¹H NMR (400 MHz, CDCl₃,

ppm): δ 7.44-7.40 (m, 2H), 7.37-7.32 (m, 3H), 5.91 (s, 1H), 4.03 (d, J = 16.0 Hz, 1H), 3.61 (d, J = 16.0 Hz, 1H), 1.57 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 169.6, 148.3, 131.7, 129.1, 128.4, 121.6, 85.4, 85.3, 84.7, 49.9, 33.6, 28.0; HPLC analysis: Daicel CHIRALPAK IC, *n*-Hexane/*i*-PrOH = 80:20, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: t_R (major) = 12.45 min, t_R (minor) = 14.89 min.

Tert-butyl (*S*)-4-oxo-2-(*p*-tolylethynyl)thiazolidine-3-carboxylate. Following the *General Procedure*, the crude product **3b** was obtained as clear yellow oil (8 h, 25.5 mg, 80% yield) after flash chromatography (elution gradient: ethyl acetate/petroleum ether = 1/20); **4b** was obtained as clear yellow oil (8 h, 22.3 mg, 69% yield of 2-steps, 93% ee) after flash chromatography (elution gradient: ethyl acetate/petroleum ether = 1/20); $[\alpha]_D^{25} = -4.3$ (*c* 0.1, CHCl₃); **HRMS (ESI-TOF)** calculated for C₁₇H₁₉NO₃SNa [M + Na]⁺ : 340.0978, found: 340.0977; ¹H NMR (600 MHz, CDCl₃, ppm): δ 7.32-7.30 (m, 2H), 7.14-7.13 (m, 2H), 5.90 (s, 1H), 4.02 (d, *J* = 16.2 Hz, 1H), 3.60 (d, *J* = 16.2 Hz, 1H), 2.36 (s, 3H), 1.56 (s, 9H); ¹³C NMR (150 MHz, CDCl₃, ppm): δ 169.6, 148.3, 139.3, 131.6, 129.2, 118.6, 85.6, 84.73, 84.65, 50.0, 33.6, 28.0, 21.5; **HPLC analysis:** Daicel CHIRALPAK IC, *n*-Hexane/*i*-PrOH = 80:20, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: t_R (major) = 12.76 min, t_R (minor) = 14.93 min.

Tert-butyl (*S*)-2-((4-chlorophenyl)ethynyl)-4-oxothiazolidine-3-carboxylate. Following the *General Procedure*, the crude product **3c** was obtained as clear yellow oil (8 h, 31.5 mg, 93% yield) after flash chromatography (elution gradient: ethyl acetate/petroleum ether = 1/20); **4c** was obtained as clear yellow oil (10 h, 23.0 mg, 68% yield of 2-steps, 91% ee) after flash chromatography (elution gradient: ethyl acetate/petroleum ether = 1/20); $[\alpha]_D^{25} = -11.6$ (*c* 0.1, CHCl₃); **HRMS (ESI-TOF)** calculated for C₁₆H₁₆CINO₃SNa [M + Na]⁺: 360.0432, found: 360.0434; ¹**H NMR** (600 MHz, CDCl₃, ppm): δ 7.36-7.30 (m, 4H), 5.89 (s, 1H), 4.01 (d, *J* = 16.2 Hz, 1H), 3.61 (d, *J* = 16.2 Hz, 1H), 1.56 (s, 9H); ¹³C **NMR** (150 MHz, CDCl₃, ppm): δ 169.4, 148.3, 135.2, 133.0, 128.8, 120.1, 86.4, 84.8, 84.2, 49.7, 33.6, 28.0; **HPLC analysis:** Daicel CHIRALPAK IC, *n*-Hexane/*i*-PrOH = 80:20, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_R (major) = 12.28 min, t_R (minor) = 14.50 min.

Tert-butyl (*S*)-2-((4-fluorophenyl)ethynyl)-4-oxothiazolidine-3-carboxylate. Following the *General Procedure*, the crude product **3d** was obtained as clear yellow oil (8 h, 31.3 mg, 97% yield) after flash chromatography (elution gradient: ethyl acetate/petroleum ether = 1/20); **4d** was obtained as clear yellow oil (6 h, 20.0 mg, 62% yield of 2-steps, 91% ee) after flash chromatography (elution gradient: ethyl acetate/petroleum ether = 1/20); $[\alpha]_D^{20} = -292.1$ (*c* 1, CHCl₃); **HRMS (ESI-TOF)**

calculated for C₁₆H₁₆FNO₃SNa [M + Na]⁺: 344.0727, found: 344.0729; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.43-7.38 (m, 2H), 7.06-7.00 (m, 2H), 5.89 (s, 1H), 4.02 (d, *J* = 16.0 Hz, 1H), 3.62 (d, *J* = 16.0 Hz, 1H), 1.57 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 169.5, 162.9 (d, ¹*J*_{CF} = 249.1 Hz), 148.3, 133.7 (d, ³*J*_{CF} = 8.44 Hz), 117.7 (d, ⁴*J*_{CF} = 3.62 Hz), 115.8 (d, ²*J*_{CF} = 21.9 Hz), 85.2, 84.8, 84.3, 49.8, 33.6, 28.0; ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ -109.5 (s); HPLC analysis Daicel CHIRALPAK IC, *n*-Hexane/*i*-PrOH = 80:20, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_R (major) = 12.67 min, t_R (minor) = 15.08 min.

Tert-butyl (*S*)-4-oxo-2-((4-(trifluoromethyl)phenyl)ethynyl)thiazolidine-3carboxylate. Following the *General Procedure*, the crude product **3e** was obtained as clear yellow oil (8 h, 32.6 mg, 87% yield) after flash chromatography (elution gradient: ethyl acetate/petroleum ether = 1/20); **4e** was obtained as clear yellow oil (10 h, 25.6 mg, 69% yield of 2-steps, 93% ee) after flash chromatography (elution gradient: ethyl acetate/petroleum ether = 1/20); $[\alpha]_D^{25} = -3.4$ (*c* 0.1, CHCl₃); **HRMS (ESI-TOF)** calculated for C₁₇H₁₆F₃NO₃SNa [M + Na]⁺: 394.0695, found: 394.0696; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.61-7.59 (m, 2H), 7.54-7.52 (m, 2H), 5.92 (s, 1H), 4.03 (d, *J* = 16.0 Hz, 1H), 3.63 (d, *J* = 16.4 Hz, 1H), 1.57 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 169.3, 148.2, 132.0, 130.8 (q, ²*J*_{CF} = 32.5 Hz), 125.4 (q, ³*J*_{CF} = 3.9 Hz), 123.7 (q, ¹*J*_{CF} = 273.4 Hz), 87.8, 84.9, 83.8, 49.6, 33.5, 28.0; ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ -63.0 (s); **HPLC analysis:** Daicel CHIRALPAK IC, *n*-Hexane/*i*-PrOH = 80:20, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_R (major) = 9.27 min, t_R (minor) = 10.79 min.

Tert-butyl (*S*)-2-((2-bromophenyl)ethynyl)-4-oxothiazolidine-3-carboxylate. Following the *General Procedure*, the crude product **3f** was obtained as clear yellow oil (8 h, 34.6 mg, 90% yield) after flash chromatography (elution gradient: ethyl acetate/petroleum ether = 1/20); **4f** was obtained as clear yellow oil (8 h, 23.7 mg, 62% yield of 2-steps, 94% ee) after flash chromatography (elution gradient: ethyl acetate/petroleum ether = 1/20); $[\alpha]_D^{25} = -2.2$ (*c* 0.1, CHCl₃); **HRMS (ESI-TOF)** calculated for C₁₆H₁₆BrNO₃SNa [M + Na]⁺: 403.9926, found: 403.9923; ¹H NMR (600 MHz, CDCl₃, ppm): δ 7.60-7.58 (m, 1H), 7.45-7.44 (m, 1H), 7.29-7.28 (m, 1H), 7.23-7.20 (m, 1H), 5.92 (s, 1H), 4.08 (d, *J* = 16.1 Hz, 1H), 3.61 (d, *J* = 16.1 Hz, 1H), 1.57 (s, 9H); ¹³C NMR (150 MHz, CDCl₃, ppm): δ 169.4, 148.2, 133.4, 132.5, 130.2, 127.1, 125.8, 123.9, 89.9, 84.8, 83.9, 50.0, 33.7, 28.0; **HPLC analysis:** Daicel CHIRALPAK IC, *n*-Hexane/*i*-PrOH = 80:20, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_R (major) = 12.51 min, t_R (minor) = 15.39 min.

Tert-butyl (*S*)-2-(hex-1-yn-1-yl)-4-oxothiazolidine-3-carboxylate. Following the *General Procedure*, the crude product 3g was obtained as clear yellow oil (8 h, 21.5 mg, 75% yield) after flash chromatography (elution gradient: ethyl acetate/petroleum ether = 1/20); 4g was obtained as clear yellow oil (10 h, 13.0 mg, 46% yield of 2-steps, 87% ee) after flash chromatography (elution gradient: ethyl acetate/petroleum ether = 1/20); $[\alpha]_{D}^{25} = -7.0$ (*c* 0.1, CHCl₃); **HRMS (ESI-TOF)** calculated for C₁₄H₂₁NO₃SNa

[M + Na]⁺: 306.1134, found: 306.1133; ¹H NMR (400 MHz, CDCl₃, ppm): δ 5.67 (s, 1H), 3.95 (d, J = 16.2 Hz, 1H), 3.55 (d, J = 16.2 Hz, 1H), 2.23 (td, J = 6.9, 1.6 Hz, 2H), 1.55 (s, 9H), 1.51-1.45 (m, 2H), 1.44-1.36 (m, 2H), 0.91 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 169.6, 148.3, 86.7, 84.4, 76.9, 49.7, 33.5, 30.3, 27.9, 21.9, 18.4, 13.5; HPLC analysis: Daicel CHIRALPAK IC, *n*-Hexane/*i*-PrOH = 80:20, flow rate = 1.0 mL/min, λ = 220 nm, retention time: t_R (major) = 10.72 min, t_R (minor) = 12.65 min.

Tert-butyl (*S*)-4-oxo-2-(4-phenylbut-1-yn-1-yl)thiazolidine-3-carboxylate. Following the *General Procedure*, the crude product **3h** was obtained as clear yellow oil (8 h, 27.4 mg, 82% yield) after flash chromatography (elution gradient: ethyl acetate/petroleum ether = 1/20); **4h** was obtained as clear yellow oil (10 h, 25.1 mg, 55% yield of 2-steps, 84% ee) after flash chromatography (elution gradient: ethyl acetate/petroleum ether = 1/20); $[\alpha]p^{25} = -9.2$ (*c* 0.1, CHCl₃); **HRMS (ESI-TOF)** calculated for C₁₈H₂₁NO₃SNa [M + Na]⁺: 354.1134, found: 354.1135; ¹**H** NMR (600 MHz, CDCl₃, ppm): δ 7.31-7.28 (m, 2H), 7.23-7.20 (m, 3H), 5.62 (d, *J* = 2.0, 1H), 3.85 (dd, *J* = 16.1, 2.2 Hz, 1H), 3.51 (dd, *J* = 16.1, 2.3 Hz, 1H), 2.81 (t, *J* = 7.5 Hz, 2H), 2.53 (tt, *J* = 7.5, 2.0 Hz, 2H), 1.53 (s, 9H); ¹³C NMR (150 MHz, CDCl₃, ppm): δ 169.5, 148.4, 140.1, 128.5, 128.4, 126.5, 85.8, 84.4, 77.8, 49.6, 34.6, 33.6, 28.0, 20.9; **HPLC analysis:** Daicel CHIRALPAK IC, *n*-Hexane/*i*-PrOH = 80:20, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_R (major) = 12.42 min, t_R (minor) = 15.02 min.

Tert-butyl (*S*)-2-(cyclopropylethynyl)-4-oxothiazolidine-3-carboxylate. Following the *General Procedure*, the crude product **3i** was obtained as clear colorless oil (8 h, 21.2 mg, 79% yield) after flash chromatography (elution gradient: ethyl acetate/petroleum ether = 1/20); **4i** was obtained as clear colorless oil (12 h, 14.2 mg, 53% yield of 2-steps, 77% ee) after flash chromatography (elution gradient: ethyl acetate/petroleum ether = 1/20); $[\alpha]_D^{25} = -5.6$ (*c* 0.1, CHCl₃); **HRMS (ESI-TOF)** calculated for C₁₃H₁₇NO₃SNa [M + Na]⁺: 290.0821, found: 290.0820; ¹**H** NMR (600 MHz, CDCl₃, ppm): δ 5.63 (d, *J* = 1.8 Hz, 1H), 3.94 (d, *J* = 16.1 Hz, 1H), 3.54 (d, *J* = 16.2 Hz, 1H), 1.55 (s, 9H), 1.30-1.25 (m, 1H), 0.83-0.80 (m, 2H), 0.70-0.68 (m, 2H); ¹³C NMR (150 MHz, CDCl₃, ppm): δ 170.2, 148.9, 90.2, 85.0, 72.4, 50.2, 34.1, 28.5, 8.94, 8.92, -0.0; **HPLC analysis:** Daicel CHIRALPAK IC, *n*-Hexane/*i*-PrOH = 80:20, flow rate = 1.0 mL/min, λ = 220 nm, retention time: t_R (major) = 12.84 min, t_R (minor) = 15.38 min.

Tert-butyl (*S,E*)-4-oxo-2-(4-phenylbut-3-en-1-yn-1-yl)thiazolidine-3-carboxylate. Following the *General Procedure*, the crude product **3**j was obtained as clear colorless oil (8 h, 30.5 mg, 92% yield) after flash chromatography (elution gradient: ethyl acetate/petroleum ether = 1/20); **4**j was obtained as clear colorless oil (12 h, 23.4 mg, 71% yield of 2-steps, 86% ee) after flash chromatography (elution gradient: ethyl acetate/petroleum ether = 1/20); $[\alpha]_D^{25} = -222.5$ (*c* 0.1, CHCl₃); **HRMS (ESI-TOF)**

calculated for C₁₈H₁₉NNaO₃S [M + Na]⁺: 352.0978, found: 352.0999; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.42-7.28 (m, 5H), 6.97 (d, *J* = 16.3 Hz, 1H), 6.17 (dd, *J* = 16.3, 1.7 Hz, 1H), 5.86 (d, *J* = 1.7 Hz, 1H), 4.01 (d, *J* = 16.1 Hz, 1H), 3.59 (d, *J* = 16.1 Hz, 1H), 1.57 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 169.4, 148.3, 143.0, 135.7, 129.1, 128.8, 126.4, 106.5, 87.3, 84.73, 84.69, 50.0, 33.6, 28.0; HPLC analysis: Daicel CHIRALPAK IC, *n*-Hexane/*i*-PrOH = 80:20, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_R (major) = 14.88 min, t_R (minor) = 16.71 min.

Tert-butyl (*S*)-4-oxo-2-((trimethylsilyl)ethynyl)thiazolidine-3-carboxylate. Following the *General Procedure*, the crude product **3k** was obtained as clear colorless oil (8 h, 29.5 mg, 98% yield) after flash chromatography (elution gradient: ethyl acetate/petroleum ether = 1/20); **4k** was obtained as clear colorless oil (12 h, 18.0 mg, 60% yield of 2-steps, 91% ee) after flash chromatography (elution gradient: ethyl acetate/petroleum ether = 1/20); $[\alpha]_D^{25} = -233.2$ (*c* 0.1, CHCl₃); **HRMS (ESI-TOF)** calculated for C₁₃H₂₁NNaO₃SSi [M + Na]⁺: 322.0904, found: 322.0899; ¹**H NMR** (400 MHz, CDCl₃, ppm): δ 5.62 (s, 1H), 3.93 (d, *J* = 16.1 Hz, 1H), 3.53 (d, *J* = 16.1 Hz, 1H), 1.53 (s, 9H), 0.15 (s, 9H); ¹³**C NMR** (100 MHz, CDCl₃, ppm): δ 170.0, 148.4, 101.3, 91.0, 84.9, 49.7, 33.7, 28.3, -0.004; **HPLC analysis:** Daicel CHIRALPAK IC, *n*-Hexane/*i*-PrOH = 80:20, flow rate = 1.0 mL/min, λ = 210 nm, retention time: t_R (major) = 9.15 min, t_R (minor) = 10.83 min.

Benzyl (2*S*)-4-hydroxy-2-(phenylethynyl)thiazolidine-3-carboxylate. Following the *General Procedure* (without PDC-mediated oxidation procedure), **31** was obtained as clear colorless oil (8 h, 32.0 mg, 94% yield, 1:1 dr, 93% (93%) ee) after flash chromatography (elution gradient: ethyl acetate/petroleum ether = 1/20); $[\alpha]_D^{20} = -194.0$ (*c* 1.0, CHCl₃); **HRMS (ESI-TOF)** calculated for C₁₉H₁₇NO₃SNa [M + Na]⁺: 362.0821, found: 362.0822; ¹H NMR (400 MHz, acetone-*d*⁶, ppm): δ 7.47-7.31 (m, 20H), 6.06 (s, 1H), 5.98 (s, 1H), 5.90 (d, *J* = 3.6 Hz, 1H), 5.83 (s, 1H), 5.63 (s, 2H), 5.30 (d, *J* = 12.4 Hz, 2H), 5.14 (d, *J* = 12.8 Hz, 2H), 3.61-3.58 (m, 1H), 3.45 (dd, *J* = 11.2, 4.8 Hz, 1H), 3.28-3.25 (m, 1H), 3.09 (d, *J* = 12.0 Hz, 1H); ¹³C NMR (100 MHz, acetone-*d*⁶, ppm): δ 152.81, 152.76, 136.8, 136.7, 131.5, 128.6, 128.5, 128.4, 128.3, 127.9, 127.8, 127.7, 122.6, 122.5, 121.3, 120.0, 88.13, 88.08, 83.1, 82.4, 67.0, 66.9, 54.1, 34.0, 26.2, 24.4, 23.6; HPLC analysis Daicel CHIRALPAK IC, *n*-Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_R (major of isomer A) = 30.40 min; t_R (minor of isomer B) = 70.64 min, t_R (major of isomer B) = 76.50 min.

Benzyl (*S*)-4-oxo-2-(phenylethynyl)thiazolidine-3-carboxylate. Following the *General Procedure*, 4l was obtained as a pale yellow solid (10 h, 21.2 mg, 63% yield of 2-steps, 93% ee) after flash chromatography (elution gradient: ethyl acetate/petroleum ether = 1/25); $[\alpha]_D^{20} = -255.4$ (*c* 1.0, CHCl₃); m.p. 80-81 °C; **HRMS**

(ESI-TOF) calculated for C₁₉H₁₅NO₃SNa [M + Na]⁺: 360.0665, found: 360.0663; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.45-7.44 (m, 2H), 7.38-7.33 (m, 8H), 5.98 (s, 1H), 5.42 (d, *J* = 12.3 Hz, 1H), 5.30 (d, *J* = 12.2 Hz, 1H), 4.07 (d, *J* = 16.3 Hz, 1H), 3.63 (d, *J* = 16.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 169.3, 149.9, 134.7, 131.9, 129.1, 128.7, 128.6, 128.35, 128.29, 121.4, 85.9, 85.0, 69.0, 49.8, 33.5; HPLC analysis: Daicel CHIRALPAK IC, *n*-Hexane/*i*-PrOH = 80:20, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_R (major) = 24.44 min, t_R (minor) = 27.10 min.

Benzyl (*S*)-4-oxo-2-(*p*-tolylethynyl)thiazolidine-3-carboxylate. Following the *General Procedure*, the crude product **3m** was obtained as clear yellow oil (8 h, 32.0 mg, 91% yield) after flash chromatography (elution gradient: ethyl acetate/petroleum ether = 1/20); **4m** was obtained as clear yellow oil (10 h, 22.9 mg, 65% yield of 2-steps, 92% ee) after flash chromatography (elution gradient: ethyl acetate/petroleum ether = 1/25); $[\alpha]_D^{20} = -274.3$ (*c* 1.0, CHCl₃); **HRMS (ESI-TOF)** calculated for C₂₀H₁₇NO₃SNa [M + Na]⁺ : 374.0821, found: 374.0816; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.45-7.43 (m, 2H), 7.34-7.32 (m, 3H), 7.27-7.25 (m, 2H), 7.13-7.11 (m, 2H), 5.97 (s, 1H), 5.41 (d, *J* = 12.3 Hz, 1H), 5.29 (d, *J* = 12.3 Hz, 1H), 4.06 (d, *J* = 16.3 Hz, 1H), 3.62 (d, *J* = 16.2 Hz, 1H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 169.3, 149.9, 139.4, 134.7, 131.8, 129.1, 128.7, 128.6, 128.3, 118.4, 86.1, 84.3, 68.9, 49.9, 33.5, 21.6; **HPLC analysis:** Daicel CHIRALPAK IC, *n*-Hexane/*i*-PrOH = 80:20, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: t_R (major) = 25.22 min, t_R (minor) = 27.80 min.

Benzyl (*S*)-2-((4-methoxyphenyl)ethynyl)-4-oxothiazolidine-3-carboxylate. Following the *General Procedure*, the crude product **3n** was obtained as clear colorless oil (8 h, 34.2 mg, 93% yield) after flash chromatography (elution gradient: ethyl acetate/petroleum ether = 1/20); **4n** was obtained as a pale white solid (10 h, 23.8 mg, 65% yield of 2-steps, 90% ee) after flash chromatography (elution gradient: ethyl acetate/petroleum ether = 1/25); $[\alpha]_D^{20} = -287.2$ (*c* 1.0, CHCl₃); m.p. 92-93 °C; **HRMS** (ESI-TOF) calculated for C₂₀H₁₇NO4SNa [M + Na]⁺: 390.0770, found: 390.0766; ¹H NMR (600 MHz, CDCl₃, ppm): δ 7.45-7.43 (m, 2H), 7.33-7.30 (m, 5H), 6.84-6.83 (m, 2H), 5.96 (s, 1H), 5.41 (d, *J* = 12.6 Hz, 1H), 5.29 (d, *J* = 12.0 Hz, 1H), 4.05 (d, *J* = 16.2 Hz, 1H), 3.81 (s, 3H), 3.61 (d, *J* = 16.2 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃, ppm): δ 169.3, 160.2, 149.9, 134.8, 133.4, 128.64, 128.55, 128.2, 114.0, 113.5, 86.0, 83.8, 68.9, 55.3, 50.0, 33.5; **HPLC analysis:** Daicel CHIRALPAK IC, *n*-Hexane/*i*-PrOH = 80:20, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_R (major) = 36.67 min, t_R (minor) = 41.63 min.

Benzyl (2*S*)-2-((4-chlorophenyl)ethynyl)-4-hydroxythiazolidine-3-carboxylate. Following the *General Procedure* (without PDC-mediated oxidation procedure), **30** was obtained as clear colorless oil (8 h, 34.3 mg, 92% yield, 1.3:1 dr, 97% (97%) ee) after flash chromatography (elution gradient: ethyl acetate/petroleum ether = 1/20);

[α]p²⁰ = -181.7 (*c* 1.0, CHCl₃); **HRMS (ESI-TOF)** calculated for C₁₉H₁₆ClNO₃SNa [M + Na]⁺ : 396.0432, found: 396.0431; ¹H NMR (400 MHz, acetone-*d*⁶, ppm): δ 7.47-7.32 (m, 18H), 6.06 (s, 1H), 5.97 (s, 1H), 5.90 (d, *J* = 4.0 Hz, 1H), 5.82 (s, 1H), 5.63 (s, 2H), 5.30 (d, *J* = 12.4 Hz, 2H), 5.13 (d, *J* = 12.8 Hz, 2H), 3.59 (d, *J* = 12.0 Hz, 1H), 3.45 (dd, *J* = 11.2, 4.4 Hz, 1H), 3.28-3.25 (m, 1H), 3.09 (d, *J* = 12.0 Hz, 1H); ¹³C NMR (100 MHz, acetone-*d*⁶, ppm): δ 152.7, 146.8, 136.8, 136.7, 134.1, 133.1, 128.7, 128.40, 128.36, 128.0, 127.9, 127.7, 121.4, 121.3, 89.3, 89.2, 67.0, 66.9, 54.1, 34.0, 26.2, 24.4, 23.6; **HPLC analysis** Daicel CHIRALPAK IC, *n*-Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_R (major of isomer A) = 22.28 min, t_R (minor of isomer A) = 24.50 min; t_R (minor of isomer B) = 63.07 min, t_R (major of isomer B) = 74.68 min.

Benzyl (*S*)-2-((4-chlorophenyl)ethynyl)-4-oxothiazolidine-3-carboxylate. Following the *General Procedure*, **4o** was obtained as a pale yellow solid (10 h, 24.6 mg, 63% yield of 2-steps, 97% ee) after flash chromatography (elution gradient: ethyl acetate/petroleum ether = 1/25); $[\alpha]_D^{20} = -162.2$ (*c* 1.0, CHCl₃); m.p. 102-103 °C; HRMS (ESI-TOF) calculated for C₁₉H₁₄ClNO₃SNa [M + Na]⁺ : 394.0275, found: 394.0273; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.43-7.39 (m, 2H), 7.34-7.29 (m, 7H), 5.96 (s, 1H), 5.42 (d, *J* = 12.2 Hz, 1H), 5.29 (d, *J* = 12.2 Hz, 1H), 4.05 (d, *J* = 16.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 169.1, 149.9, 135.3, 134.7, 133.1, 128.74, 128.67, 128.3, 119.9, 86.0, 84.7, 69.0, 49.7, 33.5; HPLC analysis: Daicel CHIRALPAK IC, *n*-Hexane/*i*-PrOH = 80:20, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: t_R (major) = 23.71 min, t_R (minor) = 26.37 min.

(S)-2-((3-fluorophenyl)ethynyl)-4-oxothiazolidine-3-carboxylate. Benzyl Following the General Procedure, the crude product **3p** was obtained as clear yellow oil (8 h, 31.1 mg, 87% yield) after flash chromatography (elution gradient: ethyl acetate/petroleum ether = 1/20; 4p was obtained as clear yellow oil (8 h, 19.6 mg, 55%) yield of 2-steps, 92% ee) after flash chromatography (elution gradient: ethyl acetate/petroleum ether = 1/25); $[\alpha]_D^{20} = -284.6$ (*c* 1.0, CHCl₃); **HRMS (ESI-TOF)** calculated for C₁₉H₁₄FNO₃SNa [M + Na]⁺: 378.0571, found: 378.0569; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.45-7.43 (m, 2H), 7.34-7.28 (m, 4H), 7.16-7.04 (m, 3H), 5.96 (s, 1H), 5.43 (d, J = 12.2 Hz, 1H), 5.29 (d, J = 12.2 Hz, 1H), 4.05 (d, J = 16.3 Hz, 1H), 3.63 (d, J = 16.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 169.1, 162.2 (d, ¹J_{C-F} = 245.8 Hz), 149.9, 134.6, 130.0 (d, ${}^{3}J_{CF}$ = 8.5 Hz), 128.70, 128.68, 128.4, 127.8 (d, ${}^{4}J_{CF} = 3.0$ Hz), 123.2 (d, ${}^{3}J_{CF} = 9.6$ Hz), 118.7 (d, ${}^{2}J_{CF} = 22.9$ Hz), 116.6 (d, ${}^{2}J_{CF} = 21.1$ Hz), 85.9, 84.5 (d, ⁴*J*_{CF} = 3.3 Hz), 69.0, 49.6, 33.4; ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ -112.5 (s); **HPLC analysis** Daicel CHIRALPAK IC, *n*-Hexane/*i*-PrOH = 80:20, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_R (major) = 23.26 min, t_R (minor) = 25.87 min.

Benzyl (*S*)-4-oxo-2-(*o*-tolylethynyl)thiazolidine-3-carboxylate. Following the *General Procedure*, the crude product 3q was obtained as clear colorless oil (8 h, 32.6 mg, 92% yield) after flash chromatography (elution gradient: ethyl acetate/petroleum

ether = 1/20); **4q** was obtained as clear colorless oil (10 h, 23.0 mg, 65% yield of 2steps, 90% ee) after flash chromatography (elution gradient: ethyl acetate/petroleum ether = 1/25); $[\alpha]_D^{20} = -331.5$ (*c* 1.0, CHCl₃); **HRMS (ESI-TOF)** calculated for C₂₀H₁₇NO₃SNa [M + Na]⁺ : 374.0821, found: 374.0822; ¹H **NMR** (400 MHz, CDCl₃, ppm): δ 7.45-7.43 (m, 2H), 7.34-7.32 (m, 4H), 7.27-7.12 (m, 3H), 6.01 (s, 1H), 5.39 (d, J = 12.4 Hz, 1H), 5.32 (d, J = 12.8 Hz, 1H), 4.06 (d, J = 16.4 Hz, 1H), 3.64 (d, J = 16.2Hz, 1H), 2.33 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃, ppm): δ 169.2, 149.9, 140.6, 134.7, 132.1, 129.5, 129.2, 128.7, 128.6, 128.3, 125.6, 121.2, 88.8, 85.0, 69.0, 50.0, 33.5, 20.5; **HPLC analysis:** Daicel CHIRALPAK IC, *n*-Hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: t_R (major) = 35.86 min, t_R (minor) = 42.61 min.

Benzyl (*S*)-4-oxo-2-(thiophen-2-ylethynyl)thiazolidine-3-carboxylate. Following the *General Procedure*, the crude product 3**r** was obtained as clear yellow oil (8 h, 31.6 mg, 91% yield) after flash chromatography (elution gradient: ethyl acetate/petroleum ether = 1/20); 4**r** was obtained as clear yellow oil (10 h, 19.1 mg, 56% yield of 2-steps, 93% ee) after flash chromatography (elution gradient: ethyl acetate/petroleum ether = 1/25); $[\alpha]_D^{20} = -301.1$ (*c* 1.0, CHCl₃); **HRMS (ESI-TOF)** calculated for C₁₇H₁₃NO₃S₂Na [M + Na]⁺: 366.0229, found: 366.0226; ¹H NMR (600 MHz, CDCl₃, ppm): δ 7.39-7.35 (m, 2H), 7.29-7.23 (m, 4H), 7.15-7.13 (m, 1H), 6.94-6.92 (s, 1H), 5.91 (s, 1H), 5.34 (d, *J* = 12.0 Hz, 1H), 5.23 (d, *J* = 12.0 Hz, 1H), 3.99 (d, *J* = 16.2 Hz, 1H), 3.55 (d, *J* = 16.2 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃, ppm): δ 169.1, 149.8, 134.7, 133.3, 128.7, 128.6, 128.30, 128.25, 127.1, 121.3, 88.7, 79.4, 69.0, 49.9, 33.5; HPLC analysis: Daicel CHIRALPAK IC, *n*-Hexane/*i*-PrOH = 80:20, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: t_R (major) = 27.52 min, t_R (minor) = 30.23 min.

(S)-2-(hex-1-yn-1-yl)-4-oxothiazolidine-3-carboxylate. Following Benzvl the General Procedure, the crude product 3s was obtained as clear yellow oil (8 h, 25.0 mg, 78% yield) after flash chromatography (elution gradient: ethyl acetate/petroleum ether = 1/20; 4s was obtained as clear yellow oil (10 h, 13.5 mg, 43% yield of 2-steps, 90%) ee) after flash chromatography (elution gradient: ethyl acetate/petroleum ether = 1/20); $[\alpha]_D^{20} = -206.6$ (c 1.0, CHCl₃); HRMS (ESI-TOF) calculated for C₁₇H₁₉NO₃SNa [M + Na]⁺: 340.0978, found: 340.0979; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.45-7.32 (m, 5H), 5.73 (t, J = 1.6, 1H), 5.37 (d, J = 12.4 Hz, 1H), 5.29 (d, J = 12.4 Hz, 1H), 3.98 (d, J = 16.4 Hz, 1H), 3.56 (d, J = 16.0 Hz, 1H), 2.20 (dt, J = 7.2, 1.6 Hz, 2H), 1.51-1.42 (m, 2H), 1.40-1.31 (m, 2H), 0.89 (t, *J* = 7.2, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 169.4, 150.0, 134.8, 128.62, 128.57, 128.2, 87.4, 76.5, 68.8, 49.7, 33.5, 30.2, 21.9, 18.5, 13.6; HPLC analysis: Daicel CHIRALPAK IC, n-Hexane/i-PrOH = 80:20, flow rate = 1.0 mL/min, λ = 220 nm, retention time: t_R (major) = 19.95 min, t_R (minor) = 22.19 min.

Benzyl (S)-4-oxo-2-((trimethylsilyl)ethynyl)thiazolidine-3-carboxylate. Following the *General Procedure*, the crude product **3t** was obtained as clear colorless oil (8 h, 33.2 mg, 98% yield) after flash chromatography (elution gradient: ethyl acetate/petroleum ether = 1/20); **4t** was obtained as clear colorless oil (12 h, 20.0 mg, 60% yield of 2-steps, 92% ee) after flash chromatography (elution gradient: ethyl acetate/petroleum ether = 1/20); $[\alpha]_D^{25} = -318.2$ (*c* 0.1, CHCl₃); **HRMS (ESI-TOF)**

calculated for C₁₆H₁₉NNaO₃SSi [M + Na]⁺: 356.0747, found: 356.0752; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.46-7.42 (m, 2H), 7.40-7.32 (m, 3H), 5.71 (s, 1H), 5.37 (d, *J* = 12.3 Hz, 1H), 5.28 (d, *J* = 12.3 Hz, 1H), 3.99 (d, *J* = 16.2 Hz, 1H), 3.56 (d, *J* = 16.2 Hz, 1H), 0.16 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 169.7, 150.1, 135.1, 129.01, 128.98, 128.6, 100.8, 91.8, 69.3, 49.8, 33.8, -0.004; HPLC analysis: Daicel CHIRALPAK IC, *n*-Hexane/*i*-PrOH = 80:20, flow rate = 1.0 mL/min, λ = 210 nm, retention time: t_R (major) = 14.12 min, t_R (minor) = 16.22 min.

General procedure for annulation: The freshly dry toluene (1 mL) was added to the dry 25-mL tube containing with alkynyl imines **1a** (27.5 mg, 0.1 mmol), the chiral catalyst **B1** (3.6 mg, 5 mol %), 1,4-dioxane-2,5-diol **2'** (7.2 mg, 0.06 mmol) and 3Å MS (30 mg). The reacting mixture was stirred at 40 °C for 8 hours. Upon the completion of alkynyl imines monitored by TLC analysis, the mixture was directly purified by flash column chromatography (elution: ethyl acetate/petroleum ether = 1/15) to afford the crude chiral oxazolidine **3u** [20.6 mg, 71% yield, 1:1 dr, ca. 5% (3%) ee]. **HRMS (ESI-TOF)** calculated for C₁₆H₁₉NNaO4 [M + Na]⁺ : 312.1206, found: 312.1210; **HPLC analysis:** Daicel CHIRALPAK IC, *n*-Hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: t_R (minor, isomer A) = 9.22 min, t_R (major, isomer A) = 9.66 min; t_R (minor, isomer B) = 13.07 min, t_R (major, isomer B) = 20.77 min.

General procedure for PDC-mediated oxidation: The solution of the obtained crude products **3u** (20.0 mg, 1.0 equiv.) in DCM (1.0 mL) was added PDC (78 mg, 3.0 equiv.). The mixture was stirred at 40 °C for 10 hours. Then, the mixture was cooled to rt and added an appropriate amount of silica gel, which gave a good solid residue after the solvent was removed under reduced pressure. The residue was purified by silica gel

column chromatography (ethyl acetate/petroleum ether = 1/20) to afford the desired product **4u** (18.2 mg, 88% yield, 4% ee) as a colorless oil. *Tert*-butyl (*S*)-4-oxo-2-(phenylethynyl)oxazolidine-3-carboxylate (4u): HRMS (ESI-TOF) calculated for C₁₆H₁₇NO₄Na [M + Na]⁺ : 310.1050, found: 310.1052; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.46-7.44 (m, 2H), 7.41-7.32 (m, 3H), 6.30 (s, 1H), 4.52 (d, *J* = 14.8 Hz, 1H), 4.35 (d, *J* = 14.8 Hz, 1H), 1.57 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 168.4, 147.1, 131.9, 129.4, 128.5, 121.0, 86.7, 84.7, 82.9, 80.3, 67.2, 28.0; HPLC analysis: Daicel CHIRALPAK IC, *n*-Hexane/*i*-PrOH = 80:20, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_R (minor) = 11.71 min, t_R (major) = 15.24 min.

5. General Procedure for the Gram-Scale Syntheses

General Procedure for the Large-Scale Synthesis of 4a: To a stirred mixture of alkynyl imine precursor 1a (0.825 g, 3.0 mmol), the chiral catalyst B1 (107.7 mg, 5 mol %) and 3 Å MS (90 mg) in toluene (30 mL) was added 2,5-dihydroxy-1,4-dithiane 2 (274 mg, 1.8 mmol). The resulting mixture was stirred at 40 °C for 10 hours. The solvent was concentrated and the residue was purified by flash column chromatography (ethyl acetate/petroleum ether = 1/15) to afford crude thiazolidine 3a (861.2 mg, 94% yield).

Then, crude thiazolidine **3a** (861.2 mg, 2.82 mmol) was dissolved in DCM (25 mL), followed by the addition of PDC (3.16 g, 8.4 mmol, 3.0 equiv). The mixture was stirred at 40 °C for 8 hours. Then, the reacting mixture was cooled to room temperature

and added an appropriate amount of silica gel, which gave a good solid residue after the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether = 1/25 to 1/20) to afford chiral thiazolidone **4a** (0.570 g, 63% yield of 2-steps, 89% ee). **HPLC analysis:** Daicel CHIRALPAK IC, *n*-Hexane/*i*-PrOH = 80:20, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_R (major) = 12.44 min, t_R (minor) = 14.72 min.

General Procedure for the Large-Scale Synthesis of 4m: To a stirred mixture of alkynyl imines 10 (0.688 g, 2.0 mmol), the chiral catalyst B1 (72 mg, 5 mol %) and 3Å MS (60 mg) in toluene (20 mL) was added 2,5-dihydroxy-1,4-dithiane 2 (185 mg, 1.2 mmol). The resulting mixture was stirred at 40 °C for 10 h. The solvent was concentrated and the residue was purified by flash column chromatography (ethyl acetate/petroleum ether = 1/15) to afford the crude thiazolidine 30 (718.8 mg, 90% yield).

Then, the solution of crude **30** (718.8 mg, 1.8 mmol) in DCM (18 mL) was added PDC (2.03 g, 5.4 mmol, 3.0 equiv). The mixture was stirred at 40 °C for 8 hours. Then, the reacting mixture was cooled to room temperature and added an appropriate amount of silica gel, which gave a good solid residue after the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether = 1/25 to 1/20) to afford the chiral thiazolidone **40** (0.489 g, 66% yield of 2-steps, 96% ee). **HPLC analysis:** Daicel CHIRALPAK IC, *n*-Hexane/*i*-PrOH

= 80:20, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_R (major) = 23.73 min, t_R (minor) = 26.41 min.

6. Synthetic Applications

6.1 General Procedure of Oxidation

General Procedure for the Synthesis of Chiral Sulfoxide 5: The solution of 4a (15.7 mg, 0.05 mmol, 90% ee) in DCM (1 mL) was added *m*-CPBA (2.0 equiv.). The mixture was stirred overnight at room temperature. After removal of *m*-chlorobenzoic acid by filtration, the filtrate was washed with aqueous KHCO₃ and then aqueous NaCl, the organic layer was dried over anhydrous MgSO₄, concentrated, and purified by silica gel column chromatography (ethyl acetate/petroleum ether = 1/5) to afford the desired product 5 as a clear yellow oil (16 h, 11.0 mg, 67% yield, >20:1 dr, 90% ee). *Tert*-butyl (1*S*, 2*S*)-4-oxo-2-(phenylethynyl)thiazolidine-3-carboxylate 1-oxide (5): $[\alpha]_D^{20} = -227.4$ (*c* 1.0, CHCl₃); HRMS (ESI-TOF) calculated for C₁₆H₁₇NO4SNa [M + Na]⁺ : 342.0770, found: 342.0769; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.44-7.34 (m, 5H), 5.85 (d, *J* = 1.44 Hz, 1H), 4.00 (d, *J* = 16.8 Hz, 1H), 3.68 (dd, *J* = 16.8, 1.6 Hz, 1H), 1.59 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 166.3, 148.7, 132.0, 130.0, 128.6, 120.3, 91.9, 85.6, 69.5, 55.0, 53.5, 28.0; HPLC analysis Daicel CHIRALCEL OD-H, *n*-Hexane/*i*-PrOH = 70:30, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_R (major) = 15.36 min, t_R (minor) = 20.29 min.

General Procedure for the Synthesis of Chiral Sulfoxide 7: The solution of 40 (208.0 mg, 0.56 mmol, 96% ee) in DCM (10 mL) was added m-CPBA (2.0 equiv.). The mixture was stirred overnight at room temperature. After removal of *m*-chlorobenzoic acid by filtration, the filtrate was washed with aqueous KHCO₃ and then aqueous NaCl, the organic layer was dried over anhydrous MgSO4, concentrated, and purified by silica gel column chromatography (ethyl acetate/petroleum ether = 1/5) to afford the desired product 7 as a pale yellow solid (16 h, 122.0 mg, 56% yield, 12:1 dr, 95% (95%) ee). Benzyl (1S, 2S)-2-((4-chlorophenyl)ethynyl)-4-oxothiazolidine-3-carboxylate 1oxide (7). [α]D²⁰ = -222.4 (*c* 1.0, CHCl₃); m.p. 47-48 °C; HRMS (ESI-TOF) calculated for C₁₉H₁₄ClNO₄SNa $[M + Na]^+$: 410.0224, found: 410.0220; For major diastereomer ¹**H NMR** (400 MHz, CDCl₃, ppm): δ 7.46-7.43 (m, 2H), 7.37-7.33 (m, 7H), 5.89 (d, J = 1.44 Hz, 1H), 5.42 (d, J = 12.2 Hz, 1H), 5.35 (d, J = 12.2 Hz, 1H), 4.00 (d, J = 16.8 Hz, 1H), 3.70 (dd, J = 16.8, 1.72 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 166.0, 150.4, 136.4, 134.3, 133.2, 129.0, 128.8, 128.7, 128.3, 118.5, 91.2, 78.0, 69.5, 69.2, 54.9; HPLC analysis: Daicel CHIRALCEL OD-H, n-Hexane/i-PrOH = 70:30, flow rate = 1.0 mL/min, λ = 254 nm, retention time: *minor diastereomer* t_R (minor) = 19.03 min, t_R (major) = 21.52 min, major diastereomer t_R (minor) = 33.38 min, t_R (major) = 47.65 min.

6.2 General Procedure of I₂-Addition

General Procedure for the Synthesis of 6: The solution of 5 (23.0 mg, 0.07 mmol, 90% ee) was dissolved in DCM (1 mL), followed by the addition of K₃PO₄·3H₂O (57.5 mg, 0.22 mmol), I₂ (91.4 mg, 0.36 mmol). The mixture was refluxed for another 18h. Then the reaction was quenched by aqueous Na₂S₂O₃ and extracted with CH₂Cl₂ for three times. The organic layers were combined, dried over Na₂SO₄, filtered and evaporated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether = 1/5) to afford the desired product **6** as clear colorless oil (18 h, 24.2 mg, 59% yield, >20:1 dr). *Tert*-butyl (2*S*)-2-((*E*)-1,2-diiodo-2-phenylvinyl)-4-oxothiazolidine-3-carboxylate 1-oxide (6). $[\alpha]_D^{20} = -157.4$ (*c* 1.0, CHCl₃); HRMS (ESI-TOF) calculated for C₁₆H₁₇I₂NO₄SNa [M + Na]⁺ : 595.8860, found: 595.8865; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.44-7.36 (m, 3H), 7.21-7.19 (m, 2H), 5.93 (s, 1H), 3.86 (d, *J* = 17.2 Hz, 1H), 3.73 (d, *J* = 17.6 Hz, 1H), 1.61 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 167.6, 148.0, 146.8, 129.3, 128.9, 127.7, 104.0, 96.3, 91.0, 85.5, 56.7, 28.1.

6.3 General Procedure of Hydrogenation

(313.9 mg, 40 mol %) was suspended in EtOH (10 mL), 7 (147.4 mg, 0.38 mmol, 95% ee) and quinoline (34.4 mg, 0.7 equiv.) were added. The reaction mixture was stirred at room temperature for 1 hour under hydrogen atmosphere. Lindlar catalyst was removed by filtration over a pad of celite, the filtrate was concentrated in vacuo, and purified by silica gel column chromatography (ethyl acetate/petroleum ether = 1/2) to afford the desired product **8** as a clear colorless oil (1 h, 82.7 mg, 56% yield, >20:1 dr, 95% ee).

General Procedure for the Synthesis of 8 (2^{nd} method): Pd/C (38.4 mg, 10 mol %) was suspended in EtOH (5 mL) and 7 (70.0 mg, 0.18 mmol, 95% ee) were added. The reaction mixture was stirred at room temperature for 12 hours under hydrogen atmosphere. Catalyst was removed by filtration over a pad of celite, the filtrate was concentrated in vacuo, and purified by silica gel column chromatography (ethyl acetate/petroleum ether = 1/2) to afford the desired product 8 as a clear colorless oil (12 h, 28.1 mg, 40% yield, >20:1 dr, 95% ee). During this procedure, we didn't detect or isolate the compounds 9b. Notably, even if 8 was conducted under the procedure once again, there are still no compounds 9b detected or isolated.

Benzyl (1*S*, 2*S*)-2-((*Z*)-4-chlorostyryl)-4-oxothiazolidine-3-carboxylate 1-oxide (8). $[\alpha]_D^{20} = -196.3 (c 1.0, CHCl_3);$ HRMS (ESI-TOF) calculated for C₁₉H₁₆ClNO4SNa [M + Na]⁺: 412.0381, found: 412.0379; ¹H NMR (400 MHz, CDCl_3, ppm): δ 7.45-7.30 (m, 6H), 7.25-7.17 (m, 3H), 6.82 (d, *J* = 11.5 Hz, 1H), 6.02 (d, *J* = 9.5 Hz, 1H), 5.28 (dd, *J* = 11.5, 9.5 Hz, 1H), 5.22 (d, *J* = 2.9 Hz, 2H), 3.83 (d, *J* = 17.2 Hz, 1H), 3.69 (dd, *J* = 17.2, 1.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl_3, ppm): δ 166.6, 150.4, 137.3, 134.9, 134.1, 132.8, 129.7, 129.4, 128.8, 128.7, 128.3, 121.2, 78.0, 69.3, 54.5; HPLC analysis Daicel CHIRALCEL OD-H, *n*-Hexane/*i*-PrOH = 70:30, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_R (major) = 26.18 min, t_R (minor) = 37.16 min.

6.4 General Procedure of Desilication

General procedure for the synthesis of 10: To the solution of 4t (17.0 mg, 0.05 mmol) in THF (1.0 mL) in an ice-water bath was added the tetrabutylammonium fluoride (TBAF, 44 uL, 0.15 mmol, 3.0 equiv). The reaction mixture was stirred at room temperature for 2 h and then the solution was poured into saturated aq. NH4Cl with rapid stirring. The resulting suspension was transferred to a separatory funnel and extracted three times with Et₂O. The combined organic portions were dried (Na₂SO₄), filtered, and concentrated. The residue was purified by silica gel column chromatography with the eluent of ethyl acetate/petroleum ether 1/20-1/15 to afford compound 10 as a colorless oil (5.6 mg, 42% yield, 80% ee), which contains a few of inseparable and unknown impurity ($\delta = 4.71$ (d, J = 5.5 Hz, 0.4 H)).

Benzyl (*S*)-2-ethynyl-4-oxothiazolidine-3-carboxylate (10): $[\alpha]_D^{20} = -117.9$ (*c* 0.1, CHCl₃); **HRMS (ESI-TOF)** calculated for C₁₃H₁₁NNaO₃S [M + Na]⁺ : 284.0352, found: 284.0355; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.46-7.41 (m, 2H), 7.41-7.33 (m, 3H), 5.72 (d, *J* = 1.6 Hz, 1H), 5.36 (d, *J* = 17.8 Hz, 1H), 5.33 (d, *J* = 17.8 Hz, 1H), 4.01 (d, *J* = 16.3 Hz, 1H), 3.59 (d, *J* = 16.3 Hz, 1H), 2.66 (d, *J* = 1.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 168.8, 149.9, 134.6, 128.7, 128.6, 127.0, 79.9, 74.3, 69.1, 48.9, 33.3; **HPLC analysis:** Daicel CHIRALPAK IC, *n*-Hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, λ = 210 nm, retention time: t_R (minor) = 43.019 min, t_R (major) = 45.302 min.

7. Assignment of Absolute Configuration for Products

Experimental: Single crystals of $C_{19}H_{14}ClNO_3S$ [40 (szh_wmx2_0m)] obtained from *n*-Pentane and DCM. A suitable crystal was selected and measured on a

diffractometer. The crystal was kept at 100.(2) K during data collection.

Crystal Data for C₁₉H₁₄ClNO₃S (M =371.82 g/mol): monoclinic, space group P2₁ (no. 4), a = 5.5623(3) Å, b = 8.7434(4) Å, c = 17.6707(8) Å, $\beta = 96.868(2)^{\circ}$, V = 853.22(7) Å³, Z = 2, T = 100.(2) K, μ (Cu K α) = 3.285 mm⁻¹, *Dcalc* = 1.447 g/cm³, 12452 reflections measured ($5.04^{\circ} \le 2\Theta \le 144.88^{\circ}$), 3319 unique ($R_{int} = 0.0647$, $R_{sigma} = 0.0577$) which were used in all calculations. The final R_1 was 0.0423 (I > 2 σ (I)) and wR_2 was 0.1071 (all data).

Figure S2. View of 40.

Identification code	40 (szh_wmx2_0m)
Empirical formula	C19H14ClNO3S
Formula weight	371.82
Temperature/K	100.(2)
Crystal system	monoclinic
Space group	P21
a/Å	5.5623(3)
b/Å	8.7434(4)
c/Å	17.6707(8)

$\alpha / ^{\circ}$	90
β/°	96.868(2)
γ/°	90
Volume/Å ³	853.22(7)
Z	2
$\rho_{cale}g/cm^3$	1.447
μ/mm^{-1}	3.285
F(000)	384.0
Crystal size/mm ³	$0.250\times0.180\times0.010$
Radiation	Cu Ka ($\lambda = 1.54178$)
2Θ range for data collection/°	5.04 to 144.88
Index ranges	$-5 \le h \le 6, -10 \le k \le 10, -21 \le l \le 21$
Reflections collected	12452
Independent reflections	3319 [$R_{int} = 0.0647, R_{sigma} = 0.0577$]
Data/restraints/parameters	3319/1/226
Goodness-of-fit on F ²	1.050
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0423, wR_2 = 0.1046$
Final R indexes [all data]	$R_1 \!=\! 0.0442, wR_2 \!=\! 0.1071$
Largest diff. peak/hole / e Å ⁻³	0.40/-0.32
Flack parameter	0.121(11)

8. References

 (a) Y. Wang, M. Mo, K. Zhu, C. Zheng, H. Zhang, W. Wang and Z. Shao, Asymmetric synthesis of *syn*-propargylamines and unsaturated beta-amino acids under Brønsted base catalysis, *Nat. Commun.*, 2015, 6, 8544; (b) Y. Wang, S. Wang, W. Shan and Z. Shao, Direct asymmetric N-propargylation of indoles and carbazoles catalyzed by lithium SPINOL phosphate, *Nat. Commun.*, 2020, 11, 226. 2 X. Meng, B. Yang, L. Zhang, G. Pan, X. Zhang and Z. Shao, Rh(II)/Brønsted Acid Catalyzed General and Highly Diastereo- and Enantioselective Propargylation of *in Situ* Generated Oxonium Ylides and C-Alkynyl N-Boc N,O-Acetals: Synthesis of Polyfunctional Propargylamines, *Org. Lett.*, 2019, **21**, 1292.

9. Copies of NMR and HPLC Spectrums

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
-						
1	7.892	FM	0.2027	1.11349e4	915. 63257	23.7302
2	8.900	MF	0.2176	1.07782e4	825. 61517	22.9700
3	12.832	BB	0.3326	1.25215e4	587.70587	26.6852
4	14.481	BB	0.3958	1.24883e4	490.83417	26.6146

Peak #	RetTime [min]	туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	8.022	MM	0.1750	438. 60156	41.76659	2.2052
2	9.046	MM	0.2202	8460.81641	640.38739	42.5393
3	13.080	MM	0.3121	551.65039	29.45602	2.7736
4	14.775	MM	0.3955	1.04383e4	439.83322	52.4819

#	[min]		「WIU]	[mau*s]	LINAU	70	
1	12.446	VV R	0.2774	1.43580e4	799.18805	50.1694	
2	14.813	BB	0.3387	1.42610e4	658.31189	49.8306	

Peak	KetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.452	MM	0.3071	3.06646e4	1664. 33569	95.1820
2	14.888	MM	0.3214	1552.20911	80. 48049	4.8180

	101101		010001	a. 0010a01	1 1001 0 11 10	001 8800
2	15.045	BB	0.3640	2.87129e4	1222. 58435	49.7744

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.756	VB R	0.2890	5453. 68555	291.91327	96.3107
2	14.927	BB	0.3435	208. 91211	9.54073	3.6893

Peak	Retlime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.242	BB	0.2886	3.91841e4	2120.74512	49.7666
2	14.401	BB	0.3426	3.95516e4	1805.54846	50.2334

	-	 	-		3 -	3 -	5 -	3 -	> –	
1.00	PC									
0.30 Hz	an Bu									
0	SSB									
376.5171853 MHz FW	SE M									
55536	Ω H I									
Processing parameters	F2 -									
0.26142301 W	PLW12									
17.5C00C00C W	PLW2									
00.00 617.15%										
ッL4-Leff 0.JUS HT										
400.1516006 MHz	SFO2									
CHANNEL £2										
24.8500033 W	PLW_									
14.00 usec	P1									
19F	NUCL									
376.4795333 MHz	SFOL									
1	CUL									
0.0C00200C sec	D12									
0.03000000 sec	D11									
1.00000000 sec	D1									
2001 70-00 2051 70-0										
5.500 usec										
195.85	RG									
0.7340032 sec	AQ									
0.681195 Hz	FIDRE									
89285.711 Hz	EMS									
H L	U La c									
2 Pripéries DC	PULP									
D 5 mm PABBC BE/	PROBI									
UM spect	INSTF									
0.26	Time									
20200215	Date									
Acquisition Parameters	F2 -		_							
10	PROCI									
344	EXPNO									
2020.2.15	NAME		TO	10						
ent Data Parameters	Curre		9.4	0						
			19							

0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 ppm

S47

#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.632	MM	0.3106	1.52335e4	817.50391	50.3751
2	14.975	MM	0.3668	1.50066e4	681.87213	49.6249

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
 1 2	12. 667 15. 081	MM MM	0.3174 0.3422	2. 57169e4 1203. 94409	1350. 46411 58. 63163	95. 5278 4. 4722

#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.306	BB	0.2206	2.73713e4	1927.84119	49.8533
2	10.770	BB	0.2604	2.75325e4	$1652.\ 50415$	50.1467

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.267	BB	0.2652	5.02570e4	3003.53687	96.4719
2	10.788	BB	0.2555	1837.96069	111.94482	3.5281

1	12.533	MM	0.3192	1305.25928	68.16132	50.4618	
2	15.384	MM	0.3872	1281.36731	55. 15733	49. 5382	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.512	BB	0.2972	4350.56592	225.38519	96.9098
2	15.394	BB	0.3320	138. 73010	6. 52540	3. 0902

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.691	VB R	0.2287	2331.62866	158.42418	50.4440
2	12.544	BB	0.2721	2290.58643	130.92555	49.5560

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.722	MM	0.2518	4414.31738	292.15646	93.3627
2	12.645	MM	0.2828	313.81985	18.49163	6.6373

S56

I Cun	. Rectrine	rype	f a a	fired 2	neight	ni cu	
#	[min]		[min]	[mAU*s]	[mAU]	%	
							l
1	12.430	MM	0.3015	1741.25098	96.26540	49.5341	
2	14.995	MM	0.3705	1774.00842	79.80426	50.4659	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.424	BB	0.2869	3203.03784	173.91127	91.9834
2	15.018	BB	0.3428	279.15509	12.39468	8.0166

1	13.084	MM	0.3058	4734. 38672	258.02844	50.0002
2	15.488	BB	0.3379	4734.35449	217.55765	49.9998

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.844	VB R	0.2970	1.24586e4	643.07721	88.6488
2	15.383	MM	0.3566	1595.27161	74.55279	11.3512

 2
 4
 6
 8
 10
 12

 Peak RetTime Type Width Area

 # [min]
 [min]
 [mAU*s]
 [mAU]
 %

 ----|------|-------|

 1
 9.146
 MM
 0.2294
 1.74089e4
 1264.93054
 95.4199

14

2 10.829 MM 0.2309 835.61603 60.32272 4.5801

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	26.880	MM	0.7717	6709.38428	144.89612	24.2136
2	29.651	MM	0.8034	6857.87256	142.27571	24.7494
3	69.365	MM	1.8045	7016. 55029	64.80614	25. 3221
4	75.165	MM	1.9727	7125. 39844	60.19931	25.7149

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	27.547	MM	0.7566	9314. 26465	205.17818	44. 5912
2	30.404	MM	0.7769	328. 19852	7.04086	1.5712
3	70.638	MM	1.8456	425.89789	3.84614	2.0389
4	76.498	MM	1.9510	1.08198e4	92.42960	51.7987

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	24.302	BB	0.5282	2096.36499	62.04695	49.8972
2	26.960	BB	0.6146	2105.00684	54.87020	50.1028

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	24.444	BB	0.5825	8.14698e4	2223.58545	96.6077
2	27.102	BB	0.6141	2860. 73145	73. 17535	3.3923

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	25.166	BB	0.5903	2829.81299	73.80706	50.0084
2	27.687	BB	0.6586	2828.86084	67.27695	49.9916

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	25.219	BB	0.6059	5.08205e4	1326.67664	95.9448
2	27.804	BB	0.6700	2147.97046	51.04313	4.0552

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	36.560	BB	0.8179	1781. 79517	31.49991	50.1557
2	41.481	MM	1.0949	1770. 73193	26.95395	49.8443

1	36.666	MM	0.9421	6.76844e4	1197. 45667	95.0630
2	41.629	MM	0.9825	3515. 12427	59.62617	4.9370

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	23.076	MM	0.6355	8070. 10498	211.65628	24. 5891
2	25.174	MM	0.6540	8260. 32813	210. 49434	25.1686
3	64.554	MM	1.6765	8242. 50586	81.94035	25.1143
4	76.272	MM	2.0328	8246. 97266	67.61681	25.1280

Peak #	RetTime	Туре	Width [min]	Area [mAll*s]	Height [mAII]	Area %
		-		-		
1	22. 284	MM	0.6812	1.85191e4	453.08725	46.1384
2	24. 501	MM	0.5457	379. 21011	11.58216	0.9448
3	63.074	MM	1.2365	389.83884	5.25474	0.9712
4	74.681	MM	2.0552	2.08500e4	169.08481	51.9456

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	23.815	BB	0.5650	3330. 57300	92.08092	50.1609
2	26.418	VB R	0.6233	3309. 20361	83.15253	49.8391

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	23.709	BB	0.5506	3.62134e4	1021.53662	98.4130
2	26.371	BB	0.5881	583.99274	15. 10233	1.5870

0 ppm

S76

-						
8-						
8-						
8-						
8-						
3-						
-120					-	-112.48
-140						
-1-20						
-180						
-900						
8	F2 - Prc SI WDW SS3 LB SS3 LB CB	PCPDPRG[2 PCPDPRG[2 PCPDPRG[2 PCPD2 PCPD2 PLW12	PLW	SWH FIDN RG RG DE DE DE DE DE DE DE DE DE DE S S S S S	F2 - Acq Date_ Iime INSTROM PRODUCT PRODUCT PULPROG ID SCLVENT NS	Current NAME EXPNO PROCNO
	ocessing parameters 65.36 0 0 0 0.3C Hz 2 1.0C	= CHANNEL 12 ====== 4C3.15160C6 MHz 2	= CHANNEL <u>f1</u> ======= 376.4795333 MHz 19F 14.0C usec 24.850C0038 W	89285.711 Hz c.681196 Hz 0.7340022 sec 5.600 usec 6.50 usec 6	<pre>yuisit.on Parameters</pre>	Data Parameters 2020.2.16 357 1

0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 ppm

#	[min]	rype	[min]	[mAU*s]	[mAU]	%
1	23.258	MM	0.5624	1.93082e4	572.22876	95. 9263
2	25.871	MM	0.8075	819.96735	16.92495	4.0737

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	35.950	MM	0.9366	4609. 15430	82.02331	50. 2875
2	42.566	MM	1.0086	$4556.\ 45361$	75. 29333	49.7125

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	35.860	BB	0.7747	2.17116e4	431.74435	95.1075
2	42.612	MM	0.9726	1116. 89209	19.13901	4.8925

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	27.606	BB	0.6281	1467.72363	36.42567	50.4730	
2	30.245	BB	0.6934	1440. 21423	32.92329	49.5270	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	27.515	BB	0.6266	6753.86914	167.42610	96. 5429
2	30. 227	BB	0.6684	241.85080	5. 25987	3. 4571

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	19.951	MM	0.4668	3509.93872	125.31471	49.9484
2	22.067	MM	0.5251	3517.19653	111.63673	50.0516

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	19.952	MM	0.4769	6932.55420	242.29329	94.8412
2	22.185	MM	0.4724	377.08838	$13.\ 30504$	5. 1588

1	11.706	BB	0.2846	1.07054e4	598.63831	48.1397
2	15.238	VB	0.3731	1.15329e4	492.73874	51.8603

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	19.147	BV	0.9995	7229. 78125	107.24380	6.0940
2	22.034	VB	1.1002	7473. 35889	102.19559	6.2993
3	32.311	MM	2.3371	5.20481e4	371.16742	43.8717
4	49.618	MM	3.2601	5.18860e4	265.25854	43.7350

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	19.031	BB	0.7389	235. 23035	3.91565	0.2623
2	21.516	BB	1.0036	8187.18652	117.25873	9.1282
3	33.381	MM	2.3505	1965.86218	13.93932	2.1918
4	47.653	MM	3.3133	7.93029e4	398.90836	88.4177

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	28.084	MM	2.1298	1371.97095	10.73640	50.3942
2	36.959	MM	2.9604	1350. 50488	7.60326	49.6058

