One-pot protocol for the fluorosulfonation and Suzuki coupling of phenols and bromophenols, streamlined access to biaryls and terphenyls

Xinmin Li,*a Tingting Zhang,^a Rui Hu,^a Hang Zhang,^a Changyue Ren,^a Zeli Yuan*a ^a School of Pharmacy, Zunyi Medical University, Zunyi, China.; E-mail: Lixm@zmu.edu.cn

Contents

Materials and Methods and Experimental Procedure Characterization Data NMR Spectra for Products	\$1-\$2 \$3-\$13 \$14-\$69
---	----------------------------------

Materials, Methods and Experimental Procedure

General remarks

All commercially available reagents (from Acros, Aldrich, Fluka) were used without further purification. The SO_2F_2 is commercially available from Wuhan newradar special gas co. LTD. NMR spectra were recorded on a Brucker Advance II 400 spectrometer using TMS as internal standard (400 MHz for ¹H NMR). All reactions were carried out under air atmosphere. The isolated yields of products were obtained by short chromatography on a silica gel (200-300 mesh) column using petroleum ether (60-90 °C), unless otherwise noted.

General procedure for the cross-coupling reaction of phenols and arylboronic acids

A mixture of phenols (0.5 mmol), Et_3N (1.5 mmol) was added to a reaction flask (25 mL), before SO_2F_2 was introduced into the mixture by slowly bubbling from a balloon, and the mixtures was stirred in EtOH/H₂O (2 mL/2 mL) at 25 °C for 4 hours. And then arylboronic acid (0.6 mmol), 1 mol% Pd(OAc)₂, Et_3N (1.5 mmol) was added to the mixture for anthor 10 hours at 25 °C. Subsequently, the mixture was added to brine (10 mL) and extracted with ethyl acetate (3 × 15 mL). The combined organic layers were concentrated in vacuo and the product was isolated by short chromatography.

General procedure for the preperation of biphenylsulfonyl fluorides

Route A: A mixture of 4-bromophenol (0.5 mmol), arylboronic acids (0.6 mmol), 1 mol% $Pd(OAc)_2$, K_2CO_3 (1.0 mmol) EtOH/H₂O (2 mL/2 mL) were added to a reaction flask (25 mL), and the mixture was allowed to stir at room temperature for 2 hours, before a mixture of Et₃N (1.5 mmol) and SO₂F₂ by slowly bubbling from a balloon was added to the mixture for 4 hours at room temperature. Subsequently, the mixture was added to brine (10 mL) and extracted with ethyl acetate (3 × 15 mL). The combined organic layers were concentrated in vacuo and the product was isolated by short chromatography.

Route B: A mixture of 4-bromophenol (0.5 mmol), Et_3N (1.5 mmol) EtOH/H₂O (2 mL/2 mL) was added to a reaction flask (25 mL), before SO₂F₂ was introduced into the mixture by slowly bubbling from a balloon, and the mixture was allowed to stir at room temperature for 4 hours, then arylboronic acid (0.6 mmol), 1 mol% Pd(OAc)₂, K₂CO₃ (1.5 mmol) added to the mixture for 2 hours at room temperature. Subsequently, the mixture was added to brine (10 mL) and extracted with ethyl acetate (3 × 15 mL). The combined organic layers were concentrated in vacuo and the product was isolated by short chromatography.

General procedure for the preperation of terphenyls

A mixture of bromopheno (0.5 mmol), arylboronic acids (0.6 mmol), 1 mol% Pd(OAc)₂, K₂CO₃ (1.0 mmol) EtOH/H₂O (2 mL/2 mL) were added to a reaction flask (25 mL), and the mixture was allowed to stir at room temperature for 2 hours, before a mixture of Et₃N (1.5 mmol) and SO₂F₂ by slowly bubbling from a balloon was added to the mixture for 4 hours at room temperature. Then, the mixture was added to brine (10 mL) and extracted with ethyl acetate (3 × 15 mL). The combined organic layers were concentrated in vacuo and the product was isolated by short chromatography. Subsequently, the product of biphenylsulfonyl fluoride, arylboronic acid(1.2 equiv), Pd(OAc)₂(1 mol%), Et₃N (2.0 equiv), EtOH/H₂O (2 mL/2 mL), was added to a reaction flask (25 mL), and the mixtures was stirred at 80 °C for 12 hours. Then, the mixture was added to brine (10 mL) and extracted with ethyl acetate (3 × 15 mL). Finally the combined organic layers were concentrated in vacuo and the product was isolated by short chromatography.

Characterization Data

[2a]: Biphenyl-4-carbonitrile¹

White solid, ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 7.7 Hz, 2H), 7.69 (d, J = 8.5 Hz, 2H), 7.59 (d, J = 8.1 Hz, 2H), 7.49 (t, J = 7.4 Hz, 2H), 7.46 – 7.39 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 145.6, 139.1, 132.5, 129.0, 128.6, 127.7, 127.2, 118.9, 110.8.

[2b]: 4-Nitro-1,1'-biphenyl.²

Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, *J* = 8.9 Hz, 2H), 7.74 (d, *J* = 9.0 Hz, 2H), 7.63 (d, *J* = 7.6 Hz, 2H), 7.58 – 7.36 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 147.6, 138.7, 129.1, 128.8, 127.7, 127.3, 124.0.

[2c]: 4-Formyl-biphenyl.³

White solid. ¹H NMR (400 MHz, CDCl₃) δ 10.06 (s, 1H), 7.95 (d, J = 7.5 Hz, 2H), 7.75 (d, J = 7.7 Hz, 2H), 7.64 (d, J = 7.1 Hz, 2H), 7.48 (t, J = 7.1 Hz, 2H), 7.43 (d, J = 6.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 191.9, 147.1, 139.7, 135.1, 130.2, 129.0, 128.4, 127.6, 127.3.

[2d]: 1-(Biphenyl-4-yl)ethanone.³

White solid. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 8.6 Hz, 2H), 7.69 (d, J = 8.6 Hz, 2H), 7.63 (d, J = 7.6 Hz, 2H), 7.48 (t, J = 7.4 Hz, 2H), 7.40 (t, J = 7.3 Hz, 1H), 2.64 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.8, 145.7, 139.8, 135.8, 128.9, 128.9, 128.2, 127.2, 127.2, 26.6.

[2e]: 4-Methoxybiphenyl.³

White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.54 (t, J = 8.2 Hz, 4H), 7.42 (t, J = 7.6 Hz, 2H), 7.30 (t, J = 7.4 Hz, 1H), 6.98 (d, J = 8.5 Hz, 2H), 3.85 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.1, 140.8, 133.7, 128.7, 128.1, 126.7, 126.6, 114.1, 55.3.

[2f]: 4-Methylbiphenyl.⁴

Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 7.6 Hz, 2H), 7.49 (d, J = 7.9 Hz, 2H), 7.42 (t, J = 7.2 Hz, 2H), 7.31 (t, J = 6.8 Hz, 1H), 7.24 (d, J = 7.4 Hz, 2H), 2.39 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 141.1, 138.3, 137.0, 129.4, 128.7, 127.1, 126.9, 126.9, 21.1.

[2g]: 1-(Biphenyl-3-yl)ethanone.⁵

Colorless oil, ¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 7.93 (d, J = 8.9 Hz, 1H), 7.79 (d, J = 8.7 Hz, 1H), 7.62 (d, J = 8.1 Hz, 2H), 7.54 (t, J = 8.0 Hz, 1H), 7.47 (t, J = 6.8 Hz, 2H), 7.39 (t, J = 7.9 Hz, 1H), 2.66 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 198.1, 141.1, 140.1, 137.6, 131.7, 129.0, 128.9, 127.8, 127.1, 126.9, 26.7.

[2h]: Biphenyl-3-carbonitrile.⁶

Colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (s, 1H), 7.80 (d, J = 7.8 Hz, 1H), 7.62 (d, J = 7.7 Hz, 1H), 7.54 (dt, J = 10.0, 4.9 Hz, 3H), 7.47 (t, J = 7.6 Hz, 2H), 7.41 (t, J = 7.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 142.3, 138.8, 131.4, 130.6, 129.5, 129.0, 128.3, 127.0, 118.8, 112.8.

[2i]: 3-Nitro-biphenyl.⁷

Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.46 (s, 1H), 8.20 (d, J = 9.4 Hz, 1H), 7.92 (d, J = 7.7 Hz, 1H), 7.62 (t, J = 9.0 Hz, 3H), 7.50 (t, J = 7.4 Hz, 2H), 7.43 (t, J = 7.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 142.8, 138.6, 133.0, 129.7, 129.1, 128.5, 127.1, 122.0, 121.9.

[2j]: 3-Methoxy-biphenyl.⁵

Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 8.1 Hz, 2H), 7.48 (t, J = 7.7 Hz, 2H), 7.44 – 7.35 (m, 2H), 7.24 (d, J = 6.8 Hz, 1H), 7.19 (s, 1H), 6.95 (d, J = 8.2 Hz, 1H), 3.89 (s, 1H).¹³C NMR (101 MHz, CDCl₃) δ 159.9, 142.8, 141.1, 129.8, 128.8, 127.4, 127.2, 119.7, 112.9, 112.7, 55.3.

[2k]: 2-Cyano-biphenyl.³

Colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 7.5 Hz, 1H), 7.64 (t, J = 7.5 Hz, 1H),

7.56 (d, J = 7.2 Hz, 2H), 7.53 – 7.39 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 145.4, 138.1, 133.7, 132.8, 130.0, 128.7, 128.7, 127.5, 118.7, 111.2.

[21]: 2-Methoxy-biphenyl.³

Colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 7.3 Hz, 2H), 7.38 (t, J = 7.1 Hz, 2H), 7.29 (t, J = 8.1 Hz, 3H), 7.01 (t, J = 7.3 Hz, 1H), 6.95 (d, J = 8.1 Hz, 1H), 3.76 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.4, 138.5, 130.8, 130.7, 129.5, 128.6, 127.9, 126.9, 120.8, 111.2, 55.5.

[2m]: 4-Formyl-4'-acetyl-biphenyl.8

White solid. ¹H NMR (400 MHz, CDCl₃) δ 10.09 (s, 1H), 8.08 (d, J = 7.7 Hz, 2H), 7.99 (d, J = 7.2 Hz, 2H), 7.80 (d, J = 7.4 Hz, 2H), 7.74 (d, J = 7.7 Hz, 2H), 2.67 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 197.6, 191.8, 145.7, 144.1, 136.7, 135.8, 130.3, 129.0, 127.9, 127.6, 26.8.

[2n]: 4-Fluorine-4'-acetyl-biphenyl.¹

White solid. ¹H NMR (400 MHz, CDCl₃) δ 10.06 (s, 1H), 7.96 (d, J = 8.4 Hz, 2H), 7.72 (d, J = 8.2 Hz, 2H), 7.65 – 7.56 (m, 2H), 7.18 (t, J = 7.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 191.8, 146.1, 135.1, 130.3, 129.0 128.9, 127.5, 116.0, 115.8.

[20]: 4-Chlorine-4'-acetyl-biphenyl.9

White solid. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 7.7 Hz, 2H), 7.65 (d, J = 7.7 Hz, 2H), 7.56 (d, J = 7.8 Hz, 2H), 7.44 (d, J = 7.8 Hz, 2H), 2.64 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 197.7, 144.4, 138.3, 136.0, 134.4, 129.1, 129.0, 128.5, 127.1, 26.7.

[2p]: 4-methyl-4'-acetyl-biphenyl.¹⁰

White solid. ¹H NMR (400 MHz, CDCl₃) δ 10.05 (s, 1H), 7.94 (d, J = 8.0 Hz, 2H), 7.74 (d, J = 8.1 Hz, 2H), 7.55 (d, J = 7.9 Hz, 2H), 7.29 (d, J = 7.8 Hz, 2H), 2.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.9, 147.1, 138.5, 136.7, 134.9, 130.2, 129.7, 127.3, 127.1, 21.18.

[2q]: 3-Methyl-4'-acetyl-biphenyl.¹¹

White solid. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 7.8 Hz, 2H), 7.68 (d, J = 7.7 Hz, 2H), 7.46 – 7.33 (m, 3H), 7.23 (s, 1H), 2.64 (s, 3H), 2.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.8, 145.9, 139.8, 138.6, 135.7, 129.0, 128.8, 128.0, 127.2, 124.4, 26.7, 21.5.

[2r]: 2-Methyl-4'-acetyl-biphenyl.¹²

Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 7.7 Hz, 2H), 7.41 (d, J = 7.7 Hz, 2H), 7.24 (d, J = 22.8 Hz, 4H), 2.63 (s, 3H), 2.26 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.9, 146.9, 140.7, 135.5, 135.1, 130.6, 129.5, 128.2, 127.9, 126.0, 26.7, 20.4.

[2s]: 4-Ethyl-4'-acetyl-biphenyl.¹³

Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 7.9 Hz, 2H), 7.68 (d, *J* = 7.9 Hz, 2H), 7.56 (d, *J* = 7.6 Hz, 2H), 7.31 (d, *J* = 7.6 Hz, 2H), 2.71 (d, *J* = 7.5 Hz, 2H), 2.64 (s, 3H), 1.28 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.8, 145.7, 144.6, 137.2, 135.5, 128.9, 128.5, 127.2, 127.00, 28.6, 26.7, 15.6.

[2t]: 4-Methoxy-4'-methylbiphenyl.³

White solid, ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 8.6 Hz, 2H), 7.44 (d, J = 7.7 Hz, 2H), 7.22 (d, J = 7.5 Hz, 2H), 6.96 (d, J = 8.4 Hz, 2H), 3.84 (s, 3H), 2.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.9, 137.9, 136.3, 133.7, 129.4, 127.9, 126.5, 114.1, 55.3, 21.0.

[2u]: 4'-Methoxy-3-methylbiphenyl.³

White solid, ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 8.8 Hz, 2H), 7.35 (d, J = 8.8 Hz, 2H), 7.30 (t, J = 7.4 Hz, 1H), 7.12 (d, J = 7.2 Hz, 1H), 6.97 (dd, J = 9.3, 2.5 Hz, 2H), 3.84 (s, 3H), 2.41 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.0, 140.7, 138.2, 133.8, 128.6, 128.1, 127.5, 127.4, 123.8, 114.1, 55.3, 21.5

[2v]: 4'-Methoxy-3,5-dimethyl-biphenyl.¹⁴

White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 7.9 Hz, 2H), 7.17 (s, 2H), 6.95 (d, J = 4.3 Hz, 3H), 3.83 (s, 3H), 2.36 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 159.0, 140.8, 138.2, 134.0, 128.3, 128.2, 124.7, 114.1, 55.3, 21.4.

[2x]: 3-Methoxy-3'-nitro-biphenyl.¹⁵

White solid. ¹H NMR (400 MHz, CDCl₃) δ 8.44 (s, 1H), 8.19 (s, 1H), 7.90 (s, 1H), 7.60 (s, 1H), 7.41 (s, 1H), 7.21 (s, 1H), 7.14 (s, 1H), 6.99 (s, 1H), 3.89 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 160.1, 148.6, 142.7, 140.1, 133.1, 130.2, 129.7, 122.2, 113.8, 55.4.

[2y]: 4-Methoxy-3'-nitro-biphenyl.¹⁶

White solid. ¹H NMR (400 MHz, CDCl₃) δ 8.41 (s, 1H), 8.16 (s, 1H), 7.87 (d, J = 7.6 Hz, 1H), 7.57 (d, J = 7.7 Hz, 3H), 7.02 (d, J = 8.2 Hz, 2H), 3.87 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 160.0, 148.7, 142.4, 132.5, 131.0, 129.6, 128.2, 121.4, 114.5, 55.4.

[2z]: 3,4'-Dimethoxy-biphenyl.¹⁶

Colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 8.0 Hz, 2H), 7.31 (s, 1H), 7.11 (d, J = 22.3 Hz, 2H), 6.95 (d, J = 7.2 Hz, 2H), 6.85 (s, 1H), 3.81 (d, J = 6.9 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 159.9, 159.3, 142.4, 133.6, 129.8, 128.2, 119.3, 114.2, 112.5, 112.0, 55.3.

[2aa]: 2, 3',4'-Trimethoxy-biphenyl.¹⁷

Colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, J = 7.1 Hz, 2H), 7.08 (d, J = 9.3 Hz, 2H), 6.98 (d, J = 15.2 Hz, 2H), 6.91 (s, 1H), 3.89 (s, 6H), 3.79 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 156.4, 148.3, 148.1, 131.2, 130.7, 130.4, 128.3, 121.8, 120.8, 113.0, 111.2, 110.8,

[2ab]: 8-phenylquinoline.¹⁸

Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.93 (s, 1H), 8.17 (s, 1H), 7.77 (s, 1H), 7.70 (t, *J* = 7.5 Hz, 3H), 7.57 (s, 1H), 7.48 (d, *J* = 7.7 Hz, 2H), 7.38 (d, *J* = 4.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 150.3, 146.0, 140.9, 139.6, 136.3, 130.6, 130.4, 128.8, 128.0, 127.6, 127.4, 126.3, 121.0.

[2ae]: 4'-methyl-[1,1'-biphenyl]-4-carbaldehyde.¹⁹

White solid. ¹H NMR (400 MHz, CDCl₃) δ 10.04 (s, 1H), 7.94 (d, *J* = 7.5 Hz, 2H), 7.74 (d, *J* = 7.6 Hz, 2H), 7.55 (d, *J* = 7.4 Hz, 2H), 7.29 (d, *J* = 7.4 Hz, 2H), 2.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 192.0, 147.1, 138.5, 136.7, 134.9, 134.8, 130.3, 129.7, 127.4, 127.2, 21.2.

[2af]: 4'-methyl-[1,1'-biphenyl]-2-carbonitrile⁴

White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 7.6 Hz, 1H), 7.62 (t, *J* = 7.6 Hz, 1H), 7.50 (d, *J* = 8.0 Hz, 1H), 7.46 (d, *J* = 8.0 Hz, 2H), 7.41 (t, *J* = 7.6 Hz, 1H), 7.30 (d, *J* = 7.6 Hz, 2H), 2.42 (s, 3H,).¹³C NMR (101 MHz, CDCl₃) δ 145.5, 138.7, 136.2, 132.5, 129.8, 127.4, 127.0, 119.0, 110.5, 21.1.

[2ag]: 4'-(diphenylamino)-[1,1'-biphenyl]-4-carbaldehyde²⁰

White solid. ¹H NMR (400 MHz, CDCl₃) δ 10.03 (s, 1H), 7.92 (d, J = 7.2 Hz, 2H), 7.73 (d, J = 7.9 Hz, 2H), 7.52 (d, J = 8.4 Hz, 2H), 7.29 (t, J = 7.8 Hz, 4H), 7.14 (s, 6H), 7.07 (t, J = 7.3 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 191.8, 148.4, 147.3, 134.6, 132.7, 130.3, 129.3, 128.0, 126.8, 124.8, 123.4, 123.0.

[2ai]: 1-(4'-(diphenylamino)-[1,1'-biphenyl]-4-yl)ethanone²⁰

White solid. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 6.4 Hz, 2H), 7.65 (d, J = 6.5 Hz, 2H), 7.51 (d, J = 6.6 Hz, 2H), 7.36 – 7.26 (m, J = 6.4 Hz, 4H), 7.14 (d, J = 8.6 Hz, 6H), 7.06 (t, J = 6.8 Hz, 2H), 2.63 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 147.3, 135.2, 133.0, 129.3, 128.9, 127.9, 126.4, 124.7, 123.3, 123.2, 26.6.

[3e] Biphenyl-4-yl fluorosulfate.²¹

White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 8.5 Hz, 2H), 7.47 (d, J = 7.7 Hz, 2H), 7.38 (t, J = 7.5 Hz, 2H), 7.33 (d, J = 8.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 149.3, 141.9, 139.2, 128.6, 128.0, 127.17, 127.0, 121.1.

[3f] 4'-Methoxybiphenyl-4-yl fluorosulfate.²²

White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 7.4 Hz, 2H), 7.41 (d, J = 7.4 Hz, 2H), 7.30 (d, J = 8.2 Hz, 2H), 6.91 (d, J = 7.4 Hz, 2H), 3.78 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.5, 148.7, 141.4, 131.5, 128.3, 126.8, 120.9, 114.2, 55.2.

[3g] 4'-Methylbiphenyl-4-yl fluorosulfate.²²

White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 8.7 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 8.5 Hz, 2H), 7.18 (d, J = 7.9 Hz, 2H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 149.1, 141.8, 138.0, 136.3, 129.6, 128.7, 127.22, 127.0, 121.0, 21.1.

[3h] 3',4'-Dimethoxybiphenyl-4-yl fluorosulfate. ²²

Colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 6.4 Hz, 2H), 7.38 (d, J = 6.7 Hz, 2H), 7.08 (d, J = 19.1 Hz, 2H), 6.96 (s, 1H), 3.93 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 149.3, 149.2, 149.0, 141.8, 132.1, 128.6, 121.1, 119.6, 111.5, 110.3, 55.9.

[3i] 4-ethylbiphenylsulfonyl fluoride.

White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 7.9 Hz, 2H), 7.48 (d, *J* = 7.4 Hz, 2H), 7.39 (d, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 7.4 Hz, 2H), 2.71 (q, *J* = 7.3 Hz, 2H), 1.28 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 149.1, 144.4, 141.9, 136.6, 128.8, 128.5, 127.1, 121.1, 28.5, 15.5. HRMS (ESI-TOF) m/z: [M-H]⁺ Calcd for C₁₄H₁₃FO₃S 279.0491; Found 279.0510.

[3j] 4-tert-butylbiphenylsulfonyl fluoride.

White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 8.0 Hz, 2H), 7.50 (s, 4H), 7.39 (d, J = 8.0 Hz, 2H), 1.37 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 151.2, 149.1, 141.8, 136.3, 128.8, 126.8, 125.9, 121.1, 34.6, 31.3. HRMS (ESI-TOF) m/z: [M-H]⁺ Calcd for C₁₆H₁₇FO₃S 307.0804; Found 307.0829

[3k] 4'-chloro-[1,1'-biphenyl]-4-yl sulfurofluoridate.

White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 7.9 Hz, 2H), 7.49 (d, J = 7.8 Hz, 2H), 7.46 – 7.39 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 149.8, 140.7, 137.6, 134.3, 121.3. HRMS (ESI-TOF) m/z: [M-H]⁺ Calcd for C₁₂H₈ClFO₃S 284.9788; Found 284.9792.

[31] 4'-Fluorobiphenyl-4-yl fluorosulfate.²³

Colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 8.2 Hz, 3H), 7.39 (dd, J = 8.0, 5.9 Hz, 2H), 7.29 (s, 1H), 7.00 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 163.0, 160.5, 148.2, 139.8, 132.4, 127.8, 120.2, 114.9.

[3m] 4'-Formylbiphenyl-4-yl fluorosulfate.²²

Colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ 9.99 (s, 1H), 7.90 (d, J = 7.8 Hz, 2H), 7.64 (d, J = 8.5 Hz, 4H), 7.38 (d, J = 8.3 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 191.7, 150.0, 145.0, 140.4, 135.7, 130.4, 129.3, 127.8, 121.5.

[3n] 4'-Cyanobiphenyl-4-yl fluorosulfate.²⁴

White solid, ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 8.1 Hz, 2H), 7.60 (t, J = 7.6 Hz, 4H), 7.40 (d, J = 8.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 150.07, 143.54, 139.87, 133.50, 132.77, 129.23, 127.83, 121.61, 118.49, 111.87.

[30] 2'-Methylbiphenyl-4-yl fluorosulfate.²²

Colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.40 (q, J = 8.7 Hz, 4H), 7.32 – 7.23 (m, 3H), 7.19 (d, J = 7.2 Hz, 1H), 2.26 (s, 3H), 1.55 (s, 3H), 0.00 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 149.0, 142.7, 139.9, 135.3, 131.2, 130.6, 129.7, 128.0, 126.0, 120.6, 20.4.

[3p] 3'-Methylbiphenyl-4-yl fluorosulfate. ²²

White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 8.6 Hz, 2H), 7.26 (s, 1H), 7.25 – 7.20 (m, 4H), 7.09 (s, 1H), 2.30 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 149.3, 142.1, 139.2, 138.7, 129.0, 128.9, 128.89, 128.0, 124.3, 121.1, 21.5.

[3q] 4-(naphthalen-2-yl)phenyl sulfurofluoridate.

White solid. ¹H NMR (400 MHz, CDCl₃) δ 8.41 (s, 1H), 7.96 (t, J = 7.8 Hz, 1H), 7.64 (d, J = 7.9 Hz, 2H), 7.45 (t, J = 11.5 Hz, 2H), 7.05 (d, J = 8.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 164.8, 162.4, 150.0, 146.1, 139.9, 137.7, 129.2, 121.9, 109.9. HRMS (ESI-TOF) m/z: [M+K]⁺ Calcd for C₁₁H₇F₂NO₃S 309.9752; Found 309.9748

[3r] 4-(6-methoxypyridin-3-yl)phenyl sulfurofluoridate.

White solid. ¹H NMR (400 MHz, CDCl₃) δ 8.36 (s, 1H), 7.76 (d, J = 8.4 Hz, 1H), 7.60 (d, J = 8.1 Hz, 2H), 7.42 (d, J = 8.1 Hz, 2H), 6.84 (d, J = 8.5 Hz, 1H), 3.99 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.0, 149.2, 145.1, 138.7, 137.3, 128.5, 128.1, 121.4, 111.1, 53.6. HRMS (ESI-TOF) m/z: [M-H]⁺ Calcd for C₁₂H₁₀FNO₄S 282.0236; Found 282.0242

[4d] 4-Methyl-p-terpheny.²⁵

White solid, ¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.60 (m, 6H), 7.55 (d, *J* = 7.9 Hz, 2H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.36 (t, *J* = 7.4 Hz, 1H), 7.31 – 7.23 (m, 2H), 2.42 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 140.7, 140.0, 139.8, 137.7, 137.1, 129.5, 128.7, 127.4, 127.2, 127.0, 126.8, 21.14.

[4e] 4-Methoxy-p-terpheny.²⁶

White solid, ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 8.5 Hz, 6H), 7.59 (d, *J* = 7.1 Hz, 2H), 7.46 (d, *J* = 13.9 Hz, 2H), 7.36 (t, *J* = 7.2 Hz, 1H), 7.00 (d, *J* = 7.1 Hz, 2H), 3.87 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.2, 140.7, 139.7, 139.4, 133.2, 128.7, 128.0, 127.4, 127.2, 127.0, 126.9, 114.2, 55.3.

[4f] 3,4,5,-Trimethoxy-p-terpheny.²⁷

White solid, ¹H NMR (400 MHz, CDCl₃) δ 7.78 – 7.59 (m, 6H), 7.47 (t, J = 6.9 Hz, 2H), 7.43 – 7.34 (m, 1H), 6.83 (s, 2H), 3.95 (s, 3H), 3.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.5, 140.6, 140.2, 137.7, 136.7, 128.8, 127.4, 127.4, 127.3, 127.0, 104.3, 60.9, 56.2.

[4g] 2-Cyano-p-terphenyl.²⁸

White solid, ¹H NMR (400 MHz, CDCl₃) δ (d, J = 7.7 Hz, 1H), 7.72 (d, J = 8.1 Hz, 2H), 7.66 (t, J = 8.2 Hz, 5H), 7.57 (d, J = 7.8 Hz, 1H), 7.46 (q, J = 7.7 Hz, 3H), 7.38 (t, J = 7.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 145.0, 141.5, 140.3, 136.9, 133.8, 132.8, 130.0, 129.1, 128.8, 127.6, 127.5, 127.4, 127.1, 118.8, 111.1.

[4h] 4-Methoxy-4"-Methyl-p-terphenyl.²⁹

White solid, ¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.59 (m, 4H), 7.56 (dd, J = 15.3, 8.3 Hz, 4H), 7.26 (d, J = 8.0 Hz, 2H), 6.99 (d, J = 8.6 Hz, 2H), 3.86 (s, 3H), 2.40 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.1, 139.4, 137.8, 137.0, 133.2, 129.4, 128.0, 127.2, 126.9, 126.7, 114.2, 55.3, 21.1.

[4i] 4-ethyl-4"-methoxy-1,1':4',1"-terphenyl.²⁸

H₃CO

White solid, ¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.60 (m, 4H), 7.57 (dd, J = 8.2, 5.5 Hz, 4H), 7.29 (d, J = 8.0 Hz, 2H), 6.99 (d, J = 8.7 Hz, 2H), 3.86 (s, 3H), 2.70 (q, J = 7.5 Hz, 2H), 1.29 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.1, 143.3, 139.3, 138.0, 133.2, 128.3, 128.0, 127.2, 126.9, 126.8, 114.2, 55.3, 28.5, 15.6.

[4j] 4"-fluoro-3,4-dimethoxy-1,1':4',1"-terphenyl.²²

White solid, ¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.51 (m, 6H), 7.19 (dd, J = 8.3, 2.1 Hz, 1H), 7.17 – 7.10 (m, 3H), 6.97 (d, J = 8.3 Hz, 1H), 3.97 (s, 3H), 3.94 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 149.2, 148.7, 139.9, 138.7, 133.6, 128.5, 128.5, 127.3, 127.2, 119.3, 115.8, 115.5, 111.5, 110.3, 56.0, 55.9.

[4k] 1-(5-(4'-(tert-butyl)-[1,1'-biphenyl]-4-yl)thiophen-2-yl)ethanone.

Yellow solid, ¹H NMR (400 MHz, cdcl₃) δ 7.65 (d, J = 3.9 Hz, 1H), 7.59 (d, J = 8.3 Hz, 2H), 7.44 (d, J = 8.3 Hz, 2H), 7.29 (d, J = 3.9 Hz, 1H), 2.56 (s, 3H), 1.34 (s, 9H). ¹³C NMR (101 MHz, cdcl₃) δ 190.6, 152.9, 152.4, 142.6, 133.5, 130.5, 126.0, 126.0, 123.4, 34.76, 31.1, 26.5. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₂H₂₂OS 335.1470; Found 335.1478

[41] 4-Methoxy-*m*-terpheny.³⁰

White solid, ¹H NMR (400 MHz, CDCl₃) δ 7.76 (s, 1H), 7.64 (d, J = 7.7 Hz, 2H), 7.58 (d, J = 8.5 Hz, 2H), 7.49 (dt, J = 24.4, 7.5 Hz, 5H), 7.36 (t, J = 7.3 Hz, 1H), 7.00 (s, 2H), 3.85 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.2, 141.7, 141.3, 141.2, 133.6, 129.1, 128.7, 128.2,

Reference

- 1. C. Liu, Q. Ni, P. Hu and J. Qiu, Org. Biomol. Chem., 2011, 9, 1054-1060.
- 2. W. Han, C. Liu and Z.-L. Jin, Org. Lett., 2007, 9, 4005-4007.
- 3. C. Liu, X. Rao, Y. Zhang, X. Li, J. Qiu and Z. Jin, Eur. J. Org. Chem., 2013, 2013, 4345-4350.
- 4. C. Liu, X. Li, Z. Gao, X. Wang and Z. Jin, *Tetrahedron.*, 2015, 71, 3954-3959.
- H. Yan, P. Chellan, T. Li, J. Mao, K. Chibale and G. S. Smith, *Tetrahedron Lett.*, 2013, 54, 154-157.
- F. Yee Kwong, W. Har Lam, C. Hung Yeung, K. Shing Chan and A. S. C. Chan, *Chem. Commun.*, 2004, 1922-1923.
- 7. C. Dai, X. Li, A. Zhang, C. Liu, C. Song and X. Guo, *RSC Adv.*, 2015, 5, 40297-40302.
- 8. A. G. M. Barrett, P. A. Procopiou and U. Voigtmann, Org. Lett., 2001, 3, 3165-3168.
- G. Zhang, Y. Luan, X. Han, Y. Wang, X. Wen, C. Ding and J. Gao, *Green Chem.*, 2013, 15, 2081-2085.
- 10. R. Takahashi, K. Kubota and H. Ito, Chem. Commun., 2020, 56, 407-410.
- B. Saavedra, N. González-Gallardo, A. Meli and D. J. Ramón, *Adv. Synth. Catal.*, 2019, 361, 3868-3879.
- 12. J. F. Jensen and M. Johannsen, Org. Lett., 2003, 5, 3025-3028.
- 13. L. Yin, Z.-h. Zhang and Y.-m. Wang, Tetrahedron., 2006, 62, 9359-9364.
- 14. K. Chen, W. Chen, X. Yi, W. Chen, M. Liu and H. Wu, Chem. Commun., 2019, 55, 9287-9290.
- 15. K. U. Rao, R. M. Appa, J. Lakshmidevi, R. Vijitha, K. S. V. K. Rao, M. Narasimhulu and K. Venkateswarlu, *Asian J. Org. Chem.*, 2017, **6**, 751-757.
- 16. M.-J. Jin, A. Taher, H.-J. Kang, M. Choi and R. Ryoo, *Green Chem.*, 2009, **11**, 309-313.
- 17. B. H. Lipshutz, T. Butler and E. Swift, Org. Lett., 2008, 10, 697-700.
- Y. Zhang, J. Gao, W. Li, H. Lee, B. Z. Lu and C. H. Senanayake, J. Org. Chem, 2011, 76, 6394-6400.
- 19. Y. Han, J.-Q. Di, A.-D. Zhao and Z.-H. Zhang, *Appl. Organometal. Chem.*, 2019, **33**, e5172.
- 20. C. Liu, Q. Ni and J. Qiu, Eur. J. Org. Chem., 2011, 2011, 3009-3015.
- C. Ma, C.-Q. Zhao, X.-T. Xu, Z.-M. Li, X.-Y. Wang, K. Zhang and T.-S. Mei, *Org. Lett.*, 2019, 21, 2464-2467.
- 22. X. Li, F. Feng, C. Ren, Y. Teng, Q. Hu and Z. Yuan, *Synlett*, 2019, **30**, 2131-2135.
- C. Veryser, J. Demaerel, V. Bieliunas, P. Gilles and W. M. De Borggraeve, Org. Lett., 2017, 19, 5244-5247.
- L. Ravindar, S. Bukhari, K. Rakesh, H. Manukumar, H. Vivek, N. Mallesha, Z.-Z. Xie and H.-L. Qin, *Bioorganic chemistry*, 2018, 81, 107-118.
- 25. M. Kuriyama, R. Shimazawa and R. Shirai, *Tetrahedron.*, 2007, 63, 9393-9400.
- 26. T. Seo, T. Ishiyama, K. Kubota and H. Ito, *Chem. Sci.*, 2019, **10**, 8202-8210.
- I. R. Baxendale, C. M. Griffiths-Jones, S. V. Ley and G. K. Tranmer, *Chemistry A European Journal*, 2006, 12, 4407-4416.
- 28. X. Li, C. Liu, L. Wang, Q. Ye, X. Jin and Z. Jin, Org. Biomol. Chem., 2018, 16, 8719-8723.
- 29. X. Li, Y. Ma, Q. Hu, B. Jiang, Q. Wu and Z. Yuan, Catal. Commun., 2018, 117, 57-62.
- H. A. Duong, Z.-H. Yeow, Y.-L. Tiong, N. H. B. Mohamad Kamal and W. Wu, J. Org. Chem, 2019, 84, 12686-12691.

00.0----

130 120

-0.00

7.67 7.66 7.66 7.7.64 7.7.55 7.7.45 7.7.45 7.7.36 7.7.36 7.7.36 7.7.36 7.7.36 7.7.36 7.7.36 7.7.36 7.7.36 7.7.36 7.7.36 7.7.36 7.7.36 7.7.36 7.7.556 7.7.556 7.7.757 7.7.757 7.7.757 7.7.757 7.7.757

-2.42

S70

S73

S75