Biochemical characterisation of an α 1,4 galactosyltransferase from *Neisseria weaveri* for the synthesis of α 1,4-linked galactosides

Kun Huang^a, Andrea Marchesi^a, Kristian Hollingsworth^b, Peter Both^a, Ashley P. Mattey^a, Edward Pallister^a, Helene Ledru^c, Simon J. Charnock^d, M. Carmen Galan^c, W. Bruce Turnbull^b, Fabio Parmeggiani^{*,a,e}, Sabine Flitsch^{*,a}

^a Manchester Institute of Biotechnology (MIB), School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom.

^b School of Chemistry and Asbury Centre for Structural Molecular Biology, The University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, United Kingdom.

^c School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, United Kingdom.

^d Prozomix Ltd., Station Court, Haltwhistle, Northumberland, NE49 9HN, United Kingdom.

^e Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131, Milano, Italy.

ELECTRONIC SUPPORTING INFORMATION (ESI)

1. Kinetic study of NwLgtC against *p*NP-β-Lac and UDP-Gal

Figure S1. Michaelis-Menten curves of UDP-Gal and pNP-β-Lac.

2. HRMS traces for the one-pot synthesis of UDP-Gal and analogues

Figure S2. One-pot multienzyme synthesis of UDP-Gal.

Figure S3. One-pot multienzyme synthesis of UDP-Gal2D.

Figure S4. One-pot multienzyme synthesis of UDP-Gal3D.

Figure S5. One-pot multienzyme synthesis of UDP-Gal4D.

Figure S6. One-pot multienzyme synthesis of UDP-Gal6D.

Figure S7. One-pot multienzyme synthesis of UDP-Gal2F.

Figure S8. One-pot multienzyme synthesis of UDP-Gal3F.

Figure S9. One-pot multienzyme synthesis of UDP-Gal4F.

Figure S10. One-pot multienzyme synthesis of UDP-Gal6F.

Figure S11. One-pot multienzyme synthesis of UDP-GalN.

3. MALDI traces for the donor substrate specificity screening of NwLgtC

Figure S12. Enzymatic activity against UDP-Gal for Gb3 antigen synthesis.

Figure S13. Enzymatic activity against UDP-Gal for ITag-Gb3 synthesis.

Figure S14. Enzymatic activity against UDP-Gal6D for ITag-Gb3 analogue synthesis.

Figure S15. Enzymatic activity against UDP-GalN for ITag-Gb3 analogue synthesis.

Figure S16. Enzymatic activity against UDP-Gal6F for ITag-Gb3 analogue synthesis.

Figure S17. Enzymatic activity against UDP-Gal for ITag-P1 synthesis.

Figure S18. Enzymatic activity against UDP-Gal6D for ITag-P1 analogue synthesis.

Figure S19. Enzymatic activity against UDP-GalN for ITag-P1 analogue synthesis.

Figure S20. Enzymatic activity against UDP-Gal6F for ITag-P1 analogue synthesis.

4. NMR and HRMS characterisation of Gal6D-α1,4-Lac-β-*p*NP

Gal6D-α1,4-Lac-β-pNP

¹H NMR spectrum of **Gal6D-α1,4-Lac-β-***p***NP** (without water suppression)

¹H NMR spectrum of **Gal6D-α1,4-Lac-β-***p***NP** (with water suppression)

¹³C NMR spectrum of **Gal6D-α1,4-Lac-β-***p***NP**

HSQC NMR spectrum of **Gal6D**-**α1,4-Lac-β-***p***NP** (with expansion)

DIPSI-based HSQC-TOCSY NMR spectrum of **Gal6D-α1,4-Lac-β-***p***NP** (pulse program HSQCDIETGPSISP, mixing time 60 ms)

HMBC NMR spectrum of **Gal6D-\alpha1,4-Lac-\beta-***p***NP** (pulse program HMBCETGPL3ND, with low pass filter to remove ¹*J*_{CH} couplings)

HRMS spectrum of **Gal6D-α1,4-Lac-β-pNP** (with expansions)