Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

Towards new nanoporous biomaterials: self-assembly of sulfopillar[5]arenes with vitamin D3 into supramolecular polymers

Dmitriy N. Shurpik,^a Yulia I. Aleksandrova,^a Pavel V. Zelenikhin,^b Evgenia V. Subakaeva,^b Peter J. Cragg^c and Ivan I. Stoikov *^a

^a Kazan Federal University, A.M. Butlerov Chemical Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federathion. E-mail: Ivan.Stoikov@mail.ru.

^b Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kremlevskaya, 18, Kazan, Russian Federathion

^c School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Moulsecoomb. Brighton, East Sussex BN2 4GJ, UK.

E-mail: Ivan.Stoikov@mail.ru; Fax: +7-8432-752253; Tel: +7-8432-337463

Electronic Supplementary Information (12 pages)

1. NMR, Mass spectrum (ESI), IR spectra of the compounds 2,3	2
2. UV spectra	6
3. NMR study	8
4. Computational determination of the orientation of vitD3 inside pillar[5]arene 2	9
5. Dynamic light scattering.	10
6. Scanning electron microscopy.	11
7. Diffusion experiments	12
8. Evaluation of cell viability change under the action of pillar[5]arenes 2 and 3	13

1. NMR, Mass spectrum (ESI), IR spectra of the compounds 2,3. ¹H NMR spectrum of 4,8,14,18,23,26,28,31,32,35-deca-[(thiaetansulfonate)ethoxy)]- pillar[5]arene sodium salt (2), D₂O, 298 K, 400 MHz

¹H NMR spectrum of 4,8,14,18,23,26,28,31,32,35-deca-[(thiaacetate)ethoxy]-pillar[5]arene sodium salt (3), D₂O, 298 K, 400 MHz

¹³C NMR spectrum of 4,8,14,18,23,26,28,31,32,35-deca-[(thiaetansulfonate)ethoxy)]- pillar[5]arene sodium salt (2), D₂O, 298 K, 400 MHz

Mass spectrum (ESI) of 4,8,14,18,23,26,28,31,32,35-deca-[(thiaetansulfonate)ethoxy)]pillar[5]arene sodium salt (2).

Mass spectrum (ESI) of 4,8,14,18,23,26,28,31,32,35-deca-[(thiaacetate)ethoxy]-pillar[5]arene

S4

IR spectrum of 4,8,14,18,23,26,28,31,32,35-deca-[(thiaetansulfonate)ethoxy]- pillar[5]arene sodium salt (2).

IR spectrum of 4,8,14,18,23,26,28,31,32,35-deca-[(thiaacetate)ethoxy]-pillar[5]arene sodium salt (3).

2. UV spectra

UV-vis spectra of mixtures of vitD₃ (4×10⁻⁵M) pillar[5]arene **2** with different concentrations of pillar[5]arene **2** (3.33×10^{-6} - 4×10⁻⁵ M)

Job's plot for the complex of 2 with vitD₃.

UV-vis spectra UV-destruction complex vitD₃+2 in water ($C_2 = 5 \times 10^{-5}$ M, $C_{VD-3} = 1 \times 10^{-4}$ M) and vitD₃ alone in water ($C_{vitD3} = 1 \times 10^{-4}$ M) for a time.

Bindfit (Fit data to 1:1, 1:2 and 2:1 Host-Guest equilibria) Screenshots taken from the summary window of the website supramolecular.org. This screenshots shows the raw data for UV-vis titration of 2 with VitD₃, the data fitted to 1:1 binding model (A), 1:2 binding model (B) and 2:1 binding model (C).

3. NMR study

The 2D ¹H-¹H NOESY NMR spectrum of the $2 / \text{vitD}_3$ complexes in D₂O / CD₃OD (1:2, 5×10⁻³ M) at 25 °C.

4. Computational determination of the orientation of vitD3 inside pillar[5]arene 2.

Geometry optimized structures of 2 (top, side and end views) and the 2/2 vitD3 complex (bottom).

Size distribution of the particles by intensity for vitD₃ (5 mkl 10⁻³ C₂H₅OH) 5×10^{-6} M in water (d=69.90 ± 1.01 nm, PDI= 0.19 ± 0.01)

Ratio	V _H , μl	С н, М	V _{VD-3} ,µl	С vd-3, М	$Z_{average}(d)$, nm	PDI	ζ- potential,
$2 / v_1 t D_3$							mV
1:0	1000	10-3	0	0	290.40±88.16	0.56±0.16	-
1:0	1000	10-4	0	0	461.70±256.80	0.62±0.20	-
1:0	1000	10-5	0	0	431.20±178.50	0.38±0.19	-
1:1	1000	10-3	10	10-1	201.90±2.14	0.16±0.01	-21.20±5.10
1:2	1000	10-3	20	10-1	201.80±1.41	0.16 ± 0.01	-25.60 ± 2.04
1:5	1000	10-3	50	10-1	236.00±1.94	0.23±0.01	-19.20±7.50
1:1	1000	10-4	10	10-2	94.38±0.55	0.17±0.01	-39.40±2.71
1:2	1000	10-4	20	10-2	123.70±0.75	0.16 ± 0.01	-50.50±2.29
1:5	1000	10-4	5	10-1	176.60±1.41	0.11 ± 0.01	-57.50±1.26
1:10	1000	10-4	10	10-1	193.5±0.92	0.11 ± 0.02	-42.80±0.77
1:1	1000	10-5	10	10-3	134.20±0.62	0.09 ± 0.02	-35.90±4.54
1:2	1000	10-5	20	10-3	53.13±1.14	0.18 ± 0.01	-33.50±2.78
1:5	1000	10-5	5	10-2	109.70±0.64	0.15 ± 0.01	-55.70±2.24
1:10	1000	10-5	10	10-2	98.35±0.81	0.13±0.01	-51.60±2.04
	H ₂ O						
0:1	1000	0	5	10-3	69.90±1.01	0.19 ± 0.01	-31.10±5.15

Aggregation of the particles for $2 / \text{vit}D_3$

6. Scanning electron microscopy. a) SEM image of silicon substrate. b) SEM image of **2** (10⁻⁴ M) after the solvent evaporation.

SEM image of vitD $_310^{-4}$ M after the solvent evaporation.

a-b) SEM image of $2 / \text{vitD}_3 (10^{-4})$ M 1:2 after the solvent evaporation.

7. Diffusion experiments.

Diffusion coefficients of pure 2, vitD₃ and 2/ vitD₃ complexes in D₂O / CD₃OD (400 MHz, 298K).

8. Evaluation of cell viability change under the action of pillar[5]arenes 2 and 3. Survival of cells after incubation with pillar[5]arene **2** during 24 hours.

Survival of cells after incubation with pillar[5]arene **3** during 24 hours.

