Non-biaryl Atropisomerism at C–B Bond in Sterically Hindered Aminoarylboranes

Mélodie Birepinte,^[a] Frédéric Robert,^[a] Sandra Pinet,^[a] Laurent Chabaud*^[a] and Mathieu Pucheault*^[a]

Abstract: Sterically hindered aminoarylboranes featuring atropisomerism about the C–B bond were prepared by addition of organomagnesium species onto readily accessible dialkylamine-borane complexes. Some of these aminoarylboranes, isosteres of vinyl styrene derivatives, were resolved by HPLC on chiral stationary phase. They are the first examples of non-biaryl type system which display slow rotation about a C–B bond.

 [a] Dr. M. Birepinte, Dr. F. Robert, Dr. S. Pinet, Dr. L. Chabaud, Dr. M. Pucheault
Institute of Molecular Science, CNRS, Université de Bordeaux, 351 cours de la liberation, 33405 Talence cedex
E-mail: <u>laurent.chabaud@u-bordeaux.fr</u> mathieu.pucheault@u-bordeaux.fr

Supporting information for this article is given via a link at the end of the document.

Table of Contents

1.	General Considerations	3
2.	General Procedures	4
3.	Characterization of amine-boranes and compounds 10a-10n	4
4.	NMR spectra	9
5.	Atropisomers characterization via Circular Dichroism	52
6	Line Shape Analysis (I SA)	60
7	DET Calculation results	64

1. General Considerations

All chemicals were used without further purification. Solvents were dried and purified according to the standard procedures before their use. Silica gel chromatography was performed using 230-400 mesh silica gel purchased from Merck Analyses. Analytical thin layer chromatography (TLC) was carried out using 0.25 mm silica plates purchased from Merck. Eluted plates were visualized using ultraviolet light or stained in aqueous KMnO₄ (KMnO₄ 3g, K₂CO₃ 20g, aqueous 5% NaOH 5 mL, H₂O 300 mL). ¹H, ¹³C and ¹¹B NMR spectra were recorded at room temperature (25°C) in chloroform-d₃ or acetone-d₆, DMSO-d₈ or C₆D₆ using Bruker Avance 300 (300 MHz) unless otherwise stated. ¹H and ¹³C NMR chemical shifts (δ) are given in ppm relative to tetramethylsilane (internal standard). J values are quoted in Hertz. The following abbreviations were used to describe the multiplicities: s = singlet, bs = broad singlet, d = doublet, m = multiplet, t = triplet, dd = doublet of doublet, td = triplet of doublet, q = guadruplet, guint = guintuplet. The carbon signal bound to the boron was not observed in most cases due to guadrupolar relaxation. ¹¹B NMR spectra were recorded at 25°C and chemical shifts (δ) are given in ppm relative to BF₃.OEt₂ (internal standard). GC-MS analyses were performed on HP 6890 series GC-system equipped with a J&W Scientific DB-1701 capillary column, a HP 5973 mass selective detector (EI) using the following method: 70°C for 1 min then 20°C/min until 230°C then 6 min at 230°C. Infrared spectra (IR) were recorded on a Perkin-Elmer Paragon 1000 PC FT-IR spectrometer as neat films on NaCl windows or as solids with KBr pellets. The melting points (m.p.) were recorded on a Mettler Toledo DSC1-star system using the following method: 30°C to 300°C at 10°C/min. Separation of enantiomers was performed by high performance liquid chromatography HPLC on a 1260 Infinity II Agilent HPLC bearing a Quaternary Pump with an operating pressure of up to 600 bar. The chiral column used was purchased from Phenomenex and is a Lux® 3 µm Cellulose-1, LC Column 100 x 4.6 mm. The stationary phase is a Cellulose tris(3,5 dimethylphenylcarbamate) and the flow used was a 1 mL/min with a 20µL injection volume. Circular dichroism (CD) spectra were measured on a Jasco J-815 (190-800nm) equipped with a xenon-mercury lamp and running under nitrogen atmosphere. The sample temperature is maintained between 4 and 20°C using a Peltier device (PFD-425S/15). All samples were stirred at 1000rpm during measurements, and every spectrum was taken as the average of 4 -10 scans with wavelengths between 200 to 400 nm.

2. General Procedures

General Procedure A for the synthesis of amine-borane complexes

$$\begin{array}{c} \mathsf{R} \\ \mathsf{NH} \\ \mathsf{R} \\ \mathsf{R} \end{array} \xrightarrow{\begin{array}{c} 1. \text{ NaBH}_4 (1.6 \text{ equiv.}) \\ \underline{2. H_2 SO_4 (0.6 \text{ equiv.})} \\ \mathsf{THF, 0^{\circ}C \text{ to r.t.}} \end{array}} \xrightarrow{\begin{array}{c} \mathsf{R} \\ \mathsf{NH.BH}_3 \end{array}} \\ \mathsf{R} \end{array}$$

To a stirred solution of the amine (70.6 mL, 0.5 mol) and NaBH₄ (30 g, 0.79 mol) in THF (500 mL) was added, at 0°C over a period of 45 minutes, sulfuric acid (16 mL, 0.3 mol). The mixture was allowed to warm to room temperature and stirred for 3 hours. The crude was concentrated under vacuum and the residue was solubilized with CH_2CI_2 , and then filtrated to eliminate all solid residues. The filtrate was washed with water (4x100 mL). The organic phase was dried over Na₂SO₄ and concentrated under reduced pressure to give the amine-borane complex.

General Procedure B for the synthesis of arylaminoboranes

To a solution of magnesium (1.3 equiv.; 1.3 mmol) in dry THF (1 mL/mmol) was added the amine-borane complex (1.1 equiv.; 1.1 mmol). The requisite bromo substituted naphthalene or benzene (1.0 equiv; 1 mmol) was then added and the resulting mixture was heated to 40°C for 4 to 8h (according to the substrate). After cooling the mixture back to room temperature, all volatiles were concentrated. Then, the grey foam was diluted in dry hexane and the magnesium salts filtered. The resulting crude product was obtained with high purity after concentrating all volatiles. Several washes using DABCO and dry Hexane/Pentane or Methylcyclohexane followed by filtration / concentration of all volatiles allowed to isolate pure products.

3. Characterization of amine-boranes and compounds 10a-10n

N-diisopropylamine-borane complex [105416-38-4]: Diisopropylamine-borane (C₆H₁₈BN) was synthesized according to **General Procedure A** from diisopropylamine [108-18-9] on a 0.5 mol scale and obtained as a colorless oil which solidified upon cooling (50.8 g, 90%). **m.p.** 20-25 °C (hexane). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 0.96 (d, *J* = 6.6Hz, 6H, CH₃), 1.05 (d, *J* = 6.6Hz, 6H,

CH₃), 1.91 (q, J_{H-B} = 91Hz, 3H, CH₃), 2.72 – 2.90 (m, 2H, CH). ¹³C NMR (75 MHz, C₆D₆) δ (ppm) 19.0, 21.1, 52.1. ¹¹B NMR (96 MHz, C₆D₆) δ (ppm) -21.3 (q, J_{H-B} = 91,4 Hz). Data were in good agreement with those from literature.

(2,2,6,6-tetramethyl-1-piperidine)-borane complex [99432-15-2]: TMP•BH₃ (C₉H₂₂BN) was synthesized according to General Procedure A from 2,2,6,6-tetramethyl-1-pyperidine [768-66-1] on a 5 mmol scale and obtained as a yellow oil (504 mg, 65%). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 1.18 (s, 6H, CH₃), 1.22 (s, 6H, CH₃), 1.32 – 1.48 (m, 4H, CH₂), 1.58 (m, 2H, CH₂). ¹³C NMR

(75 MHz, C_6D_6) δ (ppm) 16.6, 20.6, 34.0, 41.1, 58.5. ¹¹B NMR (96 MHz, C_6D_6) δ (ppm) -21.1 (q, J_{H-B} = 98,0 Hz). Data were in good agreement with those from literature.

(*N*,*N*-dicyclohexylamine)-borane complex [131765-96-3]: Dicyclohexylamine-borane (C₁₂H₂₆BN) was synthesized according to **General Procedure A** from *N*,*N*-dicyclohexylamine [101-83-7] on a 0.5 mol scale and obtained as white shining solid (88,5 g, 91%). **m.p.** 121-122°C (hexane) ¹**H NMR (300 MHz, CDCl**₃) δ (ppm) 1.01 – 1.36 (m, 7H, CH₂), 1.48 – 1.95 (m,

13H, CH₂), 2.75 – 2.89 (m, 2H, CH), 2.96 (s, 1H, NH). ¹³C NMR (75 MHz, C_6D_6) δ (ppm) 25.4, 25.5, 25.6, 25.7, 29.7, 29.9, 30.8, 31.2, 51.9, 53.0, 60.5, 60.7. ¹¹B NMR (96 MHz, C_6D_6) δ (ppm) -21.1 (q, J_{H-B} = 98,0 Hz). Data were in good agreement with those from literature.

(*N-tert*-butyl-*N*-isopropylamine)-borane complex: *N-tert*-butyl-*N*-isopropylamine)-borane ($C_7H_{20}BN$) was synthesized on a 5 mmol scale according to **General Procedure A** from [7515-80-2] *N*-tert-butyl-*N*-isopropylamine and obtained as a colorless oil (212.9 mg, 33%). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 1.30 (d, *J* = 6.9 Hz, 6H, CH₃), 1.33 (s, 9H, CH₃), 3.44 (dq, *J* = 13.1,

6.6 Hz, 1H, CH).¹³**C NMR (75 MHz, C₆D₆)** δ (ppm) 18.4, 23.7, 27.2, 28.1, 49.0. ¹¹**B NMR (96 MHz, C₆D₆)** δ (ppm) --23.72 (q, *J* = 106.4 Hz).

2-B-((*N*,*N*-diisopropylamino)-2-methylnaphth-1-yl)-borane (10a): 10a ($C_{17}H_{24}BN$) was obtained from 1-bromo-2-methylnaphthalene [2586-62-1] (1mmol; 1.0 equiv.) and diisopropylamine-borane complex [55124-35-1] (1.1 mmol; 1.1 equiv.) as a racemic mixture with 62% yield (157.0 mg) following the general procedure B. Rf unstable on silica. MS (ESI+) m/z: unstable. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 1.41 (d, *J* = 6.6 Hz, 6H, CH₃), 1.45

(d, 6.6 Hz, 6H, CH₃), 2.50 (s, 3H, CH₃), 3.21 (hept, J = 6.7 Hz, 1H, CH), 3.67 (hept, J = 6.7 Hz, 1H, CH), 7.31 – 7.50 (m, 3H, C_{Ar}H), 7.75 (d, J = 8.4 Hz, 1H, C_{Ar}H), 7.80 – 7.87 (m, 1H, C_{Ar}H), 7.99 (d, J = 8.2 Hz, 1H, C_{Ar}H).¹³C **NMR (75 MHz, C₆D₆)** δ (ppm) 21.6, 21.8, 21.9, 27.1, 27.2, 44.7, 50.9, 124.4, 125.0, 126.6, 127.6, 128.1, 128.2, 131.3, 134.7, 135.8. Carbon adjacent to boron not observed.¹¹B NMR (96 MHz, CDCI₃) δ (ppm) 39.4. HPLC: The separation of the racemate was performed on a Phenomenex Cellulose-1 column at 0 °C. (99:1 hexane:isopropanol; 1mL/min). tr₁ = 3.66 min; tr₂ = 3.78 min.

2-B-((*N*,*N*-diisopropylamino)-1-naphth-1-yl)-borane (10b): 10b ($C_{16}H_{22}BN$) was obtained from 1-bromonaphthalene [90-11-9] (1mmol; 1.0 equiv.) and diisopropylamine-borane complex [55124-35-1] (1.1 mmol; 1.1 equiv.) as a racemic mixture with 59% yield (139.9 mg) following the general procedure B. Rf unstable on silica. MS (ESI+) m/z: unstable. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 1.02 (d, *J* = 6.7 Hz, 6H, CH₃), 1.38 (d, *J* = 6.7 Hz, 6H, CH₃), 3.28

-3.37 (m, 2H CH), 7.20 -7.32 (m, 2H, C_{Ar}H), 7.37 (dq, *J* = 6.8, 1.9 Hz, 2H, C_{Ar}H), 7.67 -7.81 (m, 3H, C_{Ar}H).¹³C NMR (75 MHz, CDCI₃) δ (ppm) 27.2, 45.8, 53.2, 122.6, 125.8, 127.6. Carbon adjacent to boron was not observed.¹¹B NMR (96 MHz, CDCI₃) δ (ppm) 38.3.

2-B-((*N*,*N*-diisopropylamino)-2-benzylnaphth-1-yl)-borane (10c): 10c ($C_{23}H_{28}BN$) was obtained from 1-bromo-2-benzylnaphthalene [108978-33-2] (1mmol; 1.0 equiv.) and diisopropylamine-borane complex [55124-35-1] (1.1 mmol; 1.1 equiv.) as a racemic mixture with 79% yield (260.1 mg) following the general procedure B. Rf unstable on silica. MS (ESI+) m/z: unstable. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 0.91 (d, *J* = 6.7 Hz,

3H, CH₃), 1.02 (d, J = 6.7 Hz, 3H, CH₃), 1.39 (d, J = 6.6 Hz, 3H, CH₃), 1.50 (d, J = 6.6 Hz, 3H, CH₃), 3.46 (hept, J = 6.7 Hz, 1H, CH), 3.61 (hept, J = 6.7 Hz, 1H, CH), 3.95 – 4.19 (m, 2H, CH₂), 7.11 – 7.24 (m, 5H, C_{Ar}H), 7.35 – 7.43 (m, 2H, C_{Ar}H), 7.62 – 7.74 (m, 2H, C_{Ar}H), 7.77 – 7.78 (m, 2H, C_{Ar}H).¹³C NMR (75 MHz, CDCI₃) δ (ppm) 21.5, 21.6, 27.0, 27.2, 41.9, 44.7, 51.0, 124.8, 125.1, 125.8, 127.0, 127.9, 128.0, 128.2, 128.3, 128.5, 128.9, 129.1, 131.6, 134.8, 139.0, 141.6. Carbon adjacent to boron not observed. ¹¹B NMR (96 MHz, CDCI₃) δ (ppm) 40.4. HPLC: The separation of the racemate was performed on a Phenomenex Cellulose-1 column at 25 °C. (99:1 hexane:isopropanol; 1mL/min). tr₁ = 5.19 min; tr₂ = 5.49 min.

2-B-((N,N-diisopropylamino)-2-ethylnaphth-1-yl)-borane (10d): 10d ($C_{18}H_{26}BN$) was obtained from 1-bromo-2-ethylnaphthalene [39071-00-6] (1mmol; 1.0 equiv.) and diisopropylamine-borane complex [55124-35-1] (1.1 mmol; 1.1 equiv.) as a racemic mixture with 79% yield (211.1 mg) following the **general procedure B**. **Rf** *unstable on silica*. **MS** (**ESI+)** m/z: *unstable*. ¹**H NMR (300 MHz, CDCI₃)** δ (ppm) 1.02 (d, *J* = 6.7 Hz, 3H, CH₃), 1.05

(d, J = 6.7 Hz, 3H, CH₃), 1.22 – 1.29 (m, 3H, CH₃), 1.43 (d, J = 6.7 Hz, 3H, CH₃), 1.51 (d, J = 6.7 Hz, 3H, CH₃), 2.57 – 2.74 (m, 2H, CH₂), 3.48 (hept, J = 6.6 Hz, 1H, CH), 3.60 (hept, J = 6.6 Hz, 1H, CH), 7.30 – 7.39 (m, 3H, C_{Ar}H), 7.61 – 7.67 (m, 1H, C_{Ar}H), 7.71 – 7.73 (m, 1H, C_{Ar}H), 7.74 – 7.82 (m, 1H, C_{Ar}H).¹³C NMR (75 MHz, CDCI₃) δ (ppm) 15.5, 15.6, 21.7, 27.2, 29.2, 44.6, 50.8, 68.0, 124.5, 124.9, 126.6, 126.9, 127.8, 128.1, 131.5, 134.7, 142.4. Carbon adjacent to boron was not observed. ¹¹B NMR (96 MHz, CDCI₃) δ (ppm) 40.0. HPLC: The separation of the racemate was performed on a Phenomenex Cellulose-1 column at 25 °C. (Heptane; 1mL/min). tr₁ = 9.21 min; tr₂ = 13.06 min.

2-B-((N,N-diisopropylamino)-2-isopropylnaphth-1-yl)-borane (10e): 10e ($C_{19}H_{28}BN$) was obtained from 1-bromo-2-isopropylnaphthalene [39071-01-7] (1mmol; 1.0 equiv.) and diisopropylamine-borane complex [55124-35-1] (1.1 mmol; 1.1 equiv.) as a racemic mixture with 82% yield (230.6 mg) following the general procedure B. Rf *unstable on silica.* MS

(ESI+) m/z: *unstable*. ¹H NMR (300 MHz, CDCI₃) δ (ppm) 1.00 – 1.07 (m, 6H, CH₃), 1.24 – 1.38 (m, 6H, CH₃), 1.40 – 1.47 (m, 3H, CH₃), 1.52 (m, 3H, CH₃), 2.89 – 3.03 (m, 1H, CH), 3.49 (hept, J = 6.7 Hz, 1H, CH), 3.62 (hept, J = 6.7 Hz, 1H, CH), 7.33 – 7.47 (m, 1H, C_{Ar}H), 7.61 – 7.72 (m, 3H, C_{Ar}H), 7.73 – 7.87 (m, 2H, C_{Ar}H).¹³C NMR (75 MHz, CDCI₃) δ (ppm) 21.5, 21.8, 23.5, 24.2, 27.0, 27.2, 34.2, 44.6, 50.7, 123.1, 124.5, 125.7, 127.2, 127.5, 128.1, 131.7, 134.7, 146.9. Carbon adjacent to boron not observed.¹¹B NMR (96 MHz, CDCI₃) δ (ppm) 40.4. HPLC: The separation of the racemate was performed on a Phenomenex Cellulose-1 column at 25 °C. (Heptane; 1mL/min). tr₁ = 5.96 min; tr₂ = 7.26 min.

2-B-((*N*,*N*-diisopropylamino)-2-methoxynaphth-1-yl)-borane (10f): 10f ($C_{17}H_{24}BNO$) was obtained from 1-bromo-2-methoxynaphthalene [3401-47-6] (1mmol; 1.0 equiv.) and diisopropylamine-borane complex [55124-35-1] (1.1 mmol; 1.1 equiv.) as a racemic mixture with 71% yield (191.1 mg) following the general procedure B. Rf unstable on silica. MS (ESI+) m/z: unstable. ¹H NMR (300 MHz, CDCI₃) δ (ppm) 1.07 (dd, *J* = 13.6, 11.1 Hz, 6H, CH₃), 1.45 (d, *J* = 6.6 Hz, 6H, CH₃), 3.47 (hept, *J* = 6.7 Hz, 1H, CH), 3.67 (hept, *J* = 6.7 Hz, 1H, CH), 3.67 (hept, *J* = 6.7 Hz, 1H, CH).

1H, CH), 3.85 (s, 3H, CH₃), 7.26 (s, 2H, C_{Ar}H), 7.60 (d, J = 8.2 Hz, 2H, C_{Ar}H), 7.76 (dd, J = 8.9, 7.6 Hz, 2H, C_{Ar}H).¹³**C NMR (75 MHz, CDCl₃)** δ (ppm) 21.8, 21.9, 22.0, 27.3, 27.7, 44.8, 50.9, 124.2, 125.1, 126.3, 127.5, 128.2, 128.3, 131.3, 134.9, 135.7. Carbon adjacent to boron was not observed. ¹¹**B NMR (96 MHz, CDCl₃)** δ (ppm) 38.2.

2-B-((*N*,*N*-diisopropylamino)-8-methylnaphth-1-yl)-borane (10g): 10g ($C_{17}H_{24}BN$) was obtained from 1-bromo-8-methylnaphthalene [33295-37-3] (1mmol; 1.0 equiv.) and diisopropylamine-borane complex [55124-35-1] (1.1 mmol; 1.1 equiv.) as a racemic mixture with 67% yield (169.6 mg) following the general procedure B. Rf unstable on silica. MS (ESI+) m/z: unstable. ¹H NMR (300 MHz, CDCI₃) δ (ppm) 1.03 (s, 3H, CH₃), 1.08 (d, *J* = 6.7

Hz, 6H, CH₃), 1.37 (d, J = 6.7 Hz, 6H, CH₃), 3.45 (hept, J = 6.7 Hz, 1H, CH), 3.86 (hept, J = 6.8 Hz, 1H, CH), 7.36 – 7.47 (m, 3H, C_{Ar}H), 7.78 (dt, J = 6.7, 3.5 Hz, 3H, C_{Ar}H).¹³**C** NMR (75 MHz, CDCI₃) δ (ppm) 22.1, 27.0, 45.5, 50.3, 124.6, 128.5, 128.7. Carbon adjacent to boron was not observed. ¹¹B NMR (96 MHz, CDCI₃) δ (ppm) 38.9.

2-B-((*N*,*N*-cyclohexylamino)-2-methylnaphth-1-yl)-borane (10h): 10h ($C_{23}H_{32}BN$) was obtained from 1-bromo-2-methylnaphthalene [2586-62-1] (1mmol; 1.0 equiv.) and dicyclohexylamine-borane complex (1.1 mmol; 1.1 equiv.) as a racemic mixture with 86% yield (286.6 mg) following the general procedure **B**. Rf *unstable on silica*. **MS (ESI+)** m/z:

unstable. ¹H NMR (300 MHz, CDCI₃) δ (ppm) 0.70 – 2.06 (m, 20H, CH₂), 2.40 (s, 3H, CH₃), 2.92 – 3.00 (m, 1H, CH), 3.01 – 3.16 (m, 1H, CH), 7.28 – 7.42 (m, 3H, C_{Ar}H), 7.58 – 7.68 (m, 2H, C_{Ar}H), 7.71 – 7.77 (m, 1H, C_{Ar}H). ¹³C NMR (75 MHz, CDCI₃) δ (ppm) 22.1, 25.4, 25.6, 25.7, 26.7, 26.8, 32.1, 37.6, 37.8, 55.1, 59.9, 124.3, 124.9, 126.5, 127.6, 128.1, 128.2, 131.3, 134.8, 135.7. Carbon adjacent to boron not observed. ¹¹B NMR (96 MHz, CDCI₃) δ (ppm) 40.6. HPLC: The separation of the racemate was performed on a Phenomenex Cellulose-1 column at 0 °C. (99:1 hexane:isopropanol; 1mL/min). tr₁ = 3.60 min; tr₂ = 3.89 min.

2-B-((*N*,*N*-dicyclohexylamino)-2-isopropylnaphth-1-yl)-borane (10i): 10i ($C_{25}H_{36}BN$) was obtained from 1-bromo-2-isopropylnaphthalene [39071-01-7] (1mmol; 1.0 equiv.) and dicyclohexylamine-borane complex (1.1 mmol; 1.1 equiv.) as a racemic mixture with 76% yield (274.6 mg) following the general procedure B. Rf unstable on silica. MS (ESI+) m/z: unstable. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 0.95 (m, 4H, CH₂), 1.24 (d, *J* = 6.9 Hz, 3H,

CH₃), 1.28 (d, J = 6.9 Hz, 3H, CH₃), 1.37 – 2.05 (m, 16H, CH₂), 2.28 – 3.03 (m, 1H, CH), 3.04 – 3.20 (m, 1H, CH), 7.31 – 7.47 (m, 1H, CH), 7.63 – 7.73 (m, 2H, C_{Ar}H), 7.71 – 7.84 (m, 2H, C_{Ar}H).¹³**C** NMR (75 MHz, CDCI₃) δ (ppm) 23.6, 23.9, 24.2, 25.2, 25.4, 25.5, 25.6, 25.7, 26.7, 32.0, 32.3, 34.3, 37.6, 37.8, 59.7, 123.1, 124.4, 124.8, 125.0, 127.1, 127.9, 128.0, 131.7, 134.7, 146.6. Carbon adjacent to boron not observed. ¹¹B NMR (96 MHz, CDCI₃) δ (ppm) 40.9. HPLC: The separation of the racemate was performed on a Phenomenex Cellulose-1 column at 25 °C. (Heptane; 1mL/min). tr₁ = 8.21 min; tr₂ = 11.51 min.

2-B-((2,2,6,6-tetramethylpiperidino)-2-methylnaphth-1-yl)-borane (10j): 10j ($C_{20}H_{28}BN$) was obtained from 1-bromo-2-methylnaphthalene [2586-62-1] (1mmol; 1.0 equiv.) and TMP•BH₃ (1.1 mmol; 1.1 equiv.) as a racemic mixture with 49% yield (143.7 mg) following the general procedure B. Rf *unstable on silica.* **MS (ESI+)** m/z: *unstable.* ¹H NMR (300 MHz, CDCI₃) δ (ppm) 1.08 (s, 3H, CH₃), 1.11 (s, 3H, CH₃), 1.59 (s, 3H, CH₃), 1.66 (s, 3H, CH₃), 1.75 – 1.93 (m, 6H, CH₂), 2.43 (s, 3H, CH₃), 7.15 – 7.21 (m, 1H, C_{Ar}H), 7.29 – 7.50 (m, 3H,

 $C_{Ar}H$), 7.55 – 7.71 (m, 1H, $C_{Ar}H$), 7.72 – 7.85 (m, 1H, $C_{Ar}H$). ¹³**C NMR (75 MHz, C_6D_6)** δ (ppm) 20.7, 27.3, 37.1, 37.2, 40.0, 40.3, 41.81, 43.2, 61.9, 62.1, 129.5, 129.8, 131.2, 133.2, 133.5, 133.7, 136.9, 138.2, 138.8. Carbon adjacent to boron not observed. ¹¹**B NMR (96 MHz, CDCI₃)** δ (ppm) 42.5. **HPLC:** The separation of the racemate was performed on a Phenomenex Cellulose-1 column at 0 °C. (99:1 hexane:isopropanol; 1mL/min). tr₁ = 3.61 min; tr₂ = 3.89 min.

2-B-((2,2,6,6-tetramethylpiperidino)-2-isopropylnaphth-1-yl)-borane (10k): (10k) ($C_{22}H_{32}BN$) was obtained from 1-bromo-2-isopropylnaphthalene [39071-01-7] (1mmol; 1.0 equiv.) and TMP•BH₃ (1.1 mmol; 1.1 equiv.) as a racemic mixture with 43% yield (138.1 mg) following the general procedure B. Rf *unstable on silica.* MS (ESI+) m/z: *unstable.* ¹H NMR (300 MHz, CDCI₃) δ (ppm) 1.08 (s, 3H, CH₃), 1.13 (s, 3H, CH₃), 1.20 (d, *J* = 6.8 Hz, 3H, CH₃), 1.33 (s, 3H, CH₃), 1.36 (s, 3H, CH₃), 1.38 (d, *J* = 6.8 Hz, 3H, CH₃), 1.81 (m, 6H, CH₂), 3.07 –

3.11 (m, 1H, CH), 7.34 – 7.46 (m, 2H, $C_{Ar}H$), 7.61 – 7.67 (m, 2H, $C_{Ar}H$), 7.72 – 7.84 (m, 2H, $C_{Ar}H$). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 15.8, 21.8, 23.9, 24.6, 32.7, 32.8, 34.2, 34.6, 35.3, 35.5, 36.9, 38.3, 123.2, 124.3, 124.5, 125.0, 125.8, 126.5, 127.5, 128.0, 129.0. Carbon adjacent to boron was not observed. ¹¹B NMR (96 MHz, CDCl₃) δ (ppm) 42.0. HPLC: The separation of the racemate was performed on a Phenomenex Cellulose-1 column at 25 °C. (Heptane; 1mL/min). tr₁ = 8.64 min; tr₂ = 9.90 min.

 2-B-((*N*-tert-butyl-*N*-isopropylamino)-2-methylnaphth-1-yl)-borane (10l): (10l) (C₁₈H₂₆BN) was obtained from 1-bromo-2-methylnaphthalene [2586-62-1] (1mmol; 1.0 equiv.) and BH₃•NH(*i*-Pr)-(*t*-Bu) (1.1 mmol; 1.1 equiv.) as a racemic mixture with 61% yield (163.0 mg) following the general procedure B. Rf unstable on silica. MS (ESI+)

m/z: *unstable*. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 0.71 (s, 3H, CH₃), 1.24 (dd, *J* = 9.3, 5.8 Hz, 6H, CH₃), 1.31 (s, 9H, CH₃), 2.50 – 2.81 (m, 6H, CH₃), 2.86 – 3.01 (m, 1H, CH), 3.01 – 3.21 (m, 1H, CH), 7.28 – 7.42 (m, 2H, C_{Ar}H), 7.53 – 7.90 (m, 4H, C_{Ar}H).¹³C NMR (75 MHz, CDCl₃) δ (ppm) 22.4, 27.0, 27.2, 30.2, 48.9, 59.0, 70.7, 124.2, 125.0, 125.3, 125.4, 125.8, 128.1, 128.2, 128.8, 133.6. Carbon adjacent to boron was not observed. ¹¹B NMR (96 MHz, CDCl₃) δ (ppm) 41.0. HPLC: The separation of the racemate was performed on a Phenomenex Cellulose-1 column at 25 °C. (99:1 Hexane:isopropanol; 1mL/min). tr₁ = 3.53 min; tr₂ = 3.67 min.

2-B-((*N*,*N*-diisopropylamino)-2-*tert*-butyl-phen-1-yl)-borane (10m): (10m) ($C_{16}H_{28}BN$) was obtained from 1-bromo-2-*tert*-butylbenzene [7073-99-6] (1mmol; 1.0 equiv.) and diisopropylamine-borane complex [55124-35-1] (1.1 mmol; 1.1 equiv.) as a racemic mixture with 92% yield (225.6 mg) following the general procedure B.MS (ESI+) m/z: *unstable*. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 1.06 (d, *J* = 6.7 Hz, 6H, CH₃), 1.32 (t, *J* = 3.3 Hz, 6H, CH₃),

3.35 (s, 9H, CH₃), 7.11 (ddd, J = 8.4, 6.3, 1.7 Hz, 1H, C_{Ar}H), 7.20 (ddd, J = 13.4, 8.6, 2.6 Hz, 1H, C_{Ar}H), 7.38 (d, J = 7.8 Hz, 2H, C_{Ar}H).¹³**C NMR (75 MHz, CDCI₃)** δ (ppm) 14.2, 22.5, 26.2, 45.4, 47.5, 51.7, 77.8, 128.0, 132.0, 132.1, 132.4. Carbon adjacent to boron not observed. ¹¹**B NMR (96 MHz, CDCI₃)** δ (ppm) 38.9.

4. NMR spectra

Compound (10a) ¹H NMR in CDCl₃ at 25°C (300 MHz)

Compound (10a) ¹¹B NMR in CDCI₃ at 25°C (96 MHz)

40.64 H_BN

Compound (10a) ¹³C NMR in CDCI₃ at 25°C (75 MHz)

Compound (10b) ¹H NMR in Acetone-d₆ at 25°C (300 MHz)

Compound (10b) ¹¹B NMR in Acetone-d₆ at 25°C (196 MHz)

H.B.N.

~ 39.58 ~ 38.32

Compound (10b) ¹³C NMR in Acétone-d₆ at 25°C (75 MHz)

Compound (10b) VTNMR in Acetone-d₆ based on ¹H NMR at 25°C and -70°C (600 MHz) – No apparent coalescence

Compound (10c) ¹H NMR in CDCI₃ at 25°C (300 MHz)

Compound (10c) ¹¹B NMR in CDCl₃ at 25°C (196 MHz)

Compound (10c) ¹³C NMR in CDCl₃ at 25°C (75 MHz)

Compound (10d) ¹H NMR in CDCl₃ at 25°C (300 MHz)

_N_B_H

Compound (10d) ¹¹B NMR in CDCI₃ at 25°C (196 MHz)

∽N_{`B}∽H

~41.09

Weleyday fered yweller fer hen wellyd y gelan anwler al ar wellyn a'r yr lyfn reger yn berlydryn w gerran galaagaal ar bernau yr her an yn her galaan yr her an yn her an yn

Compound (10d) ¹³C NMR in CDCl₃ at 25°C (75 MHz)

Compound (10e) ¹H NMR in CDCI₃ at 25°C (300 MHz)

Compound (10e) ¹¹B NMR in CDCI₃ at 25°C (196 MHz)

N.B.H

Willion of the second second

Compound (10f) ¹H NMR in Acetone-d₆ at 25°C (300 MHz)

Compound (10f) ¹¹B NMR in Acetone-d₆ at 25°C (196 MHz)

Compound (10f) ¹³C NMR in C₆D₆ at 25°C (75 MHz)

Compound (10f) VTNMR in Acetone-d₆ based on ¹H NMR at 25°C and -70°C (600 MHz) – Coalescence observed

Compound (10g) ¹H NMR in CDCl₃ at 25°C (300 MHz)

Compound (10g) ¹¹B NMR in CDCI₃ at 25°C (196 MHz)

Compound (10g) ¹³C NMR in CDCl₃ at 25°C (75 MHz)

Compound (10g) VTNMR in Acetone-d₆ based on ¹H NMR at 25°C and -70°C (600 MHz) – Coalescence observed

Compound (10h) ¹H NMR in CDCI₃ at 25°C (300 MHz)

H_{~B}[/]N.

 $<^{40.70}_{40.50}$

Compound (10i) ¹H NMR in CDCI₃ at 25°C (300 MHz)

Compound (10i) ¹¹B NMR in C₆D₆ at 25°C (196 MHz)

120	110	100	90	80	70	60	50	40	30	20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120
											f	1 (ppm)											

Compound (10i) ¹³C NMR in CDCI₃ at 25°C (75 MHz)

Compound (10j) ¹H NMR in CDCI₃ at 25°C (300 MHz)

-42.52

Compound (10j) ¹³C NMR in C_6D_6 at 25°C (75 MHz)

Compound (10k) ¹H NMR in CDCI₃ at 25°C (300 MHz)

Compound (10k) ¹¹B NMR in CDCI₃ at 25°C (196 MHz)

Compound (10k) ¹³C NMR in CDCI₃ at 25°C (75 MHz)

Compound (10I) ¹H NMR in CDCI₃ at 25°C (300 MHz)

H_{`B}∕Ń

Compound (10I) ^{11}B NMR in CDCl3 at 25°C (196 MHz)

Compound (10I) ¹³C NMR in CDCl₃ at 25°C (75 MHz)

Compound (10m) ¹¹B NMR in CDCI₃ at 25°C (196 MHz)

120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 f1 (ppm)

Compound (10m) ¹³C NMR in CDCl₃ at 25°C (75 MHz)

Compound (10m) VTNMR in Acetone-d₆ based on ¹H NMR at 25°C and -70°C (600 MHz) – Coalescence observed

5. Atropisomers characterization *via* Circular Dichroism

a) Principle and process

This spectroscopic technique is mainly used to determine the thermodynamic parameters of compounds exhibiting an axial chirality. It is based on the degeneration of the chiroptical signal of a sample at a given temperature. Indeed, when the sample goes from one enantiopure compound to a racemic mixture, the chiroptical signal decays exponentially into the chiroptically mute racemate (meaning that the racemization is complete).

The process goes as follow:

- 1. Separation of the enantiomers by running an HPLC on a chiral stationary phase
- 2. Put the enantiopure sample from HPLC into a CD-spectrometer at a given and fixed temperature
- 3. Study the degeneration of the chiroptical signal of one enantiomer over time
- 4. Get the data and use Eyring Plot for thermodynamic parameters determination

b) Eyring Plot and $\triangle G^{\ddagger}$ determination

The Eyring equation in chemical kinetics relates the reaction rate to temperature. In its linear form it conforms to the standard slope-intercept form of the straight-line equation where:

$$\ln\left(\frac{krac}{T}\right) = \left(-\frac{\Delta H^{\dagger}}{R}\right)\left(\frac{1}{T}\right) + \ln\left(\frac{k_{b}}{h}\right) + \left(\frac{\Delta S^{\dagger}}{R}\right)$$
$$\mathbf{Y} = \ln(\mathbf{k}_{rac}/\mathbf{T})$$

m = the slope of the line

X = 1/T and

B = the Y-intercept of the line when X = 0

To determine the activation parameters of a system, ΔH^{\ddagger} and ΔS^{\ddagger} , a plot of ln(k*rac*/T) vs. (1/T) will produce a straight line where the slope = $-\Delta H^{\ddagger}/R$ and the y-intercept = ln(kb/h) + ($\Delta S^{\ddagger}/R$) where:

c) Data

Separation of enantiomers was obtained from a high performance liquid chromatography HPLC on a 1260 Infinity II Agilent HPLC bearing a Quaternary Pump with an operating pressure of up to 600 bar. The chiral column used was purchased from Phenomenex and is a Lux® 3 μ m Cellulose-1, LC Column 100 x 4.6 mm. The stationary phase is a Cellulose tris(3,5 dimethylphenylcarbamate) and the flow used was a 1 mL/min with a 20 μ L injection volume. The mobile phase as well as the temperature of separation were adapted to each sample.

Circular dichroism (CD) spectra were measured on a Jasco J-815 (190-800nm) equipped with a xenon-mercury lamp and running under nitrogen atmosphere. The sample temperature was maintained between 4 and 20°C using a Peltier device (PFD-425S/15). All samples were stirred at 1000rpm during measurements, and every spectrum was taken as the average of 4 -10 scans with wavelengths between 200 to 400 nm.

Compound 10a

Figure 1 : Sample 10a chromatogram at 0°C using Hexane: Isopropanol 99:1 as the mobile phase

The elution time at 0°C using Cellulose-1 for peak 1 was 3.6 minutes and peak 2 was 3.8 minutes. A sample containing a large excess of peak1 was then studied in CD. The chiroptical decay of **10a** at 10°C is presented here after as an illustration.

Figure 2 : Chiroptical degeneration of 10a at 10°C

Table 1 : Thermodynamic parameters from CD studies

Temp (K)	k _{rac} (s ⁻¹)	t _{1/2} (min)	$\Delta G^{\ddagger}_{rac}$ (kJ.mol ⁻¹)
288	3.5.10 ⁻⁴	1.5	82.5±0.1
283	4.7.10 ⁻⁵	5	83.4±0.1
277	1.6.10 ⁻⁵	18	84.6±0.1

Compound 10c

Figure 3 : Sample 10c chromatogram at 0°C using Hexane: Isopropanol 99:1 as the mobile phase

The elution time at 0°C using Cellulose-1 for peak 1 was 5.2 minutes and peak 2 was 5.5 minutes. A sample containing a large excess of peak1 was then studied in CD. The chiroptical decay of **10c** at 10°C is presented here after as an illustration.

Figure 4 : Chiroptical degeneration of **10c** at 10°C

Table 2 : Thermodynamic parameters from CD studies

Temp (K)	k _{rac} (S ⁻¹)	t _{1/2} (min)	$\Delta G^{\ddagger}_{rac}$ (kJ.mol ⁻¹)
288	9.5.10 ⁻⁴	12	87.1±0.7
283	8.2.10 ⁻⁴	14	85.9±0.5
277	6.4.10 ⁻⁴	18	84.6±0.4

Compound 10d

Figure 5 : Sample **10d** chromatogram at 25°C using Heptane as the mobile phase

The elution time at 25°C using Cellulose-1 for peak 1 was 9.2 minutes and peak 2 was 13.0 minutes. A sample containing a large excess of peak1 was then studied in CD. The chiroptical decay of **10d** at 10°C is presented here after as an illustration.

Figure 6 : Chiroptical degeneration of 10d at 10°C

Table 3 : Thermodynamic parameters from CD studies

Temp (K)	k _{rac} (s ⁻¹)	t _{1/2} (min)	$\Delta G^{\ddagger}_{rac}$ (kJ.mol ⁻¹)
293	8.5.10 ⁻⁴	14	88.4±0.1
283	3.8.10 ⁻⁴	31	87.7±0.1
277	1.7.10-4	68	87.9±0.1

Compound 10e

H_\N(*i*-Pr)₂

Figure 7 : Sample **10e** chromatogram at 25°C using Heptane as the mobile phase

The elution time at 25°C using Cellulose-1 for peak 1 was 5.9 minutes and peak 2 was 7.2 minutes. A sample containing a large excess of peak1 was then studied in CD. The chiroptical decay of **10e** at 10°C is presented here after as an illustration.

Figure 8 : Chiroptical degeneration of 10e at 10°C

Temp (K)	k _{rac} (s ⁻¹)	t _{1/2} (min)	$\Delta G^{\ddagger}_{rac}$ (kJ.mol ⁻¹)
293	9.5.10 ⁻⁴	54	92.2±0.1
288	8.2.10 ⁻⁴	68	92.0±0.1
283	6.4.10 ⁻⁴	187	92.0±0.1

Compound 10h

Figure 9 : Sample 10h chromatogram at 0°C using Hexane:isopropanol 99:1 as the mobile phase

The elution time at 0°C using Cellulose-1 for peak 1 was 3.6 minutes and peak 2 was 3.9 minutes. A sample containing a large excess of peak1 was then studied in CD. The chiroptical decay of **10h** at 10°C is presented here after as an illustration.

Figure 10 : Chiroptical degeneration of **10h** at 10°C

Table 5 : Thermodynamic parameters from CD studies

Temp (K)	k _{rac} (s ⁻¹)	t _{1/2} (min)	$\Delta G^{\ddagger}_{rac}$ (kJ.mol ⁻¹)
293	2.9.10 ⁻³	4	85.8±0.1
283	8.7.10 ⁻⁴	13	85.8±0.1
277	5.0.10 ⁻⁴	23	85.4±0.1

Compound 10i

Figure 11 : Sample 10i chromatogram at 25°C using Heptane as the mobile phase

The elution time at 25°C using Cellulose-1 for peak 1 was 8.2 minutes and peak 2 was 11.5 minutes. A sample containing a large excess of peak1 was then studied in CD. The chiroptical decay of **10i** at 10°C is presented here after as an illustration.

Figure 12 : Chiroptical degeneration of 10i at 10°C

Table 6 : Thermodynamic parameters from CD studies

Temp (K)	k _{rac} (s ⁻¹)	t _{1/2} (min)	$\Delta G^{\ddagger}_{rac}$ (kJ.mol ⁻¹)
293	1.5.10 ⁻⁴	76	93.4±0.1
288	8.9.10 ⁻⁵	130	93.0±0.1
283	4.7.10 ⁻⁵	244	92.6±0.1

Compound 10I

Figure 13 : Sample 10I chromatogram at 25°C using Hexane:isopropanol 99:1 as the mobile phase

The elution time at 25°C using Cellulose-1 for peak 1 was 3.5 minutes and peak 2 was 3.6 minutes. A sample containing a large excess of peak1 was then studied in CD. The chiroptical decay of **10I** at 10°C is presented here after as an illustration.

Figure 14 : Chiroptical degeneration of 10I at 10°C

Table 7 : Thermodynamic parameters from CD studies

Temp (K)	k _{rac} (s ⁻¹)	t _{1/2} (min)	$\Delta G^{\ddagger}_{rac}$ (kJ.mol ⁻¹)
293	5.5.10-4	20	90.0±0.1
283	1.3.10 ⁻⁴	89	90.2±0.1
277	3.2.10 ⁻⁵	357	91.3±0.1

6. Line Shape Analysis (LSA)

The relatively low-lying barriers of inversion of compounds 10f, 10g, and 10m allows the kinetics to be studied by DNMR. Thus, we evaluated the barrier of inversion of these three products which could not be separated into isomers by DHPLC, by correlating VTNMR results and DNMR line-shape analyses. The diastereotopic protons from the isopropyl groups can be used to determine the rate of inversion by measuring the peaks broadening at half-height.

For the determination of the thermodynamic parameters, a range of rates at different temperatures is required. For the evaluation of the coalescence temperature Tc, a set of spectra at various temperatures for each product were already recorded, which can now be simulated by line-shape analysis. The line-shape analysis gives access to the rates at these temperatures (*i.e.* k(T)). Once the rates are determined by LSA, an Eyring plot and a subsequent linear regression of the data can then be used to determine the thermodynamic parameters.

The LSA were performed using Topspin 4.0.5 (dNMR) and the equations used to determine the thermodynamic parameters are:

$$k_{rac} = \pi \left(\frac{\Delta \nu}{\sqrt{2}}\right); \quad \Delta G_{rac} = RT_c \left[ln \left(\frac{k_B T_c}{h}\right) - ln \left(\pi \frac{\Delta \nu}{\sqrt{2}}\right) \right]; \quad t_{1/2rac} = \left(\frac{ln2}{k_{rac}}\right)$$

With k_{rac} being the rate of inversion, Δv being the difference in chemical shift for one peak at 25°C and at the coalescence temperature and T_c being the coalescence temperature.

Thermodynamic parameters determination for compound 10f

Data from VTNMR

Table 8 :Data from VTNMR results for compound 10f

T _c (°C)	$k_{rac} (s^{-1})$	t _{1/2rac} (s)	ΔG^{\ddagger}_{Tc} (kJ.mol ⁻¹)
+ 10	1.33.10 ²	0.005	~59.5

LSA Analysis

H,

Figure 15 : LSA analysis for compound **10f**. Left: Experimental spectra in Acetone- d_6 of the two diastereotopic hydrogens from isopropyl groups clearly displaying the temperature dependence of racemization with the resulting coalescence phenomena. Right: Line-shape analysis of the spectra yielding the corresponding calculated k(T).

Table 9 : Data	from LSA	for compound	10f
----------------	----------	--------------	-----

∆H (kJ.mol ⁻¹)	ΔS (J.mol ⁻¹)	ΔG^{\ddagger}_{Tc} (kJ.mol ⁻¹)
75.5	56.6	~59.5

Thermodynamic parameters determination for compound 10g

Data from VTNMR

Table 10 :Data from VTNMR results for compound 10g

T _c (°C)	$k_{rac} (s^{-1})$	t _{1/2rac} (s)	ΔG^{\ddagger}_{Tc} (kJ.mol ⁻¹)
+ 10	1.33.10 ²	0.005	~59.5

LSA Analysis

Figure 16 : LSA analysis for compound **10g**. Left: Experimental spectra in Acetone- d_6 of the two diastereotopic hydrogens from isopropyl groups clearly displaying the temperature dependence of racemization with the resulting coalescence phenomena. Right: Line-shape analysis of the spectra yielding the corresponding calculated k(T).

Table 11 : Data from LSA for	compound	10g
------------------------------	----------	-----

∆H (kJ.mol⁻¹)	ΔS (J.mol ⁻¹)	ΔG^{\ddagger}_{Tc} (kJ.mol ⁻¹)
64.2	8.2	61.9

Thermodynamic parameters determination for compound 10m

Data from VTNMR

Table 12 :Data from VTNMR results for compound 10m

T _c (°C)	k_{rac} (s ⁻¹)	t _{1/2rac} (s)	ΔG^{\ddagger}_{Tc} (kJ.mol ⁻¹)
- 5	1.33.10 ²	0.005	~54.3

LSA Analysis

Figure 17 : LSA analysis for compound **10m**. Left: Experimental spectra in Acetone- d_6 of the two diastereotopic hydrogens from isopropyl groups clearly displaying the temperature dependence of racemization with the resulting coalescence phenomena. Right: Line-shape analysis of the spectra yielding the corresponding calculated k(T).

Table 13 : Data from LSA for compound 10m

∆H (kJ.mol ⁻¹)	ΔS (J.mol ⁻¹)	ΔG^{\ddagger}_{Tc} (kJ.mol ⁻¹)
61.8	33.9	52.2

7. DFT Calculation results

All DFT calculations were performed with the Gaussian 16 software package.¹ M06–2X exchangecorrelation functional² was used with a high-quality triple- ζ def2-TZVPP basis set for molecular structure optimization with the use of SMD solvatation model and Hexane as a solvent. All structures were optimized at 298°K. Frequency calculations were performed to insure that there is no imaginary frequency for local minima. The connectivity between stationary points was established by intrinsic reaction coordinate computations (IRC).

All these computed structures are available on request. This Supporting information contains free Gibbs energies and cartesian coordinates of all structures discussed in the text.

¹ Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

² a) Zhao, Y.; Truhlar, D. G. *J. Chem. Phys.* **2006**, *125*, 194101: 1. b) Y. Zhao, D. G. Truhlar *Theor. Chem. Acc.* **2008**, *120*, 215.

		Calc. ∆G [‡] H-side	Calc. ΔG^{\ddagger} Substituent-side	
Compound	Experimental ∆G [‡] (kJ.mol ⁻¹) (at 10°C)	$\begin{bmatrix} H^{H_{B}} \\ R^{H_{B}} \end{bmatrix}$	R ² N B H	difference exp./calc.
H _B N(<i>i</i> -Pr) ₂	83.4±0.1	97.1	100.4	13.7
H _B rN(<i>i</i> -Pr) ₂ Ph 10c	85.9±0.1	106.3	102.2	16.3
H _B -N(<i>i</i> -Pr) ₂	87.7±0.1	108.1	101.7	14.0
H _B ,N(<i>i</i> -Pr) ₂	92.0±0.1	NA	104.7	12.7
H _B -N(iPr) ₂	59.5	64.0	95.5	4.5
H _B N(<i>i</i> -Pr) ₂	61.9	71.6	NA	9.6
H _B -N(Cy) ₂	85.8±0.1	98.8	101.3	13.0
H B N(Cy) ₂	92.6±0.1	NA	105.1	12.5
H _B TMP	ND	132.3	118.9	-
H _B TMP 10k	ND	NA	134.8	-
H B N(<i>i</i> -Pr)(<i>t</i> -Bu)	90.2±0.1	NA	NA	-
H N(<i>i</i> -Pr) ₂	52.2	NA	56.0	3.8

NA: not available (impossible to calculate). ND: not determined.

Sum of electronic and thermal Free Energies (Hartrees): -741.553794

Center Number	Atomic Number	Atomic Type	Coordi X	nates (Angst Y	troms) Z
Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 31 41 5 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 32 33 34 35 36 37 38 39 40 41 37 38 39 40 41 37 38 39 40 41 37 38 39 40 41 37 38 39 40 41 37 38 39 40 41	Number 6 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1	Type 0 0 0 0 0 0 0 0 0 0 0 0 0	\times -0.588731 -1.607694 -1.337534 -0.335589 -2.314896 -2.086832 -3.623982 -4.389996 -3.920366 -4.923321 -2.928260 -3.215737 -4.222667 -2.238255 -2.464787 -0.914171 0.105701 1.046809 0.323619 -0.266549 0.877266 1.819737 3.188156 3.735860 3.180043 4.199275 2.685864 2.650965 3.914305 4.951080 3.436951 3.909265 1.540828 0.492256 1.712888 1.413078 1.089008 2.749145 2.371617 2.094176 3.439884		Z -0.475387 -0.354578 -0.598275 -0.890985 -0.476300 -0.669839 -0.102397 -0.007734 0.135279 0.419844 0.015599 0.256819 0.539843 0.130164 0.313738 -0.239820 -0.343478 -0.239820 -0.343478 -0.771085 0.641093 -0.965476 -0.914337 -0.040840 -0.492477 0.381870 -1.515669 -1.793571 -1.111122 -2.419010 -1.018448 -1.256555 -1.924612 -0.273557 1.383042 1.529091 1.759375 2.796725 1.130756 1.665606 2.277524 3.322439 2.188790
43	1	0	1.203863	0.559234	-2.051910

B^{N(*i*-Pr)₂} Η,

Sum of electronic and thermal Free Energies (Hartrees): -741.516869

TS Substituent-side 10a

Sum of electronic and thermal Free Energies (Hartrees): -741.515509

Center	Atomic	Atomic	Coordi	nates (Angst	troms)
Number	Number	Туре	X	Y	Z
Center Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	Atomic Number 6 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1	Atomic Type 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Coord x 0.707409 1.694219 1.452221 0.536681 2.382336 2.148829 3.647221 4.372526 3.958489 4.944231 3.018972 3.409301 4.417409 2.540126 2.860015 1.194415 0.373060 -0.163259 -0.357815	0.834186 -0.216058 -1.571937 -1.827542 -2.558192 -3.574921 -2.255965 -3.040952 -0.951458 -0.677974 0.083289 1.433134 1.659907 2.422236 3.456191 2.144898 3.373463 3.745535 3.192638	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	157616111611161611116		$\begin{array}{c} 1.038297\\ -0.889331\\ -1.934101\\ -3.243919\\ -3.895399\\ -3.148456\\ -4.148781\\ -2.650784\\ -2.590915\\ -3.903510\\ -4.902907\\ -3.323203\\ -3.994105\\ -1.959022\\ -1.015176\\ -2.069416\\ -2.019108\\ -1.251241\\ -3.012398\\ -3.025690\\ -2.900200\\ -4.041887\\ -2.922223\\ -1.309768\end{array}$	$\begin{array}{c} 4.167964\\ 0.773137\\ -0.155977\\ 0.379511\\ -0.481356\\ 1.060318\\ 1.285728\\ 0.409795\\ 1.994333\\ 1.277679\\ 1.565368\\ 2.187249\\ 0.762132\\ -1.609212\\ -1.877163\\ -2.357767\\ -3.434329\\ -2.075461\\ -2.147495\\ -2.053354\\ -3.116184\\ -1.914763\\ -1.506994\\ 1.865814 \end{array}$	-0.977535 -0.203132 -0.061255 0.404072 0.540534 1.765173 2.139208 2.485387 1.706305 -0.635164 -0.304101 -0.789742 -1.591569 -0.254044 -0.696443 1.070762 0.900930 1.733988 1.578608 -1.255424 -1.466248 -0.885769 -2.193216 -0.022455

Sum of electronic and thermal Free Energies (Hartrees): -972.524391

Center	Atomic	Atomic	Coordi	inates (Angst	troms)
Number	Number	Туре	Х	Y	Z
1	6	0	-0.281872	0.531832	0.006078
2	6	Õ	-1.058704	1.706709	-0.253745
3	6	Õ	-2.259604	1.651907	-1.006511
4	1	0	-2.587103	0.696372	-1.399302
5	6	0	-2.999581	2.777435	-1.246986
6	1	0	-3.911372	2.712760	-1.826192
7	6	0	-2.578109	4.026712	-0.746283
8	1	0	-3.170128	4.911104	-0.941031
9	6	0	-1.422406	4.116411	-0.021386
10	1	0	-1.087339	5.071814	0.364164
11	6	0	-0.637793	2.968334	0.240393
12	6	0	0.564930	3.043023	0.986604
13	1 C	0	0.888050	4.0050/1	1.365230
14 1 F	6	0	1.300155	1.920/94	1.21/358
10	L C	0	Z.ZZ40UL	1.982813	1.780450
10 17	6	0	U.003103 1 772106	0.034337	0.729802
12 12	0	0	1 260827	-0.334620	1.021979
10	1	0	1 03/056	-1.430099	2 000562
20	5	0	_0 718529	-0.874615	_0 571041
20	5	0	-1 730438	-1 652383	
22	6	0	-2 066750	-2 978677	-0 578758
23	1	Ő	-2 852330	-3 397615	0.049611
24	6	ŏ	-2.621812	-2.860053	-1.992702
25	ı 1	ŏ	-2.925761	-3.838429	-2.367874
26	1	Õ	-3.489758	-2.199690	-2.012676
27	1	Ō	-1.867041	-2.455825	-2.668236
28	6	0	-0.878885	-3.931612	-0.516425
29	1	0	-1.173420	-4.927864	-0.849708
30	1	0	-0.068640	-3.585063	-1.158536
31	1	0	-0.499912	-4.008380	0.503535
32	6	0	-2.498663	-1.241961	1.165269
33	1	0	-2.152679	-0.239100	1.412357
34	6	0	-3.994958	-1.155683	0.8/9963
35		0	-4.5134/0	-0./5//65	1.752891
30	1	0	-4.191954	-0.490690	0.039009
27	L G	0	-4.420200	-2.1324/1 2 1/2511	0.000000
20	0	0	-2.203342	-2.143311 -1.781708	2.300019
40	1	0	-2.731790	-1.701790 -3.171446	2 181330
40	1	0	_1 135017	-2 150428	2 579366
42	1	0	-0 141754	-1 305848	-1 525928
43	Ġ	õ	3,115464	-0.456968	0.329552
44	ő	õ	4.300022	-0.636278	1.035958
45	6	Õ	3.185743	-0.214311	-1.041619
46	Ğ	ŏ	5.529700	-0.580675	0.390573
47	1	Ō	4.259993	-0.821152	2.102903
48	6	0	4.409916	-0.161519	-1.689387
49	1	0	2.269356	-0.059780	-1.599307
50	6	0	5.587834	-0.344390	-0.974372
51	1	0	6.441345	-0.719558	0.957003
52	1	0	4.446881	0.026844	-2.754410
53	1	0	6.543585	-0.298675	-1.479259

TS H-side 10c

Sum of electronic and thermal Free Energies (Hartrees): -972.483999

Center	Atomic	Atomic	Coordi	nates (Angst	troms)
Number	NUMDer	туре	X	Y	۲
1	6	0	-0.549719	0.743479	-0.096028
2	6	0	-0.970978	2.136477	-0.004691
3	6	0	-2.211150	2.544137	0.566382
4 5	6	0	-2.074550	3 858874	0.983009
6	1	Õ	-3.524249	4.117010	1.109199
7	6	0	-1.741458	4.879326	0.158312
8	1	0	-2.052194	5.914052	0.212789
9	6	0	-0.524850	4.541779	-0.355606
10 11	L 6	0	0.159887	5.303893	-0.707507 -0.417520
12	0	0	1,194816	2.873171	-0.853424
13	1	ŏ	1.844860	3.668222	-1.198140
14	6	0	1.642659	1.592505	-0.776871
15	1	0	2.667900	1.372874	-1.041345
16	6	0	0.798782	0.528351	-0.370455
17 18	0 1	0	1.401200	-0.835271	-0.250744
10	5	0	-1.777339	-0.292416	-0.058806
20	7	ŏ	-2.038082	-1.673475	-0.032658
21	6	0	-3.467972	-2.077419	0.081355
22	1	0	-3.470309	-3.159373	0.198147
23	6	0			1.329911
24	1 1	0	-3.1103/3	-1.976230 _1.721874	1.404074 2 215800
26	1	0	-4.285128	-0.438498	1.256512
27	6	ŏ	-4.262155	-1.759638	-1.179477
28	1	0	-5.274600	-2.158762	-1.096529
29	1	0	-4.333085	-0.683223	-1.333832
30 21	L G	0	-3.790609	-2.2006/3	-2.05//24
31 32	0	0	-1.154470	-2.020000	-0.089088
33	6	Ő	-1.067412	-3.565094	1.245968
34	1	Ō	-0.333604	-4.370865	1.196578
35	1	0	-0.774818	-2.881554	2.044130
36	1	0	-2.027242	-4.009608	1.514736
3/	6 1	0	-1.460266	-3.//315/	-1.246/31
30	1	0	-2 410994	-4 291971	-1 121821
40	1	ŏ	-1.487829	-3.226764	-2.189911
41	1	0	-2.802167	0.294599	-0.137369
42	1	0	1.275329	-1.417964	-1.155785
43	6	0	2.94/928	-0.806332	0.005867
44 45	6	0	3.830709	-1.213243	-0.964446
46	6	0	5.224456	-1.181447	-0.717589
47	ĭ	ŏ	3.490686	-1.556583	-1.924788
48	6	0	4.799252	-0.331068	1.485590
49	1	0	2.737833	-0.040503	1.997052
50	6	U	5.699205		0.50//80
51 52	⊥ 1	0	5 161593	0 013499	-1.404410 2 445269
53	1	ŏ	6.762985	-0.713996	0.702887

TS Substituent-side 10c

TS Sub 10c

Sum of electronic and thermal Free Energies (Hartrees): -972.48542

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.s) Z
1810 1.412967 -1.029182 -2.2 1910 1.396238 -2.747245 -1.9 2050 0.049350 0.746556 -0.6 2170 0.001373 2.090459 -0.2 2260 1.314574 2.719818 0.0 2310 1.085570 3.664546 0.5 2460 2.132307 1.912197 1.0 2510 2.966297 2.515261 1.4 2610 1.517451 1.625391 1.9 2710 2.543390 1.005686 0.6 2860 2.125279 3.030925 -1.1 2910 3.042735 3.558673 -0.9 3010 2.403250 2.109490 -1.7 3110 1.599282 3.653592 -1.8 3260 -1.140219 2.974397 0.05393 3310 -1.984057 2.547083 -0.5 3460 -1.660439 2.050446 1.8 3710 -0.625642 3.475656 2.0 3860 -0.732206 4.291584 -1.632289 4010 -0.732206 4.291584 -1.632289 4110 -0.732206 4.291584 -0.99433 4360 2.179767 -1.8698	<pre> Z Z Z S S Z S</pre>

Sum of electronic and thermal Free Energies (Hartrees): -780.835263

NumberTypeXYZ160 -0.588242 0.637973 -0.239312 260 -1.594112 -0.375352 -0.315240 360 -1.307315 -1.672856 -0.814053 410 -0.307110 -1.890493 -1.154751 560 -2.273124 -2.639029 -0.878414 610 -2.032809 -3.620479 -1.265849 760 -3.587454 -2.362595 -0.445241 810 -4.344297 -3.133875 -0.499253 960 -3.900212 -1.122233 0.035662 1010 -4.907165 -0.898417 0.366982 1160 -2.263711 1.188755 0.603558 1310 -4.236248 1.398252 0.934800 1460 -2.260524 2.148967 0.658775 1510 -2.500327 3.136493 1.037181 1660 -0.932172 1.885617 0.236770 1760 0.689850 0.366118 -0.730226 1810 1.081844 2.623960 0.347549 1910 0.3204313 -0.543555 -0.481144 2310 3.204313 -0.543555 -0.481144 2460 3.27393 -1.50268 -1.762044 <
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
26 1 0 2.746069 -2.330503 -1.614129 27 1 0 2.726365 -0.842287 -2.569462 28 6 0 3.921901 0.790587 -0.649415 29 1 0 4.964576 0.629061 -0.927176
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
29 I 0 4.964576 0.629061 -0.927176
30 1 0 3.450929 1.388058 -1.430549
31 I 0 3.898110 1.360336 0.280426
32 6 0 1.519/17 -0.948192 1.318931
33 I 0 0.462996 -0.754087 I.497391
34 0 0 1.718724 -2.460840 1.333490
35 I U I.391400 -2.805370 2.291805 20 1 120004 2.02701 0.142020
30 I U I.130904 -2.937031 U.348080 27 I 0 2.767261 2.730852 I.200582
37 I U 2.70300 -2.73035 I.200303
30 0 0 2.511610 $-0.204/24$ $2.4293/0$
39 I U 2.024400 -0.070712 3.33930 40 1 0 2.202460 -0.17230 3.3293070
40 I 0 3.300300 -0.417323 2.313070
46 1 0 -1 047046 4 327359 -1 052860

Sum of electronic and thermal Free Energies (Hartrees): -780.794170

Center Number	Atomic Number	Atomic Type	Coordi X	inates (Angst Y	troms) Z
1 2 3 4	6 6 1 6	0 0 0	0.691804 1.916129 1.964241 1.067242 3.129493	0.310102 -0.482409 -1.850733 -2.341807 -2.566356	-0.022885 -0.049197 -0.447902 -0.784647
6 7	0 1 6	0	3.111729 4.350150	-2.300330 -3.597704 -1.979543	-0.795465
9 10	1 6 1	0	4.364021 5.290273	-2.362176 -0.660856 -0.165530	-0.082143 0.262834 0.528100
11 12 13	6 6 1	0 0 0	3.174204 3.234979 4.187274	0.108988 1.494007 1.944202	0.254303 0.503889 0.757222
14 15 16	6 1 6	0 0 0	2.119267 2.201882 0.851767	2.257536 3.326874 1.692049	0.363534 0.490028 0.076829
17 18 19	6 1 5	0 0	-0.284777 -0.924586 -0.641466	2.673034 2.274146 -0.582601	-0.129041 -0.914253 0.054943
20 21 22	7 6 1	0 0	-2.042228 -2.824046 -3.869168	-0.454978 -1.723560 -1.438855	0.057716 0.066020
23 24 25	6 1	0	-2.507031 -3.219662	-2.616001 -3.441310	-1.128976 -1.176017
26 27	1 6	0	-1.506373 -2.695190	-2.030703 -3.040874 -2.475983	-1.057415 1.384690
28 29 30	1 1 1	0 0	-3.361199 -1.675868 -2.958966	-3.340685 -2.831639 -1.834314	1.390531 1.532901 2.225484
31 32 33	6 1 6	0 0 0	-2.904624 -2.257868 -3.635747	0.732423 1.582521 0.893908	0.046608 0.169636 -1.283352
34 35 36	1 1 1	0 0 0	-4.206114 -2.923558 -4.336679	1.824055 0.920511 0.077573	-1.290156 -2.109175 -1.466350
37 38 39	6 1 1	0 0 0	-3.866196 -4.380926 -4.630830	0.771938 1.733744 -0.004197	1.234818 1.247464 1.193567
40 41 42	1 1 6	0 0	-3.319728 -0.361177 0.114968	0.667634 -1.720150 4.089962	2.172530 0.216901 -0 532371
43 44 45	1 1 1	0 0	0.802713	4.083874 4.648028	-1.379009 -0.826237
45	1	0	-0.883514	2.734094	0.282575

TS Substituent-side 10d

TS Sub 10d

Sum of electronic and thermal Free Energies (Hartrees): -780.796616

Center	Atomic	Atomic	Coord	inates (Angs	troms)
Number	Number	Туре	X	Y	Z
1	6	0	0.709298	0.585914	-0.406340
2	6	0	1.696208	-0.459326	-0.213599
3	6	0	1.454112	-1.827185	-0.485559
4	1	0	0.540680	-2.102566	-0.975653
5	6	0	2.382/1/	-2.805818	-0.250/28
6	I C	0	2.149122	-3.833622	-0.496387
/	0	0	3.645281	-2.481996	0.277083
ŏ	L 6	0	4.309333	-3.239304 -1.167385	0.479920
10	0	0	1 9/2392	-0.879485	0.473231
11	6	0	3 020115	-0.142862	0.202962
12	6	0	3 414976	1 212376	0 280377
13	1	õ	4,424481	1.450836	0.592642
14	6	õ	2.548859	2.184518	-0.100066
15	1	Õ	2.870888	3.219223	-0.118249
16	6	0	1.201284	1.893507	-0.442947
17	6	0	0.402184	3.122433	-0.829443
18	1	0	-0.465719	2.861367	-1.427646
19	1	0	1.046871	3.726860	-1.472888
20	5	0	-0.887310	0.528752	-0.256188
21	7	0	-1.931727	-0.395897	-0.082613
22	6	0	-3.244037	0.154457	0.35///3
23	Ţ	0	-3.899331		0.5088/9
24	0	0	-3.15/051	0.00/032	1.702521
23	1 1	0	-4.139044	0 222618	2.002300
20	1	0	-2.000371	1 797803	1 624724
28	6	0	-3 893513	1 028911	-0 707777
29	1	Õ	-4 898299	1 318429	-0 395140
30	1	ŏ	-3.315966	1.938417	-0.873247
31	1	Õ	-3.969557	0.493803	-1.654689
32	6	0	-1.956772	-1.855167	-0.222532
33	1	0	-1.007284	-2.140981	-0.640439
34	6	0	-2.086828	-2.555569	1.126765
35	1	0	-2.034362	-3.637460	0.996044
36	1	0	-1.278056	-2.249822	1.791137
37	1	0	-3.036947	-2.327849	1.613355
38	6	0	-3.010667	-2.333134	-1.221898
39	1	0	-2.884468	-3.402865	-1.393931
40	1	0		-2.180285	
4⊥ ⊿⊃	1 1	0	-2.09300/	-T.0TAQNQ 1 CJ/01E	-2.1/0034
42 13	L F	0	-0 013223	1.024913 3 068730	-0.1009/3
43	0 1	0	-0.541602	4 867702	0.572015
45	1 1	0 0	-0 667026	3 404267	1 038160
46	1	ŏ	0.858398	4.278097	0.950830

Sum of electronic and thermal Free Energies (Hartrees): -820.116571

Center	Atomic	Atomic	Coord	inates (Angs	troms)
Number	Number	Туре	Х	Y	Z
1	6	0	-0.630401	0.252494	-0.406540
2	6	0	-1.792116	-0.569585	-0.241363
3	6	0	-1.733691	-1.978320	-0.404124
4	1	0	-0.787820	-2.441226	-0.662007
5	6 1	0	-2.844522	-2./59528	-0.239850
6 7	1	0	-2.770723	-3.831427	-0.371303
8	0	0	-4.062210	-2.173400	0.101940
9	6	0	-4 174117	-0 821873	0 268682
10	1	Ő	-5.119181	-0.362500	0.532588
$\overline{11}$	6	ŏ	-3.040717	0.009031	0.101727
12	6	0	-3.114331	1.413153	0.269498
13	1	0	-4.066452	1.861438	0.526678
14	6	0	-2.002859	2.184044	0.109145
15	1	0	-2.077443	3.257132	0.238913
16	6	0	-0.745327	1.614933	-0.227169
17	6	0	0.440997	2.545337	-0.393492
18	1	0	1.318816	1.929625	-0.603500
19	5	0	0.709726	-0.448394	-0.869216
20	6	0	1./94805	-0.095090	
21	0	0	2.990300	-1.412000	-0.525956
22	6	0	2 647404	-2 819545	_0 999491
23	1	0	3 555402	-3 362223	-1 266882
25	1	Õ	2.132999	-3.375039	-0.214203
26	1	ŏ	2.001793	-2.786616	-1.877545
27	6	Ō	3.711576	-0.614320	-1.605395
28	1	0	4.626986	-1.123578	-1.910557
29	1	0	3.076565	-0.499007	-2.484496
30	1	0	3.975758	0.379020	-1.240598
31	6	0	1.824797	-0.293147	1.377977
32	1	0	0.899884	0.257850	1.547477
33	6	0	1.821550	-1.504206	2.305487
34	1	0	1.//9543	-1.180864	3.346297
35	1	0	0.953988	-2.134315	2.10/112
20	1	0	2.722924	-2.100125	2.103049
20	0	0	2.900030	0.043007	2 704872
20	1	0	2.904030	0 142597	1 599510
40	1	0	2 988664	1 502427	1 008464
41	1	Õ	0.784497	-0.824197	-2.001899
42	6	ŏ	0.242544	3.491485	-1.579009
43	1	0	1.118304	4.128775	-1.713008
44	1	0	0.078211	2.935258	-2.502406
45	1	0	-0.620875	4.140390	-1.419841
46	6	0	0.720846	3.336622	0.885462
47	1	0	0.843776	2.675878	1.744832
48	1	0	1.630813	3.929828	0.778081
49	1	0	-0.096865	4.024607	1.10/8/8

TS Substituent-side 10e

Sum of electronic and thermal Free Energies (Hartrees): -820.076792

Center	Atomic	Atomic	Coord	inates (Angst	troms)
Number	Number	Туре	X	Y	Z
1	6	0	-0.703375	0.308798	-0.252156
2	6	0	-1.490374	-0.903955	-0.147212
3	6	0	-1.061037	-2.163498	-0.631838
4	1	0	-0.168215	-2.212189	-1.226889
5	0	0		-3.3046/6	-0.4/9/84
6 7	L	0	-1.438343	-4.23/234	
2 8	0	0	-3.04/320	-3.207432	0.174330
9	1 6	0	-3 544432	-2 060380	0.512109
10	1	0	-4 529581	-1 988999	1 020798
11	6	õ	-2.808323	-0.866809	0.387633
12	6	Ō	-3.402054	0.385123	0.667686
13	1	0	-4.400231	0.413048	1.087749
14	6	0	-2.746278	1.528286	0.341529
15	1	0	-3.238772	2.481595	0.482936
16	6	0	-1.406974	1.510650	-0.130738
17	6	0	-0.831209	2.872853	-0.495643
18	1	0	0.124083	2.721741	-0.990935
19	5	0	0.882067	0.496860	-0.088027
20		0	2.060764	-0.265054	-0.04/112
21	0	0	3.204403 4 072057	0.414409	0.400077
22	1 6	0	4.075057	-0.334703	_0 456727
23	1	0	4 704426	1 933306	-0 118364
25	1	Ő	3.859487	1.184307	-1.480313
26	1	õ	3.026423	2.362885	-0.459151
27	6	ŏ	3.136241	0.879974	1.904100
28	1	0	4.096436	1.234931	2.282746
29	1	0	2.417832	1.694976	1.986434
30	1	0	2.797656	0.060522	2.539056
31	6	0	2.300810	-1.667338	-0.399049
32	1	0	1.377986	-2.042280	-0.806381
33	6	0	3.350433		-1.499128
34 25	1	0	3.390390	-2.803091 1.316460	-1.013302
30	1 1	0	1 350947	-1.210400 -1.537744	-2.300774
30	1 6	0	2 623834	-2 517743	0 826453
38	1	0	2 720990	-3 565800	0 539348
39	1	Ő	3.560750	-2.217227	1.298560
40	1	Õ	1.824602	-2.437075	1.563835
41	1	0	1.117677	1.608313	0.251407
42	6	0	-1.730882	3.589062	-1.508812
43	1	0	-1.240043	4.500250	-1.854449
44	1	0	-1.928535	2.958798	-2.376517
45	1	0	-2.689539	3.878015	-1.076798
46	6	0	-0.60/295	3./49800	0./35680
4/	1	U	0.0/2148	3.2/2020	1.442588
40 49	⊥ 1	0	-1.549263	3,940273	1,253935

Sum of electronic and thermal Free Energies (Hartrees): -816.76382

Center	Atomic	Atomic	Coord	inates (Angst	troms)
Number	Number	Туре	Х	Y	Z
1	 6	0	0.584534	0.532278	-0.427624
2	6	0	1.579128	-0.478003	-0.343506
3	6	0	1.278933	-1.842019	-0.610865
4	1	0	0.266536	-2.105392	-0.893717
5	6	0	2.239651	-2.808655	-0.521880
6	1	0	1.988857	-3.840447	-0.731311
7	6	0	3.565189	-2.473342	-0.162122
8	1	0	4.316328	-3.248959	-0.095389
9	6	0	3.890817	-1.1/29/1	0.095350
10 11	I C	0	4.9038/5	-0.902529	0.368449
	6	0	2.91559/	-0.14//96	0.012088
12	0	0	3.231140 4 247400	1.202222	0.274432
14	1 6	0	4.247400	2 1780/0	0.343963
15	1	0	2 544098	3 204812	0.191799
16	6	0	0 953079	1 833388	-0 160871
17	5	ŏ	-0.905572	0 253648	-0 871451
18	7	Õ	-1.852110	-0.343855	-0.046679
19	6	Õ	-3.242314	-0.545828	-0.502578
20	1	Ō	-3.791378	-0.976348	0.334593
21	6	0	-3.915125	0.775327	-0.856686
22	1	0	-4.968159	0.614110	-1.093063
23	1	0	-3.849633	1.475196	-0.022937
24	1	0	-3.436762	1.232930	-1.722736
25	6	0	-3.308114	-1.538915	-1.656206
26	1	0	-4.344443	-1.727502	-1.940894
27	1	0	-2.780962	-1.1484/2	-2.52/436
28	L C	0		-2.488270	-1.3/5254
29	0	0		-0.756990	1 402001
21	1 6	0	-0.300439	-0.339407	2 222246
32	1	0	-2.058963	-0 129894	2.333240
33	1	Õ	-2 100647	1 185602	2 172143
34	1	Ő	-3.414189	0.000848	2.238201
35	6	ŏ	-1.825335	-2.223858	1.583188
36	1	Ō	-1.509739	-2.492025	2.592084
37	1	0	-2.882285	-2.479932	1.492151
38	1	0	-1.259901	-2.835120	0.879665
39	1	0	-1.238533	0.566878	-1.974601
40	6	0	0.274537	4.118756	-0.055365
41	1	0	-0.648814	4.672047	-0.206415
42	1	0	0.639607	4.305205	0.957706
43	1	0	1.018628	4.461678	-0./78440
44	8	0	-0.045020	2.759157	-0.247925

Sum of electronic and thermal Free Energies (Hartrees): -816.741008

Center	Atomic	Atomic	Coordi	inates (Angst	roms)
Number	Number	Туре	Х	Ŷ	Z
1	6	0	0.702628	0.243280	0.000160
2	6	0	1.977945	-0.454417	0.000086
3	6	0	2.118290	-1.874766	0.000183
4	1	0	1.246387	-2.502616	0.000370
5	6	0	3.338904	-2.491416	0.000075
6	1	0	3.380351	-3.573101	0.000161
7	6	0	4.536211	-1.750401	-0.000128
8	1	0	5.4934/3	-2.253/41	-0.000208
10	6	0	4.458397	-0.3905/8	-0.000187
10	Ţ	0	5.335383	0.210098	-0.000313
	6	0	3.206238	0.272581	-0.000078
12	0	0	5.1/0430 4 112201	1.0001//	-0.000122
14	1	0	4.112291	2.223339	
14	0	0	1 002240	2.349700	
16	6	0	0 775734	1 632210	0.000043
17	5	0	-0 620283	-0 649838	0.000134
18	5	0	-2 015847	-0 483236	0 000054
19	,	Õ	-2 833586	-1 728063	0.000026
20	1	ŏ	-3.874251	-1.410706	-0.000301
21	6	ŏ	-2.633068	-2.557358	-1.263141
22	ı 1	Õ	-3.346631	-3.383046	-1.286612
23	1	Õ	-2.786222	-1.945565	-2.152802
24	1	0	-1.628541	-2.977155	-1.306881
25	6	0	-2.633685	-2.556946	1.263559
26	1	0	-3.347080	-3.382784	1.286847
27	1	0	-1.629086	-2.976504	1.308015
28	1	0	-2.787500	-1.944926	2.152949
29	6	0	-2.845905	0.730482	-0.000243
30	1	0	-2.161195	1.561368	-0.000072
31	6	0	-3.693937	0.842582	-1.266179
32	1	0	-4.21//68	1.799922	-1.2/3839
33		0	-3.060996	0.794289	-2.152940
34	I C	0	-4.4495/4	0.058/31	-1.340/30
30	0	0	-3.094/10	0.842731	1.203130
20 27	1	0	-4.210433	1.000133	1 220200
20	1 1	0	-4.430497	0.030901	1.339200 2 152210
20	1	0	_0 360132	_1 803037	0 000377
40	т 6	0	-0 38751/	3 734534	0 000377
41	1	Ő	-1 434017	4 032242	0 000350
42	1	ŏ	0.095300	4.136871	0.893365
43	1	ŏ	0.095439	4.137158	-0.892373
44	8	ŏ	-0.388815	2.324317	0.000173

TS Substituent-side 10f

Sum of electronic and thermal Free Energies (Hartrees): -816.728963

Center Number	Atomic Number	Atomic Type	Coordi X	nates (Angst Y	roms) Z
Center Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	Atomic Number 6 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1	Atomic Type 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Coordi x -0.702765 -1.739980 -1.542621 -0.619915 -2.523463 -2.323481 -3.794057 -4.559734 -4.057241 -5.043469 -3.066467 -3.408688 -4.417692 -2.494053 -2.734791 -1.164809 0.883123 1.932113 3.278229 3.961356 3.788014	nates (Angst Y 0.651342 -0.360670 -1.689847 -1.942296 -2.643636 -3.638558 -2.333680 -3.094895 -1.045014 -0.760451 -0.039415 1.307620 1.541812 2.288875 3.334786 1.958913 0.563012 -0.365824 0.118025 -0.717133 1.250748	roms) Z -0.094850 -0.085612 -0.532148 -1.019509 -0.470976 -0.847027 0.044950 0.108480 0.412625 0.759044 0.324025 0.592318 0.908535 0.391812 0.524038 0.035704 0.118291 0.071151 0.484171 0.341155 -0.399609
21 22 23 24 25 26 27	6 1 1 6 1 1		3.788014 4.832842 3.720762 3.215717 3.329113 4.352622 2.702436	1.250748 1.463501 0.977184 2.164751 0.486123 0.727385 1.353032	-0.399609 -0.166909 -1.453648 -0.242611 1.961841 2.254231 2.169398
28 29 30 31 32 33 34	1 6 1 1 1	0 0 0 0 0 0	2.981671 1.932636 0.911458 2.757699 2.657940 2.410268 3.819795	-0.342928 -1.778156 -2.029982 -2.026250 -3.066979 -1.389970 -1.832518	2.578924 -0.319217 -0.549516 -1.579985 -1.891367 -2.394589 -1.423229
35 36 37 38 39 40 41 42	6 1 1 1 6 1	0 0 0 0 0 0 0	2.348157 2.229661 3.390118 1.719162 1.269487 0.261639 0.832248 0.938128	-2.697853 -3.738736 -2.559214 -2.523917 1.611259 3.209602 4.134950 2.384563	0.827717 0.523622 1.119063 1.701027 0.517911 -1.369965 -1.325300 -1.599007
43 44	 1 8	0 0	-0.491110 -0.362992	3.283133 3.058322	-2.159747

Sum of electronic and thermal Free Energies (Hartrees): -741.549737

Center	Atomic	Atomic	Coordi	nates (Angst	troms)
			~	T 	<u>∠</u>
1	6	0	-0.529179	0.592234	-0.610946
2	6	0	-1.745685	-0.083262	-0.269154
3	6	0	-1.829270	-1.503190	-0.085445
4	6	0	-3.030328	-2.069405	0.257373
5	1	0	-3.082803	-3.142276	0.395689
6	6	0	-4.198143	-1.300072	0.433506
7	1	0	-5.125587	-1.788250	0.702538
8	6	0	-4.148594	0.050199	0.263678
9	L C	0	-5.033423	0.661031	0.393635
10 11	6	0	-2.931842	0.000277	-0.08/109
12	0	0	-2.097100	2.090008	
13	6	0	-1 73/0/9	2 710068	_0 589025
14	1	0	-1 707047	3 793874	-0 720460
15	6	0	-0 558559	1 963301	-0 758678
16	Š	ŏ	0.877498	-0.061410	-0.917625
17	7	Õ	1.965777	0.046495	-0.055843
18	6	0	3.299064	-0.452302	-0.451285
19	1	0	3.977857	-0.231808	0.372356
20	6	0	3.292882	-1.963475	-0.649462
21	1	0	4.298032	-2.323893	-0.873777
22	1	0	2.938928	-2.471154	0.248758
23	1	0	2.640242	-2.239515	-1.478779
24	6	0	3.827745	0.275637	-1.681059
25		0	4.848115	-0.041574	-1.901/39
26	1	0	3.209688	0.062591	-2.553504
27	L G	0	3.829283 1.973355	1.354099	-1.31/880
20	0	0	1.0/2233	0.014004	1 /33350
29	6	0	2 220311		2 372865
31	1	0	2 061992	0 021419	3 361533
32	1	Õ	1.588024	-1.294897	2.285476
33	1	õ	3.263254	-0.727135	2.316117
34	6	ŏ	2.710597	1.881524	1.437734
35	1	0	2.566878	2.318546	2.426653
36	1	0	3.776672	1.678821	1.319461
37	1	0	2.417739	2.620517	0.691496
38	1	0	1.059605	-0.570992	-1.981607
39	6	0	-0.633298	-2.395987	-0.266464
40	1	0	0.193354	-2.105097	0.384234
41	1	0	-0.893963	-3.426848	-0.032100
42	1	0	-0.265782	-2.370966	-1.293060
43	L I	0	0.356048	2.485092	-1.020499

Sum of electronic and thermal Free Energies (Hartrees): -741.522529

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	X	Y	Z
1	6	0	-0.540912	0.559441	-0.213653
2	6	0	-1.868405	-0.007890	-0.065522
3	6	0	-2.195589	-1.394059	-0.257617
4	6	0	-3.461294	-1.832488	0.054252
5	1	0	-3.698678	-2.877190	-0.109154
6	6	0	-4.474536	-0.973738	0.513282
/	1	0	-5.449220	-1.3/1801	0.762117
8	6	0	-4.234319	0.366636	0.552513
10	L C	0	-5.01//52	1.068/86	0.809391
10	6	0	-2.953925	0.8/2310	0.225078
12	0	0	-2.772000		0.134300
12	L G	0	-3.019060	2.910337	0.330000
14	0	0	-1.372741 -1.444510	2.709203	-0.240004
14	6	0	-0.467253	1 027621	-0.380237
16	5	0	0.728/11	_0 350031	0.060606
17	7	0	2 097376	-0 047324	0 101988
18	, 6	Õ	3 057631	-1 174157	0 185018
19	1	õ	4.046149	-0.753425	0.006141
20	6	ŏ	3.065357	-1.819226	1.565611
21	1	Õ	3.818272	-2.607736	1.613987
22	1	Õ	3.285809	-1.085771	2.340615
23	1	0	2.092967	-2.262869	1.782065
24	6	0	2.829319	-2.210049	-0.911685
25	1	0	3.648360	-2.931139	-0.920474
26	1	0	1.900519	-2.758315	-0.754712
27	1	0	2.783282	-1.729524	-1.890017
28	6	0	2.719335	1.280940	0.027590
29	1	0	1.937013	1.995999	0.250732
30	6	0	3.777754	1.509757	1.107120
31	1	0	4.082060	2.556852	1.085537
32	1	0	3.372126	1.297826	2.096237
33	1	0	4.676070	0.909677	0.963415
34	6	0	3.2658/3	1.563462	-1.36/398
35	1	0	3.681179	2.5/0/61	-1.425989
36	1	0	4.061281	0.860075	-1.623/40
37	1	0	2.4/6536	1.468190	-2.114195
38 20	1 C	U	0.498/40	-1.4/1980	0.3568/4
39	0	U	-1.292842	-2.3948/4	-0.942046
40	1 1	0	-0./4499/	-3.U1/00U	-0.2330/4
41 42	1 1	0	-T'AN2020	-3.034112 _1 011020	-1.55/042
42	1 1	0	-0.0000059	-T'ATTA20	-T.2AT/15
40	L.	0	0.4//2/0	2.392433	-0.022192

Sum of electronic and thermal Free Energies (Hartrees): -974.87997

Center	Atomic	Atomic	Coordi	nates (Angst	troms)
Number	Number	Туре	Х	Y	Z
1	6	0	1.730141	1.040089	0.074202
2	6	Õ	2.645344	0.137887	-0.556397
3	6	0	2.227612	-0.746900	-1.583970
4	1	0	1.190637	-0.730000	-1.898730
5	6 1	0	3.1061//	-1.610268	-2.1/9235
7	6	0	4.458896	-1.637994	-1.780101
8	ı 1	ŏ	5.146283	-2.324127	-2.256876
9	6	0	4.896061	-0.797345	-0.794825
10	1	0	5.933119	-0.809001	-0.481455
	6	0	4.007898	0.104661	-0.161839
13	0	0	5 481127	0.980730	1 167497
14	6	ŏ	3.561122	1.836619	1.452485
15	1	0	3.898687	2.505472	2.236122
16	6	0	2.196590	1.878701	1.063170
17	6	0	1.290588	2.844634	1.780544
18 19	1 5	0	0.318262	2.935423	_0 385369
20	7	0	-0.753611	0.190460	-0.018221
21	6	ŏ	-2.151346	0.362156	-0.451733
22	1	0	-2.718267	-0.470228	-0.044713
23	6	0	-2.780535	1.638266	0.108343
24	1	0	-2.6//324	1.641436	1.196499
25	6	0	-2.227760	2.302083	-0.271103
27	1	ŏ	-1.731217	1.108392	-2.424187
28	1	Ō	-1.878856	-0.642723	-2.333909
29	6	0	-0.446463	-0.946811	0.864447
30	1	0	0.634279	-0.907667	0.981062
31 32	0	0	-1.034497 -0.391477	-0.804063 -1 384593	2.279901
33	1	Ő	-0.948962	0.238985	2.591453
34	6	Õ	-0.756569	-2.332008	0.262792
35	1	0	-0.049808	-3.027142	0.725690
36	1	0	-0.518051	-2.319751	-0.802513
37 38	1	0	-0.115/0/	2.030232	-1.0/99/8
20	1	0	-2 726960	-1 271452	3 517681
40	ī	ŏ	-3.181176	-0.686208	1.936934
41	6	0	-2.162473	-2.893277	0.500403
42	1	0	-2.170090	-3.945338	0.208710
43	1 C	0	-2.899694	-2.402980	-0.138518
44	0	0	-2.579575	-2.701051	2 575719
46	1	ŏ	-3.597049	-3.131608	2.100886
47	6	0	-4.247924	1.748919	-0.299188
48	1	0	-4.811616	0.925285	0.152778
49	1	0	-4.676338	2.673650	0.090549
50 51	6 1	0	-3.//3100 _4 373746	0.413140 _0 454737	-2.3///40
52	1 1	0	-3.862602	0.390147	-3.464939
53	6	õ	-4.402691	1.685860	-1.816751
54	1	0	-3.910505	2.555855	-2.263030
55	1	0		1.740375	-2.093121
50 57	1 1	0	1.738502	2.522079	1.825712

Sum of electronic and thermal Free Energies (Hartrees): -974.842464

NumberTypeXYZ1601.852608-0.676011-0.0456572602.9805380.2433360.0835893602.8465891.5901040.5291014101.8794211.9624880.8215805603.9187752.4315550.6488286103.7629923.4404951.0082367605.2190202.0011800.3228428106.0563062.6813690.4033499605.4046460.706863-0.06329910106.3962730.330406-0.28365511604.547937-1.551188-0.44864513105.58819-1.883174-0.65208114603.517564-2.443307-0.40486515103.710099-3.488071-0.55721816602.175856-2.024430-0.18108417601.210928-3.180924-0.08632818100.460705-3.0229270.68329619500.231951-0.21095521602210-2.8709730.483253-0.1325602360-1.7265941.7962101.0462712410-0.7473412.2808641.0317862510 <th>Center</th> <th>Atomic</th> <th>Atomic</th> <th>Coordi</th> <th>nates (Angst</th> <th>roms)</th>	Center	Atomic	Atomic	Coordi	nates (Angst	roms)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Number	Number	Туре	Х	Y	Z
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	6	0	1.852608	-0.676011	-0.045657
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	6	Ő	2.980538	0.243336	0.083589
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	6	0	2.846589	1.590104	0.529101
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1	0	1.879421	1.962488	0.821580
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	0	0	3.910//3	2.431333 3.440495	0.040020
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	6	0	5.219020	2.001180	0.322842
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	ı 1	Õ	6.056306	2.681369	0.403349
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	6	0	5.404646	0.706863	-0.063299
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	1	0	6.396273	0.330406	-0.283655
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	6	0	4.313171 1 517937	-0.190892	-0.158008
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	1	0	5.558819	-1.883174	-0.652081
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	6	ŏ	3.517564	-2.433307	-0.404865
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	1	0	3.710099	-3.488071	-0.557218
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	6	0	2.175856	-2.024430	-0.181084
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	6	0	1.210928	-3.180924	-0.086328
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 19	5	0	0.400703	-3.022927	-0 175256
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	7	Ö	-0.931951	-0.231119	-0.210955
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	6	Õ	-1.874697	0.910216	-0.192760
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	1	0	-2.870973	0.483253	-0.132560
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	6	0	-1.726594	1.796210	1.046271
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	1 1	0	-1.762959 -0.747341	1.1/1560	1.942189
27 1 0 -0.860702 2.226251 -1.563178 28 1 0 -1.969494 1.104120 -2.336573	25	6	0	-1.841031	1.753585	-1.468459
28 1 0 -1.969494 1.104120 -2.336573	27	ı 1	ŏ	-0.860702	2.226251	-1.563178
	28	1	0	-1.969494	1.104120	-2.336573
29 6 0 -1.553218 -1.561668 -0.212496	29	6	0	-1.553218	-1.561668	-0.212496
30 1 0 -0.773173 -2.211981 -0.568199	30	1	0		-2.211981	-0.568199
31 0 0 -1.930000 -2.040472 1.10910032 1 0 -1.934804 -3.144268 1.178923	3⊥ 32	0	0	-1.950088	-2.048472 -3 144268	1 178920
33 1 0 -1.196423 -1.723003 1.902885	33	1	0	-1.196423	-1.723003	1.902885
34 6 0 -2.701692 -1.760920 -1.230963	34	6	Õ	-2.701692	-1.760920	-1.230963
35 1 0 -2.642643 -2.811951 -1.529062	35	1	0	-2.642643	-2.811951	-1.529062
36 1 0 -2.488665 -1.179443 -2.129455	36	1	0	-2.488665		-2.129455
3/ I U U.593//I I.23/95I -U.330I24 38 6 0 _3 353473 _1 620090 1 632452	37 38	1	0	0.593//1 _3 353/73	1.23/951 -1 620090	-0.330124 1 632452
39 1 0 -3 561949 -2 033080 2 620879	39	1	0	-3 561949	-2 033080	2 620879
40 1 0 -3.411087 -0.532358 1.733096	40	1	ŏ	-3.411087	-0.532358	1.733096
41 6 0 -4.142090 -1.520043 -0.758128	41	6	0	-4.142090	-1.520043	-0.758128
42 1 0 -4.821529 -1.974420 -1.481981	42	1	0	-4.821529	-1.974420	-1.481981
43 I 0 -4.389203 -0.456922 -0.749614	43		0	-4.389203	-0.456922	-0.749614
44 0 0 -4.390287 -2.104730 0.028839	44	0	0	-4.390287	-2.104730	0.020039
46 1 0 -5.402717 -1.848408 0.963353	46	1	ŏ	-5.402717	-1.848408	0.963353
47 6 0 -2.819924 2.862251 1.079795	47	6	0	-2.819924	2.862251	1.079795
48 1 0 -3.797189 2.375254 1.172681	48	1	0	-3.797189	2.375254	1.172681
49 1 0 -2.699415 3.495294 1.960404	49	1	0	-2.699415	3.495294	1.960404
סט סט דע -2.92/005 2.82//21 -1.434293 51 1 0 _2 011827 2 3/660/ _1 /22116	5U 51	0 1	0	-2.92/005 _3 011877	2.02//21	-1.434293 _1 <u>4</u> 22116
52 1 0 -2.878493 3.436791 -2.338360	52	± 1	0	-2.878493	3.436791	-2.338360
53 6 0 -2.800891 3.706567 -0.192246	53	6	ŏ	-2.800891	3.706567	-0.192246
54 1 0 -1.857029 4.259070 -0.239715	54	1	0	-1.857029	4.259070	-0.239715
55 1 0 -3.602096 4.447226 -0.168666	55	1	0	-3.602096	4.447226	-0.168666
57 I U U./1239/ -3.38/U5/ -1.03522/ 57 1 0 1 761444 -4 082253 0 180490	50 57	1 1	0	0./1239/ 1 761444	-3.38/05/ -4 082253	-1.035227 0 180490

TS Substituent-side 10h

Sum of electronic and thermal Free Energies (Hartrees): -974.841442

Center	Atomic	Atomic	Coordi	nates (Angs	troms)
			~		<u>۲</u>
1	6	0	-1.720800	-1.068808	-0.254201
23	6	0	-2.542839	1.285784	-0.213834 -0.649641
4	ĩ	ŏ	-1.596772	1.550884	-1.075665
5	6	0	-3.517486	2.244664	-0.592651
6 7	1	0	-3.303026	3.243858	-0.949496
8	1	0	-5.558205	2.706042	-0.032814
9	6	0	-5.059563	0.660638	0.301416
10	1	0	-6.042860	0.383431	0.661809
12	6	0	-4.402759	-1.681195	0.225570
13	1	ŏ	-5.406229	-1.908554	0.880968
14	6	0	-3.481506	-2.663780	0.373178
15	1	0	-3./56149 _2 1/0158	-3.693164	0.565/90
17	6	0	-1.287831	-3.622252	-0.177537
18	1	0	-0.622828	-3.764179	0.675668
19	5	0	-0.120834	-0.945231	-0.306552
20	6	0	2 281011	-0 478787	-0.375276 -0.147857
22	1	ŏ	2.930384	0.389195	-0.135917
23	6	0	2.485650	-1.160338	1.207737
24	L 1	0	2.120026 1 897551	-0.506895	2.002598
26	6	ŏ	2.784986	-1.377482	-1.279436
27	1	0	2.186001	-2.291828	-1.303641
28	1	0	2.637748	-0.872334	-2.236461
30	1	0	0.020139	1.512265	-1.457038
31	6	Õ	0.242460	2.239050	0.554158
32	1	0	-0.263529	3.145357	0.203000
33 34	1 6	0	-0.509713	2 179030	-1 290961
35	1	ŏ	1.553621	2.993702	-1.881783
36	1	0	2.472371	1.516955	-2.007035
37	1	0	0.361423	-2.008973	-0.1356/5
39	1	0	0.921317	3.149777	2.382712
40	$\overline{1}$	Ō	1.870990	1.759430	1.887892
41	6	0	3.011682	2.816977	-0.347951
42	1 1	0	3.693276	2.072843	0.068688
44	6	ŏ	2.350788	3.559661	0.808174
45	1	0	1.821435	4.440134	0.429560
46	L	0	3.111249	3.920066	1.502605
48	1	0	4.545615	-0.570626	1.445289
49	1	0	4.100952	-1.987817	2.379766
50	6	0	4.257366	-1.730432	-1.074627
51 52	1 1	0	4.600520	-0.010457	-1.874962
53	6	Õ	4.485827	-2.382825	0.286827
54	1	0	3.961379	-3.343382	0.315411
55 56	1 1	0	5.5464U8 _1 020142	-2.595516 -4 500151	0.432058
57	1	Ö	-0.670381	-3.592942	-1.071467

Sum of electronic and thermal Free Energies (Hartrees): -1053.443118

Center Number	Atomic Number	Atomic Type	Coordi X	nates (Angst Y	roms) Z
1	6	0	-1.693748	0.089758	-0.524131
2	6	0	-2.5/3223	-0.9///83	-0.1521/5
5 4	0	0	-2.111000 -1.069895	-2.531823	-0.253111
5	6	ŏ	-2.953722	-3.331178	0.316521
6	1	0	-2.580179	-4.344104	0.389740
/	6	0	-4.310622	-3.065812	0.596427
9	6	0	-4.788776	-1.788571	0.504097
10	1	Ō	-5.828965	-1.573260	0.717512
11	6	0	-3.939346	-0.720506	0.128956
12	6 1	0	-4.414561 -5.458326	0.609339	0.024712
14	6	Ő	-3.568815	1.615594	-0.332993
15	1	0	-3.949274	2.627088	-0.411421
16 17	6	0		1.370871	-0.608444
18	1	0	-0.300783	2.176066	-1.117064
19	5	ŏ	-0.202204	-0.272110	-0.906886
20	7	0	0.902224	-0.062571	-0.084440
21	6	0	2.24/3/4	-0.4/3603	-0.525132
22	6	0	2.354977	-1.983134	-0.742327
24	ı 1	ŏ	2.045161	-2.498514	0.170564
25	1	0	1.661347	-2.280111	-1.533502
26 27	6 1	0	2.715950	0.295835	-1.760179
28	1	0	2.661473	1.368204	-1.555836
29	6	õ	0.777726	0.550833	1.247157
30	1	0	-0.278235	0.805697	1.322142
31 32	6 1	0	1.068729	-0.414844	2.411049
33	1	0	0.648741	-1.393476	2.171300
34	6	0	1.550544	1.874085	1.415182
35	1	0	1.017717	2.442937	2.183799
30 37	1 1	0	-0 012185	-0 788739	-1 968154
38	6	ŏ	-1.757190	3.133772	-2.347311
39	1	0	-1.099714	3.954885	-2.638239
40	1	0	-1.731841	2.3/8512	-3.1334/6
41	6	0	-1.307414	3.626274	0.078461
43	1	Ō	-1.030327	3.212458	1.048846
44	1	0	-0.593121	4.411931	-0.174340
45 46	1	0	-2.288/2/ 2 534178	4.093026	0.182221
47	1	Ő	2.590653	-1.129332	3.745956
48	1	0	3.121350	-1.066068	2.086166
49	6	0	3.008116	1.764162	1.871751
50 51	1 1	0	3.370843	2.763000	2.122318
52	6	ŏ	3.139800	0.849549	3.088491
53	1	0	2.615185	1.310754	3.932085
54	1	0	4.186984	0./5808/	3.381306
56	1	0	4.454813	-2.158954	-0.299447
57	ī	ŏ	3.832100	-3.455375	-1.304657
58	6	0	4.136575	-0.107552	-2.150060
59 60	1 1	0	4.82/148 1 1/5373	0.186/90 0.431/01	-1.352181 _3 0/71/1
61	6	ŏ	4.242773	-1.614727	-2.368678
62	1	0	3.617574	-1.898234	-3.221337
63	1	0	5.268370	-1.889450	-2.620890

TS Substituent-side 10i

Sum of electronic and thermal Free Energies (Hartrees): -1053.403063

Center Number	Atomic Number	Atomic Type	Coordi X	nates (Angs [.] Y	troms) Z
			1 692527	0 468380	-0 339226
2	ĕ	ŏ	2.493517	-0.736956	-0.228956
3	6	0	2.124086	-1.974008	-0.808920
4	L 6	0	1.243445 2 885397	-2.016489 -3 105381	-1.421024
ő	1	ŏ	2.563606	-4.020337	-1.164867
7	6	0	4.087875	-3.083738	0.044752
8	L 6	0	4.6/6482 4 517582	-3.984511 -1 899253	0.155396
10	1	Ő	5.463722	-1.837583	1.094956
11	6	0	3.761432	-0.713660	0.416019
12	6 1	0	4.288582	0.523003	0.850/81 1 365139
14	6	0	3.631802	1.673547	0.557032
15	1	0	4.079529	2.620780	0.826748
16 17	6	0	2.3534/1	1.6/2016	-0.063289
18	1	0	0.956500	2.944610	-1.056875
19	5	0	0.097776	0.628328	-0.397361
20	7	0	-1.058881	-0.175396	-0.435332
22	1	0	-3.103718	-0.264065	-0.111952
23	6	0	-2.386199	1.170726	1.243277
24	1	0	-2.078759	0.452052	2.005745
25	6	0	-2.759993	1.498572	-1.220361
27	1	ŏ	-2.039847	2.320677	-1.251711
28	1	0		1.006528	-2.194733
29	ю 1	0	-1.131/25 -0.400438	-1.773831	-0.733214 -1.516018
31	6	Õ	-0.738905	-2.479112	0.477014
32	1	0	-0.364680	-3.441983	0.112065
33 34	1 6	0	-2.444191	-1.996479 -2.133210	-1.373590
35	1	ŏ	-2.141400	-2.985288	-1.988523
36	1	0	-2.831687	-1.385303	-2.068183
37 38	1 6	0	-0.209525 1 356927	1.752092	-0.195847
39	ĩ	ŏ	0.964275	4.788585	0.602764
40	1	0	0.581304	3.249648	1.390151
41 42		0	2.193552 2.838191	3.945988 3.889754	1.547240 -1 168882
43	ı 1	ŏ	3.223627	3.342809	-2.030023
44	1	0	2.365837	4.804098	-1.531547
45 46		0	3.685437	4.186638 -2 743794	-0.550164 1 426245
47	ĩ	ŏ	-1.552717	-3.318160	2.285189
48	1	0	-2.291279	-1.797139	1.816261
49 50	6 1	0	-3.558673 -4 267195	-2.638105 -3 214851	-0.445583
51	1	ŏ	-4.131720	-1.813205	-0.017722
52	6	0	-3.015846	-3.488540	0.698035
53	1 1	0	-2.614572	-4.42/856	0.303640
55	6	ŏ	-3.789076	1.704244	1.529397
56	1	0	-4.495621	0.867690	1.567790
57 58	1	U O	-3.814426 -4 157409	2.182052	2.510151
59	1	ŏ	-4.883688	1.230074	-0.994958
60	1	0	-4.438388	2.771140	-1.705831
61 62	6 1	U	-4.232485 -3 577429	2.686269	0.44/261
63	1	Ő	-5.245279	3.040559	0.646949

Sum of electronic and thermal Free Energies (Hartrees): -858.205180

Center	Atomic Atomic		Coordinates (Angstroms)		
Number	Number	Туре	X	Y	Z
1	6	0	0.680136	3.251665	-0.431597
2	1	0	-0.312051	2.965370	-0.781758
3	6	0	1.595122	2.065932	-0.277561
4	6 1	0	2.942179	2.313510	0.089336
5	1 6	0	3.200410 3.831476	3.339433 1 205118	0.257125
7	0	0	4 857442	1 495808	0.239980
8	6	Ő	3.426021	-0.045529	0.052539
9	Ğ	Õ	4.330108	-1.125854	0.193020
10	1	Ō	5.353105	-0.910901	0.477823
11	6	0	3.927507	-2.412622	-0.030192
12	1	0	4.627858	-3.230228	0.077771
13	6	0	2.594420	-2.676694	-0.409338
14	L C	0	2.282285	-3.6960/8	
15 16	0 1	0	1.099313	-1.051508	
17	1 6	0	2 078000	-0 303163	-0.037932
18	6	0	1 148483	0 774990	-0 453442
19	Š	ŏ	-0.325602	0.489264	-0.950524
20	7	Ō	-1.446704	0.043805	-0.242758
21	6	0	-2.695596	-0.234015	-1.046549
22	6	0	-3.721658	-1.045985	-0.245550
23	1	0	-4.615262	-1.128422	-0.865458
24	1	0		-2.062282	-0.136407
20	0	0	-4.081304	-0.459094	1.11//02
20	1 1	0	-4.903942	_1 271687	1 703335
28	6	0	-2 928552	0 351531	1 705493
29	ĩ	ŏ	-2.955878	0.305334	2.794730
30	1	0	-3.028275	1.406120	1.439419
31	6	0	-1.536939	-0.102644	1.244787
32	6	0	-2.372980	-1.080377	-2.284163
33	1	0	-1.821289	-0.529094	-3.040330
34	1	0	-3.304812	-1.424034	-2./36649
30	L 6	0	-1.790301	-1.958662	-2.001118
30	0	0	-3 633419	1 695922	-0 642466
38	1	Ő	-4.199027	0.900795	-2.115704
39	1	Õ	-2.607133	1.667042	-2.079782
40	6	0	-1.249397	-1.543728	1.681199
41	1	0	-1.343343	-1.625178	2.766193
42	1	0	-0.228122	-1.815805	1.413157
43	1	0	-1.922782	-2.269044	1.231395
44	6	0	-0.538092	0.801293	1.970436
45	1 1	U	-U.39/833 0 107010	1.02/U33	1 876EA1
40 17	1 1	0	0.40/242 _0 788/88	0.43320/	1.0/0341 3 032268
48	± 1	0	-0 473610	0 672061	-2 120212
49	1	ŏ	1.092629	3.971177	-1.141611
50	ī	ŏ	0.557137	3.775109	0.519835

<u>TS H-side 10j</u>

Sum of electronic and thermal Free Energies (Hartrees): -858.154786

TS Substituent-side 10j

Sum of electronic and thermal Free Energies (Hartrees): -858.159910

Center	Atomic	Atomic	Coordi	nates (Angs	troms)
Number	Number	Туре	X	Y	Z
1	6	0	0.864938	3.406155	-0.205076
2	1	0	0.487929	3.755495	0.757822
3	6	0	1.708017	2.154128	-0.061/58
4 5	6 1	0	3.1010/0 2.422210	2.414385	-0.072090
5	6	0	1 016521	5.445047 1 /18555	-0.141340
7	1	0	5 077740	1 633402	0.064149
8	6	ŏ	3.585524	0.076742	0.046293
9	6	0	4.554208	-0.956631	0.055051
10	1	0	5.598349	-0.672884	0.107963
11	6	0	4.191985	-2.268594	-0.023696
12	1	0	4.937292	-3.052509	-0.023733
13 14	6 1	0	2.825498	-2.580931 -2.612145	-0.136215
15	6	0	1 875910	-3.012143 -1.595727	-0.247800
16	1	0	0.857286	-1.893093	-0.236040
17	6	ŏ	2.189387	-0.217127	0.008963
18	6	0	1.202685	0.850140	0.055895
19	5	0	-0.396177	0.889962	0.328203
20	7	0	-1.583336	0.135181	0.166326
21	6	0	-2.881127	0.891193	0.082986
22	6 1	0	-3.786038	0.182258	-0.938/03 -1.058706
23	1	0	-3 261833	0.777001	-1 896833
25	6	Ő	-4.149903	-1.259254	-0.593282
26	1	Õ	-5.107261	-1.292205	-0.071562
27	1	0	-4.285785	-1.828975	-1.513035
28	6	0	-3.087310	-1.896022	0.296231
29	1	0	-3.034069	-2.973034	0.123085
30	L C	0		-1.//9504	1.340114
31 32	6	0	-1.039343	2 308872	_0.102460
33	1	0	-2 256513	2 998668	0 236263
34	1	Õ	-3.675555	2.701739	-0.755145
35	1	Ō	-2.073730	2.292097	-1.375483
36	6	0	-3.541942	1.024837	1.457462
37	1	0	-3.808577	0.067795	1.898878
38	1	0	-4.451053	1.625193	1.381296
39	L G	0	-2.856099	1 027022	2.138406
40	0	0	-1.102000	-1.02/952	-1.260992
42	1	0	-0.334516	-1.251902	-1.645303
43	1	ŏ	-1.986101	-1.702803	-2.007220
44	6	0	-0.878080	-1.906018	1.308473
45	1	0	-1.476758	-1.753416	2.207220
46	1	0	0.068047	-1.404691	1.480230
47	1	0		-2.976746	1.202824
4ð 10	1 1	0	-0.03134/ 0.008548	3 366623 T'2300T0	U./03242 _0 858064
50	± 1	0	1 477182	4 202855	-0 626094
50	±	0	I . (//IUZ	1.202055	0.020004

Sum of electronic and thermal Free Energies (Hartrees): -936.768014

Center	Atomic	Atomic	Coordi	nates (Angst	troms)
Number	Number	Туре	X	Y	Z
1	6	0	-0.526453	3.749304	-0.974770
2	1 1	0	-0.435765	3.270811	-1.950680
4	1	0	-1.457167	4.318572	-0.966502
5	6	Ō	-0.740951	3.423197	1.506950
6	1	0	-0.029914	4.236402	1.665068
/	1	0	-0.649914	2.718769	2.334668
9	6	0	-0.484585	2.731853	0.164785
10	1	Õ	0.526717	2.317817	0.198013
11	6	0	-1.454415	1.576011	-0.011391
12	6 1	0	-2.789754	1.853544	-0.406614
14	1 6	0	-3.732805	2.869627	-0.469215
15	ĭ	ŏ	-4.746849	1.097044	-0.776422
16	6	0	-3.404165	-0.457806	-0.110136
17	6	0			-0.123455
10 19	1 6	0	-4 038218	-2 765357	-0.455467
20	ı 1	ŏ	-4.783921	-3.549240	0.242778
21	6	0	-2.719615	-3.057752	0.661903
22	1	0	-2.464854	-4.063750	0.968505
23 24	6 1	0	-1.767011 -0.755474	-2.076683	0.671490
25	6	Ö	-2.072953	-0.746928	0.283169
26	6	0	-1.079540	0.282631	0.292638
27	5	0	0.367953	-0.007951	0.865474
28 29	6	0	1.543511 2.803661	-0.427393	0.224913
30	6	ŏ	3.961626	-1.178971	0.450747
31	1	0	4.861146	-0.923043	1.012981
32	1	0	3.775303	-2.244395	0.618350
33 34	6 1	0	4.148866 4.370478	-0.957306	-1.032912
35	1	Ő	4.992067	-1.543389	-1.401166
36	6	0	2.865649	-1.395663	-1.701105
37	1	0	2.691683	-2.449222	-1.460470
38 29	1	0	2.932677 1.636694	-1.325474 -0.583206	-2./8//28
40	6	0	2.573737	-0.992484	2.448868
41	1	Õ	2.020677	-0.343025	3.120880
42	1	0	3.544518	-1.189249	2.906953
43	L	0	2.040133	-1.939947	2.362562
44	1	0	3.518310	1.551966	0.303918
46	ī	Õ	4.093995	1.137600	1.919106
47	1	0	2.422887	1.661995	1.686846
48	6 1	0	0.430330	-1.347528	-1.822281
50	⊥ 1	0	-0.482890	-0.760854	-1.815310
51	1	ŏ	0.262948	-2.266892	-1.261642
52	6	0	1.674398	0.793826	-1.941575
53	1	0	2.512282	1.401289	-1.601560
54 55	⊥ 1	0	0.751807	0.677871	-1./341/4
56	1	ŏ	0.443485	0.212472	2.033911

TS Substituent-side 10k

Sum of electronic and thermal Free Energies (Hartrees): -936.716798

Center Number	Atomic Number	Atomic Type	Coordi X	nates (Angst Y	troms) Z
Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Number 6 6 6 1 6 1 6 1 6 1 6 1 6 1 6	Type 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-1.125029 -1.917172 -1.459471 -0.479655 -2.219270 -1.813207 -3.515360 -4.106713 -4.015873 -5.020750 -3.254426 -3.843988 -4.843740 -3.177350	0.326232 -0.897083 -2.157144 -2.231486 -3.294452 -4.222716 -3.267503 -4.171485 -2.074386 -2.007106 -0.884691 0.344178 0.350525 1.498323	Z 0.199439 0.126748 0.585058 1.007554 0.910131 -0.014563 -0.070704 -0.447541 -0.846583 -0.360149 -0.724853 -1.142012 -0.484241
15 16 17 18 19 20 21 22 23 24 25 26 27	1 6 1 5 7 6 1 1 1 6 1		-3.663395 -1.851429 -1.369990 -0.500090 0.474159 1.746820 2.911381 2.764747 3.609880 2.743652 1.855053 2.981311 3.903021	2.439375 1.520064 2.934605 2.870970 0.589191 -0.031997 0.940582 1.862152 2.551135 1.282667 2.453582 1.778609 2.364552	$\begin{array}{c} -0.701230\\ 0.030043\\ 0.360519\\ 1.003270\\ 0.240338\\ 0.105860\\ 0.056202\\ -1.162015\\ -1.207007\\ -2.085887\\ -1.114760\\ 1.337260\\ 1.341590\\ 1.341590\end{array}$
28 29 30 31 32 33 34 35 36 37 38 39 40 41	1 6 6 1 1 1 6 1 1 1 6 1		2.143290 2.989174 1.973804 1.709198 1.634364 2.550119 0.825286 1.100794 0.972033 0.125242 1.611394 0.637385 -0.988908 -0.618752	2.468719 1.126727 -1.511604 -2.013944 -3.103599 -1.716928 -1.573373 -2.103568 -3.179623 -1.643963 -1.935339 1.747720 3.701080 4.698018	1.429245 2.212317 0.108460 1.539304 1.576305 2.168243 1.991299 -1.009671 -0.879982 -1.090924 -1.960593 0.286055 -0.905513 -0.659136
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	1 1 6 1 1 6 1 1 6 1 1 6 1		$\begin{array}{c} -0.220080\\ -1.856825\\ -2.412810\\ -2.778856\\ -1.952781\\ -3.271478\\ 3.409333\\ 3.318340\\ 3.960419\\ 4.271377\\ 4.985506\\ 4.619624\\ 4.211060\\ 5.209511\\ 3.740933 \end{array}$	3.175013 3.818235 3.722303 3.145807 4.634514 4.024159 -1.994682 -2.931237 -2.226529 0.239588 0.987402 -0.094282 -0.963556 -1.342503 -0.711540	-1.471360 -1.558319 1.163576 2.013853 1.547008 0.563898 -0.241019 -0.792173 0.672057 -0.083693 -0.429188 0.898740 -0.999317 -1.219819 -1.953108

Compound 10k

Sum of electronic and thermal Free Energies (Hartrees): -705.797852

Center	Atomic	Atomic	Coordi	nates (Angst	troms)
Number	Number	Туре	Х	Υ	Z
1	6	0	0.749172	0.691058	-0.586571
2	6	0	0.728438	2.087335	-0.748090
3	6	0	1.835110	2.882562	-0.513017
4	6 1	0	3.014598	2.282689	-0.094935 0 102147
5	6	0	3 058335	0 910143	0.067021
7	ĭ	ŏ	3.986786	0.461681	0.396721
8	6	0	1.950220	0.088855	-0.177558
9	6	0	2.142511	-1.418006	0.048155
10	5	0	-0.637891	0.023175	-0.951480
11 12	6	0	-1.740649	0.067729	-0.100909
13	1	0	-3.755210	-0.254050	0.282407
14	6	ŏ	-3.583137	0.366046	-1.737666
15	1	0	-4.598181	0.052913	-1.987118
16	1	0	-3.595693	1.434273	-1.517304
1/	1	0		0.204863	-2.612850
18 19	0 1	0	-3.035515	-1.919974 -2 278594	-0.822524
20	1	0	-2.364868	-2.142559	-1.653635
21	1	Õ	-2.690387	-2.472537	0.052311
22	6	0	-1.669299	0.560197	1.282324
23	1	0	-0.627473	0.832170	1.448920
24	6 1	0	-2.512697	1.816081	1.4/9053
25	1	0	-2.392042	2.194709	0 784178
27	1	ŏ	-3.575268	1.619129	1.324338
28	6	Ő	-2.031212	-0.522217	2.296400
29	1	0	-1.872286	-0.149134	3.308874
30	1	0		-0.823237	2.218859
5⊥ 32	1 1	0	-1.409/50	-1.40/938	2.159803
33	6	0	3,299756	-1.926356	-0.824427
34	ĩ	ŏ	3.435926	-2.999483	-0.675063
35	1	0	3.091038	-1.753044	-1.881440
36	1	0	4.242049	-1.435579	-0.583098
3/	6 1	0	2.4/6981	-1.66//15 1 215772	1.525/88
20	1	0	2 615300	-1.313/72	2.170038
40	1	ŏ	3.391376	-1.155936	1.826316
41	1	0	-0.193690	2.559678	-1.071825
42	1	0	1.778915	3.954489	-0.650709
43	6	0	0.907825		
44 15	1 1	0	0.021002	-T'AQ72TO	U.321380 _1 348336
46	1	Ő	1.121557	-3.302766	-0.128974

TS Substituent-side 10m

Sum of electronic and thermal Free Energies (Hartrees): -705.776501

Center	Atomic	Atomic	Coordi	inates (Angst	troms) 7
			~		
1	6	0	-0.764090	0.754957	-0.000034
2	6	0	-0.605021	2.148624	0.000005
5	6	0		3.052089	0.000001
4	0	0	-2.943774 -3.703857	2.300322	-0.000041
5	1 6	0	-3 152910	1 197375	-0.000040
7	1	0	-4 175677	0 857841	-0.000104
8	6	ŏ	-2.109967	0.267805	-0.000072
9	6	Ō	-2.497259	-1.228355	-0.000105
10	5	0	0.492862	-0.226528	-0.000033
11	7	0	1.881855	-0.020084	0.000041
12	6	0	2.750621	-1.226904	0.000068
13	1	0	3.778464	-0.869483	0.000174
14	6	0	2.576428	-2.063425	1.262165
15	1	0	3.318718	-2.863041	1.288990
16	1	0	2./01/58	-1.44/621	2.1533/6
1/ 19	I C	0	1.58/590	-2.520592	1.29/05/
10	0	0	2.370040	-2.003319	-1.202120
19	1 1	0	3.310903 1 507700	-2.002902	-1.2000/3
20	1	0	2 702164	-2.320440	-2 153267
21	6	0	2 647009	1 233422	0 000112
23	1	ŏ	1.934805	2.044303	0.000037
24	6	ŏ	3.486678	1.393219	1.266389
25	1	Ō	3.961287	2.375337	1.273417
26	1	Ő	2.857983	1.310630	2.153302
27	1	0	4.279271	0.647087	1.335878
28	6	0	3.486923	1.393224	-1.266004
29	1	0	3.961506	2.375354	-1.272946
30	1	0	4.279550	0.647114	-1.335336
31	1	0	2.858403	1.310615	-2.153039
32	1	0	0.245045	-1.3/8/55	-0.000099
33	0	0	-2.001663	-1.920295	1.283243
54 25	1	0	-2.240074	-2.984285	1 450100
36	1 1	0	-0.934070	-1.023239	2 1/8137
37	1 6	0	-4 019678	-1 444960	_0 000118
38	1	Õ	-4 497328	-1 026126	-0.886589
39	1	ŏ	-4.214231	-2.518409	-0.000133
40	1	Õ	-4.497339	-1.026148	0.886357
41	1	Ō	0.381236	2.575982	0.000041
42	1	0	-1.456314	4.116335	0.000032
43	6	0	-2.001647	-1.920244	-1.283474
44	1	0	-2.511276	-1.490566	-2.148357
45	1	0	-0.934656	-1.825207	-1.450400
46	1	0	-2.246664	-2.984235	-1.246914