Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Balancing Interactions in Proline-Based Receptors for Chiral Recognition of L-/D-DOPA

Lin-E Guo, Yu-Xin Tang, Shu-Ying Zhang, Yuan Hong, Xiao-Sheng Yan, Zhao Li and Yun-Bao Jiang*

Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and *i*ChEM, Xiamen University, Xiamen 361005, China

* E-mail: ybjiang@xmu.edu.cn

Contents

1.	Syntheses and characterizations of 1 to 14	. S2
2.	Spectral analyses of 1 to 11	. S 9
3.	MS spectra of L-11 in the presence of D-DOPA and L-DOPA	S16
4.	Spectral titrations of L-12, L-13 and L-14 by DOPA	S19
5.	¹ H NMR and ¹⁹ F NMR studies	S21
6.	DFT calculations	S27
7.	Spectral titrations of L-1 and L-5 by DOPA in MeOH/buffer of vary	ring
	composition	S28
8.	Job plots	S31
9.	Titration curves and fitted binding isotherms	S33
10.	¹ H NMR and ¹³ C NMR spectra of a, c, and D-/L-1 to 14	S47
11.	Computational data	S65

1. Syntheses and characterizations of 1 to 14

Scheme S1. Synthesis of 1.

Scheme S2. Synthesis of 2.

Scheme S4. Synthesis of L-4.

Scheme S5. Synthesis of L-5.

Scheme S6. Synthesis of L-6.

Scheme S7. Synthesis of L-7.

Scheme S8. Synthesis of L-8.

Scheme S9. Synthesis of L-9.

Scheme S10. Synthesis of L-10.

Scheme S11. Synthesis of L-11.

Scheme S12. Synthesis of L-12.

Scheme S13. Synthesis of L-13.

Scheme S14. Synthesis of L-14.

2. Spectral analyses of 1 to 11

Figure S1. CD intensities at 250 nm of L-1 and L-1/D-DOPA complexes in 7:3 (v/v) MeOH/buffer of different pH (a) and in aqueous MeOH solutions of varying volume fraction of methanol (b). [L-1] = 40 μ M, [D-DOPA] = 250 μ M.

Figure S2. Absorption spectra of L-1 (a), L-2 (b), L-3 (c), L-4 (d), L-5 (e), L-6 (f), L-7 (g) and L-8 (h) in 7:3 (v/v) MeOH/0.05 M pH 8.0 PBS buffer. $[L-1] = [L-2] = [L-3] = [L-4] = [L-5] = [L-6] = [L-7] = [L-8] = 40 \ \mu\text{M}.$

Figure S3. CD spectra of L-1 (a), L-2 (b), L-3 (c), L-4 (d), L-5 (e), L-6 (f), L-7 (g) and L-8 (h) in 7:3 (v/v) MeOH/0.05 M pH 8.0 PBS buffer. $[L-1] = [L-2] = [L-3] = [L-4] = [L-5] = [L-6] = [L-7] = [L-8] = 40 \ \mu\text{M}.$

Figure S4. Absorption spectra of L-9 (a), L-10 (b), L-11 (c), L-12 (d), L-13 (e) and L-14 (f) in 7:3 (v/v) MeOH/0.05 M pH 8.0 PBS buffer. $[L-9] = [L-10] = [L-11] = [L-12] = [L-13] = [L-14] = 40 \ \mu\text{M}.$

Figure S5. CD spectra of L-9 (a), L-10 (b), L-11 (c), L-12 (d), L-13 (e) and L-14 (f) in 7:3 (v/v) MeOH/0.05 M pH 8.0 PBS buffer. $[L-9] = [L-10] = [L-11] = [L-12] = [L-13] = [L-14] = 40 \ \mu\text{M}.$

Figure S6. Job plot for interaction of L-1 with D-DOPA revealing a 1:1 stoichiometry. $[L-1] + [D-DOPA] = 40 \mu M.$

Figure S7. CD (a, b) and absorption (c, d) spectra of D-1 in the presence of D- (a, c) or L-DOPA (b, d) in 7:3 (v/v) MeOH/0.05M pH 8.0 PBS buffer. [D-1] = 40 μ M, [L-DOPA] = [D-DOPA] = 0 - 250 μ M.

Figure S8. Evolution of CD spectra of D-1 upon mixing with L-DOPA (a) and of L-1 with D-DOPA (b) in 7:3 (v/v) MeOH/0.05M pH 8.0 PBS buffer. Shown in (c) are the traces of absorption spectra. $[1] = 40 \ \mu\text{M}, [L-DOPA] = [D-DOPA] = 0 - 250 \ \mu\text{M}.$

Figure S9. CD (a, b) and absorption (c, d) spectra of L-9 in the presence of D-DOPA (a, c) and L-DOPA (b, d) in 7:3 (v/v) MeOH/0.05 M pH 8.0 PBS buffer. [L-9] = 40 μ M, [L-DOPA] = [D-DOPA] = 0 - 250 μ M.

Figure S10. CD (a, b) and absorption (c, d) spectra of L-10 in the presence of D-DOPA (a, c) and L-DOPA (b, d) in 7:3 (v/v) MeOH/0.05 M pH 8.0 PBS buffer. [L-10] = 40 μ M, [L-DOPA] = [D-DOPA] = 0 - 250 μ M.

Figure S11. CD (a, b) and absorption (c, d) spectra of L-11 in the presence of D- (a, c) or L-DOPA (b, d) in 7:3 (v/v) MeOH/0.05M pH 8.0 PBS buffer. [L-11] = 40 μ M, [L-DOPA] = [D-DOPA] = 0 - 250 μ M.

Figure S12. Time profiles of CD spectra (a) and signals (b) of L-11 in the presence of D-DOPA in 7:3 (v/v) MeOH/0.05 M pH 8.0 PBS buffer. [L-11] = 40 μ M, [D-DOPA] = 250 μ M.

Figure S13. Job plot for the interaction of L-11 with D-DOPA revealing a 1:1 stoichiometry. $[L-11] + [D-DOPA] = 40 \mu M$.

3. MS spectra of L-11 in the presence of D-DOPA and L-DOPA

Figure S14. HRMS spectrum of L-11/D-DOPA complex. $[M+OCH_3]^-$ calcd for $C_{29}H_{26}BFN_3O_7^-$: m/z 558.1853, found m/z 558.1826.

Figure S15. HRMS spectrum of L-11/L-DOPA complex. $[M-H]^{2-}$ calcd for $C_{56}H_{45}B_2F_2N_6O_{13}^{2-}$: *m/z* 534.1623, found *m/z* 534.1685.

Figure S16. CD spectra (a, b) and CD intensities at 255 nm (c) and 303 nm (d) of L-1 and L-11 in the presence of D-DOPA in 7:3 (v/v) MeOH/0.05 M pH 8.0 PBS buffer. [L-1] = [L-11] = 40 μ M. [D-DOPA] = 0 - 250 μ M.

4. Spectral titrations of L-12, L-13 and L-14 by DOPA

Figure S17. CD (a, b) and absorption (c, d) spectra of L-14 in the presence of D- (a, c) or L-DOPA (b, d) in 7:3 (v/v) MeOH/0.05M pH 8.0 PBS buffer. [L-14] = 50 μ M. [D-DOPA] = [L-DOPA] = 0 - 250 μ M.

Figure S18. CD (a, b) and absorption (c, d) spectra of L-12 in the presence of D-DOPA (a, c) and L-DOPA (b, d) in 7:3 (v/v) MeOH/0.05 M pH 8.0 PBS buffer. [L-12] = 40 μ M. [D-DOPA] = [L-DOPA] = 0 - 250 μ M.

Figure S19. CD (a, b) and absorption (c, d) spectra of L-13 in the presence of D-DOPA (a, c) and L-DOPA (b, d) in 7:3 (v/v) MeOH / 0.05 M pH 8.0 PBS buffer. [L-13] = 40 μ M. [D-DOPA] = [L-DOPA] = 0 - 250 μ M.

5. ¹H NMR and ¹⁹F NMR studies

Figure S20. Partial ¹H NMR (a) and ¹⁹F NMR (b) spectra of L-**11** in CDCl₃ and in 7:3 (v/v) CD₃OD/0.05 M pH 8.0 PBS buffer (PBS was dissolved in D₂O). [L-**11**] = 0.12 mM.

Figure S21. Partial ¹H NMR spectra of L-11 in the presence of D-DOPA in 7:3 (v/v) $CD_3OD/0.05$ M pH 8.0 PBS buffer. PBS was dissolved in D_2O . [L-11] = 0.12 mM. [D-DOPA] = 0 - 0.48 mM.

Figure S22. Partial ¹H NMR spectra of L-11 in the presence of D-DOPA in 7:3 (v/v) CD₃OD/0.05 M pH 8.0 PBS buffer. PBS was dissolved in D₂O. [L-11] = 0.12 mM. [D-DOPA] = 0 - 0.48 mM.

Figure S23. Partial ¹H NMR spectra of L-11 in the presence of D-DOPA in 7:3 (v/v) $CD_3OD/0.05$ M pH 8.0 PBS buffer. PBS was dissolved in D_2O . [L-11] = 0.12 mM. [D-DOPA] = 0 - 0.48 mM.

Figure S25. Partial ¹H NMR spectra of L-11 in the presence of L-DOPA in 7:3 (v/v) $CD_3OD/0.05$ M pH 8.0 PBS buffer. PBS was dissolved in D_2O . [L-11] = 0.12 mM. [L-DOPA] = 0 - 0.48 mM.

Figure S26. ¹⁹F NMR spectra of L-11 in the presence of D-DOPA of increasing equivalent in 7:3 (v/v) CD₃OD/0.05 M pH 8.0 PBS buffer, PBS was dissolved in D₂O. [L-11] = 0.12 mM.

Figure S27. ¹⁹F NMR spectra of L-11 in the presence of L-DOPA of increasing equivalent in 7:3 (v/v) CD₃OD/0.05 M pH 8.0 PBS buffer. PBS was dissolved in D₂O. [L-11] = 0.12 mM.

	K_a , N	M-1
DOPA, µм —	D-DOPA	L-DOPA
24	$2.07 imes 10^6$	1.36×10^{5}
48	$0.90 imes 10^6$	1.10×10^{5}
72	$1.09 imes 10^6$	$0.94 imes 10^5$
96	$2.58 imes 10^6$	1.66×10^{5}
120	$1.20 imes 10^6$	1.69×10^{5}
Average	1.57×10^{6}	1.35×10^{5}

Table S1. Binding constants of L-11 with D-/L-DOPA from ¹⁹F NMR titrations ^a

^{*a*} L-11 at 0.12 mM in 7:3 (v/v) CD₃OD/0.05 M pH 8.0 PBS buffer. Binding constants (K_a 's) were calculated by mass balance equations [FS] + [F] = C_F and [FS] + [S] = C_S, that [FS] / [F]*[S] = K_a . "F" represents L-11, "S" represents DOPA, and "FS" represents complex of L-11 with DOPA. T = 298 K.

Table S2 Relative peak area of cis- and trans-conformers of L-11 in the presence of D-

D-Dopa (equiv)	Peak Area (cis-)	Peak Area (trans-)	Peak Area (a)
0	0.250	0.750	0
0.2	0.193	0.608	0.199
0.4	0.143	0.463	0.394
0.6	0.085	0.326	0.589
0.8	0.030	0.182	0.788
1.0	0	0.080	0.920
2.0	0	0.070	0.930
4.0	0	0.070	0.930

DOPA deduced from ¹⁹F NMR spectra

^{*a*} Peak "**a**" represents the ¹⁹F signal peak of L-**11**/D-DOPA complex, as shown in Figure S26.

6. DFT calculations

Figure S28. DFT calculation results. (a) Chemical structures of L-11, L-DOPA and D-DOPA with labeled binding sites. (b) Calculated relative energies of complexs of L-11 with L-DOPA and D-DOPA in H₂O at B3LYP/6-31G* level.

7. Spectral titrations of L-1 and L-5 by DOPA in MeOH/buffer mixture of varying composition

Figure S29. Partial ¹H NMR spectra of L-1 (a) and L-5 (b) in CDCl₃, CD₃OD, CD₃OD/D₂O (5:5, v/v) and D₂O.

Figure S30. Partial ¹H NMR spectra of L-1 (a) and L-5 (b) in 7:3 (v/v), 4:6 (v/v) and 2:8 (v/v) CD₃OD/D₂O solutions.

Figure S31. CD (a, b) and absorption (c, d) spectra of L-1 in the presence of D- (a, c) or L-DOPA (b, d) in 4:6 (v/v) MeOH/0.05M pH 8.0 PBS buffer. [L-1] = 40 μ M. [L-DOPA] = [D-DOPA] = 0 - 250 μ M.

Figure S32. CD (a, b) and absorption (c, d) spectra of L-1 in the presence of D- (a, c) or L-DOPA (b, d) in 2:8 (v/v) MeOH/0.05M pH 8.0 PBS buffer. [L-1] = 40 μ M. [L-DOPA] = [D-DOPA] = 0 - 250 μ M.

Figure S33. CD (a, b) and absorption (c, d) spectra of L-5 in the presence of D- (a, c) or L-DOPA (b, d) in 4:6 (v/v) MeOH/0.05M pH 8.0 PBS buffer. [L-5] = 40 μ M. [L-DOPA] = [D-DOPA] = 0 - 250 μ M.

Figure S34. CD (a, b) and absorption (c, d) spectra of L-5 in the presence of D- (a, c) or L-DOPA (b, d) in 2:8 (v/v) MeOH/0.05M pH 8.0 PBS buffer. [L-5] = 40 μ M. [L-DOPA] = [D-DOPA] = 0 - 250 μ M.

8. Job plots

Figure S35. Job plot for the interaction of L-1 with L-DOPA revealing a 1:1 stoichiometry. $[L-1] + [L-DOPA] = 40 \mu M$.

Figure S36. Job plot for the interaction of L-2 with L-DOPA revealing a 1:1 stoichiometry. $[L-2] + [L-DOPA] = 40 \mu M$.

Figure S37. Job plots for the interactions of L-3 with D-DOPA (a) and L-DOPA (b) revealing a 1:1 stoichiometry. $[L-3] + [D-DOPA] = 40 \ \mu M$, $[L-3] + [L-DOPA] = 40 \ \mu M$.

Figure S38. Job plots for the interactions of L-5 with D-DOPA (a) and L-DOPA (b) revealing a 1:1 stoichiometry. $[L-5] + [D-DOPA] = 40 \ \mu M$, $[L-5] + [L-DOPA] = 40 \ \mu M$.

Figure S39. Job plots for the interactions of L-7 with D-DOPA (a) and L-DOPA (b) revealing a 1:1 stoichiometry. $[L-7] + [D-DOPA] = 40 \ \mu M$, $[L-7] + [L-DOPA] = 40 \ \mu M$.

9. Titration curves and fitted binding isotherms

$$y = y_0 + \frac{a}{2c} \left[x + c + \frac{1}{K} - \sqrt{\left(x + c + \frac{1}{K}\right)^2 - 4cx} \right]$$
 (Formula 1)

Formula 1 - Nonlinear fitting equation assuming a 1:1 stoichiometry.

- y₀ CD intensity of receptor solution without chiral guest, x;
- c Total concentration of receptor molecule;
- x Molar concentration of chiral species x;
- a Fitting parameters;
- K Binding constant.

Figure S40. CD spectra (a) and CD intensities at 255 nm (b) of L-1 in the presence of D-DOPA in 7:3 (v/v) MeOH/0.05 M pH 8.0 PBS buffer. Red line through data points in (b) is the curve fitted by Formula 1. [L-1] = 40 μ M, [D-DOPA] = 0 - 250 μ M.

Figure S41. CD spectra (a) and CD intensities at 255 nm (b) of L-1 in the presence of L-DOPA in 7:3 (v/v) MeOH/0.05 M pH 8.0 PBS buffer. Red line through data points in (b) is the curve fitted by Formula 1. [L-1] = 40 μ M, [L-DOPA] = 0 - 250 μ M.

Figure S42. CD spectra (a) and CD intensities at 255 nm (b) or 280 nm (c) of D-1 in the presence of L-DOPA in 7:3 (v/v) MeOH/0.05 M pH 8.0 PBS buffer. Red line through data points in (b) is the curve fitted by Formula 1. [D-1] = 40 μ M, [L-DOPA] = 0 - 250 μ M.

Figure S43. CD spectra (a) and CD intensities at 240 nm (b) or 255 nm (c) of D-1 in the presence of D-DOPA in 7:3 (v/v) MeOH / 0.05 M pH 8.0 PBS buffer. Red lines through data points in (b) and (c) are the curves fitted by Formula 1. [D-1] = 40 μ M, [D-DOPA] = 0 - 250 μ M.

Figure S44. CD spectra (a) and CD intensities at 260 nm of L-2 in the presence of L-DOPA in 7:3 (v/v) MeOH/0.05 M pH 8.0 PBS buffer. Red line through data points in (b) is the curve fitted by Formula 1. [L-2] = 40 μ M, [L-DOPA] = 0 - 250 μ M.

Figure S45. CD spectra (a) and CD intensities at 255 nm (b) or 290 nm (c) of D-2 in the presence of D-DOPA in 7:3 (v/v) MeOH/0.05 M pH 8.0 PBS buffer. Red lines through data points in (b) and (c) are the curves fitted by Formula 1. $[D-2] = 40 \ \mu\text{M}$, $[D-DOPA] = 0 - 250 \ \mu\text{M}$.

Figure S46. CD spectra (a) and CD intensities at 255 nm (b) of L-**3** in the presence of D-DOPA in 7:3 (v/v) MeOH/0.05 M pH 8.0 PBS buffer. Red line through data points in (b) is the curve fitted by Formula 1. [L-**3**] = 40 μ M, [D-DOPA] = 0 - 250 μ M.

Figure S47. CD spectra (a) and CD intensities at 255 nm (b) of L-**3** in the presence of L-DOPA in 7:3 (v/v) MeOH/0.05 M pH 8.0 PBS buffer. Red line through data points in (b) is the curve fitted by Formula 1. [L-**3**] = 40 μ M, [L-DOPA] = 0 - 250 μ M.

Figure S48. CD spectra (a) and CD intensities at 269 nm (b) of L-5 in the presence of D-DOPA in 7:3 (v/v) MeOH/0.05 M pH 8.0 PBS buffer. Red line through data points in (b) is the curve fitted by Formula 1. [L-5] = 40 μ M, [D-DOPA] = 0 - 250 μ M.

Figure S49. CD spectra (a) and CD intensities at 263 nm (b) of L-**5** in the presence of L-DOPA in 7:3 (v/v) MeOH/0.05 M pH 8.0 PBS buffer. Red line through data points in (b) is the curve fitted by Formula 1. [L-**5**] = 40 μ M, [L-DOPA] = 0 - 250 μ M.

Figure S50. CD spectra (a) and CD intensities at 261 nm (b) of L-7 in the presence of D-DOPA in 7:3 (v/v) MeOH/0.05 M pH 8.0 PBS buffer. Red line through data points in (b) is the curve fitted by Formula 1. [L-7] = 40 μ M, [D-DOPA] = 0 - 250 μ M.

Figure S51. CD spectra (a) and CD intensities at 261 nm (b) of L-7 in the presence of L-DOPA in 7:3 (v/v) MeOH/0.05 M pH 8.0 PBS buffer. Red line through data points in (b) is the curve fitted by Formula 1. [L-7] = 40 μ M, [L-DOPA] = 0 - 250 μ M.

Figure S52. CD spectra (a) and CD intensities at 303 nm (b) of L-11 in the presence of D-DOPA in 7:3 (v/v) MeOH/0.05 M pH 8.0 PBS buffer. Red line through data points in (b) is the curve fitted by Formula 1. [L-11] = 50 μ M, [D-DOPA] = 0 - 250 μ M.

Figure S53. CD spectra (a) and CD intensities at 265 nm (b) of L-11 in the presence of L-DOPA in 7:3 (v/v) MeOH / 0.05 M pH 8.0 PBS buffer. Red line through data points in (b) is the curve fitted by Formula 1. [L-11] = 50 μ M, [L-DOPA] = 0 - 250 μ M.

Figure S54. CD spectra (a) and CD intensities at 250 nm (b) of L-12 in the presence of D-DOPA in 7:3 (v/v) MeOH/0.05 M pH 8.0 PBS buffer. Red line through data points in (b) is the curve fitted by Formula 1. [L-12] = 60 μ M, [D-DOPA] = 0 - 250 μ M.

Figure S55. CD spectra (a) and CD intensities at 264 nm (b) of L-12 in the presence of L-DOPA in 7:3 (v/v) MeOH/0.05 M pH 8.0 PBS buffer. Red line through data points in (b) is the curve fitted by Formula 1. [L-12] = 60 μ M, [L-DOPA] = 0 - 250 μ M.

Figure S56. CD spectra (a) and CD intensities at 304 nm (b) of L-13 in the presence of D-DOPA in 7:3 (v/v) MeOH / 0.05 M pH 8.0 PBS buffer. Red line through data points in (b) is the curve fitted by Formula 1. [L-13] = 50 μ M, [D-DOPA] = 0 - 250 μ M.

Figure S57. CD spectra (a) and CD intensities at 263 nm (b) of L-13 in the presence of L-DOPA in 7:3 (v/v) MeOH/0.05 M pH 8.0 PBS buffer. Red line through data points in (b) is the curve fitted by Formula 1. [L-13] = 50 μ M, [L-DOPA] = 0 - 250 μ M.

Figure S58. CD spectra (a) and CD intensities at 285 nm (b) of L-14 in the presence of L-DOPA in 7:3 (v/v) MeOH/0.05 M pH 8.0 PBS buffer. Red line through data points in (b) is the curve fitted by Formula 1. [L-14] = 50 μ M, [L-DOPA] = 0 - 250 μ M.

Figure S59. CD spectra (a) and CD intensities at 247 nm (b) of L-14 in the presence of D-DOPA in 7:3 (v/v) MeOH/0.05 M pH 8.0 PBS buffer. Red line through data points in (b) is the curve fitted by Formula 1. [L-14] = 50 μ M, [D-DOPA] = 0 - 250 μ M.

Figure S60. CD spectra (a) and CD intensities at 238 nm (b) of L-1 in the presence of L-DOPA in 4:6 (v/v) MeOH/0.05 M pH 8.0 PBS buffer. Red line through data points in (b) is the curve fitted by Formula 1. [L-1] = 40 μ M, [L-DOPA] = 0 - 250 μ M.

Figure S61. CD spectra (a) and CD intensities at 250 nm (b) of L-1 in the presence of D-DOPA in 4:6 (v/v) MeOH/0.05 M pH 8.0 PBS buffer. Red line through data points in (b) is the curve fitted by Formula 1. [L-1] = 40 μ M, [D-DOPA] = 0 - 250 μ M.

Figure S62. CD spectra (a) and CD intensities at 254 nm (b) of L-1 in the presence of D-DOPA in 2:8 (v/v) MeOH/0.05 M pH 8.0 PBS buffer. Red line through data points in (b) is the curve fitted by Formula 1. [L-1] = 40 μ M, [D-DOPA] = 0 - 250 μ M.

Figure S63. CD spectra (a) and CD intensities at 272 nm (b) of L-5 in the presence of L-DOPA in 4:6 (v/v) MeOH/0.05 M pH 8.0 PBS buffer. Red line through data points in (b) is the curve fitted by Formula 1. [L-5] = 40 μ M, [L-DOPA] = 0 - 250 μ M.

Figure S64. CD spectra (a) and CD intensities at 294 nm (b) of L-5 in the presence of D-DOPA in 4:6 (v/v) MeOH/0.05 M pH 8.5 PBS buffer. Red line through data points in (b) is the curve fitted by Formula 1. [L-5] = 40 μ M, [D-DOPA] = 0 - 250 μ M.

Figure S65. CD spectra (a) and CD intensities at 261 nm (b) of L-5 in the presence of L-DOPA in 2:8 (v/v) MeOH/0.05 M pH 8.0 PBS buffer. Red line through data points in (b) is the curve fitted by Formula 1. [L-5] = 40 μ M, [L-DOPA] = 0 - 250 μ M.

Figure S66. CD spectra (a) and CD intensities at 245 nm (b) of L-5 in the presence of D-DOPA in 2:8 (v/v) MeOH/0.05 M pH 8.5 PBS buffer. Red line through data points in (b) is the curve fitted by Formula 1. [L-5] = 40 μ M, [D-DOPA] = 0 - 250 μ M.

10. ¹H NMR and ¹³C NMR spectra of a, c, and D-/L-1 to 14

Figure S68. ¹³C{¹H} NMR (125 MHz, CDCl₃) spectrum of isolated product **a**.

Figure S69. ¹H NMR (500 MHz, CDCl₃) spectrum of isolated product c.

Figure S70. ¹³C NMR (125 MHz, CDCl₃) spectrum of isolated product c.

Figure S71. ¹H NMR (500 MHz, CDCl₃) spectrum of isolated product L-1.

Figure S72. ¹³C{¹H} NMR (125 MHz, CDCl₃) spectrum of isolated product L-1.

Figure S73. ¹H NMR (500 MHz, CDCl₃) spectrum of isolated product D-1.

Figure S74. ${}^{13}C{}^{1}H$ NMR (125 MHz, CDCl₃) spectrum of isolated product D-1.

Figure S75. ¹H NMR (500 MHz, CDCl₃) spectrum of isolated product L-2.

Figure S76. ${}^{13}C{}^{1}H$ NMR (125 MHz, CDCl₃) spectrum of isolated product L-2.

Figure S77. ¹H NMR (500 MHz, CDCl₃) spectrum of isolated product D-2.

Figure S78. ¹³C{¹H} NMR (125 MHz, CDCl₃) spectrum of isolated product D-2.

Figure S79. ¹H NMR (500 MHz, CDCl₃) spectrum of isolated product L-3.

Figure S80. ¹³C{¹H} NMR (125 MHz, CDCl₃) spectrum of isolated product L-3.

Figure S81. ¹H NMR (500 MHz, CDCl₃) spectrum of isolated product L-4.

Figure S82. ¹³C{¹H} NMR (125 MHz, CDCl₃) spectrum of isolated product L-4.

Figure S83. ¹H NMR (850 MHz, CDCl₃) spectrum of isolated product L-5.

Figure S84. ¹³C{¹H} NMR (214 MHz, CDCl₃) spectrum of isolated product L-5.

Figure S85. ¹H NMR (850 MHz, CDCl₃) spectrum of isolated product L-6.

Figure S86. ¹³C{¹H} NMR (214 MHz, CDCl₃) spectrum of isolated product L-6.

Figure S87. ¹H NMR (850 MHz, CDCl₃) spectrum of isolated product L-7.

Figure S88. ¹³C{¹H} NMR (214 MHz, CDCl₃) spectrum of isolated product L-7.

Figure S89. ¹H NMR (850 MHz, CDCl₃) spectrum of isolated product L-8.

Figure S90. ¹³C{¹H} NMR (214 MHz, CDCl₃) spectrum of isolated product L-8.

9.00 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.0

Figure S91. ¹H NMR (500 MHz, CDCl₃) spectrum of isolated product L-9.

Figure S92. ¹³C{¹H} NMR (125 MHz, CDCl₃) spectrum of isolated product L-9.

Figure S93. ¹H NMR (500 MHz, CDCl₃) spectrum of isolated product L-10.

Figure S94. ¹³C{¹H} NMR (125 MHz, CDCl₃) spectrum of isolated product L-10.

Figure S95. ¹H NMR (500 MHz, CDCl₃) spectrum of isolated product L-11.

Figure S96. ¹³C NMR (125 MHz, CDCl₃) spectrum of isolated product L-11.

Figure S97. ¹H NMR (500 MHz, CDCl₃) spectrum of isolated product L-12.

Figure S98. ${}^{13}C{}^{1}H$ NMR (125 MHz, CDCl₃) spectrum of isolated product L-12.

Figure S99. ¹H NMR (500 MHz, CDCl₃) spectrum of isolated product L-13.

Figure S100. ¹³C NMR (214 MHz, CDCl₃) spectrum of isolated product L-13.

Figure S101. ¹H NMR (850 MHz, CDCl₃) spectrum of isolated product L-14.

Figure S102. ¹³C NMR (214 MHz, CDCl₃) spectrum of isolated product L-14.

11. Computational data

All calculations were performed with Gaussian 16 program package, by which structural optimizations were carried out at B3LYP/6-31G* level in water.

trans-L-1:

С	3.42067400	0.04942500	0.27122600
С	2.43771800	-0.95445700	0.35327800
С	1.09101900	-0.63441600	0.49617800
С	0.68204800	0.70743000	0.53373900
С	1.65021200	1.71888400	0.46015400
С	2.99920600	1.38866200	0.33631200
Н	2.73671400	-1.99842400	0.31211500
Н	0.34267300	-1.41629600	0.57964700
Н	1.35780900	2.76205800	0.52485000
Н	3.73850100	2.18382900	0.29122600
В	4.92985300	-0.31244600	0.12448500
0	5.93186100	0.62492100	0.11701000
0	5.38573900	-1.59991800	-0.00741600
С	7.17116600	-0.06073800	-0.25296800
С	6.84446800	-1.56247100	0.10940800
С	7.37015700	0.17726700	-1.75500100
Н	7.39893900	1.25495200	-1.94415600
Н	8.31078400	-0.25745200	-2.10739500
Н	6.54950500	-0.24878600	-2.34094100
С	8.31975700	0.56275300	0.53629900
Н	8.13404700	0.53674800	1.61249200
Н	9.25925700	0.03830200	0.33137400
Н	8.44537400	1.60845100	0.23717800
С	7.17517000	-1.92825400	1.56172900
Н	6.74631200	-2.90947000	1.78821400
Н	8.25617400	-1.98138900	1.72447900
Н	6.75323300	-1.20271400	2.26448900
С	7.43048900	-2.60247700	-0.84240900
Н	8.52519800	-2.56711900	-0.82744300
Н	7.12141400	-3.60422700	-0.52664400
Н	7.09116300	-2.44978200	-1.86948100
С	-0.77884300	0.98323700	0.75385300
0	-1.42198600	0.30801800	1.57043300
Ν	-1.38200100	1.97993800	0.05034600
С	-2.80743100	2.22870600	0.28443100
С	-0.86880000	2.70836600	-1.12983300
С	-3.12755400	3.39505800	-0.68059600

С	-2.14485900	3.17556800	-1.84091500
Н	-0.26565100	3.56880700	-0.81771100
Н	-2.92212600	4.34426000	-0.17405900
Н	-1.97701000	4.07879700	-2.43362800
Н	-0.24453700	2.05613300	-1.74458300
Н	-2.51481400	2.38716200	-2.50246700
Н	-4.17555700	3.40074800	-0.99234300
С	-3.65021800	0.98603900	-0.06454500
0	-3.39309100	0.28189800	-1.03593400
Ν	-4.73739600	0.81036700	0.75242100
Н	-4.81055000	1.44133900	1.54078900
С	-5.76236800	-0.15224900	0.66643300
С	-6.75977000	-0.12103600	1.66166900
С	-5.83612900	-1.11662400	-0.34285400
С	-7.81041300	-1.03356600	1.64917400
Н	-6.70608200	0.62716000	2.44867700
С	-6.89945100	-2.03221100	-0.34712000
Н	-5.08335300	-1.16377700	-1.11591300
С	-7.88835000	-1.99707500	0.64333600
Н	-8.56634600	-0.98858500	2.42711700
Н	-8.70452800	-2.71438600	0.62431800
С	-6.98298400	-3.05367300	-1.41178200
Н	-7.85669100	-3.73328300	-1.33251100
0	-6.18189200	-3.17999900	-2.32483700
Н	-2.96788100	2.50479700	1.33130500

Total energy: -3885989.85 kJ mol-1

cis-L-**1**:

-1.89291300	-1.15398200	-0.36682500
-1.15179100	-0.79082200	-1.50677300
0.14683600	-1.25272500	-1.69976700
0.75674300	-2.06985300	-0.73598500
0.02892500	-2.44751200	0.40123700
-1.27995300	-1.99824200	0.57448100
-1.60417400	-0.14380700	-2.25347700
0.69969700	-0.98325000	-2.59473100
0.46794100	-3.11597100	1.13572600
-1.83650500	-2.31088400	1.45378600
-3.35211300	-0.64573000	-0.15981000
-4.08842700	-0.90969100	0.96735000
-4.02501900	0.10787500	-1.08798200
-5.46045000	-0.47024400	0.70747600
-5.26251000	0.57420100	-0.46021900
	-1.89291300 -1.15179100 0.14683600 0.75674300 0.02892500 -1.27995300 -1.60417400 0.69969700 0.46794100 -1.83650500 -3.35211300 -4.08842700 -4.02501900 -5.46045000 -5.26251000	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

С	-6.24568100	-1.71874700	0.28680900
Н	-6.17315100	-2.46892500	1.08053300
Н	-7.30412800	-1.49065200	0.12707700
Н	-5.84218400	-2.15611400	-0.63199600
С	-6.03534900	0.10333800	2.00030600
Н	-5.40971200	0.90307800	2.40319900
Н	-7.04290100	0.49909900	1.83298800
Н	-6.10478200	-0.68784300	2.75391600
С	-4.99068700	2.00072300	0.03327800
Н	-4.67503300	2.61657700	-0.81469200
Н	-5.88847800	2.45112800	0.46809900
Н	-4.19359900	2.02107100	0.78329000
С	-6.36438100	0.58329900	-1.51700300
Н	-7.32329300	0.87209400	-1.07324200
Н	-6.11992400	1.31318200	-2.29563400
Н	-6.48035400	-0.39400500	-1.99112900
С	2.12993300	-2.61339400	-1.03292600
0	2.34774500	-3.17926200	-2.10900100
Ν	3.12435800	-2.45912900	-0.10564100
С	3.06029200	-1.73625400	1.17898500
С	4.40386800	-3.18139200	-0.27985400
С	4.48615400	-1.92220100	1.76473800
С	4.96800400	-3.23929300	1.14184700
Н	4.21055800	-4.16061500	-0.72183700
Н	4.46450600	-1.93052100	2.85662300
Н	4.54158100	-4.09330100	1.67982300
Н	5.06570400	-2.62995400	-0.95940100
Н	6.05676000	-3.33705300	1.15385100
Н	5.13196900	-1.09637000	1.44506400
С	2.69999400	-0.24539700	1.09898800
0	2.17838300	0.30478100	2.06425000
Ν	3.07273200	0.38533800	-0.05630000
Н	3.48078300	-0.20996300	-0.76748400
С	2.93438100	1.74302600	-0.40712800
С	3.34418600	2.11839400	-1.70183300
С	2.42126800	2.71449100	0.45663400
С	3.24435300	3.44015100	-2.12599200
Н	3.74231500	1.36488200	-2.37673600
С	2.32324100	4.04408200	0.01918500
Н	2.09937500	2.45166200	1.45374900
С	2.73236400	4.41351900	-1.26779700
Н	3.56683300	3.70564100	-3.12802400
Н	2.64967100	5.44811800	-1.58983200
С	1.78186300	5.07659200	0.92769400

Н	1.74479400	6.09854400	0.49687300
0	1.39484100	4.87132600	2.06749800
Н	2.32433600	-2.18145600	1.85199800
Total energy: -38	885980.81 kJ mol ⁻¹		

trans-L-11:

С	-3.68937500	0.02994400	-0.28348100
С	-2.69145800	-0.96235300	-0.29412900
С	-1.34595900	-0.62974100	-0.41730200
С	-0.95375700	0.71470900	-0.50774900
С	-1.93698500	1.71427500	-0.50651400
С	-3.28417000	1.37061300	-0.40058600
Н	-2.97753900	-2.00749700	-0.21181100
Н	-0.58513200	-1.40341000	-0.44480000
Н	-1.65774100	2.75747200	-0.61335600
Н	-4.03478500	2.15632000	-0.41098100
В	-5.19676900	-0.34663500	-0.15612900
0	-6.21018100	0.57750900	-0.19728200
0	-5.63923800	-1.63520800	0.00695200
С	-7.44760700	-0.11235300	0.17124500
С	-7.09570200	-1.62008900	-0.13878600
С	-7.67692500	0.16888400	1.66141300
Н	-7.72181700	1.25139000	1.81689400
Н	-8.61867200	-0.26642000	2.01002400
Н	-6.86223100	-0.22907200	2.27475400
С	-8.58932300	0.47150600	-0.65728200
Н	-8.38355900	0.41523900	-1.72865000
Н	-9.52553400	-0.05916100	-0.45325100
Н	-8.73399300	1.52400400	-0.39264800
С	-7.39401400	-2.03358900	-1.58527800
Н	-6.94964200	-3.01594200	-1.77374400
Н	-8.47105900	-2.10447400	-1.76646600
Н	-6.96715200	-1.32447400	-2.30169500
С	-7.68758900	-2.63814700	0.83289200
Н	-8.78213300	-2.61709700	0.79554000
Н	-7.36027900	-3.64499700	0.55386100
Н	-7.37048700	-2.45019600	1.86122200
С	0.50918700	0.99813500	-0.70163700
0	1.18571200	0.28304300	-1.45512700
Ν	1.08082700	2.04352900	-0.04348600
С	2.50989500	2.29348300	-0.25313600
С	0.52652400	2.84274500	1.07019500
С	2.79475200	3.51578200	0.65203400

С	1.77708200	3.35898100	1.79217800
Н	-0.06663800	3.67977800	0.68383200
Н	2.60152600	4.43233800	0.08431100
Н	1.58670800	4.29465000	2.32466000
Н	-0.11726900	2.22830000	1.70331900
Н	2.12923400	2.61329400	2.51054900
Н	3.83242500	3.54602100	0.99516900
С	3.35252400	1.08074300	0.18766000
0	3.08824200	0.44023000	1.19906800
Ν	4.45190400	0.85709200	-0.60468600
Н	4.52880800	1.43304200	-1.43357200
С	5.47326800	-0.09533400	-0.44527000
С	6.47050000	-0.13354000	-1.43832900
С	5.54335100	-0.98457900	0.63389100
С	7.50500100	-1.04990900	-1.33032600
Н	6.44564300	0.54136900	-2.28823000
С	6.60509400	-1.89637600	0.70833300
Н	4.78809300	-0.97520400	1.40519300
С	7.60249100	-1.94330400	-0.27285400
Н	8.42605600	-2.64805100	-0.21928900
С	6.68545700	-2.83860500	1.84830400
Н	7.55845100	-3.52219300	1.82391900
0	5.87910100	-2.89247700	2.76179500
Н	2.69718000	2.51170000	-1.30912000
F	8.44929200	-1.06710700	-2.29488500

Total energy: -4146401.82 kJ mol⁻¹

cis-L-11:

С	-2.12111300	-1.08526400	-0.45054900
С	-1.29739400	-0.64923700	-1.50494000
С	-0.02818900	-1.18726700	-1.69858700
С	0.46824000	-2.15887300	-0.81706900
С	-0.34316700	-2.61042300	0.23353200
С	-1.62229500	-2.08241400	0.40495100
Н	-1.66136000	0.11639900	-2.18475200
Н	0.58857600	-0.85755400	-2.52938300
Н	0.00831100	-3.39372600	0.89866800
Н	-2.24521800	-2.45183600	1.21498200
В	-3.54632900	-0.48885000	-0.24162900
0	-4.36155700	-0.83877100	0.80490600
0	-4.10707800	0.43615500	-1.08544100
С	-5.67900600	-0.25416900	0.54902800
С	-5.33709900	0.91698400	-0.45364000

С	-6.53517900	-1.36359500	-0.07407300
Н	-6.56513000	-2.21726300	0.61029700
Н	-7.56212200	-1.02651200	-0.24627200
Н	-6.11756300	-1.70593100	-1.02627500
С	-6.27671200	0.18649100	1.88306000
Н	-5.61449300	0.87067600	2.41849500
Н	-7.24118600	0.68244600	1.72976100
Н	-6.44570800	-0.69018800	2.51678300
С	-4.98252100	2.23618500	0.24350600
Н	-4.57478800	2.93179800	-0.49665900
Н	-5.86496800	2.69771000	0.69752500
Н	-4.22797900	2.08824600	1.02263800
С	-6.37517700	1.16079900	-1.54632700
Н	-7.33135500	1.46890100	-1.10975900
Н	-6.03148800	1.96433000	-2.20582500
Н	-6.54140300	0.26896600	-2.15491100
С	1.81019200	-2.77513700	-1.11377600
0	2.03914200	-3.24737400	-2.23139600
Ν	2.76295200	-2.79488500	-0.13142700
С	2.68737800	-2.18581800	1.21002300
С	3.98637900	-3.60683400	-0.31201800
С	4.05593100	-2.55245700	1.84595800
С	4.45989900	-3.84498600	1.12390600
Н	3.73840700	-4.52024800	-0.85587700
Н	3.96998900	-2.65869900	2.92945200
Н	3.93201200	-4.70284200	1.55505600
Н	4.72992000	-3.05566600	-0.90130800
Н	5.53392900	-4.04043200	1.18111400
Н	4.78728700	-1.76261200	1.64009000
С	2.46468300	-0.66688300	1.24600800
0	1.92286900	-0.15227800	2.21820700
Ν	2.97881300	0.02199000	0.17847700
Н	3.38737700	-0.54783900	-0.55271000
С	3.00167200	1.40956000	-0.04734200
С	3.59425400	1.85093200	-1.24532700
С	2.47326900	2.34748900	0.84706500
С	3.64340700	3.20899200	-1.51940200
Н	4.01478600	1.14928900	-1.95903300
С	2.54135100	3.71195900	0.53429300
Н	2.01529000	2.03053700	1.77200400
С	3.12744700	4.16347200	-0.65400100
Н	3.18303100	5.21890900	-0.90052600
С	1.98374200	4.71010900	1.47621100
Н	2.08057100	5.76430400	1.14583200

0	1.45277000	4.43806400	2.53989000	
Н	1.87655300	-2.61664200	1.80105900	
F	4.21654400	3.60954700	-2.67377000	
Total energy: -4146392.50 kJ mol ⁻¹				

trans-L-11 + D-DOPA:

С	6.23505800	-0.71019000	-1.23013000	
С	5.85659100	-0.53366600	0.24276400	
Ν	4.53421100	0.11766600	0.16671400	
С	3.88451400	-0.07700400	-1.14317600	
С	4.88486800	-0.98808000	-1.90791900	
С	2.48598000	-0.71858700	-1.09544500	
С	4.07846500	0.89087200	1.20408000	
0	1.64066000	-0.43236200	-1.93556700	
Ν	2.31979500	-1.66579700	-0.11796300	
С	1.25895800	-2.59380800	0.00787400	
С	-0.06196200	-2.28685600	-0.33370600	
С	-1.06844400	-3.25685400	-0.18478100	
С	-0.74694500	-4.53261000	0.30182600	
С	0.56827600	-4.79796300	0.65425800	
С	1.58121800	-3.86250300	0.51999500	
С	2.88782600	1.76796300	0.94695800	
0	4.63725300	0.86503800	2.30598900	
С	2.90274500	2.74745200	-0.05801900	
С	1.78284900	3.55034300	-0.26883900	
С	0.60203400	3.40658100	0.48462300	
С	0.63659000	2.45905400	1.52414000	
С	1.75579100	1.66017400	1.76530900	
В	-0.76650300	4.17374700	0.02601200	
F	0.88201300	-6.02207500	1.13991900	
С	-2.48710500	-2.96684700	-0.48510400	
Ν	-2.92057200	-1.78827300	-0.70856300	
С	-4.35028500	-1.61617200	-0.87825300	
С	-4.67539200	-0.23969900	-1.50423900	
0	-1.87826300	3.96482700	1.05532400	
0	-1.31112200	3.43367800	-1.19431900	
С	-2.98726400	1.64943700	-1.44228600	
С	-4.03441300	0.94532200	-0.80404100	
С	-4.41981800	1.32983100	0.48597100	
С	-3.75279600	2.35864800	1.18395600	
С	-2.69233400	3.00299100	0.56227700	
С	-2.33669700	2.66890100	-0.76198600	
0	-0.58179400	5.56562200	-0.31130700	
С	-5.17771700	-1.88600800	0.46649500	
---	-------------	-------------	-------------	--
0	-6.34420100	-1.41211400	0.46324100	
0	-4.63232400	-2.59040300	1.34635900	
Н	6.67145200	0.21766200	-1.61653800	
Н	6.95664100	-1.51718100	-1.38359500	
Н	5.79075300	-1.49845000	0.76334000	
Н	6.54221200	0.10179200	0.80682200	
Н	3.75642800	0.86933500	-1.67087800	
Н	4.87704000	-0.77068700	-2.97838900	
Н	4.61046500	-2.04105500	-1.77752100	
Н	3.12647600	-1.84012000	0.46923000	
Н	-0.32085300	-1.30741500	-0.71008800	
Н	-1.50676800	-5.29783400	0.42515000	
Н	2.59957300	-4.12402200	0.78859100	
Н	3.79224600	2.88468200	-0.66879500	
Н	1.81809600	4.29629200	-1.06149700	
Н	-0.24501200	2.33300600	2.14784800	
Н	1.74920300	0.92985600	2.57105600	
Н	-3.14924600	-3.84289000	-0.46757900	
Н	-4.74361200	-2.39095600	-1.56145200	
Н	-5.76647400	-0.15613100	-1.49679200	
Н	-4.35334100	-0.24528400	-2.55397300	
Н	-2.67379200	1.37838900	-2.44842100	
Н	-5.23558700	0.79878700	0.96688500	
Н	-4.04737000	2.62781900	2.19600100	
Н	0.20660000	5.90055600	0.13658100	

Total energy: -4977668.93 kJ mol⁻¹

trans-L-11 + L-DOPA:

С	6.12539500	-0.48587500	-1.76824800
С	5.91205200	-0.04517300	-0.31782200
Ν	4.51652300	0.43996900	-0.31595800
С	3.75296100	-0.04051200	-1.48202900
С	4.74334400	-1.01064100	-2.18188400
С	2.42513900	-0.74894100	-1.16729800
С	4.09968900	1.31569600	0.65403000
0	1.49267500	-0.68535600	-1.96098300
Ν	2.42076500	-1.49418900	-0.01689000
С	1.42558800	-2.38830900	0.43513600
С	0.08610100	-2.29232300	0.04511300
С	-0.85433900	-3.21829900	0.52442200
С	-0.45706700	-4.24481800	1.39172100

С	0.87510300	-4.29913000	1.77922400
С	1.82708800	-3.39990200	1.32566700
С	2.76610700	1.98693700	0.49788800
0	4.80815000	1.53493800	1.64375300
С	2.41492800	2.72567200	-0.64268700
С	1.17651500	3.36551700	-0.70959100
С	0.23137700	3.28929200	0.33123500
С	0.62741400	2.57792900	1.47938700
С	1.86861100	1.94950400	1.57428800
В	-1.28038400	3.89020800	0.14740500
F	1.26849500	-5.27596300	2.62991000
С	-2.28063200	-3.10659500	0.14302000
Ν	-2.75005700	-2.05986400	-0.40776300
С	-4.15869800	-2.00303100	-0.74524700
С	-4.91648900	-1.00938800	0.18486900
0	-2.06924800	3.72254100	1.44792400
0	-2.04727800	2.98319000	-0.81157200
С	-3.51101900	1.04209000	-0.44546600
С	-4.21855800	0.29657400	0.52876500
С	-4.25297000	0.76423600	1.84587300
С	-3.57976400	1.93987000	2.24310400
С	-2.84963000	2.63025300	1.28816600
С	-2.82926500	2.18360300	-0.05272100
0	-1.31920500	5.24459000	-0.35012200
С	-4.40010300	-1.65613900	-2.26440200
0	-5.61114600	-1.70973500	-2.60689300
0	-3.40721700	-1.37779100	-2.98254300
Н	6.40521800	0.37604300	-2.38428600
Н	6.90893900	-1.24241900	-1.86398300
Н	6.03366800	-0.88060600	0.38397800
Н	6.57745300	0.75830900	0.00456200
Н	3.49458700	0.77725400	-2.15745600
Н	4.58209400	-1.02740300	-3.26212400
Н	4.60078800	-2.02962400	-1.80418000
Н	3.28011300	-1.48371200	0.51914500
Н	-0.23689000	-1.51391200	-0.62949600
Н	-1.16485600	-4.97441600	1.77230300
Н	2.85928700	-3.49938800	1.64602300
Н	3.11519100	2.81882300	-1.46904300
Н	0.93308200	3.93247400	-1.60713200
Н	-0.06273000	2.51147100	2.31640500
Н	2.14765100	1.41117500	2.47674700
Н	-2.90945500	-3.97949900	0.38700500
Н	-4.64026600	-2.98597100	-0.59408100

Н	-5.88049700	-0.83402300	-0.31143300
Н	-5.14292800	-1.52433800	1.12751500
Н	-3.43326100	0.67846000	-1.46537700
Н	-4.79295400	0.19138800	2.59768700
Н	-3.59973100	2.27398600	3.27786900
Н	-0.46676900	5.66955300	-0.18617900
Total energy: -4	4977666.80 kJ mol ⁻¹		

cis-L-11 + D-DOPA:

С	6.33417500	-1.82199800	-1.76547400
С	6.20031300	-1.26852600	-0.34423400
Ν	4.91245000	-0.53891400	-0.37187200
С	4.12689100	-0.85061400	-1.58072600
С	4.87972500	-2.06212100	-2.18737600
С	2.64026200	-1.17476200	-1.37802100
0	1.84306700	-0.93011000	-2.27881600
Ν	2.32690200	-1.79952800	-0.20148300
С	1.05500600	-2.12708700	0.30972800
С	-0.13967800	-1.85131600	-0.37230600
С	-1.37550600	-2.12461000	0.22984600
С	-1.43163700	-2.71254300	1.50268200
С	-0.23524700	-3.00598000	2.13442000
С	1.00669600	-2.72552400	1.57792200
F	-0.26501300	-3.58566500	3.35789400
С	-2.60185900	-1.72738300	-0.49109000
С	4.65805000	0.38499700	0.61225200
0	5.42425300	0.47585400	1.58013800
С	3.42296200	1.23515400	0.54515400
Ν	-3.74702500	-1.66758600	0.06815000
С	-4.86341900	-1.19121700	-0.72709500
С	-5.26984800	0.23300800	-0.24746200
0	-0.93837800	3.83835500	-0.73136300
0	-1.38219900	2.89529500	1.40815800
С	-3.34579100	1.59900200	0.68926000
С	-4.17870600	1.27090100	-0.40657000
С	-3.93045500	1.86426700	-1.64889300
С	-2.85594800	2.75744100	-1.84537100
С	-2.03020900	3.04287900	-0.76745700
С	-2.28645000	2.47613600	0.50097200
С	3.01261900	1.95000600	-0.58922700
С	1.85966400	2.73883000	-0.54506400
С	1.06156700	2.84060100	0.60746400

С	1.51124300	2.13421500	1.74115200	
С	2.67058300	1.36384400	1.72449600	
В	-0.32141600	3.70796000	0.65168600	
0	-0.15971400	5.02600900	1.22825400	
С	-6.09668600	-2.15828800	-0.58710500	
Ο	-6.55089300	-2.60649800	-1.67244200	
0	-6.52241300	-2.36132700	0.57859100	
Н	6.79927500	-1.07524600	-2.41886500	
Н	6.94079100	-2.73082500	-1.80197100	
Н	6.16437600	-2.06901700	0.40527200	
Н	7.00342300	-0.58512000	-0.06070400	
Н	4.14572900	-0.02137000	-2.29313400	
Н	4.73323600	-2.11709200	-3.26852300	
Н	4.50570800	-2.99307000	-1.74521600	
Н	3.10000700	-1.92963000	0.44039500	
Н	-0.10015800	-1.39658200	-1.35188700	
Н	-2.38225100	-2.92566400	1.97697600	
Н	1.90975600	-2.96412100	2.13082200	
Н	-2.45192800	-1.44067500	-1.54348600	
Н	-4.59513600	-1.13274900	-1.79415100	
Н	-5.58056400	0.14835400	0.79902400	
Н	-6.15658300	0.52063800	-0.82848300	
Н	-3.51878500	1.15126300	1.66504800	
Н	-4.57258200	1.61916600	-2.49296600	
Н	-2.66986200	3.20347000	-2.81946900	
Н	3.59790200	1.91142800	-1.50358500	
Н	1.55930600	3.27492700	-1.44285200	
Н	0.92523100	2.17595800	2.65738200	
Н	2.99618900	0.83469600	2.61601900	
Н	0.69314600	5.07813100	1.67990000	
Total energy: -4977681.91 kJ mol ⁻¹				

cis-L-11 + L-DOPA:

С	6.18595100	-1.52162800	-1.95692700
С	6.12798900	-0.90402800	-0.55701300
Ν	4.80307700	-0.24553700	-0.51995900
С	3.94621900	-0.66162100	-1.64614900
С	4.71967600	-1.85994000	-2.25282400
С	2.50046300	-1.05334300	-1.30800700
0	1.61902000	-0.88452000	-2.14530800
Ν	2.31926900	-1.64941000	-0.08987200
С	1.11778600	-2.08713900	0.50512300

С	-0.14787700	-1.80781600	-0.03253700
С	-1.30895800	-2.22962800	0.62955200
С	-1.21617300	-2.94939200	1.83076500
С	0.04557400	-3.21741500	2.33213800
С	1.21626000	-2.80521000	1.70601500
F	0.15827200	-3.91138000	3.49050800
С	-2.61525800	-1.86875700	0.03551800
С	4.56914000	0.71680800	0.43128300
0	5.39461400	0.90174600	1.33481300
С	3.28572100	1.49390400	0.40458400
Ν	-3.72460400	-2.16800500	0.59431800
С	-4.96118700	-1.70506000	-0.02637300
С	-5.30339900	-0.25055400	0.43437200
0	-1.34542200	3.62196100	-0.73928500
0	-1.54807400	2.85765000	1.50549200
С	-3.42028200	1.32448000	1.06072100
С	-4.29638900	0.82049400	0.07030100
С	-4.19371300	1.30850300	-1.23829700
С	-3.22193200	2.26563800	-1.59743500
С	-2.35317700	2.72915600	-0.61842800
С	-2.46526000	2.26940000	0.71151700
С	2.77031700	2.12737600	-0.73522900
С	1.56847800	2.83654300	-0.66307100
С	0.82425500	2.93481600	0.52525100
С	1.38302100	2.32053000	1.66393900
С	2.59126800	1.63052900	1.61764000
В	-0.62527700	3.68284500	0.59956500
0	-0.54930100	5.05954600	1.04193400
С	-5.12145200	-1.86602200	-1.59134400
0	-6.21856100	-1.42899400	-2.03602100
0	-4.20890300	-2.43644800	-2.23875600
Н	6.55755800	-0.78548100	-2.67864900
Н	6.83876600	-2.39765100	-1.99814700
Н	6.19376200	-1.66587600	0.22988100
Н	6.91018600	-0.16556000	-0.36903000
Н	3.86168300	0.12909400	-2.39630600
Н	4.49623400	-1.97706200	-3.31572300
Н	4.43449800	-2.78667500	-1.74126200
Н	3.15005000	-1.73568900	0.48369100
Н	-0.22362300	-1.25496300	-0.95809800
Н	-2.10911900	-3.27746400	2.34983800
Н	2.17681600	-3.04287000	2.15190100
Н	-2.55732400	-1.33048600	-0.91234900
Н	-5.76576500	-2.32516400	0.39717700

Н	-6.27770200	-0.03565200	-0.01451300
Н	-5.43532900	-0.26124100	1.52373200
Н	-3.48484400	0.96652600	2.08601800
Н	-4.87137200	0.92366000	-1.99530600
Н	-3.14755300	2.62925000	-2.61974800
Н	3.30862600	2.08302500	-1.67778900
Н	1.18398300	3.30443000	-1.56692400
Н	0.84153800	2.36472500	2.60685300
Н	2.99811100	1.16608100	2.51196900
Н	0.32921100	5.23263200	1.40551600

Total energy: -4977674.81 kJ mol⁻¹