Ni (II)-catalyzed vinylic C-H functionalization of 2-acetamido-3arylacrylates to access isotetronic acids
 Biswajit Roy, Eshani Das, Avijit Roy and Dipakranjan Mal*
 Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
 b.roy.iitb2013@gmail.com ; daseshani69@gmail.com, iamavijitroy95@gmail.com; dipak.mal@gmail.com

Supporting Information

Table of Contents

Contents	Page Number
1. General experimental details:	S3
2. General procedure (GP-1) for the synthesis of acetamidoacrylates (10a-10x):	S4
2.1. Experimental Details and Yield of the known amidoacrylates (10, 13, 14, 15):	S4 - S7
3. Optimization Table S1:	S8
4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of amidoacrylates:	S9 - S22
5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of isotetronic acids:	S23-S45
6. ORTEP diagram and crystal data:	S51
6. A plausible mechanistic pathway for 11a:	S53
7. References:	

1. General experimental details:

Addition of all the reagents and solvents were performed under air for GP-I and GP-II. Glassware used in the reactions was thoroughly oven-dried. All commercial grade reagents were used without further purification and solvents were dried prior to use following standard protocol. Reactions were monitored by thin layer chromatography (TLC) using Merck silica gel 60 F254 pre-coated plates (0.25 mm) and the spots were visualized by exposure to UV light and/or by dipping into KMnO_{4} solution. Silica gel of particle size 230-400 mesh and petroleum ether/ethyl acetate as eluent were used for column chromatographic purification. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for all the compounds were recorded at $400 / 600$ and $100 / 150 \mathrm{MHz}$ (BrukerUltrashield ${ }^{T M} 400$, Ascend ${ }^{T M} 600$), respectively. The spectra were recorded in deuterochloroform $\left(\mathrm{CDCl}_{3}\right)$ and deuterated dimethyl sulfoxide (DMSO- d_{6}) as solvent at room temperature. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as internal standard $\left(\mathrm{CDCl}_{3}: \delta_{H}=7.26, \delta_{C}=77.16 \mathrm{ppm}\right.$ and DMSO- $d_{6}: \delta_{H}=2.5, \delta_{C}=39.52$ ppm). Data for ${ }^{1} \mathrm{H}$ NMR are reported as follows: chemical shift ($\delta \mathrm{ppm}$), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet of doublet q : quartet, dt : doublet of triplets, br: broad.), coupling constant (Hz), integration. Data for ${ }^{13} \mathrm{C}$ NMR are reported as chemical shift. HRMS spectra using ESI (+ ve) 70 eV for amidoacrylates and 10 eV , were recorded for isotetronic acid derivatives on an ESI-FTMS mass spectrometer.

2. General procedure (GP-1) for the synthesis of acetamidoacrylates (10a-10x):

To a suspension of N-acetylglycine (1 equiv) in dry benzene ($5 \mathrm{~mL} / \mathrm{mmol}$) containing $\mathrm{Et}_{3} \mathrm{~N}$ (1.5 equiv), ethyl chloroformate (1.1 equiv) was added at $0^{\circ} \mathrm{C}$ and the mixture was stirred at room temperature until the N-acetylglycine crystals disappeared and triethylamine hydrochloride separated. The aldehyde (0.5 equiv) was added to the mixture and heated under reflux at $80^{\circ} \mathrm{C}$ for $2 \mathrm{~h} .{ }^{1}$ After cooling to room temperature, triethylamine hydrochloride was removed by suction filtration and washed twice with dry benzene. The combined solution was concentrated and dried under reduced pressure. The residue was then dissolved in methanol (HPLC grade, $5 \mathrm{~mL} / \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}$ (1.5 equiv) was added and refluxed at $65{ }^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was allowed to cool to room temperature and the solvent was evaporated under reduced pressure. ${ }^{2,3}$ Purification of the residue by silica gel flash column chromatography using EtOAc/Hexanes as eluent or trituration afforded the desired acetamidoacrylates (10a-10x).

2.1. Experimental Details and Yield of the known amidoacrylates (10, 13, 14, 15):

All the starting materials has been synthesized by following literarure known procedure. ${ }^{1-4}$ Spectral data were in complete agreement with reported values. ${ }^{1-4}$ Yield of the individual compounds are given below.

(Z)-methyl 2-acetamido-3-phenylacrylate (10a): ${ }^{2}$

The titled compound 10a was synthesized from benzaldehyde ($5 \mathrm{~g}, 47.17 \mathrm{mmol}$) according to GP-1. The crude product was dissolved in acetone and triturated with hexane. The mixture was filtered and dried in vacuo. The pure product was obtained as a white solid ($8.057 \mathrm{~g}, 36.8 \mathrm{mmol}$, yield $=78 \%$). ${ }^{1} \mathrm{H}$ NMR (600 MHz, CDCl ${ }_{3}$) $\delta 7.47-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H})$.

(Z)-methyl 2-acetamido-3-(2-methoxyphenyl)acrylate (10b): ${ }^{2}$

The titled compound 10b was synthesized from 2-anisaldehyde ($500 \mathrm{mg}, 3.67 \mathrm{mmol}$) according to GP1. The crude product was dissolved in CHCl_{3} and triturated with hexane. The mixture was filtered and dried in vacuo. The pure product was obtained as a white solid ($641 \mathrm{mg}, 2.57 \mathrm{mmol}$, yield $=70 \%$). ${ }^{1} \mathrm{H}$ NMR (600 MHz, CDCl ${ }_{3}$) $\delta 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.37(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.98(\mathrm{~m}, 2 \mathrm{H}), 3.90$ (s, 3H), $3.85(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H})$.
(Z)-methyl 2-acetamido-3-(3-methoxyphenyl)acrylate (10c): ${ }^{2}$

The titled compound 10c was synthesized from 3 -anisaldehyde ($500 \mathrm{~g}, 3.67 \mathrm{mmol}$) according to GP-1. The crude product was dissolved in CHCl_{3} and triturated with hexane. The mixture was filtered and dried in vacuo. The pure product was obtained as a white solid (622 mg 2.5 mmol , yield $=68 \%$). ${ }^{1} \mathrm{H}$

NMR (400 MHz, CDCl $\left.)_{3}\right) \delta 7.23-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.09-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, 3.76 (s, 3H), 2.07 (s, 3H).
(Z)-methyl 2-acetamido-3-(4-methoxyphenyl)acrylate (10d):3a

The titled compound 10d was synthesized from 4 -anisaldehyde ($5 \mathrm{~g}, 47.17 \mathrm{mmol}$) by following the previous reports from our group. ${ }^{3 a}$ The crude product was dissolved in CHCl_{3} and triturated with hexane. The mixture was filtered and dried in vacuo. The pure product was obtained as a white solid ($638 \mathrm{mg}, 2.57 \mathrm{mmol}$, yield $=70 \%$).

(Z)-methyl 2-acetamido-3-(2-bromophenyl)acrylate (10e):2

The titled compound 10e was synthesized from 2-bromobenzaldehyde ($500 \mathrm{mg}, 2.7 \mathrm{mmol}$) according to GP-1. The crude product was dissolved in acetone and triturated with hexane. The mixture was filtered and dried in vacuo. The pure product was obtained as a white solid ($658 \mathrm{mg}, 2.21 \mathrm{mmol}$, yield $=82 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 2 \mathrm{H}), 7.27(\mathrm{dd}, J=9.3,5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.16(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H})$.
(Z)-methyl 2-acetamido-3-(4-bromophenyl)acrylate (10f): ${ }^{\text {3b }}$

The titled compound 10 f was synthesized from 4-bromobenzaldehyde ($500 \mathrm{mg}, 2.7 \mathrm{mmol}$) according to the literature known procedure. ${ }^{3 b}$ The crude product was dissolved in acetone and triturated with hexane. The mixture was filtered and dried in vacuo. The pure product was obtained as a white solid ($640 \mathrm{~g}, 2.16 \mathrm{mmol}$, yield $=80 \%$).
(Z)-methyl 2-acetamido-3-(4-fluorophenyl)acrylate (10g): ${ }^{2}$

The titled compound 10 g was synthesized from 4-fluorobenzaldehyde ($430 \mathrm{mg}, 3.467 \mathrm{mmol}$) according to GP-1. The crude product was dissolved in acetone and triturated with hexane. The mixture was filtered and dried in vacuo. The pure product was obtained as a white solid ($583 \mathrm{mg}, 2.46$ mmol, yield $=71 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H})$.

(Z)-methyl 2-acetamido-3-(4-chlorophenyl)acrylate (10h):3b

The titled compound 10h was synthesized from 4-chlorobenzaldehyde ($500 \mathrm{mg}, 3.57 \mathrm{mmol}$) according to GP-1. Purification was done by flash column chromatography using 25% ethyl acetate in hexane as eluent to afford white solid product ($657 \mathrm{mg}, 2.6 \mathrm{mmol}$, yield $=73 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41$ - 7.27 (m, 5H), 3.82 (s, 3H), 2.09 (s, 3H).
(Z)-methyl 2-acetamido-3-(o-tolyl)acrylate (10j):4a

The titled compound 10j was synthesized by following literature known procedure. ${ }^{4 \mathrm{a}}$. Purification was done by flash column chromatography using 25% ethyl acetate in hexane as eluent to afford white solid product ($677 \mathrm{mg}, 2.91 \mathrm{mmol}$, yield $=70 \%$).
(Z)-methyl 2-acetamido-3-(p-tolyl)acrylate (10k): ${ }^{2}$

The titled compound 10k was synthesized from p-tolualdehyde ($500 \mathrm{mg}, 4.16 \mathrm{mmol}$) according to GP1. Purification was done by flash column chromatography using 25% ethyl acetate in hexane as eluent to afford white solid product ($631 \mathrm{mg}, 2.70 \mathrm{mmol}$, yield $=65 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-$ $7.36(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.06(\mathrm{~m}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H})$.
(Z)-methyl 2-acetamido-3-(3-nitrophenyl)acrylate (10q):3a

The titled compound 10 q was synthesized from 3 -nitrobenzaldehyde ($500 \mathrm{mg}, 3.31 \mathrm{mmol}$) by following the previous reports from our group. ${ }^{3 a}$ Purification was done by flash column chromatography using 30% ethyl acetate in hexane as eluent to afford yellowish white solid product ($524 \mathrm{mg}, 1.986 \mathrm{mmol}$, yield $=60 \%$).
(Z)-methyl 2-acetamido-3-(4-nitrophenyl)acrylate (10r):3b

The titled compound $10 r$ was synthesized from 4-nitrobenzaldehyde ($500 \mathrm{mg}, 3.31 \mathrm{mmol}$) according to the literature known procedure. ${ }^{3 b}$ Purification was done by flash column chromatography using 30% ethyl acetate in hexane as eluent to afford yellowish white solid product ($585 \mathrm{mg}, 2.21 \mathrm{mmol}$, yield $=67 \%)$.

4-(4-hydroxy-5-oxo-2,5-dihydrofuran-3-yl)benzonitrile (10t):4b

The titled compound 10t was synthesized from 4-Cyanobenzaldehyde ($500 \mathrm{mg}, 3.81 \mathrm{mmol}$) according to GP-1. Purification was done by flash column chromatography using 30% ethyl acetate in hexane as eluent to afford yellowish white solid product ($680 \mathrm{mg}, 2.78 \mathrm{mmol}$, yield $=73 \%$).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 9.83$ ($\left.\mathrm{s}, 1 \mathrm{H}\right), 7.86(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H})$, 3.72 (s, 3H), 2.00 (s, 3H).
(Z)-methyl 2-acetamido-3-(pyridin-4-yl)acrylate (10u):4c

The titled compound 10 u was synthesized from 4-Pyridinecarboxaldehyde ($532 \mathrm{mg}, 4.97 \mathrm{mmol}$) according to GP-1. The crude product was dissolved in acetone and triturated with hexane. The mixture was filtered and dried in vacuo. The pure product was obtained as a white solid ($690 \mathrm{mg}, 3.13$ mmol, yield = 63\%). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 9.85(\mathrm{~s}, 1 \mathrm{H}), 8.62(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.53 (d, J = 5.6 Hz, 2H), 7.05 (s, 1H), 3.74 (s, 3H), 2.02 (s, 3H).
(Z)-methyl 2-acetamidobut-2-enoate (10v):3a

The titled compound 10 v was synthesized from L-threonine ($960 \mathrm{mg}, 8.05 \mathrm{mmol}$) by following the previous reports from our group. ${ }^{3 a}$ Purification was done by flash column chromatography using 15\% ethyl acetate in hexane as eluent to afford brown gummy product ($606 \mathrm{mg}, 3.864 \mathrm{mmol}$, yield $=48 \%$).

(2Z,4E)-methyl 2-acetamido-5-phenylpenta-2,4-dienoate (10w):4d

The titled compound 10 w was synthesized from Cinnamaldehyde ($650 \mathrm{mg}, 4.92 \mathrm{mmol}$) according to GP-1. The crude product was dissolved in acetone and triturated with hexane. The mixture was filtered
and dried in vacuo. The pure product was obtained as a white solid ($470 \mathrm{mg}, 1.92 \mathrm{mmol}$, yield $=39 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 2 \mathrm{H}), 3.83$ (s, 3H), 2.22 (s, 3H).
(Z)-methyl 2-benzamido-3-phenylacrylate (13a): 4e

The titled compound 13a was synthesized from benzaldehyde ($2 \mathrm{~g}, 18.86 \mathrm{mmol}$) and Hippuric acid (instead of N -acetylglycine) according to GP-1. The crude product was dissolved in acetone and triturated with hexane. The mixture was filtered and dried in vacuo. The pure product was obtained as a white solid ($4.56 \mathrm{~g}, 16.22 \mathrm{mmol}$, yield $=86 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.75$ $(\mathrm{s}, 1 \mathrm{H}), 7.56-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.44(\mathrm{~m}, 5 \mathrm{H}), 7.32-7.37(\mathrm{~m}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H})$.
(Z)-methyl 2-benzamido-3-(4-methoxyphenyl)acrylate (13b):4e

The titled compound 13b was synthesized from 2-anisaldehyde ($545 \mathrm{mg}, 4 \mathrm{mmol}$) and Hippuric acid (instead of N -acetylglycine) according to GP-1. The crude product was dissolved in acetone and triturated with hexane. The mixture was filtered and dried in vacuo. The pure product was obtained as a white solid (1g, 3.28 mmol , yield $=82 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~s}$, $1 \mathrm{H}), 7.56-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.50(\mathrm{~m}, 5 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$.
(Z)-methyl 2-(N-methylacetamido)-3-phenylacrylate (14):4f The titled compound 14 was synthesized from methyl 2-(N-methylacetamido)acrylate ($320 \mathrm{mg}, 2 \mathrm{mmol}$) by following literature known procedure. ${ }^{4 \mathrm{f}}$ The pure product was obtained as a semisolid ($246 \mathrm{mg}, 1.06 \mathrm{mmol}$, yield $=48 \%$).

(Z)-2-acetamido-3-phenylacrylic acid (15):48

The titled compound 15 was synthesized from benzaldehyde ($500 \mathrm{mg}, 4.72 \mathrm{mmol}$) by following literature known procedure. ${ }^{4 \mathrm{~g}}$ The pure product was obtained as a white solid ($696 \mathrm{mg}, 3.39 \mathrm{mmol}$, yield $=72 \%$).
3. Table S1: optimization of reaction

${ }^{\text {a }} 100$ wt \% molecular sieve dust was used entries 17 to 30 except 23 . bYield was determined after column chromatographic purification. ${ }^{\text {cAll }}$ the compounds were added under nitrogen atmosphere. ${ }^{\text {d }}$ All the compounds were added under air. ${ }^{\mathrm{e}}(1 \mathrm{~mL} / 1 \mathrm{~mL}) \mathrm{CH}_{2} \mathrm{Br}_{2} / \mathrm{H}_{2} \mathrm{O}$ was added as solvent. ${ }^{\mathrm{f}}(1 \mathrm{~mL} / 1 \mathrm{~mL}) \mathrm{CH}_{2} \mathrm{Br}_{2} / \mathrm{CH}_{3} \mathrm{CN}$ was added as
solvent. $\mathrm{g}(1 \mathrm{~mL} / 1 \mathrm{~mL}) \mathrm{CH}_{2} \mathrm{Br}_{2}$: dioxane was added as solvent. ${ }^{\mathrm{h}}(1 \mathrm{~mL} / 1 \mathrm{~mL}) \mathrm{CH}_{2} \mathrm{Br}_{2} / \mathrm{DMF}$ was added as solvent. iDCM (2 mL) was added as solvent. ${ }^{\mathrm{j}}(2 \mathrm{~mL} / 0.5 \mathrm{~mL}) \mathrm{CH}_{2} \mathrm{Br}_{2} / \mathrm{DMF}$ was added as solvent.

4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of amidoacrylates:

(

(

5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of isotetronic acids:

(

(
(DMSO-d

(
(

6. ORTEP diagram and crystal data

Fig. S1 ORTEP diagram of 9a with 50\% probability ellipsoids. (CCDC: 1872034)

Sample preparation: 3 mg of compound 9a dissolved in CHCl_{3} ($\sim 1 \mathrm{ml}$) followed by addition of 3-4 drops of HPLC hexane and the solution kept undisturbed until crystal growth.

Table S2 Crystal data and structure refinement for 9 a

Empirical formula
Formula weight
Crystal system
Space group
$a[A ̊]$
b[Å]
$\mathrm{C}_{40} \mathrm{H}_{32} \mathrm{O}_{12}$ 704.65 orthorhombic Fdd2
18.987(4)
25.021(6)

$c[\AA ̊]$	$7.0870(18)$
$\alpha\left[^{\circ}\right]$	90
$\beta\left[^{\circ}\right]$	90
$\gamma\left[^{\circ}\right]$	90
Volume[$\left.\AA^{3}\right]$	$3366.9(14)$
Z	4
Density (calculated) $\left[\mathrm{Mg} / \mathrm{m}^{3}\right]$	1.390
$F(000)$	1472
Goodness of fit ref	$\mathrm{R}_{1}=0.0466, \mathrm{wR}_{2}=0.1106$

Fig. S2 ORTEP diagram of $9 \mathbf{k}$ with 50% probability ellipsoids. (CCDC: 1872059)

Sample preparation: 2 mg of compound $9 \mathbf{k}$ dissolved in acetone (${ }^{\sim} 1 \mathrm{ml}$) followed by addition of 3-4 drops of HPLC hexane and then the solution kept undisturbed until crystal growth.

Table S3 Crystal data and structure refinement for $\mathbf{9 k}$

Empirical formula	$\mathrm{C}_{44} \mathrm{H}_{40} \mathrm{O}_{12}$
Formula weight	760.76
Crystal system	monoclinic
Space group	$P 21$
$\mathrm{a}[A ̊]$	$7.570(2)$
$\mathrm{b}[\AA \AA]$	$9.753(2)$
$\mathrm{c}[\AA \AA]$	$13.656(3)$
$\alpha\left[{ }^{\circ}\right]$	$90.00(3)$
$\beta\left[^{\circ}\right]$	$102.23(3)$
$\gamma\left[{ }^{\circ}\right]$	$90.00(3)$
Volume[$\left.{ }^{\circ}{ }^{3}\right]$	$985.4(4)$
Z	4
Density (calculated) $\left[\mathrm{Mg} / \mathrm{m}^{3}\right]$	1.282
$\mathrm{~F}(000)$	400
Goodness of fit ref	0.946
final R indices $[I>2 \sigma(I)]$	$\mathrm{R}_{1}=0.0568, \mathrm{wR}_{2}=0.1306$

Fig. S3 ORTEP diagram of 9q with 50\% probability ellipsoids. (CCDC: 1872060)

Sample preparation: 3 mg of compound $9 \mathbf{q}$ dissolved in acetone ($\sim 1 \mathrm{ml}$) followed by addition of 3-4 drops of HPLC hexane and then the solution kept undisturbed until crystal growth.

Table S4 Crystal data and structure refinement for $\mathbf{9 q}$

Empirical formula	$\mathrm{C}_{80} \mathrm{H}_{56} \mathrm{~N}_{8} \mathrm{O}_{40}$
Formula weight	1769.32
Crystal system	monoclinic
Space group	$\mathrm{C} 2 / \mathrm{c}$
$\mathrm{a}[\AA \AA]$	$25.689(5)$

Fig. S4 ORTEP diagram of 9t with 50\% probability ellipsoids. (CCDC: 1872061)

Sample preparation: 3 mg of compound 9 t dissolved in acetone ($\sim 1 \mathrm{ml}$) followed by addition of 3-4 drops of HPLC hexane and then the solution kept undisturbed until crystal growth.

Table S5 Crystal data and structure refinement for $9 \mathbf{t}$

Empirical formula	$\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{6}$
Formula weight	402.35
Crystal system	triclinic
Space group	P-1
$a[A ̊]$	8.009
$\mathrm{b}\left[\AA{ }^{\text {] }}\right.$	9.607
c[Å]	13.044
$\alpha\left[{ }^{\circ}\right]$	94.77
$\beta\left[^{\circ}\right]$	105.91
$Y\left[{ }^{\circ}\right]$	108.25
Volume[${ }^{\text {a }}$]	900.8
Z	2
Density (calculated) [$\mathrm{Mg} / \mathrm{m}^{3}$]	1.483
F(000)	416
Goodness of fit ref	1.030
final R indices [$1>2 \sigma(\mathrm{l})$]	$\mathrm{R}_{1}=0.0748, \mathrm{wR}_{2}=0.1975$

6. A plausible mechanistic pathway for 11a:

A plausible mechanistic pathway for the formation of 5-methyl substituted isotetronic acid is shown below.

Scheme S1: A plausible mechanistic pathway for 11a.

The reaction mechanism of the formation of compound 11a is quite similar to compound $9 \mathbf{a}$, except in this case we got a rearranged product. Initially, heteroatom-guided electrophilic nikelation with acetamidoacrylate derivative (10a) gives rise to intermediate A, which then undergoes oxidative addition with 1,2-dichloroethane to form nickel(IV)-intermediate B. Then reductive elimination from $\mathrm{Ni}(\mathrm{IV})$-intermediate B furnish a primary chloro-derivative C. Dehydrohalogenation from intermediate C results an allyl substituted intermediate D. Next, D undergo hydration reaction by following Markovnikov's rule to form more stable secondary alcohol E where at the same time the imide moiety also get hydrolysed. Finally, lactonization followed by tautomerization gives isotetronic acid 11a.

7. References:

1. P. Kumar, H. D. Mishra, A. K. Mukerjee, Synthesis, 1980, 10, 836-839.
2. G.-H. Ouyang, Y.-M. He, Y. Li, J.-F. Xiang and Q.-H. Fan, Angew. Chem. Int. Ed., 2015, 54, 4334-4337. 3. (a) D. Mal, A. Jana, S. Ray, S. Bhattacharya, A. Patra, S. R. De, Synth. Commun., 2008, 38, 3937-3946;
(b) K. Xu, R. Yang, S. Yang, C. Jiang and Z. Ding, Org. Biomol. Chem., 2019, 17, 8977-8981
3. (a) T. Li, Y. Tsuda, K. Minoura, Y. In, T. Ishida, L. H. Lazarus and Y. Okada, Chem. Pharm. Bull., 2006, 54, 873-877; (b) C. E. Willans, J. M. C. A. Mulders, J. G. de Vries and A. H. M. de Vries, J. Organomet. Chem. 2003, 687, 494-497; (c) J. J. Bozell, C. E. Vogt and J. Gozum, J. Org. Chem., 1991, 56, 2584-2587; (d) M. Gao, J. Meng, H. Lv and X. Zhang, Angew. Chem. Int. Ed., 2014, 54, 1885-1887; (e) G.-D. Roiban, T. Soler, M. Contel, I. Grosu, C. Cativiela and E. P. Urriolabeitia, Synth. Commun., 2011, 42, 195-203; (f) A.-S. Carlström and T. Frejd, Synthesis, 1989, 6, 414-418; (g) B. S. Jursic, S. Sagiraju, D. K. Ancalade, T. Clark and E. D. Stevens, Synth. Commun., 2007, 37, 1709-1714.
