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1. 1H NMR spectrum of (L) in DMSO-d. Fig.S1.
2. 13C NMR spectrum of (L) in DMSO-dg. Fig. S2.
3. IH NMR spectrum of BCM in DMSO-ds, Fig.S3.
4, 13C NMR spectrum of BCM in DMSO-dg Fig. S4.
5. Mass spectrum of BCM. Fig. S5.
6. IR spectrum of BCM Fig. S6.
7. Mass spectrum of BCM-NO Fig. S7.
8. IH NMR spectrum of BCM-NO . Fig. S8
9. IR spectrum of BCM-NO Fig.S9
10. Mass spectrum of BCM-NO after long time (acid product) | Fig.510
IH NMR spectrum of BCM-NO after long time (acid
11. Fig. S11
product)

(a)Time-dependent fluorescence response and (b)

12. corresponding growth curve for [BCM] = 5.0 uM and [NO] Fig. S12.
5 uM at 15 °C.

13. Plot of log(kops) vs. log [NO]. Fig.S13.

14. Plot of log(kops) vs. log [BCM]. Fig.514

15. LOD of BCM + NO. Fig.S15

(a)Bar chart illustrating fluorescence response of BCM to
1e. different cations at 470 nm (A, = 410 nm) in HEPES buffer Fig.516
pH 7.0; BCM = 20 uM, X" = 50 uM. (b) spectral responses.
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18. (a)Bar chart illustrating fluorescence response of BCMto | (ig 518

different cations at 470 nm (A, = 410 nm) in HEPES buffer




pH 7.0; BCM = 20 uM, X™ = 50 uM. (b) spectral responses.

19.

Bar chart illustrating fluorescence response of BCM at 470
nm (Aex= 410 nm) towards NO in presence of different
anions in HEPES buffer pH 7.0; BCM = 20 uM, X™ =50 uM.

Fig.519

20.

Frontier molecular orbitals of BCM and BCM-NO in UV-vis
absorption.

Fig. S20.

21.

UV titration of BCM in presence of NO

Fig. S21.

22.

Some selected geometrical parameters (bond lengths and
bond angles) of BCM in ground state calculated at

B3LYP/6-31G (d) Levels.

Table S1.

23.

Some selected geometrical parameters (bond lengths and
bond angles) of BCM-NO in ground state calculated at
B3LYP/6-31G (d) Levels.

Table S2.

24.

Vertical excitation energy and oscillator strength (f.,) of
low-lying excited singlet states obtained from TDDFT//
B3LYP/6-31G(d,p) calculations of BCM which is matched

with the experimental one.

Table S3.

25.

Vertical excitation energy and oscillator strength (f..;) of
low-lying excited singlet states obtained from TDDFT//
B3LYP/6-31G(d,p) calculations of BCM-NO which is

matched with the experimental one.

Table S4.

26.

Comparison table of some nitric oxide probes

Table S5.
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Fig. S2. 13C NMR spectrum of (L!) in DMSO-ds
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Fig. S4. 3C NMR spectrum of BCM in DMSO-ds.
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Fig. S5. Mass spectrum of BCM.
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Fig. S6. IR spectra of BCM
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Fig. S8. 'H NMR spectrum of BCM-NO in MeCN (minimum DMSO-ds).
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Fig. S9. IR of BCM-NO.
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Fig. S12(a)Time-dependent fluorescence response and (b) corresponding growth curve for
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Fig. S16. (a)Bar chart illustrating fluorescence response of BCM to different cations at 470 nm
(Aex =410 nm) in HEPES buffer pH 7.0; BCM = 20 uM, M"* = 50 uM. (b)spectral responses.
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Fig. S17. Bar chart illustrating fluorescence response of BCM at 470 nm (Aex= 410 nm) towards
NO in presence of different cations in HEPES buffer pH 7.0; BCM = 20 uM, M"* = 50 uM.
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Fig. S18. (a)Bar chart illustrating fluorescence response of BCM to different anions at 470 nm
(Aex =410 nm) in HEPES buffer pH 7.0; BCM = 20 uM, X" = 50 uM. (b)spectral responses.
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Fig. S19. Bar chart illustrating fluorescence response of BCM at 470 nm (A¢x = 410 nm) towards
NO in presence of different anions in HEPES buffer pH 7.0; BCM = 20 uM, X" = 50 uM.
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Fig. S20. Frontier molecular orbitals of BCM and BCM-NO in UV-vis absorption.
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Fig. S21. UV response of BCM towards nitric oxide.

Table S1. Some selected geometrical parameters (bond lengths and bond angles) of BCM in
ground state calculated at B3LYP/6-31G (d,p) Levels.

Bond Lengths (A) Bond Angles (°)
021-C1 1.40 022-C1-C5 127.16
C1-022 1.20 C1-C5-C23 117.27
C5-C23 1.51 C5-C23-024 122.09
C23-024 1.21 024-C23-N25 125.47
C23-N25 1.38 C23-N25-N26 119.59

Table S2. Some selected geometrical parameters (bond lengths and bond angles) of BCM-NO in
ground state calculated at B3LYP/6-31G (d,p) Levels.



Bond Lengths (A) Bond Angles (°)
021-C1 1.40 021-C1-022 117.61
C1-022 1.20 022-C1-C5 127.89
C1-C5 1.46 C5-C23-024 122.79
C5-C23 1.45 C23-024-N25 104.10
C23-024 1.32 024-N25-N26 106.54
024-N25 1.43 N25-N26-N27 112.77
N25-N26 1.25 C23-N27-N26 104.42
N26-N27 1.36
N27-C23 1.31

Table S3. Vertical excitation energy and oscillator strength (f..) of low-lying excited singlet
states obtained from TDDFT// B3LYP/6-31G(d,p) calculations of BCM which is matched with the
experimental one.

Electronic Composition Excitation Oscillator al A (nM)
transition P energy strength (f..)) exp
HOMO->LUMO 3.499eV 0.69768
31
S0 =51 (66 ->67) (354.29nm) 0.3198 374

Table S4. Vertical excitation energy and oscillator strength (f.a) of low-lying excited singlet
states obtained from TDDFT// B3LYP/6-31G(d,p) calculations of BCM-NO which is matched with
the experimental one.

Electronic Composition Excitation Oscillator cl Aexo (NM)

transition P energy strength (f.,) P
HOMO-LUMO 3.043eV

So=>S; (68 ->69) (407.42nm) 0.4057 0.70177 386
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Table S5. Comparison table of some previously reported nitric oxide probes.




Physical Instrumentations. For analysis, the IR spectra of the compound within 400-4000 cm™ has been obtained
using IR 750 series-Il FTIR (Nickolet Magna) spectrophotometer on solid KBr discs. 'H and 3C NMR spectra were
recorded taking solvent DMSO-dg in a Bruker 300 MHz and 400 MHz instrument using trimethylsilane (6 =0) as an
internal standard. To record ESI-MS* (m/z) spectra the mass spectrometer having Model: QTOF Micro YA263 was used.
pH was maintained through-out the study using a digital pH meter (Model: Systronics 335, India) in the pH range 2-11
which was already calibrated using buffers of pH 4, 7 and 10. For all the fluorescence studies, a PTI (Model QM-40)
spectro-fluorimeter was used and UV-vis spectra were recorded on an Agilent 8453 Diode-array
spectrophotometer.

Kinetic Studies. We have performed the kinetic studies of NO detection maintaining the pseudofirst-order
conditions taking fixed 5 uM BCM (minor component) and varring the NO concentration in the range 20 uM and
100 uM at pH 7.0, at 15 °C. The rate of the reaction also depends on the [BCM] which is evaluated keeping NO (5
KUM) as minor component. The plot of logkeps vs. log[BCM] and logk,s vs. log[NO] shows about the first order and
second order dependency of reaction upon [BCM] and [NO] respectively.

Stock solution preparation for photophysical studies.The stock solution of the probe BCM was prepared in a 10
ml of volumetric flux of 1.0 x 103 M in minimum DMF adjusted with CH;CN. For Nitric Oxide solution preparation,
Nitric Oxide gas (purified previously by passing through solid NaOH pellets) was purged for 15 mins in a sealed vial
containing deoxygenated deionized water.5! This solution gives the NO concentration 1.74 x 103 M. For nitroxyl
(HNO), Angeli’s salt was taken.>? By adopting the reported literature, ‘OH and ONOO- solutions were prepared.s3
The solutions of different cations, anions and biological species were prepared in H,0. Throughout the
experiments, a 10.0 mM HEPES buffer was taken maintaining pH 7.0 and ionic strength at 0.10 M (NacCl). In this
work, 20 uM of the probe BCM, was added in a 2.5 ml of the 10.0 mM HEPES buffer upon which, nitric oxide
solution (~40 uM) was added incrementally in a regular time interval and the fluorescence spectra were recorded
in each case with slits 2 X 2 nm, A,=410 nm.

Calculation of Detection Limit (LOD).For the determination of analytical limit of detection, we have adapted the
30 method, narrated below:

LOD =3 x S4/S
Sq denotes the standard deviation obtained from the intercept of the plot of fluorescence intensity (F.l.) vs. [BCM]
where, S represents the slope found from the linear plot of F.I. vs [NO].

Computational Details.For theoretical investigation we have performed the computational data analysis by DFT
method>* which is incorporated with the conductor-like polarizable continuum model (CPCM).5557 In this study, the
Becke’s hybrid function®® with the Lee-Yang-Parr (LYP) correlation function®® are also utilized. To get the fully
optimized geometry of BCM and BCM-NO we have taken 6-31G(d,p) basis set and for electron density plots Gauss
View 5.1 software was used. The absorption spectra of both the compound were also calculated by TD-DFT
method using the 6-31G(d,p) basis set. All the related calculations were made applying Gaussian 09W software
package®'®and for the calculation of molecular orbital contributions we have used Gauss Sum 2.1 programe.***

Cell culture and Cytotoxicity Assay. Human cancer cell line A375 (malignant skin melanoma) and Raw 264.7
murine macrophages cells were grown in DMEM (Dulbecco's modified Eagle's) medium furnished with 10% FBS
and 1% antibiotic at 37 °C with 5% CO,°'2. We have investigated the cell viability of the probe BCM in A375 and



Raw 264.7 cells with the gradually incremented concentration (ranging from 10-100 uM/mL) of BCM for 24 h by
the MTT assay. 3

Cell Incubation, Imaging and Flow Cytometry Analysis. Cell imaging for exogenous and endogenous NO
monitoring were carried out by exploiting reported method 5'>53 with A375 and Raw 264.7 cells respectively.
Exogenously, A375 cells were incubated on a glass coverslip, followed by the treatment with DEA-NONOate (NO
donor, 2 uM, 5 uM and 10 uM) for 30 min. Then the coverslip was washed with 1X PBS for three times and
afterwards treated with BCM for 30 min. Endogenously, Raw 264.7 cells were co-stimulated with or without LPS
(1.0 mg/ mL) and IFN-y (1000 U/mL) for 6h and furthermore incubated with BCM (5 uM) for 30 min and with or
without NO scavenger PTIO (2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide). The cellular fluorescence
was accompanied only through NO generation which was assured by NO scavenger PTIO (2- Phenyl-4,4,5,5-
tetramethylimidazoline-1-oxyl-3-oxide) treatment. Then the live cell imaging by using fluorescence microscope
(Carl Zeiss, Germany) was furnished. Next, 1 x 10° Raw 264.7 cells were seeded in a T25 flask (BD Falcon)
maintaining 37 °C. Again the cells were incubated with our probe BCM for 30 min, afterwards, co-stimulated with
or without LPS and IFN-y for 6 h and also taking the NO scavenger PTIO (2-phenyl-4,4,5,5-tetramethylimidazoline-
1-oxyl 3- oxide) live cell images were collected. Nextly, treated and untreated control cells were washed with ice-
cold 1x PBS which was resuspended in 500 pL of binding buffer and the flow cytometric analysis was carried out
with FACS LSR (Becton Dickinson). The Flow cytometry analysis was performed by using Flowing Software, version
2.5.1.
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