Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

SUPPORTING INFORMATION

Synthesis of α-CF₃-substituted *E*-dehydroornithine derivatives *via* copper (I)-catalyzed hydroamination of allenes

Anna N. Philippova, Daria V. Vorobyeva, Florian Monnier and Sergey N. Osipov*

*To whom correspondence should be addressed. E-mail: osipov@ineos.ac.ru

Table of contents

1. Typical procedure for scale up synthesis	S1
2. 1H NMR and 13C NMR Spectra	

1. Scale up synthesis of 3a

A oven-dried 50 mL Schlenk tube equipped with a magnetic stirrer was charged with a dioxane (20 mL). Schlenk tube is placed into cool bath under vacuum then back-filled with argon. This procedure is repeated three times. Under a stream of argon, the amine (1.56 g, 17.9 mmol) was added, followed by the catalyst [Cu(CH₃CN)₄PF₆] (334 mg, 0.89 mmol), and the corresponding allene (2.0 g, 8.9 mmol). After the reaction mixture was stirred at 90 °C for 10 h. The reaction mixture was cooled to room temperature and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: dicloromethane/methanol = 30/1) to give 2.22 g (80% yield) of the analytically pure product.

1. ¹H and ¹³C NMR Spectra

 1 H NMR spectra of compound **3a** in (CD₃)₂CO

¹³C NMR spectra of compound **3a** in (CD₃)₂CO

¹H NMR spectra of compound **3b** in CDCl₃

 ^{13}C NMR spectra of compound **3b** in CDCl₃

¹H NMR spectra of compound 3c in CDCl₃

 ^{13}C NMR spectra of compound 3c in CDCl_3

 1 H NMR spectra of compound **3d** in CDCl₃

¹³C NMR spectra of compound **3d** in CDCl₃

¹H NMR spectra of compound 3e in CDCl₃

 ^{13}C NMR spectra of compound 3e in CDCl_3

 ^1H NMR spectra of compound 3f in CDCl_3

 ^{13}C NMR spectra of compound **3f** in CDCl₃

 ^1H NMR spectra of compound 3g in CDCl_3

 ^{13}C NMR spectra of compound 3g in CDCl_3

¹H NMR spectra of compound **3h** in $(CD_3)_2CO$

¹³C NMR spectra (*JMODECHO* mode) of compound **3h** in (CD₃)₂CO

¹H NMR spectra of compound **4a** in CDCl₃

¹³C NMR spectra (*JMODECHO* mode) of compound **4a** in CDCl₃

¹H NMR spectra of compound **4b** in CDCl₃

¹³C NMR spectra (*JMODECHO* mode) of compound **4b** in CDCl₃

¹H NMR spectra of compound 4c in CDCl₃

¹³C NMR spectra of compound **4c** in CDCl₃

 1 H NMR spectra of compound **4d** in (CD₃)₂CO

 13 C NMR spectra of compound **4d** in (CD₃)₂CO

 1 H NMR spectra of compound **4e** in (CD₃)₂CO

 ^{13}C NMR spectra of compound 4e in (CD₃)₂CO

 1 H NMR spectra of compound 5a in CDCl₃

 ^{13}C NMR spectra of compound 5**a** in CDCl₃

¹H NMR spectra of compound 5b in CDCl₃

 ^{13}C NMR spectra of compound 5b in CDCl_3