Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Divergent Synthesis of Okaramines C, J, L, and S-U

Xiao-Wan Li,^{‡a,c} Tong-Xu Si,^{‡b} Ya-Ping Liu,^b Ming-Zhong Wang,^{*a,b} and Albert S. C. Chan^c

^aSchool of Pharmaceutical Science, Shenzhen Technology University, Shenzhen 518118, China.

^bState Key Laboratory of Photochemistry and Plant Resources in West China, Kunming Institute of

Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.

^cSchool of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China.

*Corresponding Authors: mzwang2000@163.com, Tel.: +86-(0)755-23256206.

[‡]These authors contributed equally.

Table of Contents

General Experimental	S2
Preparation and Analytical Data of Compoun	ds 1-7, 8a, 8b, 9, 10a, 11
13, 14, 16-23	S 3
References	833
¹ H and ¹³ C NMR Spectra	S34

General information. Unless otherwise noted, commercially available reagents were used without further purification. All reactions were conducted in oven-dried or flame-dried glassware under a N₂ atmosphere, and at ambient temperature unless otherwise stated. All solvents were distilled prior to use: Benzene, tetrahydrofuran, and toluene were distilled from Na/benzophenone, DMF, dichloromethane, and triethylamine were distilled from CaH₂. All non-aqueous reactions were performed under an atmosphere of argon or nitrogen using oven-dried glassware and standard syringe in septa techniques. Concentration and evaporation under reduced pressure were performed at 10 - 400 mbar. Melting points were measured with a Stanford research system (OptiMelt-100). ¹H NMR spectra were recorded in CDCl₃ (unless stated otherwise) on a Bruker Avance 400 at 400 MHz (¹³C NMR spectra at 100 MHz). Chemical shifts are reported as δ values referenced to either a tetramethylsilane internal standard. Data for ¹H NMR are reported as follows: chemical shift (ppm), multiplicity (s = $\frac{1}{2}$ singlet, brs = broad singlet, d = doublet, t = triplet, q = quartet, m =multiplet), integration, coupling constant (Hz). Mass spectra were measured on an ABI Q-star Elite. The reaction progress was checked on pre-coated TLC plates. TLC was carried out using pre-coated sheets (Qingdao silica gel 60-G254, 0.2 mm) which, after development, were visualized under UV light at 254 nm. Flash column chromatography was performed using the indicated solvents on Qingdao silica gel 60 (200-300 mesh ASTM). Yields refer to chromatographically purified compounds, unless otherwise stated.

(2S,3aS,8aS)-1,8-Di-tert-butyl 2-methyl 3a-bromo-3,3adihydropyrrolo[2,3-b]indole-1,2,8(2H,8aH)-tricarboxylate (11).

NaBr aqueous solution (2.0 g, in 20.0 mL water) was added to a solution of cyclopropylazetoindoline **12**¹ (1.8 g, 4.0 mmol) in THF (20.0 mL) at 0 °C. The reaction mixture was allowed to warm up to 25 °C within 1 hour and stirred for 10 hours. Volatiles were removed in *vacuo*, the residue was extracted with CH₂Cl₂/H₂O (100.0 mL, 1:1). The organic phase was concentrated in *vacuo*. The residue was purified by flash chromatography (EtOAc: hexanes = 1:14) to produce **11** (2.0 g, 95% yield) as a colorless oil. $[\alpha]_{D}^{20} = +42.0$ (c 1.3, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.56 (brs, 1H), 7.33 – 7.26 (m, 2H), 7.04 (dd, J = 7.5, 1.5 Hz, 1H), 6.45 (s, 1H), 4.54 (d, J = 9.0 Hz, 1H), 3.27 (d, J = 13.0 Hz, 1H), 3.13 (s, 3H), 3.07 (dd, J = 13.0, 9.5 Hz, 1H), 1.60 (s, 9H), 1.47 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 170.7, 152.1 (2C), 142.5, 132.5, 130.6, 123.9 (2C), 118.1, 84.4, 82.1, 81.4, 60.4, 59.7, 52.0, 43.5, 28.3 (3C), 28.2 (3C); HRESIMS *m/z* 519.1095 [M+Na]⁺, calcd for C₂₂H₂₉BrN₂O₆Na, 519.1101. *1,8-Di-tert-butyl 2-methyl (2S,3aS,8aS)-3a-hydroxy-2,3,3a,8a-*

tetrahydropyrrolo[2,3-b]indole-1,2,8-tricarboxylate (13).

To a solution of **11** (3.6 g, 7.2 mmol) in a mixture solvent of CH₃CN (30.0 mL) and H₂O (10.0 mL) was added Ag₂SO₄ (4.5 g, 14.5 mmol), the mixture was stirred for 6 hours, and filtered through a short plug of silica gel. The filtrate was concentrated and extracted with EtOAc/H₂O (200.0 mL, 1:1). The residue was purified by column chromatography (EtOAc: hexanes = 1:3) to produce **13** as a colorless oil (2.8 g, 90%). $[\alpha]_D^{20} = +70.0$ (c 0.1, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.59 (brs, 1H), 7.32 – 7.26 (m, 2H), 7.03 (dd, J = 10.0, 10.0 Hz, 1H), 6.01 (s, 1H), 4.60 (t, J = 5.5 Hz, 1H), 3.36 (s, 1H), 3.17 (s, 3H), 2.73 (d, J = 7.0 Hz, 2H), 1.55 (s, 9H), 1.46 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 171.5, 152.6 (2C), 143.3, 132.0, 130.5, 123.6, 123.4, 117.3, 84.4, 81.9, 81.7, 60.5, 59.5, 51.9, 39.6, 28.4 (3C), 28.3 (3C); HRESIMS *m/z* 435.2123 [M+H]⁺, calcd for C₂₂H₃₁N₂O₇, 435.2126. *Methyl* (2S,3aS,8aS)-3a-((trimethylsilyl)oxy)-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole-2-carboxylate (14).

Iodotrimethylsilane (4.5 mL, 31.5 mmol) was added dropwise to a solution of 13 (3.6 g, 8.3 mmol) in acetonitrile (40.0 mL) at 0 °C under an argon atmosphere. After the addition, the mixture was stirred for 2 hours at 0 °C. When the starting material was consumed, which was monitored by TLC, N, N-Diisopropylethylamine (11.0 mL, 63.3 mmol) was introduced via a syringe at 0 °C. The cooling bath was removed and the reaction mixture was stirred for another 1 hour. Volatiles were removed in vacuo, and ice water (50.0 mL) was added to the residue. The aqueous solution was then extracted with EtOAc (50.0 mL x 3). The combined organic layers were concentrated in *vacuo*. The residue was purified by flash chromatography (EtOAc: hexanes = 1:1) to give the 14 as a white solid (2.0 g, 80%). $[\alpha]_{D}^{20}$ =+81.3 (c 0.1, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.20 (d, J = 7.0 Hz, 1H), 7.12 (dd, J = 7.0, 2.0 Hz, 1H), 6.80 – 6.72 (m, 1H), 6.60 (d, J = 8.0Hz, 1H), 4.88 (s, 1H), 4.01 (dd, J = 7.6, 4.8 Hz, 1H), 3.41 (s, 3H), 2.68 (dd, J = 13.2, 5.6 Hz, 1H), 2.55 (dd, J = 13.2, 5.6 Hz, 1H), -0.06 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 172.3, 148.1, 128.9, 128.5, 123.9, 117.5, 108.9, 89.0, 82.8, 58.0, 50.4, 43.1, 0.00 (3C); HRESIMS *m/z* 307.1472 [M+H]⁺, calcd for $C_{15}H_{23}N_2O_3Si$, 307.1472.

Methyl (2S, 3aS, 8aS)-3*a*-hydroxy-1,2,3,3*a*,8,8*a*-hexahydropyrrolo[2,3-

b]*indole-2-carboxylate* (9).

To a solution of 14 (2.3 g, 7.5 mmol) in 40.0 mL anhydrous THF under an argon atmosphere was added TBAF (1.0 mol/L, 11.0 mL) at 0 °C. After the addition, the mixture was kept stirred for 40 minutes at 0 °C and the reaction was then guenched by the addition of saturated ammonium chloride. Removal of THF under vacuum, the aqueous residue was extracted with EtOAc (50.0 mL x 3). The combined organic layers were concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc: hexanes = 1:1) to give 9(1.6 g, 90%)as a colorless oil. $[\alpha]_{D}^{20} = -103.6$ (c 1, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.26 (d, J = 8.0 Hz, 1H), 7.13 (dd, J = 8.0, 1.5 Hz, 1H), 6.79 (dd, J = 7.5, 1.5 Hz, 1H), 6.59 (d, J = 8.0 Hz, 1H), 4.84 (s, 1H), 4.55 (s, 2H), 4.02 (dd, J = 7.5, 5.5 Hz, 1H, 3.46 (s, 3H), 2.60 (dd, J = 13.0, 7.5 Hz, 1H), 2.50 (dd, J = 13.0, 5.5 Hz, 1H; ¹³C NMR (125 MHz, CDCl₃) δ 173.8, 149.1, 130.8, 130.2, 123.9, 119.5, 110.6, 88.9, 85.4, 59.7, 52.1, 42.4; HRESIMS m/z 235.1072 $[M+H]^+$, calcd for C₁₂H₁₅N₂O₃, 235.1077.

Methyl (2S,3aS,8aR)-1-((tert-butoxycarbonyl)-L-tryptophyl)-3a-hydroxy-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole-2-carboxylate (**8b**).

To a solution of the mixture of **9** (100.0 mg, 0.43 mmol) and **10b** (130.0 mg, 0.43 mmol) in 5.0 mL DMF was added HATU (246.0 mg, 0.65 mmol), HOAT (6.0 mg, 0.04 mmol) and DIPEA (0.45 mL, 2.6 mmol) at 0 °C. The cooling bath was removed, and the mixture was further stirred at 25 °C overnight. The reaction was quenched by the addition of H_2O (20.0 mL), and the aqueous layer was extracted with EtOAc (20.0 mL x 3). The combined organic layer was washed with brine and dried with Na₂SO₄, and the solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel (EtOAc: hexanes = 1:1) to afford **8b** as a light yellow oil (144.0 mg, 65%) $[\alpha]_{D}^{20} = +48.5$ (c 1, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃, major rotamer) δ 8.56 (s, 1H), 7.63 (d, J = 7.8 Hz, 1H), 7.35 (d, J = 8.0 Hz, 1H), 7.21 (dd, J = 8.0, 2.0 Hz, 1H), 7.17 - 7.10 (m, 1H),7.07-7.01 (m, 3H), 6.69 - 6.59 (m, 1H), 6.49 (d, J = 8.0 Hz, 1H), 5.60 (d, J = 8.4 Hz, 1H), 5.20 (s, 1H), 4.97 (s, 1H), 4.57 – 4.38 (m, 1H), 3.56 (d, J = 8.4 Hz, 1H), 3.35 - 3.21 (m, 1H), 3.19 (s, 1H), 3.04 (s, 3H), 2.31 (d, J = 12.4 Hz, 1H), 1.43 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 173.1, 170.0, 154.7, 150.1, 136.1, 130.9, 127.5, 127.3, 124.4, 123.3, 122.6, 120.0, 119.2, 118.8, 111.5, 110.4, 109.9, 84.7, 81.1, 79.7, 59.1, 52.7, 52.4, 52.0, 37.7,

28.4 (3C); HRESIMS m/z 543.2208 [M+Na]⁺, calcd for C₂₈H₃₂N₄O₆Na, 543.2214.

(3S,5aR,10bS,11aS)-3-((1H-indol-3-yl)methyl)-10b-Hydroxy-2,3,6,10b,11,11a-hexahydro-4H-pyrazino[1',2':1,5]pyrrolo[2,3-b]indole-1,4(5aH)-dione (**6**).

To a solution of **8b** (130.0 mg, 0.25 mmol) in anhydrous toluene (15.0 mL) was added SiO₂ (2.0 g), and the reaction mixture was heated with stirring at 110 °C for 5 hours. The reaction was filtered through a pad of Celite, which was washed with a mixture of CH₂Cl₂/MeOH (20.0 mL, 1:1). The solvents of the filtrate were evaporated. The residue was purified by column chromatography (EtOAc: hexanes = 3:2) to afford **6** (78.0 mg, 80%) as a colorless oil. $[\alpha]_{D}^{25} = +34.9$ (c 0.2, MeOH) (Literature², $[\alpha]_{D}^{25} = +16.6$ (c 0.25, MeOH)); ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.87 (s, 1H), 7.74 (s, 1H), 7.61 (d, J = 7.8 Hz, 1H), 7.33 (d, J = 8.0 Hz, 1H), 7.25 (s, 1H), 7.18 (dd, J = 7.6, 1.2 Hz, 1H), 7.06 (dd, J = 7.6, 1.2 Hz, 2H), 7.00 (dd, J = 7.6, 1.2 Hz, 1H), 6.73 – 6.63 (m, 2H), 6.55 (d, J = 7.8 Hz, 1H), 6.05 (s, 1H), 5.33 (d, J = 4.0 Hz, 1H), 4.66 (dd, J = 11.2, 6.8 Hz, 1H), 4.47 (t, J = 5.6 Hz, 1H), 3.35 (s, 1H), 3.06 (dd, J = 15.2, 6.4 Hz, 1H), 2.43 (dd, J = 13.2, 6.4

Hz, 1H), 1.82 (dd, J = 13.2, 11.2 Hz, 1H); ¹³C NMR (100 MHz, DMSO- d_6) δ 170.2, 168.1, 148.8, 136.4, 131.5, 129.4, 127.8, 124.6, 122.9, 121.4, 118.9, 118.7, 118.2, 111.7, 110.2, 110.0, 86.3, 84.4, 59.1, 55.5, 41.7, 25.1; HRESIMS *m*/*z* 389.1602 [M+H]⁺, calcd for C₂₂H₂₁N₄O₃, 389.1608.

1,8-Di-tert-butyl 2-methyl (2S,3aS,8aS)-3a-bromo-2,3,3a,8atetrahydropyrrolo[2,3-b]indole-1,2,8-tricarboxylate (**16**).

To a solution of **15** (6.7 g, 15.2 mmol) in AcOH (100.0 mL), NaBH₃CN (9.6 g, 0.15 mol) was added at 0 °C. Then, the mixture was stirred for 12 hours at 25°C, and the crude material was diluted with water/CH₂Cl₂ (1:1, 600.0 mL). Using 1 *N* aq. NaOH, the pH value of the mixture was adjusted to 12. The organic layer was separated and washed with brine (300.0 mL), and concentrated in *vacuo*. Purification by flash column chromatography (EtOAc: hexanes = 1:3) yield a mixture of **16a** and **16b** (1:1, 4.0 g, 60%). **16a**: $[\alpha]_{D}^{20} = +12.7$ (c 0.1, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.78 (dd, J = 7.6, 4.8 Hz, 2H), 7.62 (dd, J = 7.6, 5.2 Hz, 2H), 7.46 – 7.35 (m, 2H), 7.33 (dd, J = 7.2, 4.0 Hz, 2H), 7.06 (dd, J = 7.2, 1.2 Hz, 2H), 6.74 (dd, J = 7.6, 1.2 Hz, 1H), 6.65 (d, J = 7.6 Hz, 1H), 5.49 (d, J = 8.8 Hz, 1H), 4.49-4.45 (m, 3H), 4.24 (t, J = 6.8 Hz, 1H), 3.75 (s, 3H), 3.71 (d, J = 8.0 Hz, 1H), 3.38 – 3.20 (m, 2H), 2.27 – 1.87 (m, 2H); ¹³C NMR (100 MHz, CDCl₃)

δ 173.0, 156.1, 151.3, 143.9, 143.7, 141.4, 131.6, 127.9, 127.8 (2C), 127.1 (3C), 125.1 (2C), 123.7, 120.1, 120.0, 118.8, 109.7, 66.9, 53.0, 52.6, 52.5, 47.2, 38.7, 37.4; HRESIMS *m/z* 443.1967 [M+H]⁺, calcd for C₂₇H₂₇N₂O₄, 443.1965.

16b: $[\alpha]_{D}^{20} = -38.8$ (c 0.1, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 7.2 Hz, 2H), 7.62 (dd, J = 6.4, 1.2 Hz, 2H), 7.41 (dd, J = 7.2, 1.2 Hz, 2H), 7.36 – 7.29 (m, 2H), 7.17 (d, J = 7.2 Hz, 1H), 7.06 (dd, J = 7.6, 2.0 Hz, 1H), 6.76 (dd, J = 7.6, 2.0 Hz, 1H), 6.67 (d, J = 7.6 Hz, 1H), 5.56 (d, J = 8.8 Hz, 1H), 4.60 – 4.47 (m, 1H), 4.45 (d, J = 7.2 Hz, 2H), 4.24 (t, J = 7.2 Hz, 1H), 3.72 (s, 3H), 3.68 (d, J = 8.8 Hz, 1H), 3.39 – 3.30 (m, 1H), 3.26 – 3.13 (m, 1H), 2.33 (dd, J = 13.6, 6.0 Hz, 1H), 1.97 – 1.84 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 173.0, 156.0, 151.0, 143.9, 143.7, 141.4, 131.4, 128.0, 127.8 (2C), 127.1 (3C), 125.1 (2C), 124.3, 120.0 (2C), 119.0, 109.9, 67.0, 53.6, 52.7, 52.5, 47.2, 38.8, 37.3; HRESIMS *m*/z 443.1965 [M+H]⁺, calcd for C₂₇H₂₇N₂O₄, 443.1965.

Methyl (2S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-(1-(2methylbut-3-yn-2-yl)indolin-3-yl)propanoate (17).

To a 100.0 mL round bottom flask containing **16** (6.5 g, 14.7 mmol), 3-

chloro-3-methylbut-1-yne (3.3 mL, 29.4 mmol), and CuI (28.0 mg, 1.5 mmol) in anhydrous THF (60.0 mL) under an argon atmosphere, was added Et₃N (2.6 mL, 18.6 mmol) dropwise at 0 °C. After the addition, the mixture was stirred at 0 °C for 15 minutes. Then, the reaction was extracted with $EtOAc/H_2O$ (1:1, 200.0 mL), and the organic layer was concentrated under reduced pressure. The residue was purified by column chromatography (EtOAc: hexanes = 1:5) to give 17 (6.0 g, 80%) as a yellow oil. 17a: $[\alpha]_{D}^{20}$ = +10.6 (c 0.1, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.77 (dd, J = 7.6, 4.4 Hz, 2H), 7.65 - 7.58 (m, 2H), 7.40 (dd, J = 7.6, 4.4 Hz, 2H), 7.35 - 7.587.29 (m, 2H), 7.21 (d, J = 8.0 Hz, 1H), 7.14 - 7.06 (m, 1H), 7.03 (d, J = 7.2)Hz, 1H), 6.74 (dd, J = 7.2, 7.2 Hz, 1H), 5.37 (d, J = 8.8 Hz, 1H), 4.51 – 4.42 (m, 3H), 4.24 (t, J = 6.8 Hz, 1H), 3.75 (s, 3H), 3.62 (t, J = 8.0 Hz, 1H),3.21 (t, J = 7.2 Hz, 1H), 3.11 (t, J = 8.0 Hz, 1H), 2.39 (s, 1H), 2.08 (t, J = 4.0 Hz, 2H), 1.62 (s, 3H), 1.59 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.0, 156.2, 149.7, 143.9, 143.7, 141.4, 133.7, 127.8, 127.4 (2C), 127.1 (3C), 125.0 (2C), 123.2, 120.0 (2C), 118.4, 111.8, 87.3, 70.9, 67.1, 54.9, 52.6, 52.5, 50.9, 47.2, 37.1, 36.4, 27.7, 26.7; HRESIMS m/z 509.2434 $[M+H]^+$, calcd for C₃₂H₃₃N₂O₄, 509.2435.

17b: $[\alpha]_{D}^{20} = -26.1$ (c 0.15, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 7.6 Hz, 2H), 7.62 (dd, J = 6.4, 4.0 Hz, 2H), 7.40 (dd, J = 7.6, 4.0 Hz, 2H), 7.33 (dd, J = 7.6, 4.0 Hz, 2H), 7.22 (d, J = 8.0 Hz, 1H), 7.12 (dd, J = 8.0, 4.0 Hz, 2H), 6.77 (dd, J = 8.0, 7.6 Hz, 1H), 5.58 (d, J = 8.8 Hz, 1H),

4.53 (d, J = 7.6 Hz, 1H), 4.46 (d, J = 7.2 Hz, 2H), 4.25 (t, J = 7.2 Hz, 1H), 3.72 (s, 3H), 3.57 (t, J = 8.4 Hz, 1H), 3.23 (t, J = 7.2 Hz, 1H), 3.09 (t, J = 7.2 Hz, 1H), 2.39 (s, 1H), 2.36 – 2.26 (m, 1H), 2.00 – 1.86 (m, 1H), 1.59 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 173.0, 156.0, 149.5, 143.9, 143.7, 141.3, 133.4, 127.8 (2C), 127.5, 127.1 (3C), 125.1 (2C), 123.9, 120.0 (2C), 118.7, 111.9, 87.1, 71.0, 67.1, 55.5, 52.7, 52.5, 51.0, 47.2, 36.9, 36.6, 27.2, 27.1; HRESIMS *m*/*z* 509.2435 [M+H]⁺, calcd for C₃₂H₃₃N₂O₄, 509.2435. *Methyl* (2S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-(1-(2methylbut-3-en-2-yl)indolin-3-yl)propanoate (18).

To a solution of **17** (1.5 g, 3.0 mmol) in MeOH (80.0 mL) was added Lindlar catalyst (450.0 mg, wt 30%). The mixture was stirred under an atmosphere of H₂ until the starting material disappeared, the reaction mixture was filtered through a short plug of silica gel and concentrated under reduced pressure. The residue was purified by column chromatography (EtOAc: hexanes = 1:5) to yield the title compound **18** (1.1 g, 70.0%) as a yellow oil. **18a**: $[\alpha]_{D}^{20}$ = +11.6 (c 0.1, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.79 (dd, J = 7.6, 3.6 Hz, 2H), 7.63 (dd, J = 6.4, 1.2 Hz, 2H), 7.42 (dd, J = 7.6, 3.6 Hz, 2H), 7.37 – 7.28 (m, 2H), 7.07 – 6.94 S12 (m, 2H), 6.81 (d, J = 8.0 Hz, 1H), 6.67 (dd, J = 8.0, 7.2 Hz, 1H), 6.13 (dd, J = 17.6, 10.8 Hz, 1H), 5.46 (d, J = 8.8 Hz, 1H), 5.30 – 5.11 (m, 2H), 4.52 (dd, J = 9.2, 6.0 Hz, 1H), 4.47 (d, J = 6.8 Hz, 2H), 4.26 (t, J = 7.2 Hz, 1H), 3.77 (s, 3H), 3.71 - 3.57 (m, 1H), 3.19 (p, J = 7.6, 6.8 Hz, 2H), 2.18 - 2.05 (m, 2H), 1.36 (s, 3H), 1.35 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.1, 156.2, 150.4, 146.7, 143.9, 143.6, 141.3, 133.4, 127.8 (2C), 127.2, 127.1 (3C), 125.1 (2C), 123.1, 120.0 (2C), 117.3, 112.3, 111.4, 67.1, 57.2, 54.7, 52.6, 52.5, 47.2, 37.4, 36.4, 25.1, 23.2; HRESIMS *m*/*z* 511.2591 [M+H]⁺, calcd for C₃₂H₃₅N₂O₄, 511.2591.

18b: $[\alpha]_{D}^{20} = -26.1$ (c 0.1, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.78 (d, J = 7.5 Hz, 2H), 7.62 (dd, J = 7.5, 2.5 Hz, 2H), 7.49 – 7.38 (m, 2H), 7.36 – 7.29 (m, 2H), 7.09 (d, J = 7.5 Hz, 1H), 7.00 (dd, J = 8.0, 7.5 Hz, 1H), 6.82 (d, J = 8.0 Hz, 1H), 6.68 (dd J = 7.5, 2.5 Hz, 1H), 6.11 (dd, J = 17.5, 11.0 Hz, 1H), 5.66 (d, J = 8.0 Hz, 1H), 5.22 (d, J = 17.5 Hz, 1H), 5.13 (d, J = 11.0 Hz, 1H), 4.55 – 4.50 (m, 1H), 4.44 (t, J = 7.0 Hz, 2H), 4.25 (t, J = 7.0 Hz, 1H), 3.71 (s, 3H), 3.59 (t, J = 8.5 Hz, 1H), 3.23 (t, J = 7.0 Hz, 1H), 3.14 (s, 1H), 2.32 (dd, J = 13.5, 6.5 Hz, 1H), 2.05 – 1.92 (m, 1H), 1.32 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 173.0, 156.0, 150.2, 146.6, 143.9, 143.7, 141.3, 133.1, 127.7 (2C), 127.3, 127.1 (3C), 125.1 (2C), 123.9, 120.0 (2C), 117.6, 112.3, 111.7, 67.1, 57.3, 55.2, 52.6, 52.5, 47.2, 37.1, 36.6, 24.6, 23.5; HRESIMS *m*/*z* 511.25891 [M+H]⁺, calcd for C₃₂H₃₅N₂O₄, 511.2591.

Methyl (2S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-(7-(3-

methylbut-2-en-1-yl)indolin-3-yl)propanoate (19).

To a solution of 18 (1.0 g, 2.0 mmol) in a solvent of 50.0 mL anhydrous THF was added BF₃·Et₂O at 0 °C (2.5 mL, 20.0 mmol). After the addition, the cooling bath was removed and the mixture was stirred at room temperature for 40 hours. The reaction was guenched by addition of saturated sodium bicarbonate (30.0 mL), and the mixture was extracted with EtOAc (50.0 mL). The organic layers were concentrated in vacuum. The residue was purified by flash chromatography (EtOAc: Hexanes = 1:3) to produce **19** (0.60 g, 60.0%) as a colourless oil. **19a**: $[\alpha]_{D}^{20} = +11.8$ (c 0.1, CH_2Cl_2 ; ¹H NMR (500 MHz, CDCl₃) δ 7.77 (dd, J = 7.0, 7.0 Hz, 2H), 7.62 (dd, J = 7.0, 7.0 Hz, 2H), 7.40 (dd, J = 7.5, 7.0 Hz, 2H), 7.32 (dd, J = 7.0, 7.0 Hz, 2H), 7.0 Hz, 77.0 Hz, 2H), 6.95 (d, J = 7.5 Hz, 1H), 6.91 (d, J = 7.5 Hz, 1H), 6.71 (dd, J = 7.5, 2.5 Hz, 1H, 5.39 (d, J = 8.5 Hz, 1H), 5.26 (t, J = 7.5 Hz, 1H), 4.49 -4.44 (m, 3H), 4.24 (t, J = 7.0 Hz, 1H), 3.75 (s, 3H), 3.75 - 3.69 (m, 1H), 3.35 - 3.26 (m, 2H), 3.19 (d, J = 7.0 Hz, 2H), 2.10 (td, J = 8.5, 4.5 Hz, 2H), 1.77 (s, 3H), 1.75 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.1, 156.1, 149.6, 143.9, 143.7, 141.4, 133.3, 131.4, 127.8 (2C), 127.1 (3C), 125.1 (2C), 123.0, 121.7, 121.4, 120.0 (3C), 119.0, 67.0, 53.0, 52.6, 47.2, 38.9,

37.6, 30.4, 25.8 (2C), 17.9; HRESIMS *m/z* 511.2591 [M+H]⁺, calcd for C₃₂H₃₅N₂O₄, 511.2591.

19b: $[\alpha]_{D}^{20} = -41.7$ (c 0.1, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 7.6 Hz, 2H), 7.66 – 7.52 (m, 2H), 7.47 – 7.36 (m, 2H), 7.31 (dd, J = 7.6, 7.2 Hz, 2H), 7.03 (d, J = 7.2 Hz, 1H), 6.91 (d, J = 7.6 Hz, 1H), 6.72 (dd, J = 7.6, 7.2 Hz, 1H), 5.44 (d, J = 8.8 Hz, 1H), 5.25 (dd, J = 7.6, 7.2 Hz, 1H), 4.53 (t, J = 7.6 Hz, 1H), 4.44 (d, J = 7.2 Hz, 2H), 4.24 (t, J = 7.2 Hz, 1H), 3.73 (s, 3H), 3.73 – 3.68 (m, 1H), 3.38 (t, J = 7.6 Hz, 1H), 3.26 (d, J = 8.0 Hz, 1H), 3.19 (d, J = 7.2 Hz, 2H), 2.33 (dd, J = 13.2, 7.2 Hz, 1H), 1.93 (dt, J = 13.2, 7.8 Hz, 1H), 1.76 (s, 3H), 1.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.0, 155.9, 149.4, 143.9, 143.7, 141.3, 133.3, 131.1, 127.8, 127.7 (2C), 127.1 (3C), 125.1 (2C), 123.0, 121.9, 121.6, 120.0 (2C), 119.1, 67.0, 53.6, 52.7, 52.5, 47.2, 39.0, 37.5, 30.5, 25.8, 17.9; HRESIMS *m*/*z* 511.2582 [M+H]⁺, calcd for C₃₂H₃₅N₂O₄, 511.2591.

Methyl (S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-(7-(3methylbut-2-en-1-yl)-1H-indol-3-yl)propanoate (**20**).

To a solution of **19** (2.1 g, 4.1 mmol) in anhydrous toluene (30.0 mL) was added activated manganese (IV) oxide (3.6 g, 41.0 mmol). The mixture $_{S15}$

was kept refluxing for 4 hours, allowed to cool, and filtered through a short plug of silica gel. Concentration of the filtrate under reduced pressure was followed by column chromatography (EtOAc: hexanes = 1:3) to produce **20** as a light-yellow oil (1.7 g, 81.0%). $[\alpha]_{D}^{20} = +13.0$ (c 0.1, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.07 (s, 1H), 7.77 (d, J = 7.6 Hz, 2H), 7.56 (dd, J = 10.4, 7.6 Hz, 2H), 7.45 – 7.38 (m, 3H), 7.35 – 7.27 (m, 2H), 7.08 (dd, J = 10.4, 7.6 Hz, 1H), 7.02 (d, J = 7.2 Hz, 1H), 6.94 (d, J = 2.4 Hz, 1H),5.39 (dd, J = 10.4, 5.2 Hz, 2H), 4.75 (dt, J = 8.0, 5.2 Hz, 1H), 4.39 (qd, J = 10.4, 7.2 Hz, 2H), 4.21 (t, J = 7.2 Hz, 1H), 3.72 (s, 3H), 3.56 (d, J = 7.2 Hz, 2H), 3.34 (d, J = 5.2 Hz, 2H), 1.83 (s, 3H), 1.80 (s, 3H); 13 C NMR (100 MHz, CDCl₃) δ 172.4, 155.8, 143.9, 143.8, 141.3, 135.4, 133.4, 127.7 (2C), 127.6, 127.1 (3C), 125.2, 124.2, 122.6, 122.1, 121.9, 120.0 (3C), 116.6, 110.3, 100.0, 67.0, 54.6, 52.4, 47.2, 30.7, 28.0, 25.8, 18.0; HRESIMS m/z 509.2432 [M+H]^+ , calcd for C₃₂H₃₃N₂O₄, 509.2435.

(S)-2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)-3-(7-(3-methylbut-2en-1-yl)-1H-indol-3-yl)propanoic acid (10a).

To a solution of **20** (130.0 mg, 0.26 mmol) in a mixture solvent of *i*-PrOH (6.0 mL), THF (2.0 mL) and H₂O (2.0 mL) was added LiOH (28.0 mg, 1.2 $_{S16}^{S16}$

mmol) and CaCl₂ (450.0 mg, 4.0 mmol). After the addition, the mixture was stirred for 10 hours at 25 °C. Removal of the organic solvent under vacuum, the residue was extracted with H_2O/CH_2Cl_2 (200 mL, 1:1), and the aqueous layer was acidified with KHSO₄ (pH < 2) and extracted with EtOAc (50.0 mL x 3). The organic layer was combined and concentrated to give **10a** (88.0 mg, 70.0%) as a light-yellow oil, which was used directly in next step without further purification. $[\alpha]_{D}^{20} = +76.2$ (c 0.1, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 8.09 (s, 1H), 7.75 (d, J = 7.5 Hz, 2H), 7.61 – 7.46 (m, 3H), 7.42 - 7.33 (m, 2H), 7.32 - 7.22 (m, 1H), 7.07 (d, J = 7.5 Hz, 1H), 7.02 (d, J = 7.0 Hz, 1H), 6.95 (d, J = 2.5 Hz, 1H), 5.38 (d, J = 8.5 Hz, 2H), 4.86 - 4.70 (m, 1H), 4.48 - 4.29 (m, 2H), 4.18 (t, J = 7.0 Hz, 1H), 3.53 (d, J = 7.0 Hz, 2H), 3.36 (s, 2H), 1.80 (s, 3H), 1.77 (s, 3H); ${}^{13}C$ NMR (125 MHz, CDCl₃) δ 176.2, 156.1, 143.8, 143.7, 141.3 (2C), 135.4, 133.5, 127.7 (2C), 127.6, 127.1 (3C), 125.2, 124.3, 122.9, 122.0, 121.9, 120.1, 120.0 (2C), 116.6, 109.9, 67.2, 54.6, 47.1, 30.6, 27.7, 25.7, 18.0; HRESIMS m/z 495.2271 [M+H]⁺, calcd for C₃₁H₃₁N₂O₄, 495.2278. (2S,3aS,8aR)-1-((S)-2-((((9H-fluoren-9-Methyl yl)methoxy)carbonyl)amino)-3-(7-(3-methylbut-2-en-1-yl)-1H-indol-3yl)propanoyl)-3a-hydroxy-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole-

2-carboxylate (8a).

Compounds 8a (colorless oil, 188.0 mg, 62%) was prepared from 10a (210.0 mg, 0.43 mmol) with 9 (100.0 mg, 0.43 mmol) under the same procedure as for **8b**. $[\alpha]_{D}^{20} = +30.0$ (c 0.1, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, major rotamer) δ 8.21 (s, 1H), 7.77 (d, J = 7.5 Hz, 2H), 7.75-7.50 (m, 3H), 7.40 (dd, J = 8.0, 7.5 Hz, 2H), 7.32 (dd, J = 8.0, 7.5 Hz, 2H), 7.25-7.07 (m, 5H), 6.64 (dd, J = 8.0, 7.5 Hz, 1H), 6.52 (d, J = 8.0 Hz, 1H), 5.86 (d, J = 8.0 Hz, 1H), 5.46 - 5.35 (m, 1H), 5.02 (s, 1H), 4.51 (brs, 1H), 4.46-4.38 (m, 1H), 4.32 (t, J = 9.0 Hz, 1H), 4.21 (t, J = 8.5 Hz, 1H), 3.67 – 3.51 (m, 3H), 3.42 – 3.27 (m, 1H), 3.17 (s, 1H), 3.02 (s, 3H), 2.61 – 2.53 (m, 1H), 2.33 (d, J = 12.6 Hz, 1H), 1.83 (s, 3H), 1.80 (s, 3H); ^{13}C NMR (125 MHz, CDCl₃) δ 171.9, 169.9, 155.3, 149.0, 143.8 (2C), 141.3 (2C), 135.3, 133.7, 130.5, 127.7 (3C), 127.1 (2C), 125.1 (2C), 124.5, 124.3, 123.0, 122.3, 121.9, 120.3, 120.0 (3C), 119.4, 116.8, 110.1, 109.5, 84.8, 81.2, 66.9, 59.0, 53.2, 52.5, 47.2, 38.8, 30.7, 25.8 (2C), 18.1; HRESIMS m/z 711.3183 [M+H]⁺, calcd for C₄₃H₄₃N₄O₆, 711.3177.

(3S,5aR,10bS,11aS)-10b-Hydroxy-3-((7-(3-methylbut-2-en-1-yl)-1Hindol-3-yl)methyl)-2,3,6,10b,11,11a-hexahydro-4H*pyrazino*[1',2':1,5]*pyrrolo*[2,3-*b*]*indole*-1,4(5*a*H)-*dione* (5).

To a solution of 8a (100.0 mg, 0.14 mmol) in 10.0 mL anhydrous DCM was added piperidine (1.0 ml, 11.0 mmol). After the addition, the mixture was kept stirred for 40 minutes at 25 °C, and the organic solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc: hexanes = 1:1) to give 5 (50.0 mg, 78.0%) as a light-yellow oil. $[\alpha]_{D}^{25} = +36.7$ (c 0.2, MeOH) (Literature², $[\alpha]_{D}^{25}$ = +16.7 (c 0.25, MeOH)); ¹H NMR (500 MHz, DMSO- d_6) δ 10.82 (brs, 1H), 7.72 (s, 1H), 7.43 (d, J = 8.0 Hz, 1H), 7.25 (s, 1H), 7.19 (d, J = 7.5Hz, 1H), 7.05 (dd, J = 8.0, 7.5 Hz, 1H), 6.97 – 6.88 (m, 1H), 6.85 (d, J =7.0 Hz, 1H), 6.75-6.66 (m, 2H), 6.55 (d, J = 8.0 Hz, 1H), 6.06 (s, 1H), 5.43 (d, J = 7.5 Hz, 1H), 5.34 (d, J = 4.0 Hz, 1H), 4.67 (dd, J = 11.5, 6.5 Hz, 1H)1H), 4.46 (s, 1H), 3.51 (d, J = 7.5 Hz, 2H), 3.05 (dd, J = 15.5, 6.5 Hz, 1H), 2.44 (dd, J = 13.0, 6.5 Hz, 1H), 1.84 (t, J = 13.0 Hz, 1H), 1.72 (s, 6H); ^{13}C NMR (125 MHz, DMSO-*d*₆) δ 170.3, 168.2, 148.9, 135.3, 132.4, 131.6, 129.4, 127.8, 124.7, 124.4, 122.9, 122.7, 120.5, 119.1, 118.2, 116.6, 110.5, 110.3, 86.3, 84.4, 59.1, 55.5, 41.7, 29.5, 26.0, 25.2, 18.2; HRESIMS m/z 457.2238 [M+H]^+ , calcd for C₂₇H₂₉N₄O₃, 457.2234.

(3S,5aR,10bS,11aS)-10b-Hydroxy-3-((7-(3-methylbut-2-en-1-yl)-1Hindol-3-yl)methyl)-6-(2-methylbut-3-yn-2-yl)-2,3,6,10b,11,11ahexahydro-4H-pyrazino[1',2':1,5]pyrrolo[2,3-b]indole-1,4(5aH)-dione (21).

To a 100 mL round bottomed flask containing 5 (100.0 mg, 0.22 mmol), 3-chloro-3-methylbut-1-yne (0.10 mL, 0.6 mmol), and CuI (40.0 mg, 0.2 mmol) in anhydrous THF (15.0 mL) under an argon atmosphere was added DIPEA (0.4 mL, 3.0 mmol) dropwise at 0 °C. After the addition, the cooling bath was removed and the mixture was stirred at 25 °C for 3 days. The reaction was extracted with EtOAc/H₂O (60.0 mL, 1:1), and the organic layer was concentrated under reduced pressure. The crude material was purified by column chromatography (EtOAc: hexanes = 1:1) to give **21** (74.0 mg, 65.0%) as a light-yellow oil. $[\alpha]_{D}^{20} = +58.2$ (c 1, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 8.05 (s, 1H), 7.37 (dd, J = 7.5, 4.5 Hz, 2H), 7.25 (d, J = 13.5 Hz, 1H), 7.18 (d, J = 8.0 Hz, 1H), 7.03 (dd, J = 13.5, 7.0 Hz, 2H), 6.96 (d, J = 7.5 Hz, 1H), 6.93 (d, J = 2.5 Hz, 1H), 5.50 (s, 1H), 5.46 (s, 1H), 5.37 (t, J = 7.0 Hz, 1H), 4.25 (dd, J = 10.5, 5.0 Hz, 1H), 4.18 (dd, J = 10.5, 3.5 Hz, 1H), 3.65 (dd, J = 13.5, 4.0 Hz, 1H), 3.53 (d, J = 7.0

Hz, 2H), 3.08 (dd, J = 13.5, 4.0 Hz, 1H), 2.88 – 2.77 (m, 1H), 2.62-2.58 (m, 2H), 2.38 (s, 1H), 1.94 (s, 3H), 1.89 (s, 3H), 1.80 (s, 3H), 1.77 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 168.9, 167.8, 147.8, 135.8, 134.3, 133.6, 129.8, 126.6, 124.5, 124.2, 123.0, 122.3, 122.2, 122.0, 120.2, 117.4, 116.4, 110.1, 89.3, 85.4, 84.2, 71.3, 57.5, 55.0, 54.2, 33.3, 30.7, 30.6, 30.0, 26.3, 25.7, 18.0; HRESIMS *m*/*z* 523.2700 [M+H]⁺, calcd for C₃₂H₃₅N₄O₃, 523.2704.

(3S,5aR,10bS,11aS)-10b-Hydroxy-3-((7-(3-methylbut-2-en-1-yl)-1Hindol-3-yl)methyl)-6-(2-methylbut-3-en-2-yl)-2,3,6,10b,11,11ahexahydro-4H-pyrazino[1',2':1,5]pyrrolo[2,3-b]indole-1,4(5aH)-dione (7).

To a solution of **21** (50.0 mg, 0.09 mmol) in a mixture solvent of (CH₃OH/quinoline 10:1, 10.0 mL) was added 10% Pd/C catalysis (10.0 mg). After the addition, the reaction mixture was kept stirring under an atmosphere of H₂ until the starting material disappeared, then the mixture was filtered through a short plug of silica gel purified by column chromatography (EtOAc: hexanes = 1:1) to afford the compound **7** (41.0 mg, 83.0%) as a colorless oil. $[\alpha]_{D}^{20} = +12.0$ (c 0.1, CH₂Cl₂); ¹H NMR (400

MHz, CDCl₃) δ 8.01 (s, 1H), 7.39 (d, J = 7.2 Hz, 1H), 7.28 (d, J = 7.2 Hz, 1H), 7.16 (dd, J = 7.8, 7.2 Hz, 1H), 7.10 – 6.98 (m, 3H), 6.92 (d, J = 2.0 Hz, 1H), 6.82 (dd, J = 7.6, 2.0 Hz, 1H), 6.43 (dd, J = 17.6, 10.6 Hz, 1H), 5.49 (s, 1H), 5.41 (s, 1H), 5.39 – 5.31 (m, 1H), 5.25 – 5.07 (m, 2H), 4.21 (ddd, J = 14.4, 10.4, 4.0 Hz, 2H), 3.64 (dd, 1H), 3.53 (d, J = 7.2 Hz, 2H), 3.13 (dd, J = 13.6, 4.4 Hz, 1H), 2.85 (dd, J = 14.4, 10.4 Hz, 1H), 2.56 (dd, J = 13.6, 10.4 Hz, 1H), 2.07 (s, 1H), 1.81 (s, 3H), 1.78 (s, 3H), 1.71 (s, 3H), 1.52 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 167.7, 148.8, 147.1, 135.8, 133.5, 132.9, 130.0, 126.6, 124.5, 123.8, 122.9, 122.3, 122.0, 120.2, 120.2, 116.4, 115.4, 111.9, 110.1, 84.8, 83.7, 59.4, 57.2, 55.0, 32.8, 30.7, 27.7, 26.4, 25.9, 25.7, 18.0; HRESIMS *m*/*z* 525.2851 [M+H]⁺, calcd for C₃₂H₃₇N₄O₃, 525.2860.

(3S,5aR,10bS,11aS)-10b-Hydroxy-7-(3-methylbut-2-en-1-yl)-3-((7-(3methylbut-2-en-1-yl)-1H-indol-3-yl)methyl)-2,3,6,10b,11,11a-hexahydro-4H-pyrazino[1',2':1,5]pyrrolo[2,3-b]indole-1,4(5aH)-dione (4).

To a solution of 7 (23.0 mg, 0.04 mmol) in a solvent of 10.0 mL anhydrous THF was added BF₃·Et₂O (0.1 mL, 0.4 mmol) at 0 °C. The reaction solution was kept stirring for 3 hours at 0 °C. When the starting material disappeared, the reaction was quenched by addition of saturated sodium bicarbonate (20.0 mL), and the mixture was extracted with EtOAc (30.0 mL). The organic layer was concentrated in vacuum, and the residue was purified by flash chromatography (EtOAc: hexanes = 1:1) to produce 4 (18.0 mg, 81%) as a colorless oil. $[\alpha]_{D}^{25} = -5.0$ (c 0.1, MeOH) (Literature², $[\alpha]_{D}^{25} = -3.0 (c \ 0.25, MeOH)); {}^{1}H \ NMR (500 \ MHz, DMSO-d_{6}) \delta 10.78 (brs, brs)$ 1H), 7.68 (s, 1H), 7.42 (d, J = 8.0 Hz, 1H), 7.25 (s, 1H), 7.04 (d, J = 7.5Hz, 1H), 6.91 (t, J = 7.5 Hz, 1H), 6.86 (dd, J = 7.5, 1.0 Hz, 1H), 6.83 (dd, J = 7.0 Hz, 1H), 6.66 (t, J = 7.5 Hz, 1H), 6.04 (d, J = 4.5 Hz, 1H), 6.00 (s, 1H), 5.44 - 5.37 (m, 1H), 5.34 (d, J = 4.5 Hz, 1H), 5.27 - 5.19 (m, 1H), 4.64 (dd, J = 11.0, 6.5 Hz, 1H), 4.43 (t, J = 6.5 Hz, 1H), 3.49 (d, J = 7.5 Hz, 2H), 3.37 (d, J = 4.5 Hz, 1H), 3.21 (dd, J = 16.0, 7.5 Hz, 1H), 3.06 (td, J = 16.0, 7.0 Hz, 2H), 2.41 (dd, J = 13.0, 7.0 Hz, 1H), 1.82 (t, J = 13.0 Hz, 1H), 1.71 (s, 3H), 1.70 (s, 6H), 1.65 (s, 3H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 170.3, 168.5, 146.7, 135.4, 132.8, 132.5, 131.7, 128.7, 127.9, 124.8, 124.6, 123.4, 122.8, 122.3, 120.7, 120.6, 119.2 (2C), 116.8, 110.5, 86.5, 84.4, 59.1, 55.6, 41.8, 29.6, 29.0, 26.1 (2C), 25.3, 18.3, 18.2; HRESIMS m/z 525.2854 $[M+H]^+$, calcd for C₃₂H₃₇N₄O₃, 525.2860.

Methyl (2S,3aS,8aR)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(2-(2methylbut-3-en-2-yl)-1H-indol-3-yl)propanoyl)-3a-hydroxy 1,2,3,3a,8,8ahexahydropyrrolo[2,3-b]indole-2-carboxylate (**8c**).

Compound 8c (colorless oil, 280.0 mg, 59%) was prepared from $10c^3$ (302.0 mg, 0.8 mmol) with 9 (190.0 mg, 0.8 mmol) under the same procedure as **8b**. $[\alpha]_{D}^{20} = +180.9$ (c 1, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 8.07 (s, 1H), 7.55 (d, J = 7.6 Hz, 1H), 7.33 (d, J = 7.6 Hz, 1H), 7.20 (dd, J = 8.0, 7.6 Hz, 1H), 7.14 (dd, J = 8.0, 7.6 Hz, 1H), 7.05 (dd, J = 8.0, 7.6 Hz, 1H), 6.98 (d, J = 7.6 Hz, 1H), 6.63 (dd, J = 7.6, 7.2 Hz, 1H), 6.53 (d, J = 8.0 Hz, 1H), 6.13 (dd, J = 17.2, 10.4 Hz, 1H), 5.62 (d, J = 8.4 Hz, 1H), 5.25-5.16 (m, 3H), 4.91 (s, 1H), 4.47 (td, J = 8.4, 4.4 Hz, 1H), 3.46 (d, J =8.4 Hz, 1H, 3.39 (dd, J = 14.0, 4.0 Hz, 1H), 3.18 (dd, J = 14.0, 11.6 Hz, 1H), 3.06 (s, 3H), 2.21 (d, J = 11.6 Hz, 1H), 1.60 (s, 3H), 1.58 (s, 3H), 1.44(s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 173.2, 170.0, 154.3, 150.2, 145.2, 140.9, 133.9, 130.9, 129.6, 127.4, 124.2, 122.1, 119.8, 119.2, 118.7, 112.8, 110.6, 109.9, 105.7, 84.6, 81.2, 79.3, 58.7, 52.3, 52.2, 39.1, 38.8, 31.1, 28.4 (3C), 27.8, 27.2; HRESIMS m/z 611.2837 [M+Na]⁺, calcd for C₃₃H₄₀N₄O₆Na, 611.2840.

(3S,5aR,10bS,11aS)-10b-Hydroxy-3-((2-(2-methylbut-3-en-2-yl)-1Hindol-3-yl)methyl)-2,3,6,10b,11,11a-hexahydro-4Hpyrazino[1',2':1,5]pyrrolo[2,3-b]indole-1,4(5aH)-dione (**3a**).

Compound **3a** (colorless oil, 236.0 mg, 61%) was prepared from **8c** (500.0 mg, 0.85 mmol) with SiO₂ (4.0 g) under the same procedure as 6. $[\alpha]_{D}^{20}$ = +14.4 (c 0.1, MeOH); ¹H NMR (500 MHz, CDCl₃) δ 8.10 (s, 1H), 7.48 (d, J = 7.9 Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.28 (s, 1H), 7.22 – 7.15 (m, 2H), 7.11 (dd, J = 8.0, 7.5 Hz, 1H), 6.81 (dd, J = 8.0, 7.5 Hz, 1H), 6.65 (d, J =7.9 Hz, 1H), 6.12 (dd, J = 17.5, 10.5 Hz, 1H), 5.67 (s, 1H), 5.50 (d, J = 4.0Hz, 1H), 5.21 (d, J = 4.0 Hz, 1H), 5.18 (d, J = 4.5 Hz, 1H), 5.15 (d, J = 2.5Hz, 1H), 4.55 (dd, J = 11.1, 6.6 Hz, 1H), 4.46 (dd, J = 11.5, 4.0 Hz, 1H), 3.75 (dd, J = 15.0, 4.0 Hz, 1H), 3.18 (dd, J = 15.0, 11.5 Hz, 1H), 2.83 (s, 1H), 2.72 (dd, J = 13.5, 6.5 Hz, 1H), 2.35 (dd, J = 13.5, 11.0 Hz, 1H), 1.55 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 168.6, 167.5, 147.5, 145.5, 141.5, 134.3, 130.4, 129.4, 129.0, 123.0, 122.3, 120.2, 119.8, 117.8, 112.9, 110.9, 110.4, 104.3, 87.0, 85.0, 59.0, 55.0, 40.9, 39.0, 28.0, 27.9, 26.0; HRESIMS m/z 457.2227 [M+H]⁺, calcd for C₂₇H₂₉N₄O₃, 457.2234.

(3S,5aR,10bS,11aS)-10b-Hydroxy-3-((2-(2-methylbut-3-en-2-yl)-1Hindol-3-yl)methyl)-6-(2-methylbut-3-yn-2-yl)-2,3,6,10b,11,11ahexahydro-4H-pyrazino[1',2':1,5]pyrrolo[2,3-b]indole-1,4(5aH)-dione (22).

Compound 22 (colorless oil, 80.0 mg, 63%) was prepared from 3a (110 mg, 0.24 mmol) under the same procedure as 21. $[\alpha]_{D}^{20} = +14.9$ (c 0.1, MeOH); ¹H NMR (500 MHz, CDCl₃) δ 8.07 (s, 1H), 7.38 (dd, J = 7.5, 2.5 Hz, 2H), 7.27 (dd, J = 7.5, 2.5 Hz, 2H), 7.21 (d, J = 8.0 Hz, 1H), 7.13 (dd, J = 7.5, 2.5 Hz, 1H), 7.05 (dd, J = 7.5, 2.5 Hz, 1H), 6.99 (dd, J = 7.5, 2.5 Hz, 1H), 6.01 (dd, J = 17.5, 10.5 Hz, 1H), 5.47 (s, 1H), 5.41 (s, 1H), 5.16 -4.90 (m, 2H), 4.24 (dd, J = 11.0, 4.5 Hz, 2H), 3.64 (dd, J = 15.5, 4.5 Hz, 1H), 3.14 (dd, J = 14.0, 4.5 Hz, 1H), 3.06 (dd, J = 15.5, 11.0 Hz, 1H), 2.62 (dd, J = 14.0, 10.5 Hz, 1H), 2.61 (brs, 1H), 2.39 (s, 1H), 1.95 (s, 3H), 1.91 (s, 3H), 1.45 (s, 3H), 1.44 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 168.8, 168.4, 147.7, 145.5, 141.4, 134.4, 134.3, 129.8, 129.0, 124.2, 122.4, 122.1, 120.1, 117.8, 117.6, 112.7, 110.8, 104.5, 89.4, 85.4, 84.2, 71.3, 57.5, 55.2, 54.2, 38.9, 33.3, 30.7, 30.0, 27.8, 27.7, 25.5; HRESIMS m/z 545.2524 $[M+Na]^+$, calcd for C₃₂H₃₄N₄O₃Na, 545.2523.

(3S,5aR,10bS,11aS)-10b-Hydroxy-6-(2-methylbut-3-en-2-yl)-3-((2-(2methylbut-3-en-2-yl)-1H-indol-3-yl)methyl)-2,3,6,10b,11,11a-hexahydro-4H-pyrazino[1',2':1,5]pyrrolo[2,3-b]indole-1,4(5aH)-dione (1).

To a solution of 22 (20.0 mg, 0.038 mmol) in 10.0 mL MeOH was added 5% Pd/CaCO₃ (6.0 mg). After the addition, the reaction mixture was kept stirring under an atmosphere of H₂ until the starting material disappeared, then the reaction mixture was filtered through a short plug of silica gel and purified by column chromatography (EtOAc: hexanes = 1:1) to afford compound 1 (17.0 mg, 83%) as a white solid. $[\alpha]_{D}^{25} = +14.5$ (c 0.1, MeOH) (Literature⁴, $[\alpha]_{D}^{25} = +19.0$ (c 0.2, MeOH)); ¹H NMR (500 MHz, Acetone d_6) δ 9.84 (s, 1H), 7.31 (d, J = 8.0 Hz, 1H), 7.19 (d, J = 8.0 Hz, 1H), 7.09 (dd, J = 7.5, 1.5 Hz, 1H), 6.93 (m, 2H), 6.87 - 6.82 (m, 1H), 6.81 (d, J =8.0 Hz, 1H), 6.60 (t, J = 7.5 Hz, 1H), 6.34 (dd, J = 17.5, 10.5 Hz, 1H), 6.03 (dd, J = 17.5, 10.5 Hz, 1H), 5.35 (s, 1H), 5.31 (s, 1H), 5.06 (dd, J = 17.5, 1.5 Hz, 1H), 4.97 – 4.88 (m, 2H), 4.84 (dd, J = 10.5, 1.0 Hz, 1H), 4.56 (s, 1H), 4.35 (dd, J = 10.0, 5.5 Hz, 1H), 4.24 (dd, J = 10.5, 4.5 Hz, 1H), 3.51 (dd, J = 13.5, 4.5 Hz, 1H), 2.94 – 2.83 (m, 2H), 2.35 (dd, J = 13.5, 10.0 Hz, 1H), 1.58 (s, 3H), 1.39 (s, 6H), 1.37 (s, 3H); ¹³C NMR (125 MHz, Acetone*d*₆) δ 170.0, 169.8, 149.7, 149.3, 147.2, 142.6, 136.2, 134.8, 130.1, 129.7, 124.5, 122.1, 120.1, 120.0, 118.5, 115.3, 112.1, 112.0, 111.6, 105.7, 85.7, 84.6, 59.8, 58.3, 56.6, 39.9, 35.0, 28.4, 28.3, 28.2, 26.4, 25.6; HRESIMS *m/z* 525.2861 [M+H]⁺, calcd for C₃₂H₃₇N₄O₃, 525.2860.

(3S,10bS,11aS)-10b-Hydroxy-7-(3-methylbut-2-en-1-yl)-3-((2-(2-

methylbut-3-en-2-yl)-1H-indol-3-yl)methyl)-2,3,6,10b,11,11a-hexahydro-4H-pyrazino[1',2':1,5]pyrrolo[2,3-b]indole-1,4(5aH)-dione (2).

Compound **2** (white solid, 8.0 mg, 80%) was prepared from **1** (10.0 mg, 0.02 mmol) with BF₃·Et₂O under the same procedure as **4**. $[\alpha]_D^{20} = +18.0$ (c 0.1, MeOH) (Literature⁵, $[\alpha]_D^{20} = +31.0$ (c 0.33, MeOH)); ¹H NMR (500 MHz, Acetone-*d*₆) δ 10.00 (brs, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.30 (d, J = 8.0 Hz, 1H), 7.08 (d, J = 7.5 Hz, 1H), 7.05 – 6.99 (m, 1H), 6.98 – 6.93 (m, 1H), 6.91 (d, J = 7.5 Hz, 1H), 6.65 (t, J = 7.5 Hz, 1H), 6.19 (dd, J = 17.5, 10.5, 1.5 Hz, 1H), 5.67 (d, J = 6.0 Hz, 1H), 5.53 (d, J = 4.5 Hz, 1H), 5.40 (dd, J = 4.5, 1.5 Hz, 1H), 5.27 – 5.20 (m, 1H), 5.08 (d, J = 17.5 Hz, 2H), 5.02 (d, J = 10.5, 1.0 Hz, 1H), 4.63 (dd, J = 11.0, 7.0, 1.5 Hz, 1H), 4.53 (dd, J = 11.0, 4.0 Hz, 1H), 3.67 (dd, J = 15.0, 4.0 Hz, 1H), 3.24 – 3.12 (m, 2H), 3.07 (dd, J = 15.0, 11.0 Hz, 1H), 2.53 (dd, J = 13.5, 7.0 Hz, 1H), 2.07 (dd, S28)

J = 13.5, 11.0 Hz, 1H), 1.70 (s, 3H), 1.69 (s, 3H), 1.54 (s, 3H), 1.53 (d, J = 1.5 Hz, 3H); ¹³C NMR (125 MHz, Acetone- d_6) δ 169.8, 168.5, 147.2 (2C), 142.5, 136.1, 133.5, 131.6, 130.0, 129.6, 123.8, 122.5, 122.0, 121.2, 120.0, 119.9, 118.4, 112.1, 111.9, 105.4, 87.3, 85.4, 59.5, 56.1, 42.3, 39.8, 30.0 28.3, 28.3, 26.5, 25.8, 17.8. HRESIMS *m*/*z* 547.2683 [M+Na]⁺, calcd for C₃₂H₃₆N₄O₃Na, 547.2680.

Methyl (2S,3aS,8aR)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(2-(2methylbut-3-en-2-yl)-1H-indol-3-yl)propanoyl)-3a-hydroxy-8-(3methylbut-2-en-1-yl)-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole-2carboxylate (**23**).

To a solution of **8c** (30.0 mg, 0.05 mmol), KI (17.0 mg, 0.1 mmol) and K₂CO₃ (14.0 mg, 0.1 mmol) in 6.0 mL DMF was added 1-bromo-3methylbut-2-ene (15.0 mg, 0.1 mmol). After the addition, the reaction mixture was heated at 50 °C for 5 h until the starting material disappeared, The reaction mixture was cooled and extracted with EtOAc/H₂O (1:1, 100.0 mL). The organic layers were concentrated in vacuum. The residue was purified by flash chromatography (EtOAc: Hexanes = 1:3) to produce **23** (24.0 mg, 73.0%) as a colorless oil. $[\alpha]_D^{25} = +80.9$ (c 1, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 8.07 (s, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.37 (d, J = 8.0 Hz, 1H), 7.21 (dd, J = 8.0, 7.6 Hz, 1H), 7.14 (dd, J = 8.0, 7.6 Hz, 1H), 7.08 (dd, J = 8.0, 7.6 Hz, 1H), 6.96 (d, J = 7.6 Hz, 1H), 6.59 (dd, J =8.0, 7.6 Hz, 1H), 6.35 (d, J = 8.0 Hz, 1H), 6.18 (dd, J = 17.2, 10.4 Hz, 1H), 5.63 (d, J = 8.4 Hz, 1H), 5.31 - 5.09 (m, 4H), 4.74 - 4.57 (m, 1H), 4.23 - 5.09 (m, 2H), 4.74 - 4.57 (m, 2H), 4.4.09 (m, 1H), 4.05 (dd, J = 16.0, 5.6 Hz, 1H), 3.81 (d, J = 8.8 Hz, 1H), 3.44(dd, J = 14.0, 4.0 Hz, 1H), 3.35 - 3.24 (m, 1H), 3.23 (s, 3H), 2.21 (d, J = 14.0)12.8 Hz, 1H), 1.82 (s, 3H), 1.73 (s, 3H), 1.63 (s, 6H), 1.48 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 172.9, 170.0, 154.5, 150.2, 145.2, 141.2, 134.0, 130.5, 129.6, 128.6, 128.6, 123.4, 122.0, 121.1, 119.6, 118.9, 117.8, 112.8, 110.7, 107.4, 105.7, 85.9, 85.1, 79.2, 58.9, 52.3, 44.7, 40.3, 39.1, 30.9, 28.4 (3C), 27.7, 27.2, 25.8 (2C), 18.1; HRESIMS m/z 679.3470 [M+Na]⁺, calcd for C₃₈H₄₈N₄O₆Na, 679.3472.

(3S,5aR,10bS,11aS)-10b-Hydroxy-6-(3-methylbut-2-en-1-yl)-3-((2-(2methylbut-3-en-2-yl)-1H-indol-3-yl)methyl)-2,3,6,10b,11,11a-hexahydro-4H-pyrazino[1',2':1,5]pyrrolo[2,3-b]indole-1,4(5aH)-dione (3).

To a solution of **3a** (25.0 mg, 0.05 mmol), KI (17.0 mg, 0.1 mmol) and K_2CO_3 (14.0 mg, 0.1 mmol) in 5.0 mL DMF was added 1-bromo-3-

methylbut-2-ene (15.0 mg, 0.1 mmol). After the addition, the reaction mixture was heated at 50 °C for 6 h until the starting material disappeared, The reaction mixture was cooled and extracted with EtOAc/H₂O (1:1, 100.0 mL). The organic layers were concentrated in vacuum. The residue was purified by flash chromatography (EtOAc: Hexanes = 1:4) to produce **3** (15.0 mg, 52.0%) as a white solid. $[\alpha]_{D}^{20} = +78.0$ (c 0.1, MeOH) (Literature⁵, $[\alpha]_{D}^{20} = +69.0$ (c 0.03, MeOH)); ¹H NMR (500 MHz, Acetone d_6) δ 10.04 (s, 1H), 7.59 (d, J = 8.0 Hz, 1H), 7.37 (d, J = 8.0 Hz, 1H), 7.24 (d, J = 8.0 Hz, 1H), 7.16 (dd, J = 8.0, 1.0 Hz, 1H), 7.09 (dd, J = 8.0, 1.0 Hz, 1H)1H), 7.04 (dd, J = 8.0, 1.0 Hz, 1H), 6.74 (dd, J = 8.0, 1.0 Hz, 1H), 6.58 (dd, J = 8.0, 3.5 Hz, 1H), 6.33 - 6.23 (m, 1H), 5.75 (s, 1H), 5.50 (d, J = 3.5 Hz)1H), 5.28 - 5.22 (m, 1H), 5.17 (s, 1H), 5.17-5.12 (m, 2H), 4.71 (dd, J = 12.0, 6.5 Hz, 1H), 4.61 (dd, J = 11.0, 4.5 Hz, 1H), 4.32 (dd, J = 16.0, 7.5 Hz, 1H), 4.25 – 4.18 (m, 1H), 3.77 (dd, J = 15.0, 4.0 Hz, 1H), 3.33 – 3.11 (m, 1H), 2.50 (dd, J = 13.0, 6.5 Hz, 1H), 2.01 (dd, J = 13.0, 6.5 Hz, 1H), 1.83 (s, 3H), 1.70 (s, 3H), 1.62 (s, 3H), 1.61 (s, 3H); ¹³C NMR (125 MHz, Acetone- d_6) δ 170.5, 170.3, 149.8, 147.4, 142.6, 136.2, 135.2, 132.7, 130.3, 130.2, 122.9, 122.2, 121.4, 120.2, 119.3, 118.6, 112.3, 112.1, 109.9, 105.6, 89.7, 86.7, 60.4, 56.7, 47.1, 41.8, 40.0, 28.5, 28.4, 26.6, 26.1, 18.5; HRESIMS *m/z* 525.2863 [M+H]⁺, calcd for C₃₂H₃₇N₄O₃, 525.2860.

References

 Espejo, V. R.; Li, X. B.; Rainier, J. D. Cyclopropylazetoindolines as precursors to C(3)-quaternary-substituted indolines. *J. Am. Chem. Soc.* 2010, *132*, 8282-8284.

Cai, S. X.; Sun, S. W.; Peng, J. X.; Kong, X. L.; Zhou, H. N.; Zhu, T. J.; Gu, Q. Q.; Li, D. H. Okaramines S-U, three new indole diketopiperazine alkaloids from *Aspergillus taichungensis* ZHN-7-07. *Tetrahedron* 2015, *71*, 3715-3719.

3. Zhao, L.; May, J. P.; Huang, J.; Perrin, D. M. Stereoselective synthesis of brevianamide E. *Org. Lett.* **2012**, *14*, 90-93.

4. Hayashi, H.; Fujiwara, T.; Murao, S.; Arai, M. Okaramine C, a new insecticidal indole alkaloid from *Penicillium simplicissimum*. *Agri. Biol. Chem.* **1991**, *55*, 3143-3145.

5. Shiono, Y.; Akiyama, K.; Hayashi, H. Okamines J, K, L, M and related compounds, from *Penicillium simplicissimum* ATCC 90288. *Biosci. Biotechnol. Biochem.* **1999**, *63*, 1910-1920.

¹H NMR and ¹³C NMR spectrum of **11** (CDCl₃)

¹H NMR and ¹³C NMR spectrum of **13** (CDCl₃)

S37

S42

S44

¹H NMR and ¹³C NMR spectrum of **19a** (CDCl₃)

HMBC spectrum of 19a (CDCl₃)

NOESY spectrum of 19a (CDCl₃)

¹H NMR and ¹³C NMR spectrum of **19b** (CDCl₃)

¹H NMR and ¹³C NMR spectrum of **20** (CDCl₃)

¹H NMR and ¹³C NMR spectrum of 8a (CDCl₃)

¹H and ¹³ C NMR spectrum of okaramines T (DMSO-d₆, provided) and 5 (DMSO-d₆)

¹H NMR and ¹³C NMR spectrum of **21** (CDCl₃)

S56

¹H NMR and ¹³C NMR spectrum of **4** (CDCl₃)

¹H NMR and ¹³C NMR spectrum of **3a** (CDCl₃)

¹H NMR and ¹³C NMR spectrum of **22** (CDCl₃)

¹H NMR and ¹³C NMR spectrum of **1** (Acetone- d_6)

¹H and ¹³ C NMR spectrum of okaramine J (Acetone-*d*₆, provided) and **2** (Acetone-*d*₆)

¹H NMR and ¹³C NMR spectrum of **23** (CDCl₃)

¹H and ¹³ C NMR spectrum of **3** (Acetone- d_6)