Supporting Information for

Blue emissive dimethylmethylene-bridged triphenylamine derivatives appending cross-linkable groups

Kangyu Zhou, Hongfei Pan, Yongjie Zhang, Houchen Wang, Xiaofei Dong, Xiangkui Ren, Xianggao Li, Shirong Wang*, and Zhijian Chen*

School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China. E-mail: zjchen@tju.edu.cn; wangshirong@tju.edu.cn

Table of Contents

1. ¹ H and ¹³ C NMR Spectra ······ S1
2. UV/vis absorption and fluorescence spectra of 4a in different solventsS11
3. Fluorescence decay curve of 1 and $4a-e$ in CH ₂ Cl ₂ solution \cdots S12
4. UV/vis absorption spectra of 1 and 4a – e in thin films······S13
5. Fluorescence decay curve of 1 and 4a–e in thin filmsS14
6. Cyclic voltammogram of 1 and 4a–e ······S15
7. DFT calculated energy levels
8. Thermogravimetric analysis of 4a – d ······S17
9. DSC traces of 4a–d (second scan) ······S18

S1

S3

S8

S9

Fig. S1 UV/Vis absorption spectra of 4a in different solvents (1.0×10^{-5} M).

Fig. S2 Fluorescence spectra of 4a in different solvents (1.0 × 10⁻⁵ M). $\lambda_{ex} = 340$ nm.

Fig. S3 Fluorescence decay curves of **1** and **4a–e** in CH₂Cl₂ (1.0×10^{-5} M). **1**: $\lambda_{ex} = 310$ nm, **4a–e**: $\lambda_{ex} = 340$ nm. The decay curves are fitted with mono-exponential method.

compound	τ/ns	χ^2
1	0.80	1.219
4 a	2.22	0.946
4b	2.42	0.936
4 c	3.48	1.107
4d	2.17	0.941
4e	2.48	0.968

Table S1 The measured fluorescence lifetimes for 1 and 4a-e in CH₂Cl₂.

Fig. S4 UV/Vis absorption spectra of compounds **1** and **4a–e** in spin-coated thin films (10 mg/mL in toluene, 4000 rpm, 30 s).

Fig. S5 Fluorescence decay curves of **1** and **4a–e** in spin-coated thin films (10 mg/mL in toluene, 4000 rpm, 30 s). **1**: $\lambda_{ex} = 310$ nm, **4a–e**: $\lambda_{ex} = 340$ nm. The decay curves of **1**, **4a** and **4b** are fitted with double-exponential method. The decay curves of **4c–e** are fitted with mono-exponential method.

compound	τ_1 / ns	τ_2/ns	τ	χ^2
1	2.63 (49.03%)	5.29 (50.97%)	3.98	0.918
4 a	1.42 (77.26%)	7.67 (22.74%)	2.84	1.145
4b	0.55 (91.03%)	8.52 (8.97%)	1.26	1.211
4 c	0.90	/	0.90	1.115
4d	0.61	/	0.61	1.010
4e	1.83	/	1.83	1.061

Table S2 The measured fluorescence lifetimes for 1 and 4a–e in thin films.

Fig. S6 Cyclic voltammograms of compounds **1** and **4a–e** in CH₂Cl₂ (5.0×10^{-4} M). The scan rate is 50 mV/s. Ferrocene was used as internal reference.

	HOMO / eV	LUMO / eV	$\Delta E^b / \mathrm{eV}$
4 a	-5.12	-1.47	3.65
4 b	-5.16	-1.30	3.86
4 c	-5.18	-1.17	4.01
4 d	-5.34	-1.28	4.06
4 e	-5.26	-1.04	4.22

Table S3 The HOMO and LUMO levels by DFT calcuation^a

^{*a*} B3LYP/6-311G(d) basis set was used. The calculations were performed with the GAUSSIAN 09W program. ^{*b*} $\Delta E = LUMO - HOMO$.

Fig. S7 Thermogravimetric traces for DTPAs 4a–d with heating rate of 10 °C/min.

Fig. S8 DSC traces for DTPAs **4a–d** with heating rate of 10 °C/min for the second heating scan.