Supporting Information

Modular and scalable synthesis of nematode

pheromone ascarosides: implications in eliciting

plant defense

Shuai Ning, Lei Zhang, Jinjin Ma, Lan Chen, Guangyao Zeng, Chao Yang, Yingjun Zhou, Xiaoli Guo,* Xu Deng*

List of Supporting Information

1.	Table S1	2			
2.	Figure S1	3			
3.	Table S2	4			
4.	General experimental information				
5.	Experimental procedures and characterization data for the	compounds			
6.	ROS assay	32			
7.	NMR spectra	33-71			
8.	References	72			

AcO,,, R	QAc OAc 1	ОН 2	Conditio DCM		Ac OAc
Entry	R	Lewis	Temp.	Conv. (%)	Yield
		acids	(°C)		(%) ^a
1	OAc	TMSOTf	-40 °C-RT	100	25
2	OAc	$BF_3 \cdot Et_2O$	-40 °C-RT	N.R.	-
3	OTCA	TMSOTf	-40 °C-RT	100	32
4	OTCA	$BF_3 \cdot Et_2O$	-40 °C-RT	100	31
5	OTCA	$BF_3 \cdot Et_2O$	-15 °C-RT	100	29
6	OTCA	BF ₃ ·Et ₂ O	-78 °C-	100	33
			RT		
7	STol	TfOH	-40 °C-RT	N.R.	-
8	STol	Cu(OTf) ₂	-78 °C-RT	N.R.	-
9	STol	TMSOTf	-40 °C-RT	100	21
10	STol	AgOTf	-40 °C-RT	100	0
11	STol	Tf ₂ O	-40 °C-RT	80	complex

Table S1. Optimization on glycosylation of ${\bf 1}$ and ${\bf 2}$

^{*a*} The isolated yield of the desired product.

Figure S1. (A) Ascaroside treatment induces callose deposition in *Arabidopsis thaliana* Col-0. 10-Day-old seedings were treated with 1 μ M flg22 or 1 μ M ascr#10 for 24 h, the treatment with H₂O was as control and callose was detected by aniline blue staining. (B) Ascaroside treatment induces ROS burst in *Arabidopsis thaliana* Col-0. 10 day-old seedings were treated with 50 nM flg22 or 1 μ M ascarosides (ascr#1, ascr#5, ascr#10, ascr#18) and the relative light units (RLU) were recorded. Values represent the mean \pm SE (n = 8).

Name	Sequence (5'-3')		
qAtUBQ-fw	GGCCTTGTATAATCCCTGATGAATAAG		
qAtUBQ-rv	AAAGAGATAACAGGAACGGAAACATAG		
AtAOS-fw	TCTTCTCTTCGCCACGTGC		
AtAOS-rv	GGTTATGAACTTGATGACCCGC		
AtPDF1.2-fw	TCATGGCTAAGTTTGCTTCC		
AtPDF1.2-rv	AATACACACGATTAGCACC		
AtLOX2-fw	TTGCTCGCCAGACACTTGC		
AtLOX2-rv	GGGATCACCATAAACGGCC		
AtPR1-fw	TCGTCTTTGTAGCTCTTGTAGGTG		
AtPR1-rv	TAGATTCTCGTAATCTCAGCTCT		

 Table S2. Primers used for qRT-PCR

General experimental information.

All reactions were performed using flame-dried glassware unless otherwise noted. All reagents were commercially available and used without further purification unless indicated otherwise. CH₃CN, DCM, DMF, DCE were distilled over CaH₂. THF and ether were distilled over Na under argon. Thin layer chromatography was carried out on silica gel GF254 plates (0.25 mm layer thickness). Flash chromatography was performed with 300–400 mesh silica gels. Visualization of the developed chromatogram was performed by fluorescence quenching or by ceric ammonium molybdate, or KMnO₄ stain. Reported yields are for isolated, spectroscopically pure compounds.

¹H and ¹³C NMR experiments were performed on a Bruker AM-400 and DRX-500 NMR spectrometer at ambient temperature. The residual solvent protons (¹H) or the solvent carbons (¹³C) were used as internal standards. ¹H NMR data are presented as follows: chemical shift in ppm (multiplicity, coupling constant, integral). The following abbreviations are used in reporting NMR data: s, singlet; br s, broad singlet; d, doublet; t, triplet; q, quartet; qt, quartet of triplets; dd, doublet of doublets; dt, doublet of triplets; m, multiplet. HRMS spectra were obtained on an Thermo LC-LTQ orbitrap Velos Pro ETD.

Experimental procedures.

(3R,4R,5S,6S)-2-hydroxy-6-methyltetrahydro-2H-pyran-3,4,5-triyl triacetate (1).¹

Step 1: To a mixture of L-rhamnose monohydrate (9.1 g, 50 mmol) and Et₃N (41.6 mL, 300 mmol) in DCM (80 mL) was added Ac₂O (28.3 mL, 300 mmol) dropwise at 0 °C. Upon completion of the addition, the mixture was allowed to warm to room temperature and was stirred for another 14 h until no starting material was detected by TLC. The mixture was washed with H₂O (100 mL \times 3), saturated aqueous NaHCO₃ solution (100 mL \times 3) and brine (100 mL \times 3) successively. The organic layers were dried over anhydrous NaSO₄, filtered, and concentrated in vacuum. The crude product was purified by silica gel column chromatography with DCM to afford **1-1** (15.3 g, 46.1 mmol, 92%) as brown oil.

Step 2: To a solution of ethylene diamine (1.68 mL, 25.2 mmol) in THF (32 mL) was added AcOH (1.44 mL, 25.2 mmol), which was allowed to stir at room temperature for 0.5 h. Then a solution of **1-1** (6.0 g, 18 mmol) in THF (8 mL) was added to the mixture and was stirred at room temperature for another 10 h. The solvent was then removed in vacuum and the residue was diluted with ethyl acetate (30 mL). The mixture was washed with H₂O (20 mL × 3), saturated aqueous NaHCO₃ solution (20 mL × 3) and brine (20 mL × 3). The organic layers were dried over anhydrous NaSO₄, filtered, and concentrated in vacuum. The crude product was purified by silica gel column chromatography (petrol ether : ethyl acetate = 2 : 1) to afford **1-2** (4.0 g, 13.8 mmol, 77%) as yellow solid.

Step 3: To a solution of **1-2** (1.7 g, 6.0 mmol) in DCM (21 mL) at 0 °C were added DBU (0.27 mL, 1.8 mmol) and Cl₃CCN (1.8 mL, 18 mmol) successively. The resulting mixture was allowed to stir at room temperature for 2 h until no starting

material was detected by TLC. The solvent was then removed in vacuum and the residue was purified by silica gel column chromatography (petrol ether : ethyl acetate = 4 : 1) to afford **1** (2.6 g, 6.0 mmol, 100%) as brown powder.

Procedure for the synthesis of (R)-(-)-7-Octen-2-ol (2).²

To a suspension of Mg (1.7 g, 70.5 mmol) and catalytic amount of cuprous bromide in dry THF (9 mL) was added a solution of 5-bromo-1-pentene **2-1** (8.3 mL, 70.5 mmol) in dry THF (60 mL) dropwise over 30 min. The resulting mixture was stirred at room temperature for 3 h until all the Mg was dissolved. Subsequently, to the suspension of (*R*)-(+)-1,2-epoxypropane **2-2** (4.0 mL, 57.0 mmol) and CuBr (816 mg, 5.7 mmol) in dry THF (69 mL) was added a freshly prepared 4pentenylmagnesium bromide in THF (69 mL, 70.5 mmol) dropwise at -78 °C, which was allowed to slowly warm to room temperature and was stirred at this temperature for another 4 h until no starting material was detected by TLC. The reaction was quenched with saturated aqueous NH₄Cl solution (50 mL) and was extracted with Et₂O (100 mL × 3). The organic layers were dried over anhydrous Na₂SO₄ and concentrated in vacuum. The crude product was purified by silica gel column chromatography (*n*-pentane : Et₂O = 4 : 1) to afford **2** (7.0 g, 54.7 mmol, 96%) as colorless oil.

¹**H NMR** (500 MHz, CDCl₃) δ 5.72 (dq, *J* = 11.7, 7.0 Hz, 1H), 4.92 (d, *J* = 17.2 Hz, 1H), 4.86 (d, *J* = 10.2 Hz, 1H), 3.72 – 3.63 (m, 1H), 1.98 (d, *J* = 6.3 Hz, 2H), 1.45 – 1.32 (m, 4H), 1.27 – 1.19 (m, 2H), 1.09 (d, *J* = 6.4 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 138.8, 114.2, 67.7, 39.0, 33.7, 28.9, 25.2, 23.2.

(2S,3R,4R,5R,6R)-2-methyl-6-(((R)-oct-7-en-2-yl)oxy)tetrahydro-2H-pyran-3,4,5triol (3)

Step 1: To a suspension of **1** (867 mg, 2 mmol), **2** (256 mg, 2 mmol), and 4Å molecular sieves in dry DCM (8 mL) under N₂ at -78 °C was added BF₃·Et₂O (25.3 μ L, 0.2 mmol) dropwise. The mixture was allowed to warm to room temperature slowly and was stirred for another 1 h until no starting material was detected by TLC. The reaction was quenched with saturated aqueous NaHCO₃ solution (10 mL), and was extracted with DCM (10 mL × 3). The organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuum. The crude product was purified by silica gel column chromatography (petrol ether : ethyl acetate = 4 : 1) to afford the coupling products as a 1:1 mixture of the diastereoisomers. The desired product **3-1** was isolated as yellow oil (264 mg, 0.66 mmol, 33%).

¹**H NMR** (400 MHz, CDCl₃) δ 5.79 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 5.27 (dd, J = 10.1, 3.5 Hz, 1H), 5.15 (dd, J = 3.4, 1.7 Hz, 1H), 5.04 (t, J = 10.0 Hz, 1H), 4.98 (dd, J = 17.1, 1.7 Hz, 1H), 4.92 (dd, J = 10.2, 0.8 Hz, 1H), 4.81 (d, J = 1.4 Hz, 1H), 3.90 (dq, J = 9.9, 6.3 Hz, 1H), 3.77 – 3.67 (m, 1H), 2.13 (s, 3H), 2.06 – 2.02 (m, 5H), 1.97 (s, 3H), 1.48 – 1.34 (m, 6H), 1.18 (d, J = 6.3 Hz, 3H), 1.11 (d, J = 6.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 170.2, 170.0, 169.9, 138.7, 114.4, 94.9, 72.9, 71.2, 70.6, 69.2, 66.4, 36.7, 33.7, 28.7, 25.1, 21.0, 20.8, 20.7, 18.9, 17.3.

HR-ESI-MS (m/z) calcd for $C_{20}H_{32}NaO_8^+$ [M+Na]⁺ 423.1989, found 423.1994.

Step 2: To a solution of **3-1** (100 mg, 0.25 mmol) in MeOH (40 mL) was added Et_3N (0.1 mL, 0.75 mmol) dropwise. The mixture was allowed to stir at 50 °C for 3 h until no starting material was detected by TLC. The mixture was concentrated in vacuum and purified by silica gel column chromatography (petrol ether : ethyl acetate = 1 : 10) to afford **3** (40 mg, 0.15 mmol, 60%) as yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 5.87 – 5.74 (m, 1H), 5.01 (d, J = 17.1 Hz, 1H), 4.95 (d, J = 10.2 Hz, 1H), 4.88 (s, 1H), 3.87 (s, 1H), 3.82 – 3.64 (m, 3H), 3.49 (t, J = 9.2 Hz, 1H), 2.06 (d, J = 5.9 Hz, 2H), 1.62 – 1.49 (m, 1H), 1.47 – 1.34 (m, 5H), 1.30 (d, J = 5.1 Hz, 3H), 1.12 (d, J = 4.7 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 138.8, 114.5, 97.1, 72.7, 72.1, 71.8, 71.7, 68.4, 36.9, 8

33.7, 28.8, 25.2, 18.9, 17.5.

HR-ESI-MS (m/z) calcd for $C_{14}H_{26}NaO_5^+$ [M+Na]⁺ 297.1672, found 297.1676.

(2R,3R,4R,5R,6S)-5-(benzyloxy)-4-hydroxy-6-methyl-2-(((R)-oct-7-en-2-yl)oxy) tetrahydro-2H- pyran-3-yl acetate (4).

To a solution of **3** (208 mg, 0.76 mmol) in dry CH₃CN (8 mL) at 50 °C were added triethylorthoacetate (691 μ L, 3.8 mmol) and *p*-TsOH (39.3 mg, 0.2 mmol) successively. The mixture was allowed to stir at 50 °C for 8 h until no starting material was detected by TLC. Then Et₃N (27 μ L, 0.2 mmol) was added to neutralize the solution. Then NaH (54.7 mg, 2.3 mmol) and BnBr (278 μ L, 2.3 mmol) were added successively. The mixture was allowed to stir at room temperature until all the intermediate was completely consumed. MeOH (2 mL) was carefully added to quench excess NaH. The mixture was diluted with DCM (20 mL). The organic layer was successively neutralized with 1.0 mol/L aqueous HCl solution (20 mL × 3), washed with saturated aqueous NaHCO₃ solution (20 mL × 3) and water (20 mL × 3), dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuum. The crude product was purified by silica gel column chromatography (petrol ether : ethyl acetate = 4 : 1) to afford **4** (210 mg, 0.52 mmol, 68%) as yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.30 (m, 5H), 5.82 (ddt, *J* = 16.9, 10.2, 6.7 Hz, 1H), 5.05 (dt, *J* = 3.0, 1.5 Hz, 1H), 5.01 (ddd, *J* = 17.1, 3.6, 1.6 Hz, 1H), 4.96 (ddt, *J* = 10.2, 2.2, 1.2 Hz, 1H), 4.87 (d, *J* = 6.5 Hz, 1H), 4.85 (d, *J* = 3.0 Hz, 1H), 4.73 (d, *J* = 11.1 Hz, 1H), 4.12 (dd, *J* = 9.4, 3.6 Hz, 1H), 3.86 – 3.79 (m, 1H), 3.78 – 3.71 (m, 1H), 3.38 (t, *J* = 9.5 Hz, 1H), 2.20 – 2.16 (m, 3H), 2.11 – 2.02 (m, 2H), 1.61 – 1.50 (m, 1H), 1.48 – 1.37 (m, 5H), 1.36 (d, *J* = 6.3 Hz, 3H), 1.13 (d, *J* = 6.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.0, 138.9, 138.3, 128.5, 128.0, 127.9, 114.4, 94.8, 81.8, 75.2, 73.6, 72.5, 70.2, 67.6, 36.9, 33.7, 28.8, 25.1, 21.2, 18.9, 18.0.
HR-ESI-MS (m/z) calcd for C₂₃H₃₄NaO₆⁺ [M+Na]⁺ 429.2248, found 429.2249.

(2R,3R,4R,5S,6S)-4-((1H-imidazole-1-carbonothioyl)oxy)-5-(benzyloxy)-6-methyl-2-(((R)-oct-7-en-2-yl)oxy) tetrahydro-2H-pyran-3-yl acetate (5).

To a solution of **4** (456 mg, 1.1 mmol) and TCDI (231 mg, 1.3 mmol) in DCE (2 mL) was added DMAP (13.4 mg, 0.11 mmol) in one portion. The mixture was stirred at room temperature for 5 h until all the starting material was consumed. The solvent was then removed in vacuum and the residue was purified by silica gel column chromatography (petrol ether : ethyl acetate = 4 : 1) to afford **5** (249 mg, 0.48 mmol, 44%) as yellow powder.

¹**H NMR** (400 MHz, CDCl₃) δ 8.14 (s, 1H), 7.53 – 7.48 (m, 1H), 7.27 – 7.16 (m, 5H), 7.01 (d, J = 0.7 Hz, 1H), 6.09 (dd, J = 9.5, 3.4 Hz, 1H), 5.81 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 5.33 (dd, J = 3.3, 1.9 Hz, 1H), 5.04 – 4.92 (m, 2H), 4.89 (d, J = 1.5 Hz, 1H), 4.68 (d, J = 11.3 Hz, 1H), 4.57 (d, J = 11.3 Hz, 1H), 3.99 (dq, J = 9.3, 6.2 Hz, 1H), 3.75 (dt, J = 12.8, 7.8 Hz, 2H), 2.11 (s, 3H), 2.09 – 2.03 (m, 2H), 1.65 – 1.54 (m, 1H), 1.51 – 1.40 (m, 5H), 1.39 (s, 3H), 1.15 (d, J = 6.1 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 182.5, 169.8, 138.8, 137.3, 136.4, 130.9, 128.4, 128.1, 127.7, 118.0, 114.5, 94.7, 80.1, 79.1, 75.3, 73.0, 70.4, 68.0, 36.7, 33.7, 28.8, 25.0, 20.9, 18.8, 18.0.

HR-ESI-MS (m/z) calcd for C₂₇H₃₆N₂NaO₆S⁺ [M+Na]⁺ 539.2186, found 539.2189.

(2R,3R,5R,6S)-5-(benzyloxy)-6-methyl-2-(((R)-oct-7-en-2-yl)oxy)tetrahydro-2H-

pyran-3-yl acetate (6).

To a solution of Bu₃SnH (226 μ L, 0.84 mmol) in toluene (4 mL) at 100 °C under N₂ were added AIBN (164.2 mg, 1.0 mmol) and a solution of **5** (214 mg, 0.42 mmol) in toluene (2 mL) successively. The resulting mixture was stirred at 100 °C for 2 h until no starting material was detected by TLC. The solvent was then removed in vacuum and the residue was purified by silica gel column chromatography (petrol ether : ethyl acetate = 15 : 1) to afford **6** (98 mg, 0.25 mmol, 60%) as yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 – 7.26 (m, 5H), 5.80 (ddt, *J* = 16.9, 10.2, 6.7 Hz, 1H), 4.99 (dd, *J* = 17.1, 1.7 Hz, 1H), 4.93 (dd, *J* = 10.2, 0.9 Hz, 1H), 4.85 (d, *J* = 0.9 Hz, 1H), 4.71 (s, 1H), 4.61 (d, *J* = 11.5 Hz, 1H), 4.47 (d, *J* = 11.5 Hz, 1H), 3.88 – 3.80 (m, 1H), 3.80 – 3.71 (m, 1H), 3.39 – 3.31 (m, 1H), 2.20 (dt, *J* = 13.5, 3.5 Hz, 1H), 2.07 (s, 3H), 2.06 – 2.01 (m, 2H), 1.94 – 1.86 (m, 1H), 1.59 – 1.50 (m, 1H), 1.46 – 1.34 (m, 5H), 1.28 (d, *J* = 6.2 Hz, 3H), 1.11 (d, *J* = 6.1 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 170.3, 138.9, 138.3, 128.4, 127.8, 127.7, 114.4, 93.6, 75.2, 72.0, 71.3, 71.2, 68.2, 37.0, 33.7, 29.4, 28.9, 25.1, 21.2, 19.0, 18.0.

HR-ESI-MS (m/z) calcd for $C_{23}H_{34}NaO_5^+$ [M+Na]⁺ 413.2298, found 413.2300.

6*R*-(3'*R*,5'*R*-dihydroxy-6'*S*-methyl-(2*H*)-tetrahydropyran-2'-yloxy) heptanoic acid (7, ascr#1).

Step 1: To a solution of **6** (47.7 mg, 0.12 mmol) in acetone (5 mL) were added NaHCO₃ (30.8 mg, 0.37 mmol) and KMnO₄ (96.6 mg, 0.61 mmol) successively. The resulting mixture was stirred at room temperature for 12 h until no starting material was detected by TLC. The aqueous layer was acidified to pH 2 with aqueous HCl solution (1.0 mol/L) and extracted with ethyl acetate (10 mL × 2). The organic layers were washed with brine (20 mL × 2), dried over anhydrous Na₂SO₄, and concentrated in vacuum to afford an inseparable mixture of **7-1**, which was used for the next step without further purification .

Step 2: To a solution of **7-1** from the previous step in 1,4-dioxane (4.7 mL) was added aqueous LiOH (17.6 mg, 0.74 mmol in 0.6 mL H₂O). The resulting mixture was stirred at 60 °C for 6 h until the starting material was fully consumed. The aqueous layer was acidified to *p*H 2 with aqueous HCl solution (1.0 mol/L), then extracted with Et₂O (10 mL × 3). The organic layers were washed with brine (10 mL × 3), dried over anhydrous Na₂SO₄, and concentrated in vacuum. The crude product was purified by silica gel column chromatography (DCM : MeOH = 15 : 1) to afford 7 (8 mg, 0.029 mmol, 24% for two steps) as colorless oil.

The spectral data of 7 are identical to those of a previous report.²

¹**H NMR** (400 MHz, CD₃OD) δ 4.66 (s, 1H), 3.85 – 3.76 (m, 1H), 3.74 (d, *J* = 0.9 Hz, 1H), 3.67 – 3.59 (m, 1H), 3.57 – 3.47 (m, 1H), 2.32 (t, *J* = 7.4 Hz, 2H), 1.97 (dt, *J* = 12.9, 3.6 Hz, 1H), 1.83 – 1.73 (m, 1H), 1.70 – 1.56 (m, 3H), 1.55 – 1.39 (m, 3H), 1.23 (d, *J* = 6.2 Hz, 3H), 1.14 (d, *J* = 6.1 Hz, 3H).

¹³C NMR (101 MHz, CD₃OD) δ 177.6, 97.4, 72.2, 71.1, 69.9, 68.3, 38.0, 35.9, 34.8, 26.3, 26.0, 19.3, 18.0.

HR-ESI-MS (m/z) calcd for $C_{13}H_{24}NaO_6^+$ [M+Na]⁺ 299.1465, found 299.1464.

(2S,3S,4R,5R,6S)-2-methyl-6-(p-tolylthio)tetrahydro-2H-pyranol (8)³

Step 1: To a mixture of L-rhamnose monohydrate (3.6 g, 20 mmol) and acetic anhydride (9.4 mL, 100 mmol) was added Cu(OTf)₂ (11.5 mg, 0.03 mmol) at 0 °C under N₂. Then the ice bath was removed, and the mixture was stirred at room temperature for 6 h. When reaction was completed according to TLC, *p*-thiocresol (4.8 mL, 40 mmol) and BF₃·Et₂O (5.0 mL, 40 mmol) were sequentially added. The mixture was then allowed to warm to room temperature and was stirred for another 2 h until all the starting material was consumed by TLC. The reaction was quenched with saturated aqueous NaHCO₃ solution (50 mL), and the resulting mixture was extracted with ethyl acetate (80 mL × 3). The organic layers were washed with brine (100 mL \times 3), dried over anhydrous NaSO₄, filtered, and concentrated in vacuum. The crude product was purified by silica gel column chromatography (petrol ether : ethyl acetate = 4 : 1) to afford **8-1** (6.4 g, 16.2 mmol, 81%) as white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 8.1 Hz, 2H), 7.16 – 7.11 (m, 2H), 5.50 (dd, J = 3.3, 1.6 Hz, 1H), 5.34 (s, 1H), 5.30 (dd, J = 10.1, 3.4 Hz, 1H), 5.15 (t, J = 9.9 Hz, 1H), 4.38 (dq, J = 9.7, 6.2 Hz, 1H), 2.33 (s, 3H), 2.14 (s, 3H), 2.09 (s, 3H), 2.02 (s, 3H), 1.25 (d, J = 6.3 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 170.0, 170.0, 169.9, 138.2, 132.5, 130.0, 129.4, 86.0, 71.3, 71.2, 69.4, 67.7, 21.1, 20.9, 20.8, 20.7, 17.3.

HR-ESI-MS (m/z) calcd for C₁₉H₂₄NaO₇S⁺ [M+Na]⁺ 419.1135, found 419.1131.

Step 2: To a solution of **8-1** (3.4 g, 8.6 mmol) in MeOH (40 mL) was added Et₃N (5.9 mL, 43.0 mmol). The mixture was stirred at 50 °C overnight until no starting material was detected by TLC. The solvent was removed in vacuum. The residue was subjected to silica gel column chromatography (petrol ether : ethyl acetate = 1 : 10) to afford **8** (1.97 g, 7.3 mmol, 85%) as white solid.

The spectral data of $\mathbf{8}$ are identical to those of a previous report.³

¹**H NMR** (400 MHz, CD₃OD) δ 7.37 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 7.0 Hz, 2H), 5.32 (s, 1H), 4.15 – 4.02 (m, 2H), 3.71 – 3.62 (m, 1H), 3.48 (t, *J* = 9.4 Hz, 1H), 2.33 (s, 3H), 1.29 (d, *J* = 6.2 Hz, 3H).

¹³C NMR (101 MHz, CD₃OD) δ 137.4, 131.9, 130.8, 129.4, 89.1, 72.8, 72.4, 71.5, 69.5, 19.7, 16.5.

HR-ESI-MS (m/z) calcd for $C_{13}H_{18}NaO_4S^+$ [M+Na]⁺ 293.0818, found 293.0813.

(2S,3R,4R,5R,6S)-5-(benzyloxy)-4-hydroxy-6-methyl-2-(p-tolylthio)tetrahydro-2H-pyran-3-yl acetate (9).

To a solution of **8** (4.3 g, 16.0 mmol) in dry CH₃CN (80 mL) at 50 °C were added triethylorthoacetate (6.1 mL, 32.1 mmol) and *p*-TsOH (552.3 mg, 3.2 mmol) 13

successively. The mixture was stirred at 50 °C for 8 h until no starting material was detected according to TLC. Upon completion of the reaction, Et₃N (438 μ L, 3.2 mmol) was added to neutralize the solution. Then NaH (1.9 g, 48 mmol) was added, followed by BnBr (5.69 mL, 48 mmol). The resulting mixture was stirred at room temperature for 1.5 h until all the starting material was consumed by TLC. MeOH (10 mL) was carefully added to quench excess NaH. And the mixture was diluted with DCM (150 mL). The organic layer was washed with 1.0 mol/L aqueous HCl solution (50 mL × 3), saturated aqueous NaHCO₃ solution (100 mL × 3) and water (100 mL × 3) successively, and was then dried over anhydrous NaSO₄, filtered, concentrated in vacuum. The crude residue was purified by silica gel column chromatography (petrol ether : ethyl acetate = 4 : 1) to afford **9** (4.6 g, 11.4 mmol, 71%) as yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.45 – 7.33 (m, 7H), 7.14 (d, *J* = 7.9 Hz, 2H), 5.39 (s, 2H), 4.90 (d, *J* = 11.1 Hz, 1H), 4.77 (d, *J* = 11.1 Hz, 1H), 4.28 (dq, *J* = 12.4, 6.2 Hz, 1H), 4.13 (dd, *J* = 10.7, 5.8 Hz, 1H), 3.48 (t, *J* = 9.4 Hz, 1H), 2.36 (s, 3H), 2.18 (s, 3H), 1.41 (d, *J* = 6.2 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 170.8, 138.2, 137.9, 132.4, 130.1, 129.9, 128.6, 128.0, 127.9, 86.3, 81.9, 75.3, 74.4, 70.7, 68.7, 21.2, 21.1, 17.8.

HR-ESI-MS (m/z) calcd for C₂₂H₂₆NaO₅S⁺ [M+Na]⁺ 425.1393, found 425.1393.

(2S,3R,5R,6S)-5-(benzyloxy)-6-methyl-2-(p-tolylthio)tetrahydro-2H-pyran-3-yl acetate (10).

Step 1: To a solution of **9** (3.9 g, 9.7 mmol) and TCDI (2.1 g, 11.8 mmol) in DCE (40 mL) at room temperature was added DMAP (119.7 mg, 0.98 mmol) in one portion. The mixture was stirred at room temperature for 8 h until no starting material was detected by TLC. The solvent was then removed in vacuum and the residue was purified by silica gel column chromatography (petrol ether : ethyl acetate = 4 : 1) to

afford 10-1 (4.3 g, 8.8 mmol, 86%) as white solid.

¹**H NMR** (500 MHz, CDCl₃) δ 8.18 (s, 1H), 7.54 (s, 1H), 7.41 (d, J = 8.0 Hz, 2H), 7.30 – 7.22 (m, 5H), 7.15 (d, J = 7.9 Hz, 2H), 7.04 (s, 1H), 6.15 (dd, J = 9.5, 3.3 Hz, 1H), 5.71 (d, J = 1.6 Hz, 1H), 5.43 (s, 1H), 4.75 (d, J = 11.4 Hz, 1H), 4.65 (d, J =11.4 Hz, 1H), 4.46 (dq, J = 12.4, 6.2 Hz, 1H), 3.87 (t, J = 9.4 Hz, 1H), 2.35 (s, 3H), 2.12 (s, 3H), 1.47 (d, J = 6.2 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 182.4, 169.6, 138.3, 137.3, 136.4, 132.7, 131.0, 130.0, 129.1, 128.5, 128.1, 127.6, 118.0, 85.8, 80.1, 79.1, 75.3, 70.9, 69.3, 21.2, 20.9, 18.0.
HR-ESI-MS (m/z) calcd for C₂₆H₂₉N₂O₅S₂⁺ [M+H]⁺ 513.1512, found 513.1513.

Step 2: To a solution of AIBN (256.9 mg, 1.5 mmol) and Bu₃SnH (4.03 mL, 15 mmol) in toluene (33 mL) at 60 °C under N₂ was added a solution of **10-1** (2.7 g, 5.2 mmol) in toluene (17 mL) dropwise. The resulting mixture was stirred at 60 °C for 1.5 h until the reaction was completed as indicated by TLC. The solvent was then removed in vacuum and the residue was purified by silica gel column chromatography (petrol ether : ethyl acetate = 15: 1) to afford **10** (1.1 g, 2.8 mmol, 53%) as colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.43 – 7.27 (m, 7H), 7.14 (d, *J* = 7.9 Hz, 2H), 5.32 (s, 1H), 5.25 (s, 1H), 4.67 (d, *J* = 11.4 Hz, 1H), 4.54 (d, *J* = 11.4 Hz, 1H), 4.28 (dq, *J* = 12.4, 6.2 Hz, 1H), 3.53 – 3.44 (m, 1H), 2.35 – 2.31 (m, 4H), 2.10 (s, 3H), 1.95 (ddd, *J* = 14.0, 11.2, 3.0 Hz, 1H), 1.35 (d, *J* = 6.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 170.1, 138.2, 137.7, 132.4, 130.3, 129.8, 128.5, 127.8, 127.8, 86.2, 75.3, 71.9, 71.3, 69.1, 30.5, 21.2, 21.1, 18.0.

HR-ESI-MS (m/z) calcd for $C_{22}H_{26}NaO_4S^+$ [M+Na]⁺ 409.1444, found 409.1440.

Typical procedure for the synthesis of fatty acid side chains 11a-11c (exemplified 15

by the synthesis of 11b).

Step 1: To a suspension of Mg (577.7 mg, 23.5 mmol) in dry THF (3 mL) at room temperature was added a solution of 7-bromo-1-heptene (3.58 mL, 23.5 mmol) in dry THF (20 mL) dropwise over 30 min. The resulting mixture was stirred at room temperature for another 3 h. Then the mixture was added dropwise to a suspension of (*R*)-(+)-1,2-epoxypropane (1.32 mL, 19.0 mmol) and CuBr (272 mg, 1.9 mmol) in dry THF (23 mL) at -78 °C under argon. Upon the completion of the addition, the mixture was warmed to room temperature and stirred for 10 h until the reaction was completed according to TLC. The reaction was quenched by saturated aqueous NH₄Cl solution (20 mL) and extracted by Et₂O (30 mL×3). The organic layers were dried by anhydrous Na₂SO₄, and concentrated in vacuum. The crude product was purified by silica gel column chromatography (n-pentane : Et₂O = 4 : 1) to afford **11b-3** (2.4 g, 15.4 mmol, 80%) as colorless oil.

¹**H NMR** (500 MHz, CDCl₃) δ 5.83 – 5.72 (m, 1H), 4.96 (d, *J* = 17.1 Hz, 1H), 4.90 (d, *J* = 10.2 Hz, 1H), 3.78 – 3.70 (m, 1H), 2.55 – 2.41 (m, 1H), 2.06 – 1.97 (m, 2H), 1.40 – 1.23 (m, 9H), 1.14 (d, *J* = 6.2 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 139.1, 114.1, 67.9, 39.2, 33.8, 29.5, 29.1, 28.8, 25.7, 23.3.

Step 2: To a stirred solution of **11b-3** (2.3 g, 14.7 mmol) and DMAP (91.8 mg, 1.5 mmol) in DCM (50 mL) at 0 °C were added Et₃N (3.1 mL, 22.3 mmol) and Ac₂O (2.1 mL, 22.3 mmol) successively. The mixture was stirred at room temperature for 4 h until completion. The reaction was quenched by saturated aqueous NaHCO₃ solution (20 mL) and extracted with DCM (50 mL \times 3). The organic layers were washed with brine (50 mL \times 3), dried over anhydrous NaSO₄, filtered, and concentrated in vacuum. The crude product was purified by silica gel column chromatography (petrol ether : ethyl acetate = 15 : 1) to afford **11b-4** (2.7 g, 13.6 mmol, 93%) as colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 5.81 (ddt, J = 17.0, 10.2, 6.7 Hz, 1H), 5.03 – 4.92 (m, 2H), 4.88 (dd, J = 12.7, 6.5 Hz, 1H), 2.09 – 2.00 (m, 5H), 1.64 – 1.53 (m, 1H), 1.51 – 1.43 (m, 1H), 1.41 – 1.34 (m, 2H), 1.28 (d, J = 14.3 Hz, 6H), 1.20 (t, J = 6.1 Hz, 16

3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.8, 139.1, 114.2, 71.0, 35.9, 33.8, 29.3, 29.0, 28.8, 25.4, 21.4, 20.0.

Step 3: To a solution of **11b-4** (2.9 g, 14.7 mmol) in CH₃CN (15 mL) and H₂O (7 mL) was added an aqueous solution of RuCl₃· 3H₂O (192.1 mg, 0.7 mmol) in H₂O (8 mL). The mixture was stirred at room temperature vigorously. After 5 min, sodium periodate (9.4 g, 44 mmol) was added. The resulting mixture was stirred at room temperature overnight until the reaction was completed according to TLC. The mixture was diluted with H₂O (20 mL) and extracted with DCM (50 mL × 3). The organic layers were washed with brine, dried over anhydrous Na₂SO₄ and concentrated in vacuum. The crude product was purified by silica gel column chromatography (petrol ether : ethyl acetate = 4 : 1) to afford **11b-5** (2.7 g, 12.5 mmol, 87%) as yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 4.93 – 4.83 (m, 1H), 2.35 (t, *J* = 7.5 Hz, 2H), 2.03 (s, 3H), 1.69 – 1.52 (m, 3H), 1.51 – 1.40 (m, 1H), 1.41 – 1.25 (m, 6H), 1.20 (d, *J* = 6.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 179.8, 171.0, 71.1, 35.8, 34.0, 29.0, 28.9, 25.2, 24.6, 21.4, 19.9.

Step 4: To a stirred solution of compound **11b-5** (2.5 g, 11.6 mmol) in MeOH (20 mL) at 0 °C was added a freshly prepared solution of MeONa (1.4 g, 26.1 mmol) in MeOH (20 mL). The solution was warmed to room temperature and was stirred for 4 h. The reaction was neutralized by acidic Amberlite IR-120 (H⁺), filtered and concentrated in vacuum. The crude product was purified by silica gel column chromatography (petrol ether : ethyl acetate = 1 : 1) to afford **11b-6** (1.9 g, 10.9 mmol, 96%) as colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 3.87 – 3.73 (m, 1H), 2.40 – 2.25 (m, 2H), 1.67 – 1.57 (m, 2H), 1.53 – 1.25 (m, 8H), 1.18 (d, *J* = 6.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 178.9, 68.2, 39.0, 34.0, 29.2, 29.0, 25.5, 24.6, 23.2

Step 5: To a mixture of **11b-6** (1.7 g, 9.8 mmol) and K_2CO_3 (6.8 g, 49.5 mmol) in DMF (40 mL) was added MeI (1.23 mL, 19.8 mmol) and the resulting mixture was

17

stirred at room temperature for 10 h. The reaction was quenched with saturated aqueous NH₄Cl solution (20 mL) and the mixture was extracted with ethyl acetate (50 mL \times 3). The organic layers were washed with brine (50 mL \times 3), dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuum. The crude product was purified by silica gel column chromatography (petrol ether : ethyl acetate = 4 : 1) to afford **11b** (1.7 g, 9.0 mmol, 90%) as colorless oil.

(R)-methyl-6-hydroxyheptanoate (11a).

The spectral data of **11a** are identical to those of a previous report.⁴

¹H NMR (400 MHz, CDCl₃) δ 3.82 – 3.73 (m, 1H), 3.64 (s, 3H), 2.30 (t, *J* = 7.5 Hz, 2H), 2.03 (s, 1H), 1.68 – 1.56 (m, 2H), 1.49 – 1.28 (m, 4H), 1.15 (d, *J* = 6.2 Hz, 3H).
¹³C NMR (101 MHz, CDCl₃) δ 174.3, 67.7, 51.5, 38.8, 34.0, 25.3, 24.8, 23.4.

(R)-methyl -8-hydroxynonanoate (11b).

The spectral data of **11b** are identical to those of a previous report.⁴

¹**H NMR** (400 MHz, CDCl₃) δ 3.75 – 3.63 (m, 1H), 3.59 (s, 3H), 2.39 (s, 1H), 2.23 (t, *J* = 7.5 Hz, 2H), 1.61 – 1.50 (m, 2H), 1.43 – 1.18 (m, 8H), 1.10 (dd, *J* = 6.1, 2.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 174.3, 67.6, 51.4, 39.1, 33.9, 29.2, 29.0, 25.5, 24.7,

23.3.

(R)-methyl -10-hydroxyundecanoate(11c).

The spectral data of **11c** are identical to those of a previous report.⁵

¹H NMR (500 MHz, CDCl₃) δ 3.79 – 3.70 (m, 1H), 3.63 (s, 3H), 2.27 (t, *J* = 7.6 Hz, 2H), 1.91 (s, 1H), 1.62 – 1.54 (m, 2H), 1.47 – 1.34 (m, 3H), 1.32 – 1.23 (m, 9H), 1.14 (d, *J* = 6.2 Hz, 3H).
¹³C NMR (126 MHz, CDCl₃) δ 174.4, 68.0, 51.4, 39.3, 34.0, 29.5, 29.4, 29.1, 29.1, 25.7, 24.9, 23.4.

To a solution of methyl acrylate (**11e-1**, 809 μ L, 6 mmol) and **11e-2** (256 mg, 2 mmol) in DCM (5 mL) was added Hoveyda-Grubbs 2nd generation catalyst (8.5 mg, 0.01 mmol), and the reaction was allowed to stir at room temperature for 10 h. The solvent was then removed in vacuum and the residue was purified by silica gel column chromatography (petrol ether : ethyl acetate = 4 : 1) to afford **11e** (197 mg, 1.1 mmol, 53%) as colorless oil.

The spectral data of **11e** are identical to those of a previous report.⁶

¹**H NMR** (500 MHz, CDCl₃) δ 6.95 (dt, *J* = 15.6, 7.0 Hz, 1H), 5.81 (dt, *J* = 15.6, 1.5 Hz, 1H), 3.80 – 3.73 (m, 1H), 3.71 (s, 3H), 2.20 (qd, *J* = 7.1, 1.2 Hz, 2H), 1.51 – 1.38 (m, 5H), 1.36 – 1.30 (m, 1H), 1.17 (d, *J* = 6.2 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 167.2, 149.5, 120.9, 67.8, 51.4, 39.0, 32.2, 28.0, 25.3, 23.5.

Typical procedure for the preparation of ascarosides 14a-14d (exemplified by the synthesis of 14a).

Step 1: To a suspension of **10** (100 mg, 0.26 mmol), **11a** (41.5 mg, 0.52 mmol), NIS (117 mg, 0.52 mmol), and 4 Å molecular sieves in dry DCM (2 mL) was added TMSOTf (14 μ L, 0.078 mmol) slowly under N₂ at room temperature. The mixture was stirred at room temperature for 1 h. Et₃N (36 μ L, 0.26 mmol) was added to quench the reaction. The resulting mixture was filtered, and concentrated in vacuum.

The residue was purified by silica gel column chromatography (petrol ether : ethyl acetate = 15 : 1) to afford **12a** (60 mg, 0.14 mmol, 55%) as yellow oil.

(*R*)-*Methyl--6-(((2R,3R,5R,6S)-3-acetoxy-5-(benzyloxy)-6-methyltetrahydro-2H-pyran-2-yl)oxy)heptanoate (12a).*

¹**H NMR** (500 MHz, CDCl₃) δ 7.38 – 7.29 (m, 5H), 4.86 (s, 1H), 4.72 (s, 1H), 4.63 (d, J = 11.4 Hz, 1H), 4.49 (d, J = 11.4 Hz, 1H), 3.85 – 3.75 (m, 2H), 3.66 (s, 3H), 3.37 (td, J = 10.8, 4.3 Hz, 1H), 2.33 (t, J = 7.5 Hz, 2H), 2.22 (dt, J = 13.6, 3.6 Hz, 1H), 2.09 (s, 3H), 1.94 – 1.87 (m, 1H), 1.70 – 1.60 (m, 2H), 1.60 – 1.53 (m, 1H), 1.50 – 1.41 (m, 2H), 1.40 – 1.33 (m, 1H), 1.30 (d, J = 6.2 Hz, 3H), 1.12 (d, J = 6.1 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 174.1, 170.3, 138.2, 128.4, 127.8, 127.76, 93.5, 75.1, 71.7, 71.2, 68.2, 51.5, 36.7, 34.0, 29.4, 25.2, 24.9, 21.2, 18.9, 18.0.

HR-ESI-MS (m/z) calcd for $C_{23}H_{34}NaO_7^+$ [M+Na]⁺ 445.2197, found 445.2197.

Step 2: To a solution of **12a** (159.6 mg, 0.39 mmol) in 1,4-dioxane (4 mL) was added a solution of NaOH (46.8 mg, 1.17 mmol) in H₂O (0.5 mL). The resulting mixture was stirred at 60 °C for 3 h until no starting material was detected by TLC. The aqueous layer was acidified to *p*H 2 with aqueous HCl solution (1.0 mol/L), and was extracted with Et₂O (10 mL × 2). The corganic layers were washed with brine (10 mL × 2), dried over anhydrous Na₂SO₄, and concentrated in vacuum. The crude product was purified by silica gel column chromatography (DCM : MeOH = 15 : 1) to afford **13a** (105 mg, 0.29 mmol, 76%) as colorless oil.

(R)-6-(((2R,3R,5R,6S)-5-(benzyloxy)-3-hydroxy-6-

methyltetrahydro-2H-pyran-2-yl)oxy)heptanoic acid (13a).

¹**H NMR** (500 MHz, CDCl₃) δ 7.39 – 7.29 (m, 5H) 4.71 (s, 1H), 4.64 (d, *J* = 11.5 Hz, 1H), 4.49 (d, *J* = 11.5 Hz, 1H), 3.86 – 3.77 (m, 3H), 3.42 (td, *J* = 10.6, 4.3 Hz, 1H), 20

2.36 (t, *J* = 7.4 Hz, 2H), 2.25 – 2.19 (m, 1H), 1.90 – 1.81 (m, 1H), 1.70 – 1.54 (m, 3H), 1.52 – 1.37 (m, 3H), 1.29 (d, *J* = 6.3 Hz, 3H), 1.14 (d, *J* = 6.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 178.8, 138.2, 128.5, 127.9, 127.8, 96.1, 75.2, 71.4, 71.1, 69.1, 68.4, 36.7, 33.9, 31.8, 25.1, 24.7, 18.9, 18.1.

HR-ESI-MS (m/z) calcd for $C_{20}H_{30}NaO_6^+$ [M+Na]⁺ 389.1935, found 389.1937.

Step 3: A mixture of **13a** (47.5 mg, 0.13 mmol) and Pd(OH)₂/C (18.2 mg, 0.013 mmol) in MeOH (2 mL) under H₂ (4 atm) was stirred at room temperature for 12 h. Then the reaction mixture was filtered and was concentrated in vacuum. The residue was purified by flash column chromatography (DCM : MeOH = 15:1) to afford **14a**/7 (35 mg, 0.13 mmol, 100%) as a colourless oil.

6*R*-(3'*R*,5'*R*-dihydroxy-6'S-methyl-(2H)-tetrahydropyran-2'-yloxy) heptanoic acid (14a/7, ascr#1)²

¹**H NMR** (400 MHz, CD₃OD) δ 4.66 (s, 1H), 3.85 – 3.76 (m, 1H), 3.74 (d, *J* = 0.9 Hz, 1H), 3.67 – 3.59 (m, 1H), 3.57 – 3.47 (m, 1H), 2.32 (t, *J* = 7.4 Hz, 2H), 2.02 – 1.92 (m, 1H), 1.83 – 1.73 (m, 1H), 1.70 – 1.56 (m, 3H), 1.55 – 1.39 (m, 3H), 1.23 (d, *J* = 6.2 Hz, 3H), 1.14 (d, *J* = 6.1 Hz, 3H);

¹³C NMR (101 MHz, CD₃OD) δ 177.6, 97.4, 72.2, 71.1, 69.9, 68.3, 38.0, 35.9, 34.8, 26.3, 26.0, 19.3, 18.0;

HR-ESI-MS (m/z) calcd for $C_{13}H_{24}NaO_6^+$ [M+Na]⁺ 299.1465, found 299.1464.

(R)-Methyl--8-(((2R,3R,5R,6S)-3-acetoxy-5-(benzyloxy)-6-

methyltetrahydro-2H-pyran-2-yl)oxy)nonanoate (12b).

12b (99.8 mg, 0.22 mmol, 61%) was obtained from 10 (151 mg, 0.39 mmol) and 11b (88 mg, 0.47 mmol) as yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.36 – 7.29 (m, 5H), 4.85 (s, 1H), 4.71 (s, 1H), 4.61 (d, J = 11.4 Hz, 1H), 4.47 (d, J = 11.4 Hz, 1H), 3.85 – 3.78 (m, 1H), 3.75 (dd, J = 11.4, 5.8 Hz, 1H), 3.65 (s, 3H), 3.35 (td, J = 10.4, 4.2 Hz, 1H), 2.29 (t, J = 7.5 Hz, 2H), 2.23 – 2.17 (m, 1H), 2.07 (s, 3H), 1.90 (dd, J = 17.9, 6.6 Hz, 1H), 1.64 – 1.58 (m, 2H), 1.45 – 1.36 (m, 2H), 1.34 – 1.29 (m, 6H), 1.28 (d, J = 6.3 Hz, 3H), 1.10 (d, J = 6.0 Hz, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 174.2, 170.3, 138.2, 128.4, 127.8, 127.7, 93.5, 75.1, 71.8, 71.2, 71.2, 68.1, 51.4, 37.0, 34.1, 29.2, 29.0, 25.5, 25.1, 24.9, 21.2, 19.0, 18.0.

(R)-8-(((2R,3R,5R,6S)-5-(benzyloxy)-3-hydroxy-6-methyltetrahydro-2H-pyran-2yl)oxy)nonanoic acid (13b).

13b (35 mg, 0.089 mmol, 89%) was obtained from **12b** (45 mg, 0.1 mmol) as yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.39 – 7.30 (m, 5H), 4.72 (s, 1H), 4.64 (d, *J* = 11.5 Hz, 1H), 4.49 (d, *J* = 11.5 Hz, 1H), 3.88 – 3.83 (m, 2H), 3.79 (dd, *J* = 11.9, 6.1 Hz, 1H), 3.46 – 3.39 (m, 1H), 2.34 (t, *J* = 7.5 Hz, 2H), 2.22 (dt, *J* = 13.1, 3.9 Hz, 1H), 1.90 – 1.83 (m, 1H), 1.68 – 1.61 (m, 2H), 1.47 – 1.38 (m, 2H), 1.31 (m, 6H), 1.28 (s, 3H), 1.13 (d, *J* = 6.1 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 179.1, 138.1, 128.4, 127.8, 127.7, 96.2, 75.2, 71.7,

71.1, 69.1, 68.4, 37.2, 33.9, 31.8, 29.5, 29.4, 25.6, 24.7, 18.9, 18.0.

(R)-8-(((2R,3R,5R,6S)-3,5-dihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy) nonanoic acid (14b, ascr#10).

14b (13 mg, 0.043 mmol, 96%) was obtained from **13b** (18 mg, 0.046 mmol) as yellow oil.

The spectral data of **14b** are identical to those of a previous report.⁷

¹**H NMR** (400 MHz, CD₃OD) δ 4.66 (s, 1H), 3.85 – 3.75 (m, 1H), 3.73 (d, J = 0.8 Hz, 1H), 3.65 (dq, J = 9.6, 6.1 Hz, 1H), 3.58 – 3.49 (m, 1H), 2.30 (t, J = 7.4 Hz, 2H), 1.97 (dt, J = 12.9, 3.6 Hz, 1H), 1.83 – 1.74 (m, 1H), 1.68 – 1.53 (m, 3H), 1.52 – 1.43 (m, 2H), 1.43 – 1.32 (m, 5H), 1.23 (d, J = 6.2 Hz, 3H), 1.14 (d, J = 6.1 Hz, 3H). ¹³**C NMR** (101 MHz, CD₃OD) δ 178.5, 98.1, 73.1, 71.8, 70.6, 68.9, 38.9, 36.6, 35.7, 31.0, 30.8, 27.4, 26.7, 20.0, 18.7.

HR-ESI-MS (m/z) calcd for $C_{15}H_{28}NaO_6^+$ [M+Na]⁺ 327.1778, found 327.1774.

(R)-Methyl-10-(((2R,3R,5R,6S)-3-acetoxy-5-

(benzyloxy)-6-methyltetrahydro-2H-pyran-2-yl)oxy)undecanoate (12c).

12c (138 mg, 0.29 mmol, 74%) was obtained from **10** (151 mg, 0.39 mmol) and **11c** (102 mg, 0.47 mmol) as yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 – 7.30 (m, 5H), 4.87 (d, *J* = 1.0 Hz, 1H), 4.73 (s, 1H), 4.63 (d, *J* = 11.4 Hz, 1H), 4.48 (d, *J* = 11.4 Hz, 1H), 3.89 – 3.74 (m, 2H), 3.66 (s, 3H), 3.37 (ddd, *J* = 11.2, 9.6, 4.3 Hz, 1H), 2.30 (t, *J* = 7.5 Hz, 2H), 2.22 (dt, *J* = 7.2, 3.8 Hz, 1H), 2.08 (s, 3H), 1.91 (ddd, *J* = 13.9, 11.3, 3.0 Hz, 1H), 1.66 – 1.58 (m, 2H), 1.45 – 1.39 (m, 2H), 1.33 – 1.28 (m, 10H), 1.28 (d, *J* = 8.0 Hz, 3H), 1.12 (d, *J* = 6.1 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 174.3, 170.3, 138.2, 128.4, 127.8, 127.7, 93.5, 75.1, 71.9, 71.3, 71.2, 68.1, 51.4, 37.1, 34.1, 29.5, 29.4, 29.4, 29.2, 29.1, 25.6, 24.9, 21.2, 19.0, 18.0.

(R)-10-(((2R,3R,5R,6S)-5-(benzyloxy)-3-hydroxy-6-methyltetrahydro-2H-pyran-2yl)oxy)undecanoic acid (13c).

13c (50 mg, 0.12 mmol, 82%) was obtained from **12c** (69 mg, 0.14 mmol) as yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.37 – 7.29 (m, 5H), 4.72 (s, 1H), 4.64 (d, *J* = 11.5 Hz, 1H), 4.49 (d, *J* = 11.5 Hz, 1H), 3.87 – 3.82 (m, 2H), 3.79 (td, *J* = 12.1, 6.0 Hz, 1H), 3.46 – 3.39 (m, 1H), 2.34 (t, *J* = 7.5 Hz, 2H), 2.22 (dt, *J* = 13.1, 3.9 Hz, 1H), 1.90 – 1.82 (m, 1H), 1.67 – 1.60 (m, 2H), 1.46 – 1.38 (m, 2H), 1.36 – 1.29 (m, 10H), 1.29 (d, *J* = 6.3 Hz, 3H), 1.13 (d, *J* = 6.1 Hz, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 179.1, 138.3, 128.4, 127.8, 127.7, 96.2, 75.2, 71.7, 71.1, 69.1, 68.4, 37.2, 34.0, 31.8, 29.5, 29.2, 29.1, 25.6, 24.7, 19.0, 18.0.

(R) - 10 - (((2R, 3R, 5R, 6S) - 3, 5 - dihydroxy - 6 - methyltetrahydro - 2H - pyran - 2 - 2H - pyran - 2H

yl)oxy)undecanoic acid (14c, ascr#18).

14c (17 mg, 0.05 mmol, 92%) was obtained from **13c** (25 mg, 0.06 mmol) as yellow oil.

The spectral data of 14c are identical to those of a previous report.⁸

¹**H NMR** (500 MHz, CD₃OD) δ 4.66 (s, 1H), 3.86 - 3.76 (m, 1H), 3.74 (d, J = 1.0 Hz, 1H), 3.65 (dq, J = 9.5, 5.9 Hz, 1H), 3.58 - 3.49 (m, 1H), 2.28 (t, J = 7.4 Hz, 2H), 1.97 (dt, J = 13.0, 3.7 Hz, 1H), 1.84 - 1.74 (m, 1H), 1.67 - 1.53 (m, 3H), 1.51 - 1.43 (m, 2H), 1.41 - 1.31 (m, 9H), 1.23 (d, J = 6.2 Hz, 3H), 1.13 (d, J = 6.1 Hz, 3H). ¹³**C NMR** (126 MHz, CD₃OD) δ 177.3, 96.2, 71.1, 69.8, 68.6, 66.9, 37.0, 34.6, 34.3,

29.3, 29.2, 29.1, 29.0, 25.5, 25.0, 18.0, 16.7.

HR-ESI-MS (m/z) calcd for $C_{17}H_{32}NaO_6^+$ [M+Na]⁺ 355.2091, found 355.2091.

(2R,3R,5R,6S)-5-(benzyloxy)-6-methyl-2-(3-(methylperoxy)-3-

oxopropoxy)tetrahydro-2H-pyran-3-yl acetate (12d).

12d (81 mg, 0.22 mmol, 57%) was obtained from **10** (151 mg, 0.39 mmol) and **11d** (81 mg, 0.78 mmol) as yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.39 – 7.31 (m, 5H), 4.91 (s, 1H), 4.62 (d, J = 12.5 Hz, 2H), 4.48 (d, J = 11.5 Hz, 1H), 3.99 (dt, J = 9.8, 6.4 Hz, 1H), 3.82 – 3.76 (m, 1H), 3.74 (d, J = 6.2 Hz, 1H), 3.71 (s, 3H), 3.36 (td, J = 10.5, 4.3 Hz, 1H), 2.61 (t, J = 6.3 Hz, 2H), 2.24 – 2.17 (m, 1H), 2.09 (s, 3H), 1.92 – 1.84 (m, 1H), 1.32 (d, J = 6.2 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 171.7, 170.2, 138.2, 129.8, 128.4, 127.7, 96.4, 74.9, 71.1, 70.4, 68.1, 62.9, 51.8, 34.6, 29.3, 21.2, 18.0.

$\label{eq:constraint} 3-(((2R,3R,5R,6S)-5-(benzyloxy)-3-hydroxy-6-methyltetrahydro-2H-pyran-2-benzyloxy-3-hydro$

yl)oxy)propanoic acid (13d).

13d (26 mg, 0.084 mmol, 76%) was obtained from **12d** (40 mg, 0.11 mmol) as yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.41 – 7.32 (m, 5H), 4.65 – 4.59 (m, 2H), 4.47 (d, J = 11.5 Hz, 1H), 4.01 – 3.94 (m, 1H), 3.87 (s, 1H), 3.80 (td, J = 12.6, 6.3 Hz, 1H), 3.76 – 3.70 (m, 1H), 3.43 (td, J = 10.5, 4.4 Hz, 1H), 2.63 (t, J = 5.8 Hz, 2H), 2.18 (dt, J = 12.9, 3.5 Hz, 1H), 1.87 – 1.78 (m, 1H), 1.30 (d, J = 6.2 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 176.4, 138.2, 128.4, 127.8, 127.7, 99.2, 75.0, 71.1, 68.4, 68.2, 62.7, 31.6, 18.0.

3-(((2R,3R,5R,6S)-3,5-dihydroxy-6-methyltetrahydro-2H-pyran-2-

yl)oxy)propanoic acid (14d, ascr#5).

14d (9 mg, 0.04 mmol, 97%) was obtained from **13d** (13 mg, 0.042 mmol) as yellow oil.

The spectral data of 14d are identical to those of a previous report.⁹

¹**H NMR** (400 MHz, CD₃OD) δ 4.56 (s, 1H), 3.96 (dt, J = 9.7, 6.5 Hz, 1H), 3.77 (d, J = 1.3 Hz, 1H), 3.70 (dt, J = 9.7, 6.5 Hz, 1H), 3.65 – 3.58 (m, 1H), 3.56 – 3.48 (m,

1H), 2.51 (t, *J* = 6.5 Hz, 2H), 1.94 (dt, *J* = 13.0, 3.6 Hz, 1H), 1.77 (ddd, *J* = 13.2, 11.3, 3.1 Hz, 1H), 1.25 (d, *J* = 6.1 Hz, 3H).

¹³C NMR (101 MHz, CD₃OD) δ 169.1,99.0, 69.5, 67.9, 66.9, 63.7, 36.7, 34.5, 16.7.
 HR-ESI-MS (m/z) calcd for C₉H₁₆NaO₆⁺ [M+Na]⁺ 243.0839, found 243.0841.
 The procedure for preparation of (2S,3R,5R,6S)-5-hydroxy-6-methyl-2-(p-tolyl

thio) tetrahydro-2H-pyran-3-yl acetate (15).

To a solution of 10 (78 mg, 0.2 mmol) and NaI (60 mg, 0.4 mmol) in dry CH₃CN

(2 mL) was slowly added TMSCl (40 μ L, 0.4 mmol) at room temperature. Then the mixture was stirred at 50 °C for 10 h. The reaction was diluted with H₂O (10 mL), extracted with ethyl acetate (20 mL × 3). The organic layers were washed with brine (20 mL × 3), dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuum. The crude product was purified by silica gel column chromatography (petrol ether: ethyl acetate = 4 : 1) to afford **15** (38 mg, 0.13 mmol, 65%) as colorless oil with conversion ratio of 75%.

¹**H NMR** (500 MHz, CDCl₃) δ 7.38 (d, *J* = 7.3 Hz, 2H), 7.14 (d, *J* = 7.6 Hz, 2H), 5.32 (s, 1H), 5.22 (s, 1H), 4.89 (td, *J* = 10.4, 4.5 Hz, 1H), 4.32 (dq, *J* = 12.3, 6.2 Hz, 1H), 2.34 (s, 3H), 2.25 (d, *J* = 13.7 Hz, 1H), 2.12 (s, 3H), 2.10 (s, 3H), 1.96 (t, *J* = 12.4 Hz, 1H), 1.23 (d, *J* = 6.1 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 170.3, 137.8, 132.3, 130.1, 129.9, 86.1, 72.1, 70.5, 68.2, 33.5, 21.2, 21.2, 17.6.

HRMS (ESI) m/z calcd for $C_{15}H_{20}NaO_4S^+$ [M+Na]⁺ 319.0974, found 319.0975. *The procedure for preparation of 16a-16b (exemplified by 16a).*

To a solution of Indole-3-carboxylic acid (239.7 mg, 0.81 mmol) in dry DCM (5 mL) with a drop of DMF at 0 °C was slowly added oxalyl chloride (137 μ L, 1.62 mmol).

The resulting solution was stirred for 20 min at room temperature until the starting material was consumed according to TLC. The reaction mixture was concentrated to dryness in vacuum. Then the residue was redissolved in dry DCM (2 mL). The resulting solution was added dropwise to a stirred solution of **15** (240 mg, 0.81 mmol) and *N*,*N*-diisopropylethylamine (DIPEA, 0.57 mL, 3.24 mmol) in dry DCM (5 mL) at 0 °C in an ice bath. After 20 min, the reaction was quenched with saturated aqueous NaHCO₃ solution, extracted with DCM, dried over Na₂SO₄, and concentrated in vacuum. The crude product was purified by silica gel column chromatography (petrol ether : ethyl acetate = 4 : 1) to afford **16a** (267 mg, 0.61 mmol, 75%) as white solid.

(2S,3R,5R,6S)-5-acetoxy-2-methyl-6-(p-tolylthio)tetrahydro-2H-pyran-3-yl-1Hindole-3-carboxylate (16a).

¹**H NMR** (500 MHz, CDCl₃) δ 8.97 (s, 1H), 8.22 – 8.17 (m, 1H), 7.96 (d, *J* = 3.0 Hz, 1H), 7.46 (s, 1H), 7.44 (d, *J* = 8.1 Hz, 2H), 7.34 – 7.30 (m, 2H), 7.16 (d, *J* = 8.0 Hz, 2H), 5.41 (s, 1H), 5.31 (s, 1H), 5.23 (td, *J* = 10.9, 4.7 Hz, 1H), 4.59 – 4.50 (m, 1H), 2.46 (d, *J* = 13.8 Hz, 1H), 2.36 (s, 3H), 2.18 (d, *J* = 3.1 Hz, 1H), 2.15 (s, 3H), 1.36 (d, *J* = 6.2 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 170.4, 164.3, 137.9, 136.2, 132.4, 131.5, 130.0, 129.9, 125.8, 123.4, 122.3, 121.4, 111.7, 108.4, 86.3, 71.5, 69.2, 68.2, 30.9, 21.2, 21.1, 17.8.

HR-ESI-MS (m/z) calcd for C₂₄H₂₅NNaO₅S⁺ [M+Na]⁺ 462.1346, found 462.1343.

(2S,3R,5R,6S)-5-acetoxy-2-methyl-6-(p-tolylthio)tetrahydro-2H-pyran-3-yl-(E)-2methylbut-2-enoate (16b).

16b (173 mg, 0.46 mmol, 81%) was obtained from **15** (170 mg, 0.57 mmol) as yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.38 (d, *J* = 8.1 Hz, 2H), 7.13 (d, *J* = 8.0 Hz, 2H), 6.90 (qd, *J* = 6.8, 1.1 Hz, 1H), 5.33 (s, 1H), 5.23 (d, *J* = 0.6 Hz, 1H), 4.95 (td, *J* = 10.9, 4.6 Hz, 1H), 4.38 (dq, *J* = 12.3, 6.2 Hz, 1H), 2.33 (s, 3H), 2.31 – 2.26 (m, 1H), 2.11 (s, 3H), 1.97 (ddd, *J* = 14.0, 8.4, 3.1 Hz, 1H), 1.85 (s, 3H), 1.82 (d, *J* = 7.1 Hz, 3H), 1.24 (d, *J* = 6.2 Hz, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 170.2, 167.0, 138.0, 137.8, 132.3, 129.9, 129.9, 128.4, 86.2, 71.3, 69.8, 67.9, 30.5, 21.2, 21.1, 17.6, 14.5, 12.1.

HR-ESI-MS (m/z) calcd for $C_{20}H_{26}NaO_5S^+$ [M+Na]⁺ 401.1393, found 401.1392. *The procedure for preparation of 17a-17b (exemplified by 17a).*

To a solution of **16a** (150 mg, 0.34 mmol), **11e** (94.9 mg, 0.51 mmol), NIS (152.9 mg, 0.68 mmol), and 4 Å molecular sieves in dry DCM (2 mL) under N₂ at room temperature was added TMSOTf (61 μ L, 0.34 mmol) dropwise. The solution was stirred for 1 h. Then Et₃N (47 μ L, 0.34 mmol) was added to quench the reaction. The mixture was extracted with DCM, dried over Na₂SO₄, and concentrated in vacuum. The crude product was purified by silica gel column chromatography (petrol ether : ethyl acetate = 12 : 1) to afford **17a** (82 mg, 0.16 mmol, 48%) as yellow oil.

(2S,3R,5R,6R)-5-acetoxy-6-(((R,E)-9-methoxy-9-oxonon-7-en-2-yl)oxy)-2methyltetrahydro-2H-pyran-3-yl 1H-indole-3-carboxylate (17a).

¹**H NMR** (500 MHz, CDCl₃) δ 9.14 (s, 1H), 8.18 – 8.10 (m, 1H), 7.95 (d, J = 2.7 Hz, 1H), 7.45 (dd, J = 6.1, 2.4 Hz, 1H), 7.32 – 7.25 (m, 2H), 7.08 – 6.98 (m, 1H), 5.88 (d, J = 15.6 Hz, 1H), 5.13 (td, J = 10.8, 4.5 Hz, 1H), 4.94 (s, 1H), 4.83 (s, 1H), 4.10 – 4.02 (m, 1H), 3.84 (d, J = 4.6 Hz, 1H), 3.72 (s, 3H), 2.37 – 2.25 (m, 3H), 2.15 (s, 3H), 2.11 (d, J = 2.6 Hz, 1H), 1.70 – 1.44 (m, 6H), 1.30 (d, J = 6.2 Hz, 3H), 1.18 (d, J = 6.0 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 170.6, 167.3, 164.3, 149.6, 136.2, 131.6, 125.8, 123.3, 122.1, 121.3, 121.0, 111.7, 108.3, 93.7, 72.2, 70.8, 69.1, 67.3, 51.5, 36.9, 32.3, 29.8, 28.0, 25.4, 21.3, 19.1, 17.9.

HR-ESI-MS (m/z) calcd for C₂₇H₃₅NNaO₈⁺ [M+Na]⁺ 524.2255, found 524.2256.

(*R*,*E*)-*Methyl*-8-(((2*R*,3*R*,5*R*,6*S*)-3-acetoxy-6-methyl-5-(((*E*)-2-methylbut-2enoyl)oxy)tetrahydro-2H-pyran-2-yl)oxy)non-2-enoate (17b).

17b (85 mg, 0.19 mmol, 84%) was obtained from **16b** (86.5 mg, 0.23 mmol) as yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 6.97 (dt, J = 15.4, 7.0 Hz, 1H), 6.88 – 6.81 (m, 1H), 5.83 (d, J = 15.6 Hz, 1H), 4.89 – 4.79 (m, 2H), 4.75 (s, 1H), 3.90 (dq, J = 12.4, 6.2 Hz, 1H), 3.77 (dd, J = 11.4, 6.2 Hz, 1H), 3.74 – 3.68 (m, 3H), 2.23 (dd, J = 13.4, 6.7 Hz, 2H), 2.19 – 2.12 (m, 1H), 2.11 (s, 3H), 1.99 – 1.89 (m, 1H), 1.82 (s, 3H), 1.80 (d, J = 7.3 Hz, 3H), 1.60 (dd, J = 5.9, 3.5 Hz, 1H), 1.54 – 1.38 (m, 5H), 1.17 (d, J = 6.3 Hz, 3H), 1.13 (d, J = 6.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.4, 167.1, 167.1, 149.4, 137.8, 128.4, 121.0,
93.7, 72.2, 70.6, 69.8, 67.0, 51.4, 36.8, 32.2, 29.5, 27.9, 25.2, 21.3, 19.0, 17.7, 14.4,
12.1.

HR-ESI-MS (m/z) calcd for $C_{23}H_{36}NaO_8^+$ [M+Na]⁺ 463.2302, found 462.2295. *The procedure for preparation of 18a-18b (exemplified by 18a).*

To a solution of **17a** (45 mg, 0.09 mmol) in 1,4-dioxane (2 mL) was added aqueous LiOH (6.4 mg, 0.27mmol) in 0.2 mL H₂O. The resulting mixture was stirred at 40 °C for 3 h. The aqueous layer was acidified to *p*H 2 with aqueous HCl solution (1.0 mol/L), and was extracted with Et₂O (10 mL × 3). The organic layers were washed with brine (10 mL × 3), dried over anhydrous Na₂SO₄, and concentrated in vacuum. The crude product was purified by silica gel column chromatography (DCM : MeOH = 10 : 1) to afford **18a** (32 mg, 0.07 mmol, 80%) as yellow oil.

(R,E)-8-(((2R,3R,5R,6S)-5-((1H-indole-3-carbonyl)oxy)-3-hydroxy-6methyltetrahydro-2H-pyran-2-yl)oxy)non-2-enoic acid (18a).

The spectral data of **18a** are identical to those of a previous report.⁷

¹**H NMR** (400 MHz, CD₃OD) δ 8.04 (dd, J = 6.6, 1.5 Hz, 1H), 8.00 (s, 1H), 7.47 (dd, J = 6.7, 1.6 Hz, 1H), 7.25 – 7.17 (m, 2H), 7.05 – 6.94 (m, 1H), 5.83 (d, J = 15.6 Hz, 1H), 5.15 (td, J = 10.4, 4.7 Hz, 1H), 4.77 (s, 1H), 4.07 (dq, J = 9.8, 6.2 Hz, 1H), 3.89 – 3.80 (m, 2H), 2.34 – 2.20 (m, 3H), 2.08 – 1.97 (m, 1H), 1.67 – 1.46 (m, 6H), 1.26 (d, J = 6.3 Hz, 3H), 1.17 (d, J = 6.0 Hz, 3H).

¹³**C NMR** (101 MHz, CD₃OD) δ 168.8, 165.0, 149.7, 136.8, 132.1, 125.9, 122.4, 121.3, 121.3, 120.5, 111.7, 106.9, 96.2, 71.3, 69.2, 68.2, 67.4, 36.7, 32.1, 31.9, 27.8, 25.3, 18.0, 16.9.

HR-ESI-MS (m/z) calcd for C₂₄H₃₁NNaO₇⁺ [M+Na]⁺ 468.1993, found 468.1992.

(R,E)-8-(((2R,3R,5R,6S)-3-hydroxy-6-methyl-5-(((E)-2-methylbut-2enoyl)oxy)tetrahydro-2H-pyran-2-yl)oxy)non-2-enoic acid (18b).

18b (17 mg, 0.044 mmol, 53%) was obtained from **17b** (37 mg, 0.084 mmol) as yellow oil.

The spectral data of **18b** are identical to those of a previous report.⁶

¹**H NMR** (400 MHz, CD₃OD) δ 6.98 (dt, *J* = 15.2, 7.0 Hz, 1H), 6.91 – 6.83 (m, 1H), 5.83 (d, *J* = 15.6 Hz, 1H), 4.91 – 4.88 (m, 1H), 4.72 (s, 1H), 3.95 – 3.86 (m, 1H), 3.86 – 3.78 (m, 1H), 3.75 (d, *J* = 0.8 Hz, 1H), 2.28 (dd, *J* = 12.7, 6.4 Hz, 2H), 2.09 (dt, *J* = 12.8, 3.8 Hz, 1H), 1.91 – 1.85 (m, 1H), 1.83 (d, *J* = 6.4 Hz, 6H), 1.67 – 1.42 (m, 6H), 1.16 (dd, *J* = 5.9, 4.8 Hz, 6H).

¹³**C NMR** (101 MHz, CD₃OD) δ 168.6, 167.2, 149.6, 137.6, 128.2, 121.3, 96.2, 71.3, 70.0, 68.1, 67.0, 36.6, 31.8, 31.6, 27.7, 25.1, 17.9, 16.7, 13.0, 10.7.

HR-ESI-MS (m/z) calcd for $C_{20}H_{32}NaO_7^+$ [M+Na]⁺ 407.2040, found 407.2043.

ROS assay. The roots of 10-day-old *Arabidopsis thaliana* Col-0 grown on halfstrength MS plates were cut and floated in a 96-well plate containing 100 μ L ddH₂O for 12 h. Afterwards, the ddH₂O was replaced with 100 μ L reaction solution containing 3 μ g/mL horseradish peroxidase, 2.5 μ M 8-amino-5-chloro-2,3-dihydro-7-phenyl-pyrido[3,4-d] pyridazine sodium salt (L-012, Wako Chemical) with 1 μ M ascarosides supplementation. And ddH₂O and 50 nM flg22 were used as negative and positive controls. Measurement was conducted with a luminometer immediately after adding the reaction solution. ROS production values from eight roots per treatment are expressed as the mean relative light units. The experiment was repeated three times with similar results.

Figure S1. The ¹H NMR spectra copy of compound 2 in CDCl₃ (500 MHz)

Figure S2. The ¹³C NMR spectra copy of compound 2 CDCl₃ (126 MHz)

Figure S3. The ¹H NMR spectra copy of compound 3-1 in CDCl₃ (400 MHz)

Figure S4. The ¹³C NMR spectra copy of compound 3-1 in CDCl₃ (101 MHz)

Figure S5. The ¹H NMR spectra copy of compound 3 in CDCl₃ (400 MHz)

Figure S6. The ¹³C NMR spectra copy of compound 3 in CDCl₃ (101 MHz)

Figure S7. The ¹H NMR spectra copy of compound 4 in CDCl₃ (400 MHz)

Figure S8. The ¹³C NMR spectra copy of compound 4 in CDCl₃ (101 MHz)

Figure S9. The ¹H NMR spectra copy of compound 5 in CDCl₃ (400 MHz)

Figure S10. The ¹³C NMR spectra copy of compound 5 in CDCl₃ (101 MHz)

Figure S11. The ¹H NMR spectra copy of compound 6 in CDCl₃ (400 MHz)

Figure S12. The ¹³C NMR spectra copy of compound 6 in CDCl₃ (101 MHz)

Figure S13 The ¹H NMR spectra copy of the inseparable mixture 7-1 in CDCl₃ (400 MHz)

Figure S14. The ¹H NMR spectra copy of compound 8-1 in CDCl₃ (400 MHz)

Figure S15. The ¹³C NMR spectra copy of compound 8-1 in CDCl₃ (101 MHz)

Figure S16. The ¹H NMR spectra copy of compound 8 in CD₃OD (400 MHz)

Figure S17. The ¹³C NMR spectra copy of compound 8 in CD₃OD (101 MHz)

Figure S18. The ¹H NMR spectra copy of compound 9 in CDCl₃ (500 MHz)

Figure S19. The ¹³C NMR spectra copy of compound 9 in CDCl₃ (126 MHz)

Figure S20. The ¹H NMR spectra copy of compound 10-1 in CDCl₃ (500 MHz)

Figure S22. The ¹H NMR spectra copy of compound 10 in CDCl₃ (400 MHz)

Figure S23. The ¹³C NMR spectra copy of compound 10 in CDCl₃ (101 MHz)

Figure S24. The ¹H NMR spectra copy of compound 11b-3 in CDCl₃ (101 MHz)

Figure S25. The ¹³C NMR spectra copy of compound 11b-3 in CDCl₃ (126 MHz)

Figure S26. The ¹H NMR spectra copy of compound 11b-4 in CDCl₃ (400 MHz)

Figure S27. The ¹³C NMR spectra copy of compound 11b-4 in CDCl₃ (101 MHz)

Figure S28. The ¹H NMR spectra copy of compound 11b-5 in CDCl₃ (400 MHz)

Figure S29. The ¹³C NMR spectra copy of compound 11b-5 in CDCl₃ (101 MHz)

Figure S30. The ¹H NMR spectra copy of compound 11b-6 in CDCl₃ (400 MHz)

Figure S31. The ¹³C NMR spectra copy of compound 11b-6 in CDCl₃ (101 MHz)

Figure S32. The ¹H NMR spectra copy of compound 11b in CDCl₃ (400 MHz)

Figure S33. The ¹³C NMR spectra copy of compound 11b in CDCl₃ (101 MHz)

Figure S34. The ¹H NMR spectra copy of compound 11a in CDCl₃ (400 MHz)

Figure S35. The ¹³C NMR spectra copy of compound 11a in CDCl₃ (101 MHz)

Figure S36. The ¹H NMR spectra copy of compound 11c in CDCl₃ (500 MHz)

Figure S37. The ¹³C-NMR spectra copy of compound 11c in CDCl₃ (126 MHz)

Figure S38. The ¹H NMR spectra copy of compound 11e in CDCl₃ (500 MHz)

Figure S39. The ¹³C NMR spectra copy of compound 11e in CDCl₃ (126 MHz)

Figure S40. The ¹H NMR spectra copy of compound 12a in CDCl₃ (500 MHz)

Figure S41. The ¹³C NMR spectra copy of compound 12a in CDCl₃ (126 MHz)

Figure S42. The ¹H NMR spectra copy of compound 13a in CDCl₃ (500 MHz)

Figure S43. The ¹³C NMR spectra copy of compound 13a in CDCl₃ (126 MHz)

Figure S44. The ¹H NMR spectra copy of compound 14a (7) in CDCl₃ (400 MHz)

Figure S45. The ¹³C NMR spectra copy of compound 14a (7) in CDCl₃ (101 MHz)

Figure S46. The ¹H NMR spectra copy of compound 12b in CDCl₃ (500 MHz)

Figure S47. The ¹³C NMR spectra copy of compound 12b in CDCl₃ (126 MHz)

Figure S48. The ¹H NMR spectra copy of compound 13b in CDCl₃ (500 MHz)

Figure S49. The ¹³C NMR spectra copy of compound 13b in CDCl₃ (126 MHz)

Figure S50. The ¹H NMR spectra copy of compound 14b in CD₃OD (400 MHz)

Figure S51. The ¹³C NMR spectra copy of compound 14b in CD₃OD (101 MHz)

Figure S52. The ¹H NMR spectra copy of compound 12c in CDCl₃ (400 MHz)

Figure S53. The ¹³C NMR spectra copy of compound 12c in CDCl₃ (101 MHz)

Figure S54. The ¹H NMR spectra copy of compound 13c in CDCl₃ (500 MHz)

Figure S55. The ¹³C NMR spectra copy of compound 13c in CDCl₃ (126 MHz)

Figure S56. The ¹H NMR spectra copy of compound 14c in CD₃OD (500 MHz)

Figure S57. The ¹³C NMR spectra copy of compound 14c in CD₃OD (126 MHz)

Figure S58. The ¹H NMR spectra copy of compound 12d in CDCl₃ (500 MHz)

Figure S59. The ¹³C NMR spectra copy of compound 12d in CDCl₃ (126 MHz)

Figure S60. The ¹H NMR spectra copy of compound 13d in CDCl₃ (500 MHz)

Figure S61. The ¹³C NMR spectra copy of compound 13d in CDCl₃ (126 MHz)

Figure S62. The ¹H NMR spectra copy of compound 14d in CD₃OD (500 MHz)

Figure S63. The ¹³C NMR spectra copy of compound 14d in CD₃OD (126 MHz)

Figure S64. The ¹H NMR spectra copy of compound 15 in CDCl₃ (500 MHz)

Figure S65. The ¹³C NMR spectra copy of compound 15 in CDCl₃ (126 MHz)

Figure S66. The ¹H NMR spectra copy of compound 16a in CDCl₃ (500 MHz)

Figure S67. The ¹³C NMR spectra copy of compound 16a in CDCl₃ (126 MHz)

Figure S68. The ¹H NMR spectra copy of compound 17a in CDCl₃ (500 MHz)

Figure S69. The ¹³C NMR spectra copy of compound 17a in CDCl₃ (126 MHz)

Figure S70. The ¹H NMR spectra copy of compound 18a in CD₃OD (400 MHz)

Figure S71. The ¹³C NMR spectra copy of compound 18a in CD₃OD (101 MHz)

Figure S72. The ¹H NMR spectra copy of compound 16b in CDCl₃ (500 MHz)

Figure S73. The ¹³C NMR spectra copy of compound 16b in CDCl₃ (126 MHz)

Figure S74. The ¹H NMR spectra copy of compound 17b in CDCl₃ (400 MHz)

Figure S75. The ¹³C NMR spectra copy of compound 17b in CDCl₃ (101MHz)

Figure S76. The ¹H NMR spectra copy of compound 18b in CDCl₃ (400 MHz)

Figure S77. The ¹³C NMR spectra copy of compound 18b in CDCl₃ (101 MHz)

References

1. Miura, K.; Tsukagoshi, T.; Hirano, T.; Nishio, T.; Hakamata, W., Development of Fluorogenic Substrates of α -L-Fucosidase Useful for Inhibitor Screening and Gene-expression Profiling. *ACS Med. Chem. Lett.* **2019**, *10* (9), 1309-1313.

2. Jeong, P.-Y.; Jung, M.; Yim, Y.-H.; Kim, H.; Park, M.; Hong, E.; Lee, W.; Kim, Y. H.; Kim, K.; Paik, Y.-K., Chemical structure and biological activity of the Caenorhabditis elegans dauer-inducing pheromone. *Nature* **2005**, *433* (7025), 541-545.

3. Tai, C.-A.; Kulkarni, S. S.; Hung, S.-C., Facile Cu(OTf)2-Catalyzed Preparation of Per-Oacetylated Hexopyranoses with Stoichiometric Acetic Anhydride and Sequential One-Pot Anomeric Substitution to Thioglycosides under Solvent-Free Conditions. *J. Org. Chem.* **2003**, *68* (22), 8719-8722.

4. Fouque, E.; Rousseau, G., Enzymic resolution of medium-ring lactones. Synthesis of (S)-(+)-phoracantholide I. *Synthesis* **1989**, (9), 661-6.

5. Mochizuki, N.; Yamada, H.; Sugai, T.; Ohta, H., A synthesis of (R)-recifeiolide by the aid of a biochemical reaction as the key-step. *Bioorg. Med. Chem.* **1993**, *1* (1), 71-5.

6. Zhang, Y. K.; Sanchez-Ayala, M. A.; Sternberg, P. W.; Srinivasan, J.; Schroeder, F. C., Improved Synthesis for Modular Ascarosides Uncovers Biological Activity. *Org. Lett.* **2017**, *19* (11), 2837-2840.

7. Hollister, K. A.; Conner, E. S.; Zhang, X.; Spell, M.; Bernard, G. M.; Patel, P.; de Carvalho, A. C.

G. V.; Butcher, R. A.; Ragains, J. R., Ascaroside activity in Caenorhabditis elegans is highly dependent on chemical structure. *Bioorg. Med. Chem.* **2013**, *21* (18), 5754-5769.

8. Noguez, J. H.; Conner, E. S.; Zhou, Y.; Ciche, T. A.; Ragains, J. R.; Butcher, R. A., A Novel Ascaroside Controls the Parasitic Life Cycle of the Entomopathogenic Nematode Heterorhabditis bacteriophora. *ACS Chem. Biol.* **2012**, *7* (6), 961-966.

9. Butcher, R. A.; Ragains, J. R.; Kim, E.; Clardy, J., A potent dauer pheromone component in Caenorhabditis elegans that acts synergistically with other components. *Proc. Natl. Acad. Sci. USA* **2008**, *105* (38), 14288-14292.