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1H and 13C NMR spectra of all N-methylanilide compounds recorded at room temperature are 
characterized by broad signals due to the partially hindered rotation of the C-N amide bond. However, 
the purity of all N-methylanilide compounds was > 99 % as shown by GC analyses (vide infra).

1H NMR spectrum (CDCl3, 300MHz, 25°C) of 5a
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δ (ppm): 7.46-7.09 (m, 10H, Ar-H), 3.25 (bs, 3H, -NCH3), 1.86 (s, 3H, -CH3)

13C NMR spectrum (CDCl3, 75 MHz, 25°C) of 5a. 
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1H NMR spectrum (CDCl3, 300MHz, 25°C) of 5b. 

* CHCl3
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δ (ppm): 7.41-7.12 (m, 9H, Ar-H), 3.22 (bs, 3H, -NCH3), 1.87 (s, 3H, -CH3) 

13C NMR spectrum (CDCl3, 75 MHz, 25°C) of 5b.
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1H NMR spectrum (CDCl3, 300MHz, 25°C) of 5c. 
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13C NMR spectrum (CDCl3, 75 MHz, 25°C) of 5c. 
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1H NMR spectrum (CDCl3, 300MHz, 25°C) of 5d. 
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13C NMR spectrum (CDCl3, 75 MHz, 25°C) of 5d.
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Equation  (see main text) was fitted to the data shown in the 
ln [𝑐 + ∆

𝑐 ] = ln [𝑐𝑜 + ∆

𝑐𝑜
] + ∆ × 𝑘2 × 𝑡

inset, to find the value of k2 (slope = 0.013 min-1 = 0.00022 s-1, R2 = 0.992, Δ = 0.0026 M, k2 = 0.085 
M-1s-1). In the equation, co and c refer to the concentration of aniline 4a at time 0 and t respectively 
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and  (see note S1). The second-order curve was calculated and drawn ∆ = [𝑎𝑛ℎ𝑦𝑑𝑟𝑖𝑑𝑒]𝑜 ‒ [𝑎𝑛𝑖𝑙𝑖𝑛𝑒]𝑜

using such k2 value.
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inset to find the value of k2 (slope = 0.00039 min-1 = 6.5×10-6 s-1, R2 = 0.998, Δ = 0.0014 M, k2 = 
0.0046 M-1s-1). In the equation, co and c refer to the concentration of anhydride 3 at time 0 and t 
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respectively and  (see note S1). The second-order curve was ∆ = [𝑎𝑛𝑖𝑙𝑖𝑛𝑒]𝑜 ‒ [𝑎𝑛ℎ𝑦𝑑𝑟𝑖𝑑𝑒]𝑜

calculated and drawn using such k2 value.
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Equation  (see main text) was fitted to the data shown in the 
ln [𝑐 + ∆

𝑐 ] = ln [𝑐𝑜 + ∆
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] + ∆ × 𝑘2 × 𝑡

inset to find the value of k2 (slope 0.0090 min-1 = 1.5×10-4 s-1, R2 = 0.992, Δ = 0.0047 M, k2 = 0.032 
M-1s-1). In the equation, co and c refer to the concentration of anhydride 3 at time 0 and t 
respectively and (see note S1). The second-order curve was ∆ = [𝑎𝑛𝑖𝑙𝑖𝑛𝑒]𝑜 ‒ [𝑎𝑛ℎ𝑦𝑑𝑟𝑖𝑑𝑒]𝑜 

calculated and drawn using such k2 value.
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Equation  (main text) was fitted to the data shown in the inset 
ln [𝑐 + ∆

𝑐 ] = ln [𝑐𝑜 + ∆

𝑐𝑜
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to find the value of k2 (slope = 0.030 min-1 = 5.0×10-4 s-1, R2 = 0.989, Δ = 0.0023 M, k2 = 0.22 M-1s-

1). In the equation, co and c refer to the concentration of aniline 4d at time 0 and t respectively and 
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 (see note S1). The second-order curve was calculated and drawn ∆ = [𝑎𝑛ℎ𝑦𝑑𝑟𝑖𝑑𝑒]𝑜 ‒ [𝑎𝑛𝑖𝑙𝑖𝑛𝑒]𝑜

using such k2 value.
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In the following two pages 1H NMR monitoring of the reaction between C1 and excess 1 is reported 
in order to show that as long as excess acid 1 is present along the reaction path, the presence of the 
protonated catenane paired to RCO2ˉ•••HO2CR is revealed by the insurgence of a complex pattern of 
signals from 0.2 to 0.8 ppm. The two experiments were already reported in the SI of J. A. Berrocal, 
C. Biagini, L. Mandolini and S. Di Stefano, Angew. Chem. Int. Ed. 2016, 55, 6997-7001. 

Fig. S1. 1H NMR monitoring from bottom to top of the reaction between C1 (2 mM) and fuel 1 (4 
mM) in CD2Cl2. Data from ref S1. The bottom trace is the spectrum of C1. The second trace from 
bottom is the first spectrum taken after the addition of 1. In the presence of excess of 1, the structured 
pattern of signals from 0.2 to 0.8 ppm is indicative of the presence of the RCO2ˉ•••HO2CR ion paired 
to the protonated catenane. Such signals persist as long as excess 1 is present.
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Fig. S2. 1H NMR monitoring from bottom to top of the reaction between C1 (0.5 mM) and fuel 1 (5 
mM) in CD2Cl2. Data from ref S1. The bottom trace is the spectrum of C1. In the presence of excess 
of 1, the structured pattern of signals from 0.2 to 0.8 ppm is indicative of the presence of the 
RCO2ˉ•••HO2CR ion paired to the protonated catenane.
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GC-FID analyses were carried on an HP CP-3800 equipped with a capillary methylsilicone column 
(30 m x 0.25 mm x 25 µm) Chrompack CP-Sil 5 CB with the following method: (0-5)min: isotherm 
at T= 60°C; (5-17)min: temperature ramp of 15°C/min until T = 240°C; (17-40)min: isotherm at 
T = 240°C. Pressure = 12.0 psi; T(injector) = 250°C; T(FID)= 250°C; split 1/10.

Fig. S3. Chromatogram of a pure sample of 5a. RT = 22.103 min.

Fig. S4. Chromatogram of a pure sample of 5b. RT = 25.385 min.
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Fig. S5. Chromatogram of a pure sample of 5c. RT = 25.672 min.

Fig. S6. Chromatogram of a pure sample of 5d. RT = 23.345 min.

Notes and References

Note S1: co and c are defined as the concentration of the limiting reagent (either anhydride 3 or 
anilines 4a-d) at time 0 and t respectively; is defined as the difference between the initial 
concentration of the excess reactant and that of the limiting reagent.

Ref S1: J. A. Berrocal, C. Biagini, L. Mandolini and S. Di Stefano, Angew. Chem. Int. Ed. 2016, 55, 
6997-7001.


