Electronic Supplementary Information

Arylation of Indoles Using Cyclohexanones Dually-Catalyzed by Niobic Acid and Palladium-on-Carbons

Kazuho Ban, Yuta Yamamoto, Hironao Sajiki* and Yoshinari Sawama*

Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan.

E-mail: sawama@gifu-pu.ac.jp; Sajiki@gifu-pu.ac.jp

Contents

1. General information.
2. Detailed optimization.
3. Preparation of Substrates.
4. General procedures (Tables 1-4 and Scheme 3).
5. Spectroscopic data of products.
6. References.
7. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of products.

1. General information.

$10 \% \mathrm{Pt} / \mathrm{C}, \mathrm{Pd} / \mathrm{C}$, and Rh / C were supplied by the N . E. Chemcat Corporation (Tokyo, Japan). Toluene, DMF, DMSO, 1,4-dioxane, and water as solvents were purchased from commercial sources and used without further purification. Cyclohexanones (1a, 1b, 1c, 1e, 1f), indoles ($\mathbf{2 a}, \mathbf{2 b}, \mathbf{2 c}, \mathbf{2 d}, \mathbf{2 e}$, $\mathbf{2 f}, \mathbf{2 g}$) and pyrroles ($\mathbf{6 a}, \mathbf{6 b}$) were also purchased from commercial sources and used without further purification. Flash column chromatography was performed with Silica Gel 60 N (Kanto Chemical Co., Inc., $63-210 \mu \mathrm{~m}$ spherical, neutral). ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL AL 400, ECZ 400 or ECA 500 spectrometer at room temperature in CDCl_{3} as a solvent and internal standard (${ }^{1} \mathrm{H}$ NMR: $\delta=7.26$ for $\mathrm{CDCl}_{3}{ }^{13} \mathrm{C}$ NMR: $\delta=77.0$ for CDCl_{3}) with tetramethylsilane as a further internal standard. IR spectra were recorded by a Brucker FT-IR ALPHA. ESI high-resolution mass spectra (HRMS) were measured by a Shimadzu hybrid IT-TOF mass spectrometer. Melting points were measured by a SANSYO SMP-300 melting point apparatus.

2. Detailed optimization.

Table S1. Further optimization.

entry	transition metal cat. (x mol\%)	acid (y mol\%)	yield (\%)	
			4a	5a
$1^{\text {a) }}$	10\% Pd/C (10)	$10 \% \mathrm{Nb}_{2} \mathrm{O}_{5} / \mathrm{C}$ (10)	18	54
$2^{\text {a)b }}$	10\% Pd/C (10)	$10 \% \mathrm{Nb}_{2} \mathrm{O}_{5} / \mathrm{C}$ (10)	22	18
$3{ }^{\text {a) }}$	$10 \% \mathrm{Pd} / \mathrm{C}$ (5)	$10 \% \mathrm{Nb}_{2} \mathrm{O}_{5} / \mathrm{C}$ (5)	13	41
4	10\% Pd/C (10)	$10 \% \mathrm{Nb}_{2} \mathrm{O}_{5} / \mathrm{C}$ (10)	45	55
$5^{\text {c) }}$	10\% Pd/C (10)	$10 \% \mathrm{Nb}_{2} \mathrm{O}_{5} / \mathrm{C}$ (10)	39	38
$6{ }^{\text {d) }}$	10\% Pd/C (10)	$10 \% \mathrm{Nb}_{2} \mathrm{O}_{5} / \mathrm{C}$ (10)	26	29
$7{ }^{\text {e) }}$	10\% Pd/C (10)	$10 \% \mathrm{Nb}_{2} \mathrm{O}_{5} / \mathrm{C}$ (10)	3	7
$8^{\text {f) }}$	10\% Pd/C (10)	$10 \% \mathrm{Nb}_{2} \mathrm{O}_{5} / \mathrm{C}$ (10)	no reaction	
$9 \mathrm{~g})$	10\% Pd/C (10)	$10 \% \mathrm{Nb}_{2} \mathrm{O}_{5} / \mathrm{C}$ (10)	53	41
$10^{\text {a)h }}$	10\% Pd/C (10)	$10 \% \mathrm{Nb}_{2} \mathrm{O}_{5} / \mathrm{C}$ (10)	27	37
11	10\% Pd/C (10)	$10 \% \mathrm{Nb}_{2} \mathrm{O}_{5} / \mathrm{C}$ (5)	45	51
12	10\% Pd/C (10)	$10 \% \mathrm{Nb}_{2} \mathrm{O}_{5} / \mathrm{C}$ (1)	12	12
13	$10 \% \mathrm{Pd} / \mathrm{C}(5)+10 \% \mathrm{Pt} / \mathrm{C}$ (5)	$10 \% \mathrm{Nb}_{2} \mathrm{O}_{5} / \mathrm{C}$ (10)	43	53

$14^{\mathrm{i})}$	$10 \% \mathrm{Pd} / \mathrm{C} \mathrm{(10)}$	$10 \% \mathrm{Nb}_{2} \mathrm{O}_{5} / \mathrm{C}(10)$	50	49
$15^{\mathrm{j})}$	$10 \% \mathrm{Pd} / \mathrm{C}(10)$	$10 \% \mathrm{Nb}_{2} \mathrm{O}_{5} / \mathrm{C} \mathrm{(10)}$	52	48
16	$10 \% \mathrm{Ir} / \mathrm{C}(10)$	$10 \% \mathrm{Nb}_{2} \mathrm{O}_{5} / \mathrm{C}(10)$	19	36
$17^{\mathrm{k})}$	$10 \% \mathrm{Pd} / \mathrm{C} \mathrm{(10)}$	$10 \% \mathrm{Nb}_{2} \mathrm{O}_{5} / \mathrm{C} \mathrm{(10)}$	50	50
$18^{\text {a) }}$	$10 \% \mathrm{Pd} / \mathrm{C} \mathrm{(10)}$	$\mathrm{Nb}_{2} \mathrm{O}_{5}(10)$	25	21
19	$10 \% \mathrm{Pd} / \mathrm{C} \mathrm{(10)}$	$\mathrm{Nb}_{2} \mathrm{O}_{5}(20)$	15	8
$20^{\text {1) }}$	$10 \% \mathrm{Pd} / \mathrm{C} \mathrm{(10)}$	$\mathrm{Nb}_{2} \mathrm{O}_{5}(10)$	11	7
$21^{\text {a) }}$	$10 \% \mathrm{Pd} / \mathrm{C} \mathrm{(10)}$	conc. $\mathrm{HCl}(1.0$ equiv.)	10	6

a) Without MS 3A. b) $\mathrm{CH}_{3} \mathrm{CN}$ was used instead of toluene. c) $\mathbf{2 a}(0.20 \mathrm{mmol})$ and $\mathbf{1 a}(0.30 \mathrm{mmol} ; 1.5$ equiv.) was used. d) At $100^{\circ} \mathrm{C}$. e) Toluene (1 mL) was used. f) 2-PrOH was used instead of toluene. g) p-Xylene was used instead of toluene. h) Neat conditions. i) The reaction was carried out in a sealed test tube. j) Under O_{2} atmosphere. k) MS 5A was used instead of MS 4A. 1) At $140^{\circ} \mathrm{C}$.

Table S2. Effect of hydrogen acceptor.
(0.20 mmol)

a) $\mathbf{2 a}(0.20 \mathrm{mmol})$ and $\mathbf{1 a}(0.30 \mathrm{mmol} ; 1.5$ equiv. $)$ was used.

3. Preparation of Substrates.

3-Phenylcyclohexanone (1d) ${ }^{1 \text {) }}$

To a solution of $\mathrm{Pd}(\mathrm{OAc})_{2}(34 \mathrm{mg}, 0.15 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $\mathrm{PPh}_{3}(79 \mathrm{mg}, 0.30 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, phenylboronic acid ($732 \mathrm{mg}, 6.00 \mathrm{mmol}, 2$ equiv.), 2-cyclohexenone ($288 \mathrm{mg}, 3.0 \mathrm{mmol}$), and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($978 \mathrm{mg}, 3.00 \mathrm{mmol}$, 3 equiv.) in anhydrous toluene (6 mL) was added chloroform (0.1 mL , $40 \mathrm{~mol} \%$) at room temperature under argon. After 48 h -stirring at $80^{\circ} \mathrm{C}$, the reaction mixture was cooled down to room temperature and extracted with AcOEt ($30 \mathrm{~mL} \times 3$). The organic layers were dried over with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified with silica-gel column chromatography (n-hex/EtOAc $=10 / 1$), and 3-phenylcyclohexanone (1e; 157 mg , 0.9 mmol) was obtained in 30% yield.

Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 3 \mathrm{H}), 3.05-2.98$ $(\mathrm{m}, 1 \mathrm{H}), 2.62-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.74(\mathrm{~m}, 2 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR spectrum of the product was identical to that of the reference 2 .

N-Benzylindole (2h)

2h

To a solution of indole ($590 \mathrm{mg}, 5.04 \mathrm{mmol}$) and $\mathrm{KOH}(452 \mathrm{mg}, 8.06 \mathrm{mmol}, 1.6$ equiv.) in anhydrous THF (10 mL) was added benzyl chloride ($0.860 \mathrm{~mL}, 7.47 \mathrm{mmol}, 1.5$ equiv.) at $0^{\circ} \mathrm{C}$ under argon. After stirring 18 h -stirring at room temperature, the reaction mixture was cooled down to $0^{\circ} \mathrm{C}$ and extracted with AcOEt ($30 \mathrm{~mL} \times 3$). The organic layers were dried over with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified with silica-gel column chromatography
(n-hex/EtOAc $=30 / 1$), and N-benzylindole ($\mathbf{2 h} ; 1.03 \mathrm{~g}, 4.95 \mathrm{mmol}$) was obtained in 99% yield.
Pale red solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.65(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}$), 7.32-7.25 (m, 5H), $7.19-7.05(\mathrm{~m}, 4 \mathrm{H}), 7.56(\mathrm{~d}, 1 \mathrm{H}, J=3.2 \mathrm{~Hz}), 5.34(\mathrm{~s}, 2 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR spectrum of the product was identical to that of the reference 3 .

1-Benzyl-1H-pyrrole (6c)

To a solution of pyrrole ($350 \mathrm{mg}, 5.22 \mathrm{mmol}$) and $\mathrm{KOH}(560 \mathrm{mg}, 9.98 \mathrm{mmol}, 1.9$ equiv. $)$ in anhydrous DMSO (10 mL) was added benzyl chloride ($0.860 \mathrm{~mL}, 7.47 \mathrm{mmol}, 1.4$ equiv.) at $0{ }^{\circ} \mathrm{C}$ under argon. After 17 h -stirring at room temperature, the reaction mixture was cooled down to $0^{\circ} \mathrm{C}$, quenched with 1 N HCl aq. (20 mL) and extracted with AcOEt (30 mL). The organic layer was washed with saturated NaHCO_{3} aq. (30 mL) and Brine (30 mL), and dried over with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified with silica-gel column chromatography (n-hex/EtOAc $=100 / 1$), and 1-benzyl-1H-pyrrole ($\mathbf{6 c} ; 728 \mathrm{mg}, 4.63 \mathrm{mmol}$) was obtained in 89% yield.

Pale purple solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{~d}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz})$, $6.69(\mathrm{~d}, 2 \mathrm{H}, J=1.6 \mathrm{~Hz}), 6.19(\mathrm{t}, 2 \mathrm{H}, J=1.6 \mathrm{~Hz}), 5.07(\mathrm{~s}, 2 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR spectrum of the product was identical to that of the reference 4 .

4. General procedures (Tables 1-4 and Scheme 3).

Procedure A to synthesize 4 and 5:

To suspension of cyclohexanone ($\mathbf{1} ; 0.20 \mathrm{mmol}$) and indole derivative ($\mathbf{2} ; 0.30 \mathrm{mmol}, 1.5$ equiv.) in toluene (2 mL) were added MS3A (600 mg), $10 \% \mathrm{Pd} / \mathrm{C}(21.2 \mathrm{mg}, 0.020 \mathrm{mmol}, 10 \mathrm{~mol} \%), 10 \%$ $\mathrm{Nb}_{2} \mathrm{O}_{5} / \mathrm{C}$ [including water $\left.(60 \% \quad \mathrm{w} / \mathrm{w}), 130 \mathrm{mg}, 0.020 \mathrm{mmol}, 10 \mathrm{~mol} \%\right]^{5}$ and 2,3-dimethyl-1,2-butadiene ($45 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 2$ equiv.) under argon. After 24 h -stirring at $130^{\circ} \mathrm{C}$, the reaction mixture was cooled to room temperature and passed through a celite pad to remove catalysts and MA3A. The filtrate was concentrated in vacuo. The residue was purified by silica-gel column chromatography to give the corresponding 3-arylindole derivative (4) and 3-cyclohexylindole derivative (5).

Procedure B to synthesize 4 and 5:

To suspension of cyclohexanone ($\mathbf{1} ; 0.20 \mathrm{mmol}$) and indole derivative ($\mathbf{2} ; 0.30 \mathrm{mmol}, 1.5$ equiv.) in
toluene (2 mL) were added MS3A (600 mg), $10 \% \mathrm{Pd} / \mathrm{C}(21.2 \mathrm{mg}, 0.020 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and 10% $\mathrm{Nb}_{2} \mathrm{O}_{5} / \mathrm{C}$ [including water $\left.(60 \% \mathrm{w} / \mathrm{w}), 130 \mathrm{mg}, 0.020 \mathrm{mmol}, 10 \mathrm{~mol} \%\right]^{5}$ under argon. After 24 h-stirring at $130^{\circ} \mathrm{C}$, the reaction mixture was cooled to room temperature and passed through a celite pad to remove catalysts. The filtrate was concentrated in vacuo. The residue was purified by silica-gel column chromatography to give the corresponding 3-arylindole derivative (4) and 3-cyclohexylindole derivative (5).

Procedure C to synthesize 7:

To suspension of cyclohexanone ($\mathbf{1 a} ; 0.20 \mathrm{mmol}$) and pyrrole derivative ($\mathbf{2} ; 0.30 \mathrm{mmol}, 1.5$ equiv.) in toluene $(2 \mathrm{~mL})$ were added MS3A $(600 \mathrm{mg}), 10 \% \mathrm{Pd} / \mathrm{C}(21.2 \mathrm{mg}, 0.020 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and $10 \% \mathrm{Nb}_{2} \mathrm{O}_{5} / \mathrm{C}$ [including water ($60 \% \mathrm{w} / \mathrm{w}$), $\left.130 \mathrm{mg}, 0.020 \mathrm{mmol}, 10 \mathrm{~mol} \%\right]^{5}$ under argon. After 24 h -stirring at $130^{\circ} \mathrm{C}$, the reaction mixture was cooled to room temperature and passed through a celite pad to remove catalysts. The filtrate was concentrated in vacuo. The residue was purified by silica-gel column chromatography to give the corresponding 2 or 3-arylindole derivative (7).

5. Spectroscopic data of products.

3-Phenyl-1H-indole (4a) in Table 1, entry 1

3-Cyclohexyl-1H-indole (5a)

According to general procedure A (Table 2, entry 6), 1a ($19.6 \mathrm{mg}, 0.20 \mathrm{mmol}$) and 2a (35.1 mg , $0.30 \mathrm{mmol})$ were used as substrates. As a result, $4 \mathbf{4}(30.1 \mathrm{mg}, 0.16 \mathrm{mmol})$ was obtained in 78% yield, after purification by silica-gel column chromatography (n-hex/EtOAc $=5 / 1$).
According to general procedure B (Table 1, entry 1), 1a ($19.6 \mathrm{mg}, 0.20 \mathrm{mmol}$) and 2a (35.1 mg , $0.30 \mathrm{mmol})$ were used as substrates. As a result, $\mathbf{4 a}(17.4 \mathrm{mg}, 0.090 \mathrm{mmol})$ and $\mathbf{5 a}(21.9 \mathrm{mg}, 0.11$ mmol) were obtained in 45% and 55% yield, respectively, after purification by silica-gel column chromatography (n-hex/EtOAc $=5 / 1$).

4a; Pale purple solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.23$ (brs, 1 H), 7.95 (d, $1 \mathrm{H}, J=8.0 \mathrm{~Hz}$), 7.68 $(\mathrm{d}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 7.47-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 7.31-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{t}, 1 \mathrm{H}, J$ $=8.0 \mathrm{~Hz}) .{ }^{1} \mathrm{H}$ NMR spectrum of the product was identical to that of the reference 6 .

5a; Pale purple solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.89$ (brs, 1 H), 7.66 (d, $1 \mathrm{H}, J=7.5 \mathrm{~Hz}$), 7.35 $(\mathrm{d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.17(\mathrm{dt}, 1 \mathrm{H}, J=8.0,1.0 \mathrm{~Hz}), 7.09(\mathrm{dt}, 1 \mathrm{H}, J=7.5,1.0 \mathrm{~Hz}), 6.95(\mathrm{~d}, 1 \mathrm{H}, J=2.0$ $\mathrm{Hz}), 2.85-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.51-1.44(\mathrm{~m}, 4 \mathrm{H}), 1.33-1.27$ $(\mathrm{m}, 1 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR spectrum of the product was identical to that of the reference 6 .

3-(4-Methylphenyl)-1 \boldsymbol{H}-indole (4b)

3-(4-Methylcyclohexyl)-1H-indole (5b)

According to general procedure A (Table 3, entry 1), 1b ($22.4 \mathrm{mg}, 0.20 \mathrm{mmol}$) and 2a (35.1 mg , $0.30 \mathrm{mmol})$ were used as substrates. As a result, $\mathbf{4 b}(21.1 \mathrm{mg}, 0.10 \mathrm{mmol})$ was obtained in 51% yield, after purification by silica-gel column chromatography (n-hex/EtOAc $=5 / 1$).
According to general procedure B (Table 3, entry 2), $\mathbf{1 b}(22.4 \mathrm{mg}, 0.20 \mathrm{mmol})$ and $\mathbf{2 a}(35.1 \mathrm{mg}$, $0.30 \mathrm{mmol})$ were used as substrates. As a result, $\mathbf{4 b}(18.2 \mathrm{mg}, 0.088 \mathrm{mmol})$ and $\mathbf{5 b}(19.6 \mathrm{mg}, 0.092$ mmol) were obtained in 44% and 46% yield, respectively, after purification by silica-gel column chromatography (n-hex/EtOAc $=5 / 1$).

4b; Pale purple solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.21$ (brs, 1 H), $7.93(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}$), 7.58 $(\mathrm{d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.43(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.35(\mathrm{~d}, 1 \mathrm{H}, J=2.8 \mathrm{~Hz}), 7.28-7.25(\mathrm{~m}, 4 \mathrm{H}), 2.41(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR spectrum of the product was identical to that of the reference 6.
$\mathbf{5 b}$; Colorless solid; Mixture of diastereomers. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, trans isomer): $\delta 7.89$ (brs, 1 H), $7.66(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.36(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.18(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.10(\mathrm{t}, 1 \mathrm{H}, J=$ $7.2 \mathrm{~Hz}), 6.95(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 2.81-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.79(\mathrm{~m}, 2 \mathrm{H})$, $1.52-1.40(\mathrm{~m}, 3 \mathrm{H}), 1.15(\mathrm{dq}, 2 \mathrm{H}, J=12.0,3.2 \mathrm{~Hz}), 0.96(\mathrm{~d}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz}) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}, cis isomer): $7.89(\mathrm{brs}, 1 \mathrm{H}), 7.66(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.36(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.18(\mathrm{t}, 1 \mathrm{H}, J$ $=7.6 \mathrm{~Hz}), 7.10(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.02(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 3.06-2.97(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.79(\mathrm{~m}, 5 \mathrm{H})$, $1.71-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.01(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}) .{ }^{1} \mathrm{H}$ NMR spectrum of the product was identical to that of the reference 7 .

3-([1-1'-Biphenyl]-4-yl)-1H-indole (4c)

According to general procedure A (Table 3, entry 3), 1c ($34.8 \mathrm{mg}, 0.20 \mathrm{mmol}$) and 2a (35.1 mg , $0.30 \mathrm{mmol})$ were used as substrates. As a result, $4 \mathbf{c}(34.5 \mathrm{mg}, 0.13 \mathrm{mmol})$ was obtained in 64% yield, after purification by silica-gel column chromatography (n-hex/EtOAc $=5 / 1$).
According to general procedure B (Table 3, entry 4), 1c ($34.8 \mathrm{mg}, 0.20 \mathrm{mmol}$) and 2a (35.1 mg , $0.30 \mathrm{mmol})$ were used as substrates. As a result, $4 \mathbf{c}(21.6 \mathrm{mg}, 0.080 \mathrm{mmol})$ was obtained in 40% yield, after purification by silica-gel column chromatography (n-hex/EtOAc $=5 / 1$).

Colorless solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.28$ (brs, 1 H), $8.00(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}$), 7.78—7.66 $(\mathrm{m}, 6 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.30-7.21(\mathrm{~m}, 3 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR spectrum of the product was identical to that of the reference 6 .

3-([1-1'-Biphenyl]-3-yl)-1H-indole (4d)

According to general procedure A (Table 3, entry 5), 1d ($34.8 \mathrm{mg}, 0.20 \mathrm{mmol}$) and 2a (35.1 mg , $0.30 \mathrm{mmol})$ were used as substrates. As a result, $\mathbf{4 d}(32.3 \mathrm{mg}, 0.12 \mathrm{mmol})$ was obtained in 60% yield, after purification by silica-gel column chromatography (n-hex/EtOAc $=5 / 1$).
According to general procedure B (Table 3, entry 6), 1d ($34.8 \mathrm{mg}, 0.20 \mathrm{mmol}$) and 2a (35.1 mg , $0.30 \mathrm{mmol})$ were used as substrates. As a result, $4 \mathbf{d}(25.8 \mathrm{mg}, 0.096 \mathrm{mmol})$ was obtained in 48% yield after purification by silica-gel column chromatography $(n$-hex $/ E t O A c=5 / 1)$.

Colorless solid; M.p. $92-94{ }^{\circ} \mathrm{C}$; IR (ATR) $\mathrm{cm}^{-1}: 3404,1594,1454,1427,1235,1104,1014,894$, $\left.794,745,694,670,666,603,580,501,463,423 ;{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(400} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.28$ (brs, 1 H), $8.00(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.69-7.65(\mathrm{~m}, 3 \mathrm{H}), 7.53-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 4 \mathrm{H})$, $7.38(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.30-7.20(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): 141.8,141.4,136.6$, $136.0,129.2,128.8,127.3,126.4,126.3,125.7,124.9,122.5,121.9,120.4,119.8,118.3,111.4$; ESI-HRMS m/z: $269.1181\left(\mathrm{M}^{+}\right) ; \mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}: 269.1199$.

3-(4-tert-Butylphenyl)-1H-indole (4e)

3-(4-tert-Butylcyclohexyl)-1H-indole (5e)

According to general procedure A (Table 3, entry 7), 1e ($30.9 \mathrm{mg}, 0.20 \mathrm{mmol}$) and 2a(35.1 mg, $0.30 \mathrm{mmol})$ were used as substrates. As a result, $4 \mathrm{e}(20.4 \mathrm{mg}, 0.082 \mathrm{mmol})$ was obtained in 41% yield after purification by silica-gel column chromatography (n-hex/EtOAc $=5 / 1$).

According to general procedure B (Table 3, entry 8), $\mathbf{1 e}(30.9 \mathrm{mg}, 0.20 \mathrm{mmol})$ and $\mathbf{2 a}(35.1 \mathrm{mg}$, 0.30 mmol) were used as substrates. As a result, $\mathbf{4 e}(27.4 \mathrm{mg}, 0.11 \mathrm{mmol})$ and $\mathbf{5 e}(22.0 \mathrm{mg}, 0.086$ mmol) were obtained in 55% and 43% yield, respectively, after purification by silica-gel column chromatography $(n$-hex/EtOAc $=5 / 1)$.

4e; Pale purple solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.22$ (brs, 1 H), 7.96 (d, $1 \mathrm{H}, J=8.4 \mathrm{~Hz}$), 7.62 $(\mathrm{d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.48(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.43(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.36(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz})$, $7.26-7.17(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR spectrum of the product was identical to that of the reference 8.

5e; Pale purple solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.89$ (brs, 1 H), 7.66 (d, $1 \mathrm{H}, J=8.0 \mathrm{~Hz}$), 7.35 $(\mathrm{d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.18(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.10(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.95(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz})$, $2.80-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.16(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.05(\mathrm{~m}$, $3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR spectrum of the product was identical to that of the reference 7 .

5-Methyl-3-phenyl-1H-indole (4f)

5-Methyl-3-cyclohexyl-1H-indole (5f)

According to general procedure A (Table 4, entry 1), 1a ($19.6 \mathrm{mg}, 0.20 \mathrm{mmol}$) and $\mathbf{2 b}$ (39.4 mg , $0.30 \mathrm{mmol})$ were used as substrates. As a result, $\mathbf{4 f}(20.7 \mathrm{mg}, 0.10 \mathrm{mmol})$ and $\mathbf{5 f}(6.40 \mathrm{mg}, 0.030$ mmol) were obtained in 50% and 15% yield, respectively, after purification by silica-gel column chromatography (n-hex/EtOAc $=5 / 1$).
According to general procedure B (Table 4, entry 2), 1a (19.6 mg, 0.20 mmol) and 2b (39.4 mg , $0.30 \mathrm{mmol})$ were used as substrates. As a result, $\mathbf{4 f}(18.6 \mathrm{mg}, 0.090 \mathrm{mmol})$ and $\mathbf{5 f}(21.3 \mathrm{mg}, 0.10$ mmol) were obtained in 45% and 51% yield, respectively, after purification by silica-gel column chromatography (n-hex/EtOAc $=5 / 1$).

4f; Pale purple solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.14$ (brs, 1 H), $7.73(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.0 \mathrm{~Hz}), 7.45(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.34-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 2.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR spectrum of the product was identical to that of the reference 6.
5f; Pale purple solid; M.p. $93-94^{\circ} \mathrm{C}$; IR (ATR) $\mathrm{cm}^{-1}: 3402,2917,2846,1478,1447,1418,1222$, 1093, 871, 792, 762, 590, 502, 450, 423; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.78$ (brs, 1H), $7.43(\mathrm{~s}, 1 \mathrm{H})$, $7.24(\mathrm{~d}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 7.00(\mathrm{~d}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 6.91(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 2.82-2.78(\mathrm{~m}, 1 \mathrm{H})$, $2.46(\mathrm{~s}, 3 \mathrm{H}), 2.13-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.51-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.32-1.26(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 134.6, 128.1, 126.9, 123.3, 122.7, 119.5, 118.9, 110.7, 35.4, 34.0, 26.9, 26.5, 21.5; ESI-HRMS m/z: $213.3231\left(\mathrm{M}^{+}\right) ; \mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}: 213.3240$.

5-Methoxy-3-phenyl-1H-indole (4g)

5-Methoxy-3-cyclohexyl-1H-indole (5g)

According to general procedure A (Table 4, entry 3), 1a (19.6 mg, 0.20 mmol$)$ and $\mathbf{2 c}(26.6 \mathrm{mg}$, $0.30 \mathrm{mmol})$ were used as substrates. As a result, $\mathbf{4 g}(19.6 \mathrm{mg}, 0.084 \mathrm{mmol})$ and $\mathbf{5 g}(6.00 \mathrm{mg}, 0.026$
mmol) were obtained in 42% and 13% yield, respectively, after purification by silica-gel column chromatography (n-hex/EtOAc $=5 / 1$).

According to general procedure B (Table 4, entry 4), 1a ($19.6 \mathrm{mg}, 0.20 \mathrm{mmol}$) and $\mathbf{2 c}(26.6 \mathrm{mg}$, $0.30 \mathbf{m m o l})$ were used as substrates. As a result, $\mathbf{4 g}(21.0 \mathrm{mg}, 0.090 \mathrm{mmol})$ and $\mathbf{5 g}(22.0 \mathrm{mg}, 0.096$ mmol) were obtained in 45% and 48% yield, respectively, after purification by silica-gel column chromatography (n-hex/EtOAc $=5 / 1$).

4g; Pale purple solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.14$ (brs, 1 H), 7.67 (d, $2 \mathrm{H}, J=6.4 \mathrm{~Hz}$), 7.46 $(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.25(\mathrm{~m}, 3 \mathrm{H}), 6.92(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 3.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR spectrum of the product was identical to that of the reference 6 .
$\mathbf{5 g}$; Pale purple solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.79$ (brs, 1 H), $7.22(\mathrm{~d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}$), 7.08 $(\mathrm{d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 6.91(\mathrm{~d}, 1 \mathrm{H}, J=2.8 \mathrm{~Hz}), 6.84(\mathrm{dd}, 1 \mathrm{H}, J=9.2,2.8 \mathrm{~Hz}), 2.81-2.75(\mathrm{~m}, 1 \mathrm{H})$, $2.10-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.52-1.26(\mathrm{~m}, 5 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR spectrum of the product was identical to that of the reference 7 .

5-Fluoro-3-phenyl-1H-indole (4h)

5-Fluoro-3-cyclohexyl-1H-indole (5h)

According to general procedure A (Table 4, entry 5), 1a ($19.6 \mathrm{mg}, 0.20 \mathrm{mmol}$) and 2d $(40.5 \mathrm{mg}$, 0.30 mmol) were used as substrates. As a result, $4 \mathbf{h}(19.6 \mathrm{mg}, 0.084 \mathrm{mmol})$ was obtained in 32% yield, after purification by silica-gel column chromatography (n-hex/EtOAc $=5 / 1$).
According to general procedure B (Table 4, entry 6), 1a ($19.6 \mathrm{mg}, 0.20 \mathrm{mmol}$) and $\mathbf{2 d}(40.5 \mathrm{mg}$, $0.30 \mathrm{mmol})$ were used as substrates. As a result, $\mathbf{4 h}(19.0 \mathrm{mg}, 0.090 \mathrm{mmol})$ and $\mathbf{5 h}(22.6 \mathrm{mg}, 0.10$ mmol) were obtained in 45% and 52% yield, respectively, after purification by silica-gel column chromatography (n-hex/EtOAc $=5 / 1$).

4h; Brown oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.21$ (brs, 1 H), $7.64-7.57$ (m, 3H), $7.48-7.40$ (m, $3 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.97(\mathrm{~m}, 1 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR spectrum of the product was identical to that of the reference 6 .

5h; Brown oil; IR (ATR) $\mathrm{cm}^{-1}: 3473,3426,2922,2850,1627,1580,1482,1449,1371,1348,1276$, $1240,1216,1164,1129,1094,1052,994,936,905,851,827,794,749,729,647,618,591,533,469$, 448, 425; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.87$ (brs, 1H), $7.30-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{~d}, 1 \mathrm{H}, J=2.4$ $\mathrm{Hz}), 6.92(\mathrm{dt}, 1 \mathrm{H}, J=9.2,2.4 \mathrm{~Hz}), 2.79-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.76(\mathrm{~m}, 3 \mathrm{H})$, $1.51-1.22(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $157.4(\mathrm{~d}, J=234.1 \mathrm{~Hz}), 132.8,127.0(\mathrm{~d}, J=9.6$ $\mathrm{Hz}), 123.3(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 121.2,111.6(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 110.1(\mathrm{~d}, J=26.0 \mathrm{~Hz}), 104.2(\mathrm{~d}, J=23.1$ $\mathrm{Hz}), 35.3,33.8,26.8,26.4 ;$ ESI-HRMS m/z: $217.2868\left(\mathrm{M}^{+}\right) ; \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{FN}: 217.2874$.

7-Methyl-3-phenyl-1H-indole (4j)

7-Methoxy-3-cyclohexyl-1H-indole (5j)

According to general procedure A (Table 4, entry 7), 1a ($19.6 \mathrm{mg}, 0.20 \mathrm{mmol}$) and $\mathbf{2 f}(39.4 \mathrm{mg}$, $0.30 \mathrm{mmol})$ were used as substrates. As a result, $\mathbf{4 j}(13.3 \mathrm{mg}, 0.064 \mathrm{mmol})$ was obtained in 32% yield, after purification by silica-gel column chromatography (n-hex/EtOAc $=5 / 1$).
According to general procedure B (Table 4, entry 8), 1a ($19.6 \mathrm{mg}, 0.20 \mathrm{mmol}$) and $\mathbf{2 f}(39.4 \mathrm{mg}$, 0.300 mmol) were used as substrates. As a result, $\mathbf{4 j}(18.7 \mathrm{mg}, 0.090 \mathrm{mmol})$ and $\mathbf{5 j}(23.5 \mathrm{mg}, 0.11$ mmol) were obtained in 45% and 55% yield, respectively, after purification by silica-gel column chromatography (n-hex/EtOAc $=5 / 1$).

4j; Colorless solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.12$ (brs, 1 H), $7.80(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.67(\mathrm{~d}$, $2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.45(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.35(\mathrm{~d}, 1 \mathrm{H}, J=2.8 \mathrm{~Hz}), 7.29(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.13(\mathrm{t}$, $1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.06(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.51(\mathrm{~s}, 3 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR spectrum of the product was identical to that of the reference 6 .

5j; Colorless solid; M.p. $112-113^{\circ} \mathrm{C}$; IR (ATR) $\mathrm{cm}^{-1}: 3420,2919,2848,1433,1342,1226,1165$, 1118, 1063, 987, 887, 803, 781, 743, 671, 666, 581, 532, 507, 468, 434; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.83(\mathrm{brs}, 1 \mathrm{H}), 7.52(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.05-6.96(\mathrm{~m}, 3 \mathrm{H}), 2.83-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{~s}$, $3 \mathrm{H}), 1.85-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.52-1.21(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 135.3, 126.2, 123.8, $122.3,120.2,119.2,119.0,117.1,35.5,34.0,26.9,26.5,16.6$; ESI-HRMS m/z: $213.3245\left(\mathrm{M}^{+}\right)$; $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}: 213.3240$.

N-Methyl-3-phenyl-indole (4k)

N-Methyl-3-cyclohexyl-indole (5k)

According to general procedure A (Table 4, entry 9), 1a ($19.6 \mathrm{mg}, 0.20 \mathrm{mmol}$) and $\mathbf{2 g}(39.4 \mathrm{mg}$, $0.30 \mathrm{mmol})$ were used as substrates. As a result, $\mathbf{4 k}(29.4 \mathrm{mg}, 0.14 \mathrm{mmol})$ and $\mathbf{5 k}(6.00 \mathrm{mg}, 0.026$ mmol) were obtained in 72% and 13% yield, respectively, after purification by silica-gel column chromatography (n-hex/EtOAc $=5 / 1$).

According to general procedure B (Table 4, entry 10), 1a ($19.6 \mathrm{mg}, 0.20 \mathrm{mmol}$) and $\mathbf{2 g}$ (39.4 mg , $0.30 \mathrm{mmol})$ were used as substrates. As a result, $\mathbf{4 k}(19.2 \mathrm{mg}, 0.094 \mathrm{mmol})$ and $\mathbf{5 k}(17.9 \mathrm{mg}, 0.084$ mmol) were obtained in 47% and 42% yield, respectively, after purification by silica-gel column chromatography $(n$-hex/EtOAc $=5 / 1)$.

4k; Pale purple solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.95(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.66(\mathrm{~d}, 2 \mathrm{H}, J=7.6$ $\mathrm{Hz}), 7.43(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.36(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.30-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 2 \mathrm{H}), 3.82$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR spectrum of the product was identical to that of the reference 6.
$\mathbf{5 k}$; Pale purple solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.64(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.28(\mathrm{~d}, 1 \mathrm{H}, J=8.0$ $\mathrm{Hz}), 7.20(\mathrm{dt}, 1 \mathrm{H}, J=8.0,1.0 \mathrm{~Hz}), 7.08(\mathrm{dt}, 1 \mathrm{H}, J=8.0,1.0 \mathrm{~Hz}), 6.80(\mathrm{~s} .1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$, 2.85-2.79 (m, 1H), 2.10-2.08 (m, 2H), 1.85-1.75 (m, 3H), 1.48-1.25 (m, 5H). ${ }^{1} \mathrm{H}$ NMR spectrum of the product was identical to that of the reference 9 .

N-Benzyl-3-phenyl-indole (41)

According to general procedure A (Table 4, entry 11), 1a ($19.6 \mathrm{mg}, 0.20 \mathrm{mmol}$) and $\mathbf{2 h}(62.2 \mathrm{mg}$, $0.30 \mathrm{mmol})$ were used as substrates. As a result, $41(15.3 \mathrm{mg}, 0.054 \mathrm{mmol})$ was obtained in 27% yield after purification by silica-gel column chromatography (n-hex/EtOAc $=5 / 1$).
According to general procedure B (Table 4, entry 12), 1a ($19.6 \mathrm{mg}, 0.20 \mathrm{mmol}$) and $\mathbf{2 h}(62.2 \mathrm{mg}$,
$0.30 \mathrm{mmol})$ were used as substrates. As a result, $41(17.0 \mathrm{mg}, 0.060 \mathrm{mmol})$ was obtained in 30% yield, after purification by silica-gel column chromatography $(n$-hex/EtOAc $=5 / 1)$.

Colorless solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.98(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}$), $7.67(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}$), $7.44(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.35-7.17(\mathrm{~m}, 10 \mathrm{H}), 5.37(\mathrm{~s}, 2 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR spectrum of the product was identical to that of the reference 10.

2-Phenyl-pyrrole (7a)

According to general procedure C, 1a ($19.6 \mathrm{mg}, 0.20 \mathrm{mmol}$) and $\mathbf{6 a}(20.8 \mu \mathrm{~L}, 0.30 \mathrm{mmol})$ were used as substrates. As a result, $7 \mathbf{7 a}(8.0 \mathrm{mg}, 0.056 \mathrm{mmol})$ was obtained in 28% yield, after purification by silica-gel column chromatography (n-hex/EtOAc $=10 / 1$).

Pale purple oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.46$ (brs, 1H), $7.49-7.48$ (m, 2H), 7.37 (t, 2H, $J=$ $8.0 \mathrm{~Hz}), 7.21(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.88-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.54-6.53(\mathrm{~m}, 1 \mathrm{H}), 6.32-6.30(\mathrm{~m}, 1 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR spectrum of the product was identical to that of the reference 11 .

1-Methyl-3-phenyl-pyrrole (7b)

According to general procedure C, 1a ($19.6 \mathrm{mg}, 0.20 \mathrm{mmol}$) and $\mathbf{6 b}(27.0 \mu \mathrm{~L}, 0.30 \mathrm{mmol})$ were used as substrates. As a result, 7b $(3.2 \mathrm{mg}, 0.020 \mathrm{mmol})$ was obtained in 10% yield, after purification by silica-gel column chromatography (n-hex/EtOAc $=50 / 1$).

Pale purple oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.49(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}$), $7.31(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}$), $7.14(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.91-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.63-6.62(\mathrm{~m}, 1 \mathrm{H}), 6.44-6.43(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{1} \mathrm{H}$ NMR spectrum of the product was identical to that of the reference 12.

1-Benzyl-3-phenyl-pyrrole (7c)

According to general procedure C, 1a ($19.6 \mathrm{mg}, 0.20 \mathrm{mmol})$ and $\mathbf{6 c}(47.1 \mathrm{mg}, 0.30 \mathrm{mmol})$ were used as substrates. As a result, $7 \mathrm{c}(12.6 \mathrm{mg}, 0.054 \mathrm{mmol})$ was obtained in 27% yield, after
purification by silica-gel column chromatography (n-hex/EtOAc $=50 / 1$).
Pale purple oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.51-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 5 \mathrm{H})$, $7.18-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.00-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.72-6.71(\mathrm{~m}, 1 \mathrm{H}), 6.50-6.49(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR spectrum of the product was identical to that of the reference 4 .

6. References

1) T. Yamamoto, M. Iizuka, T. Ohta, Y. Ito, Chem. Lett. 2006, 35, 198-199.
2) Y. J. Kim, D. Y. Kim, Org. Lett. 2019, 21, 1021-1025.
3) B. Li, A. E. Wendlandt, S. S. Stahl, Org. Lett. 2019, 21, 1176-1181.
4) B. Emayavaramban, M. Sen, B. Sundararaju, Org. Lett, 2017, 19, 1, $6-9$.
5) Y. Yamamoto, E. Shimizu, K. Ban, Y. Wada, T. Mizusaki, M. Yoshimura, Y. Takagi, Y. Sawama, H. Sajiki, ACS Omega 2020, 5, 2699—2709.
6) S. Chen, Y. Liao, F. Zhao, H. Qi, S. Liu, G. Deng, Org. Lett. 2014, 16, 1618-1621.
7) Q. A. Huchet, B. Kuhn, B. Wagner, H. Fischer, M. Kansy, D. Zimmerli, E. M. Carreira, K. Müller, J. Fluor. Chem. 2013, 152, 119—128.
8) A. Taheri, B. Lai, C. Cheng, Y. Gu, Green Chem. 2015, 17, 812-816.
9) H. Kilic, S. Bayindir, E. Erdogan, S. A. Cinar, F. A. S. konuklar, S. K. Bali, N. Saracoglu, V. Aviyente, New J. Chem. 2017, 41, 9674-9687.
10) A. J. Smith, A. Young, S. Rohrbach, E. F. O'Connor, M. Allison, H. Wang, D. L. Poole, T. Tuttle, J. A. Murphy, Angew. Chem. Int. Ed. 2017, 44, 13747—13751.
11) Y. Zhao, Y. Yuan, M. Xu, Z. Zheng, R. Zhang and Y. Li, Org. Biomol. Chem. 2017, 15, 6328-6332.
12) K. Ueda, K. Amaike, R. M. Maceiczyk, K. Itami, J. Yamaguchi, J. Am. Chem. Soc. 2014, 136, 13226—13232.

7. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of products.

${ }^{1}$ H NMR of 3-phenylcyclohexanone (1d)

${ }^{1} \mathrm{H}$ NMR of \boldsymbol{N}-benzylindole (2h)

${ }^{1}$ H NMR of 1-benzyl-pyrrole (6c)

${ }^{1} \mathrm{H}$ NMR of 3-phenyl-1 H -indole (4a)

${ }^{1} \mathrm{H}$ NMR of 3-cyclohexyl-1 H -indole (5a)

${ }^{1} \mathrm{H}$ NMR of 3-(4-methylphenyl)- $\mathbf{1 H}$-indole (4b)

${ }^{1}$ H NMR of 3-(4-methylcyclohexyl)-1H-indole (5b)

${ }^{1} \mathrm{H}$ NMR of 3-([1-1'-biphenyl]-4-yl)-1 \boldsymbol{H}-indole (4c)

${ }^{1} \mathrm{H}$ NMR of 3-([1-1'-biphenyl]-3-yl)-1 H -indole (4d)

${ }^{13} \mathrm{C}$ NMR of 3-([1-1'-biphenyl]-3-yl)-1H-indole (4d)

${ }^{1} \mathrm{H}$ NMR of 3-(4-tert-butylphenyl)-1H-indole (4e) in Table 2

${ }^{1} \mathrm{H}$ NMR of 3-(4-tert-butylcyclohexyl)-1H-indole (5e)

${ }^{1} H$ NMR of 5-methyl-3-phenyl-1 H-indole (4f)

${ }^{1} \mathrm{H}$ NMR of 5-methyl-3-cyclohexyl-1H-indole (5f)

${ }^{13} \mathrm{C}$ NMR of 5-methyl-3-cyclohexyl-1 H-indole (5f)

${ }^{1} \mathrm{H}$ NMR of 5-methoxy-3-phenyl-1 H -indole ($\mathbf{4 g}$)

${ }^{1} \mathrm{H}$ NMR of 5-methoxy-3-cyclohexyl-1 H-indole (5g)

${ }^{1}$ H NMR of 5-fluoro-3-phenyl-1H-indole (4h)

${ }^{1} \mathrm{H}$ NMR of 5-fluoro-3-cyclohexyl-1 H -indole (5h)

${ }^{13}$ C NMR of 5-fluoro-3-cyclohexyl-1H-indole (5h)

${ }^{1} \mathrm{H}$ NMR of 7-methyl-3-phenyl-1 \mathbf{H}-indole (5j)

${ }^{1} \mathrm{H}$ NMR of 7-methyl-3-cyclohexyl-1 H -indole (5j)

${ }^{13} \mathrm{C}$ NMR of 7-methyl-3-cyclohexyl-1 H -indole (5j)

${ }^{1} \mathrm{H}$ NMR of N-methyl-3-phenyl-indole (4 k)

${ }^{1} \mathrm{H}$ NMR of N -methyl-3-cyclohexyl-indole (5k)

${ }^{1} \mathrm{H}$ NMR of N -benzyl-3-phenyl-indole (4l)

$\mathrm{X}:$ parts per Million : Proton

${ }^{1} \mathrm{H}$ NMR of 2-phenyl-1-H-pyrrole (7a)

${ }^{1} \mathrm{H}$ NMR of N-methyl-3-phenyl-pyrrole (7b)

${ }^{1} \mathrm{H}$ NMR of N-benzyl-3-phenyl-pyrrole (7c)

