Supporting Information

Lewis acid-promoted site-selective cyanation of phenols

Wu Zhang, Wen Yang* and Wanxiang Zhao*

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China.
*Email: zhaowanxiang @hnu.edu.cn; yangwen@hnu.edu.cn

Table of contents

1. General information S1
2. Preparation of substrates S2
3. Lewis acid-promoted site-selective cyanation of phenols S6
4. Product transformations S16
5. Reference S21
6. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra S25

1. General information

Unless otherwise noted, all reactions were conducted in oven-dried vials with a magnetic stir bar under nitrogen atmosphere. Solvents obtained commercially were purified under nitrogen using a solvent purification system. Unless otherwise noted, all reagents and catalysts were purchased from commercial suppliers without further purification and used as received. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker 400 MHz at $20^{\circ} \mathrm{C}$. Chemical shifts (δ) are given in parts per million (ppm) referenced to the appropriate solvent peak or 0.0 ppm for tetramethylsilane (${ }^{1} \mathrm{H}$ NMR: CDCl_{3} at 7.26 ppm , DMSO- d_{6} at $2.50 \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR: CDCl_{3} at 77.00 ppm , DMSO- d_{6} at 39.52 ppm). The data are reported as follows: chemical shift (ppm), multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ doublet of doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad), coupling constant $J(\mathrm{~Hz})$ and integration. Flash chromatography was performed with EM Science silica gel 60 (200-300 mesh). Analytical thin layer chromatography (TLC) was performed using silica gel 60 F254 plates. Compounds were visualized with ultraviolet fluorescence. High resolution mass spectra were recorded on a Bruker Maxis System. IR spectra were collected on a Spectrum BX FTIR from Perkin-Elmer and reported in unit of cm^{-1}. Melting points were measured on an automatic melting points instrument hanon MP430 at ambient pressure.

2. Preparation of substrates

$\left[1,1^{\prime}\right.$-biphenyl]-3-ol $\quad(\mathbf{1 q}),{ }^{1} \quad\left[1,1^{\prime}\right.$-biphenyl]-3, 3^{\prime}-diol $\quad(\mathbf{1 u})^{2} \quad$ and 3-hydroxy-1,3,5(10)-estratriene (1z) ${ }^{3}$ were prepared according to known procedure. The data are all in accordance with the literature.

Synthesis of 3-(but-2-yn-1-yloxy) phenol (1k)

To a suspension of resorcinol ($550.6 \mathrm{mg}, 5.0 \mathrm{mmol}$) and potassium carbonate ($1.38 \mathrm{~g}, 10.0 \mathrm{mmol}$) in acetone $(20 \mathrm{~mL})$ was added dropwise 1-bromo-2-butyne ($864.5 \mathrm{mg}, 6.5 \mathrm{mmol}$) dropwise at room temperature, and the resulting mixture was refluxed for 5 h . Upon completed, the reaction mixture was concentrated, acidified with $2 \mathrm{Maq} . \mathrm{HCl}$ and then extracted with ethyl acetate ($15 \mathrm{~mL} x 3$) for three times. The combined organic layers were washed with water (15 mL) and brine (15 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (petroleum ether-ethyl acetate as eluent) to obtain desire product $\mathbf{1 k}$ in 45% yield $(365.0 \mathrm{mg})$ as yellow oil. $\mathbf{R}_{\mathbf{f}}=0.45(\mathrm{PE} / \mathrm{EA}=5 / 1) .{ }^{1} \mathbf{H} \mathbf{N M R}$ (400 MHz, CDCl 3) $\delta 7.12(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.53-6.45(\mathrm{~m}$, $2 \mathrm{H}), 6.18(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 158.9, 156.5, 130.1, 108.5, 107.2, 102.5, 84.0, 73.8, 56.5, 3.5 ppm. HRMS (ESI ${ }^{+}$: Calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-}: 161.0603$; Found: 161.0609. IR (neat, $\mathbf{c m}^{-1}$): 3449, 2921, 2868, 2231, 1597, 1490, 1460, 1369, 1147, 1024, 765.

Synthesis of 2, 3-dihydro-6-benzofuranol (10) ${ }^{4}$

A suspension of 6-hydroxy-1-benzofuran-3-one ($750.7 \mathrm{mg}, 5.0$ mmol) in 3 mL hydrazine hydrate, 29 mL diethyleneglycol and $\mathrm{NaOH}(2.18 \mathrm{~g}, 54.5 \mathrm{mmol})$ was heated to $120^{\circ} \mathrm{C}$. After stirring at this temperature for 1 h , the temperature was increased to $190{ }^{\circ} \mathrm{C}$. After stirring for additional 8 h , the mixture was cooled to room temperature, acidified with $2 \mathrm{M} \mathrm{aq} . \mathrm{HCl}$, and then extracted with ethyl acetate ($30 \mathrm{~mL} \times 3$) for three times. The combined organic layers were washed with water (50 mL) and brine $(50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and
concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (petroleum ether-ethyl acetate as eluent) to obtain desire product $\mathbf{1 0}$ in 37% yield (252.0 mg) as colorless solid. $\mathbf{m} . p .59-60{ }^{\circ} \mathbf{C} . \mathbf{R}_{\mathbf{f}}=0.47($ PE/EA $=5: 1) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.39-6.32(\mathrm{~m}, 2 \mathrm{H})$, $4.57(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.11(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 160.7, 155.9, 125.0, 118.6, 107.3, 97.6, 72.0, 28.8 ppm. HRMS (ESI ${ }^{+}$): Calcd for C8H7O2 [M-H] : 135.0446; Found: 135.0453. IR (neat, $\mathbf{c m}^{-1}$): 3372, 2966, 1621, 1608, 1499, 1460, 1182, 1136, 1092, 987, 833.

Synthesis of [1,1'-biphenyl]-3-ol derivatives

General procedure A^{1}

A solution of arylboronic acid (5.5 mmol) in 15 mL ethanol was added to a mixture of 3-bromophenol ($865.0 \mathrm{mg}, 5.0 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(462.2 \mathrm{mg}, 8 \mathrm{~mol} \%)$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(2.33 \mathrm{~g}, 22.0 \mathrm{mmol})$ in toluene $(30 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(16 \mathrm{~mL})$ at room temperature under N_{2} atmosphere. The mixture was stirred at $100^{\circ} \mathrm{C}$ for 16 h . Upon completed, the mixture was concentrated, acidified with 2 M aq. HCl , and then extracted with ethyl acetate ($15 \mathrm{~mL} \times 3$) for three times. The combined organic layers were washed with water (15 mL) and brine (15 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate as eluent $=10 / 1$) to the corresponding products.

Synthesis of 2'-Methoxy-[1,1'-biphenyl]-3-ol (1r) ${ }^{5}$

The title compound $\mathbf{1 r}$ was synthesized from 3-bromophenol ($865.0 \mathrm{mg}, 5.0 \mathrm{mmol}$) and (2-methoxyphenyl)boronic acid ($836.0 \mathrm{mg}, 5.5 \mathrm{mmol}$) according to the general procedure A and isolated as colorless oil with 83% yield $(831.0 \mathrm{mg}) . \mathbf{R}_{\mathbf{f}}=$ 0.45 (PE/EA = 5/1). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$) $\delta 7.43-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{~d}, J=$
$7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.01(\mathrm{~m}, 3 \mathrm{H}), 6.86(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 156.2, 155.0, 139.9, 130.7, 130.2, 129.1, 128.7, $121.9,120.8,116.5,114.0,111.4,55.5 \mathrm{ppm}$.
Synthesis of 3'-methoxy-[1,1'-biphenyl]-3-ol (1s) ${ }^{6}$

The title compound $\mathbf{1 s}$ was synthesized from 3-bromophenol (865.0 mg, 5.0 mmol) and (3-methoxyphenyl)boronic acid ($836.0 \mathrm{mg}, 5.5 \mathrm{mmol}$) according to the general procedure A and isolated as colorless oil with 81% yield $(811.0 \mathrm{mg}) . \mathbf{R}_{\mathbf{f}}=0.46(\mathrm{PE} / \mathrm{EA}=5 / 1) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.42-7.31(\mathrm{~m}$, 2H), 7.25-7.13 (m, 4H), 6.97 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 159.5,155.7,142.6,142.1$, $130.0,129.7,119.7,119.6,114.4,114.1,112.9,112.7,55.2$ ppm.

Synthesis of 3',5'-dimethyl-[1, 1'-biphenyl]-3-ol (1t) ${ }^{7}$

The title compound $1 \mathbf{t}$ was synthesized from 3-bromophenol ($865.0 \mathrm{mg}, 5.0 \mathrm{mmol}$) and (3,5-dimethylphenyl)boronic acid $(825.0 \mathrm{mg}, 5.5 \mathrm{mmol})$ according to the general procedure A and isolated as light orange oil with 65% yield $(645.0 \mathrm{mg}$). $\mathbf{R}_{\mathbf{f}}=0.48(\mathrm{PE} / \mathrm{EA}=5 / 1) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.28(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.18(\mathrm{~s}, 3 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{~s}$, $6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 155.5,143.1,140.6,138.1,129.8,129.0$, 124.9, 119.8, 114.11, 114.08, 21.3 ppm.

Synthesis of 4'-fluoro-[1, $\mathbf{1}^{\prime}$-biphenyl]-3-ol (1v) ${ }^{7}$

The title compound $\mathbf{1 v}$ was synthesized from 3-bromophenol (865.0 mg, 5.0 mmol$)$ and (4-fluorophenyl)boronic acid ($770 \mathrm{mg}, 5.5 \mathrm{mmol}$) according to the general procedure A and isolated as a colorless solid with 75% yield (706.0 mg). m.p. $76-77^{\circ} \mathrm{C} . \mathbf{R}_{\mathrm{f}}=0.41(\mathrm{PE} / \mathrm{EA}=5 / 1) . \mathbf{}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.53-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.07(\mathrm{~m}, 3 \mathrm{H}), 7.05$ $(\mathrm{s}, 1 \mathrm{H}), 6.89-6.83(\mathrm{~m}, 1 \mathrm{H}), 5.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ
162.5 (d, $J=246.5 \mathrm{~Hz}), 155.6,142.0,136.7(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 130.1,128.6(\mathrm{~d}, J=8.1$ $\mathrm{Hz}), 119.7,115.5(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 114.2,114.0 \mathrm{ppm}$.

Synthesis of 4'-Chloro-[1,1'-biphenyl]-3-ol (1w) ${ }^{7}$

The title compound $\mathbf{1 w}$ was synthesized from 3-bromophenol (865.0 mg , 5.0 mmol) and (4-chlorophenyl)boronic acid ($860.2 \mathrm{mg}, 5.5 \mathrm{mmol}$) according to the general procedure A and isolated as a colorless solid with 79% yield $(809.0 \mathrm{mg}) . \mathbf{m} . p .75-76{ }^{\circ} \mathrm{C} . \mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3 9}(\mathrm{PE} / \mathrm{EA}=5 / 1)$. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.45(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.32 (t, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.18$ (br s, 1H) ppm. ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 155.5, 141.6, 138.9, 133.5, $130.2,128.8,128.2,119.6,114.5,113.9 \mathrm{ppm}$.

Synthesis of 3-(furan-3-yl) phenol (1x) ${ }^{8}$

The title compound 1x was synthesized from 3-bromophenol
($865.0 \mathrm{mg}, 5.0 \mathrm{mmol}$) and furan-3-ylboronic acid (615.5 mg , 5.5 mmol) according to the general procedure A and isolated as a colorless solid with 73% yield (585.0 mg). m.p. $55-56^{\circ} \mathrm{C} . \mathbf{R}_{\mathbf{f}}=0.38(\mathrm{PE} / \mathrm{EA}=5 / 1)$. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.12(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 5.43(\mathrm{~s}$, 1H) ppm. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 155.7,143.6,138.7,134.1,130.1,126.0$, $118.5,114.0,112.8,108.8 \mathrm{ppm}$.

Synthesis of 3-(thiophen-3-yl) phenol (1y) ${ }^{9}$

The title compound $\mathbf{1 y}$ was synthesized from 3-bromophenol ($865.0 \mathrm{mg}, 5.0 \mathrm{mmol}$) and thiophen-3-ylboronic acid (704.0 mg , 5.5 mmol) according to the general procedure A and isolated as a colorless solid with 70% yield (617.0 mg). m.p. $97-98^{\circ} \mathrm{C} . \mathbf{R f}_{\mathrm{f}}=0.37(\mathrm{PE} / \mathrm{EA}=5 / 1)$. ${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl3) $\delta 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.25(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.16$ (s, 1H) ppm. ${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 155.8,141.8,137.5,130.0,126.3,126.2,120.6,119.1$,

114.1, 113.4 ppm .

Synthesis of 17-Methoxy-1,3,5(10)-estratrien-3-ol (1aa) ${ }^{10}$

3,17 β-Dimethoxyestra-1,3,5(10)-triene was prepared according to literature procedure using estradiol as the starting material. ${ }^{11}$ Adopting a modified method of demethylation invented by our group, in a nitrogen-filled glovebox, to an oven-dried vial was charged with HPPh_{2} (558.6 mg , 3.0 mmol), and ${ }^{t} \mathrm{BuOK}(336.6 \mathrm{mg}, 3.0 \mathrm{mmol})$ in DMF (2.0 M) was added $3,17 \beta$-dimethoxyestra-1,3,5(10)-triene ($450.6 \mathrm{mg}, 1.5 \mathrm{mmol}$). The vial was sealed with a teflon-lined cap, removed out from the glovebox and heated at $80^{\circ} \mathrm{C}$ for 14 h . After cooling down, the mixture was quenched with water (5 mL), acidified with 2 M HCl , and then extracted with ethyl acetate (15 mL x 3) for three times. The combined organic layers were washed with water (15 mL) and brine (15 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=5 / 1$) to afford the desire product $\mathbf{1}$ aa in 82% yield $(353.0 \mathrm{mg})$ as a colorless solid. m.p. $246-247{ }^{\circ} \mathrm{C} . \mathbf{R}_{\mathbf{f}}=0.32(\mathrm{PE} / \mathrm{EA}=4 / 1) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{D M S O}-\boldsymbol{d}_{\boldsymbol{6}}\right) \delta 8.98(\mathrm{~s}, 1 \mathrm{H})$, $7.02(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 2.76-2.62$ $(\mathrm{m}, 2 \mathrm{H}), 2.27-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.12-1.84(\mathrm{~m}, 3 \mathrm{H}), 1.81-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.54(\mathrm{~m}, 1 \mathrm{H})$, 1.45-1.08 (m, 8H), $0.70(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, DMSO- \boldsymbol{d}_{6}) $\delta 154.9,137.1$, $130.3,126.0,114.9,112.8,89.9,57.1,49.6,43.4,42.8,38.4,37.5,29.1,27.3,26.9$, 26.1, 22.7, 11.6 ppm .

3. Lewis acid-promoted site-selective cyanation of phenols

General procedure B

To a solution of phenol $\mathbf{1}(1.0 \mathrm{mmol}), \mathrm{CH}_{3} \mathrm{SCN}(0.14 \mathrm{~mL}, 146.2 \mathrm{mg}, 2.0 \mathrm{mmol})$, and $\mathrm{AlCl}_{3}(133.3 \mathrm{mg}, 1.0 \mathrm{mmol})$ in $\mathrm{DCE}(1 \mathrm{~mL})$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.25 \mathrm{~mL}, 283.8$ $\mathrm{mg}, 2.0 \mathrm{mmol}$). The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 24 h . Upon completion, 4 M aq. $\mathrm{NaOH}(3.3 \mathrm{~mL})$ was added and the mixture was refluxed for 0.5 h . After cooling, the organic layer was separated and the aqueous layer was washed with $\mathrm{CH}_{2} \mathrm{C1}_{2}$. The aqueous layer was acidified with $6 \mathrm{M} \mathrm{HCl}(3 \mathrm{~mL})$, and then extracted with ethyl acetate (15 mLx 3). The combined organic layers were washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (eluent: dichloromethane/ethyl acetate $=$ $20 / 1$ to $10 / 1$, unless otherwise noted) to afford the 2-hydroxy-4-substituted benzonitrile 2a-2aa.

Synthesis of 3-hydroxy-5,6,7,8-tetrahydronaphthalene-2-carbonitrile (2a)

The title compound $2 \mathbf{2 a}$ was synthesized from $5,6,7$, 8-tetrahydronaphthalen-2-ol 1a according to the general procedure B and isolated as a colorless solid in 87% yield (150.7 mg). m.p. $157-158{ }^{\circ} \mathrm{C} . \mathbf{R}_{\mathbf{f}}=$ $0.48\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EA}=10 / 1\right) .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, DMSO- \boldsymbol{d}_{6}) $\delta 10.59(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~s}$, $1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 2.72-2.55(\mathrm{~m}, 4 \mathrm{H}), 1.72-1.60(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, DMSO-d \boldsymbol{d}_{6}) $\delta 157.4,144.3,132.9,128.3,117.4,115.8,96.4,29.2,27.5,22.5,22.1$ ppm. HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{NO}^{[\mathrm{M}-\mathrm{H}]}{ }^{-}: 172.0762$; Found: 172.0769. IR (neat, cm $^{-1}$): 3294, 2917, 2230, 1618, 1584, 1437, 1348, 1285, 1198, 865.

Synthesis of 6-hydroxy-indene-5-carbonitrile (2b)

The title compound $\mathbf{2 b}$ was synthesized from inden-5-ol 1b according to the general procedure B and isolated as a colorless solid in 92% yield (146.5 mg). m.p. $175-176{ }^{\circ} \mathrm{C} . \mathbf{R}_{\mathbf{f}}=0.47\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EA}=10 / 1\right) .{ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- $\boldsymbol{d}_{\boldsymbol{6}}$) $\delta 10.61(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 2.76(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.97-1.86(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, DMSO-d \boldsymbol{d}_{6}) $\delta 159.3,151.9,134.9,127.7,117.8,112.1,96.5,33.0,31.1,25.3 \mathrm{ppm}$. HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{NO}[\mathrm{M}-\mathrm{H}]{ }^{-}: 158.0606$; Found: 158.0612. IR (neat, $\left.\mathbf{c m}^{-1}\right): 3260,2921,2231,1615,1588,1491,1429,1276,1182,874$.

Synthesis of 2-hydroxy-4-methylbenzonitrile (2c) ${ }^{12}$

 The title compound 2c was synthesized from m-cresol 1c according to the general procedure B and isolated as a colorless solid in 93% yield (123.9 mg). The data of $\mathbf{2 c}$ was in accordance with the literature. m.p. $108-109{ }^{\circ} \mathrm{C} . \mathbf{R}_{\mathbf{f}}=0.47\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EA}=10 / 1\right) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.400 \mathrm{MHz}, \mathbf{D M S O}-\boldsymbol{d}_{\mathbf{6}}\right) \delta$ $10.91(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}$, 3H) ppm. ${ }^{13}$ C NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, DMSO- \boldsymbol{d}_{6}) $\delta 160.1,145.5,132.9,120.7,117.3,116.5$, 96.0, 21.5 ppm .

Synthesis of 2-hydroxy-4, 5-dimethylbenzonitrile (2d)

The title compound $\mathbf{2 d}$ was synthesized from 3,4-dimethylphenol 1d according to the general procedure B and isolated as a colorless solid in 96% yield (141.3 mg). m.p. $198-199{ }^{\circ} \mathrm{C} . \mathbf{R}_{\mathbf{f}}=0.46\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EA}=10 / 1\right) .{ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- \boldsymbol{d}_{6}) $\delta 10.59(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H})$, 2.06 (s, 3H) ppm. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~ D M S O - d} \boldsymbol{d}_{\boldsymbol{6}}$) δ 158.3, 144.2, 132.8, 127.8, 117.5, 117.1, 95.9, 20.0, 18.0 ppm . HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{NO}[\mathrm{M}-\mathrm{H}]$: 146.0606; Found: 146.0612. IR (neat, $\mathbf{c m}^{\mathbf{1}}$):3252, 2943, 2229, 1619, 1586, 1499, 1407, 1296, 1200, 873, 669.

Synthesis of 4-tert-butyl-2-hydroxybenzonitrile (2e) ${ }^{13}$

The title compound $\mathbf{2 e}$ was synthesized from 3-(tert-butyl) phenol 1e according to the general procedure B and isolated as a colorless solid in 88% yield (154.2 mg). m.p. $130-131{ }^{\circ} \mathrm{C} . \mathbf{R}_{\mathbf{f}}=0.43\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EA}=10 / 1\right) .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, DMSO- \boldsymbol{d}_{6}) $\delta 10.88(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H})$, $6.96(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, DMSO-d $\left.\boldsymbol{d}_{6}\right) \delta 160.1$, $158.2,132.7,117.21,117.18,112.9,95.9,34.9,30.6 \mathrm{ppm}$.

Synthesis of 2-hydroxy-5-isopropyl-4-methylbenzonitrile (2f)
The title compound $\mathbf{2 f}$ was synthesized from B and isolated as a colorless solid in 91% yield (159.5 mg). m.p. $118-119{ }^{\circ} \mathrm{C} . \mathbf{R}_{\mathbf{f}}=$ $0.46\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EA}=10 / 1\right) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{D M S O}-\boldsymbol{d}_{6}\right) \delta 10.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.35(\mathrm{~s}$,
$1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 3.20-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $\left.\boldsymbol{d}_{6}\right) \delta 157.7,142.8,138.2,129.0,117.51,117.46,96.4,28.0$, 23.0, 19.4 ppm. HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NO}[\mathrm{M}-\mathrm{H}]{ }^{-}: 174.0919$; Found: 174.0925. IR (neat, $\mathbf{c m}^{-1}$):3303, 2960, 2870, 2229, 1614, 1587, 1503, 1379, 1289, 1146, 864.

Synthesis of 2-hydroxy-4-methoxybenzonitrile (2g) ${ }^{14}$

MeO The title compound $\mathbf{2 g}$ was synthesized from 3-methoxyphenol $\mathbf{1 g}$ according to the general procedure B and isolated as a colorless solid in 95% yield (141.7 mg). m.p. $168-169{ }^{\circ} \mathrm{C} . \mathbf{R}_{\mathbf{f}}=0.45\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EA}=\right.$ 10/1). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, DMSO- $\boldsymbol{d}_{\boldsymbol{6}}$) $\delta 11.05(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.54-6.48 (m, 2H), $3.76(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, DMSO- \boldsymbol{d}_{6}) $\delta 164.1,161.9$, 134.4, 117.4, 106.7, 101.1, 91.2, 55.5 ppm .

Synthesis of 2-hydroxy-4,5-dimethoxybenzonitrile (2h)

 and isolated as a colorless solid in 93% yield (166.7 mg). m.p. $134-135^{\circ} \mathrm{C} . \mathbf{R}_{\mathbf{f}}=0.45$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EA}=10 / 1\right) .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, DMSO-d $\left.\boldsymbol{d}_{\boldsymbol{6}}\right) \delta 10.58(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H})$, $6.55(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, DMSO- $\left.\boldsymbol{d}_{6}\right) \delta 156.3$, 154.1, 142.1, 117.6, 114.2, 100.3, 88.4, 56.2, 55.6 ppm. HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{NO}_{3}[\mathrm{M}-\mathrm{H}]^{-}: 178.0504$; Found: 178.0511. IR (neat, $\mathbf{c m}^{-1}$): 3247, 2981, 2834, 2222, 1613, 1525, 1469, 1212, 1116, 990, 852.

Synthesis of 2, 4-dihydroxybenzonitrile (2i) ${ }^{15}$
HO according to the general procedure B and isolated as a colorless solid in 81% yield (109.4 mg). m.p. $183-184{ }^{\circ} \mathrm{C} . \mathbf{R}_{\mathbf{f}}=0.35\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EA}=5 / 1\right) .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, DMSO- \boldsymbol{d}_{6}) $\delta 10.76$ (br s, 1H), 10.36 (br s, 1H), 7.34 (d, $J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\left.\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{D M S O}-\boldsymbol{d}_{6}\right) \delta$ 163.0, 162.0, 134.5, 118.0, 108.4, 102.6, 89.7 ppm.

Synthesis of 2-hydroxy-4-pentadecylbenzonitrile (2j)

The title compound $\mathbf{2 j}$ was synthesized from 3-pentadecylphenol $\mathbf{1 j}$ according to the general procedure B and isolated as a colorless solid in 90% yield (296.6 mg). m.p. $72-73{ }^{\circ} \mathrm{C}$. $\mathbf{R}_{\mathbf{f}}=0.44\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EA}=10 / 1\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.38(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), ~ 6.83-6.75(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.66-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.21(\mathrm{~m}$, $24 \mathrm{H}), 0.88(\mathrm{t}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 158.6, 151.2 , $132.5,121.3,116.8,116.4,96.5,36.1,31.9,30.7,29.72-29.57$ (m, 6C), 29.5, 29.4, 29.3, 29.2, 22.7, 14.1 ppm. HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{NO}[\mathrm{M}-\mathrm{H}]$: : 328.2640; Found: 328.2647. IR (neat, $\mathbf{c m}^{-1}$): 3272, 2916, 2853, 2229, 1615, 1586, 1471, 1440, 1311, 875, 718.

Synthesis of 4-(but-2-yn-1-yloxy)-2-hydroxybenzonitrile (2k)

The title compound $\mathbf{2 k}$ was synthesized from $\mathbf{1 k}$ according to the general procedure B and isolated as a colorless solid in 55% yield $(103.0 \mathrm{mg})$. m.p. $119-120{ }^{\circ} \mathrm{C} . \mathbf{R}_{\mathbf{f}}=0.40\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EA}=10 / 1\right) .{ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 11.10(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.58-6.51(\mathrm{~m}$, 2H), 4.76 ($\mathrm{s}, 2 \mathrm{H}$), 1.83 ($\mathrm{s}, 3 \mathrm{H}$) ppm. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~ D M S O - d}$) δ 162.2, 161.7, 134.3, 117.3, 107.3, 102.0, 91.7, 84.3, 74.0, 56.3, 3.2 ppm. HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]$: : 186.0555; Found: 186.0562. IR (neat, cm $^{-1}$): 3235, 2924, 2854, 2225, 1612, 1513, 1491, 1439, 1182, 1014, 837.

Synthesis of 4-fluoro-2-hydroxybenzonitrile (21)

According to the modified literature procedure for $8 \mathrm{~h},{ }^{16}$ the reaction $\mathrm{CH}_{3} \mathrm{SCN}\left(82 \mathrm{uL}, 87.7 \mathrm{mg}, 1.2 \mathrm{mmol}\right.$), $\mathrm{AlCl}_{3}(133.3 \mathrm{mg}, 1 \mathrm{mmol})$ and $\mathrm{BCl}_{3}(1.2 \mathrm{~mL}$, $1.2 \mathrm{mmol}, 1.0 \mathrm{M}$ in dichloromethane). The product 21 was obtained as a colorless solid in 92% yield (126.1 mg). m.p. $114-115{ }^{\circ} \mathrm{C} . \mathbf{R}_{\mathbf{f}}=0.35\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EA}=10 / 1\right) .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, DMSO- \boldsymbol{d}_{6}) $\delta 11.67$ (br s, 1H), 7.67 (t, $\left.J=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.82-6.73$ (m, 2H) ppm. ${ }^{13}$ C NMR (100 MHz, DMSO-d $\boldsymbol{d}_{\boldsymbol{6}}$) $\delta 165.5$ (d, $J=252.5 \mathrm{~Hz}$), 162.4 (d, J $=12.6 \mathrm{~Hz}), 135.6(\mathrm{~d}, J=11.7 \mathrm{~Hz}), 116.4,107.5(\mathrm{~d}, J=23.2 \mathrm{~Hz}), 103.5(\mathrm{~d}, J=24.6$ Hz), $96.0(\mathrm{~d}, J=2.7 \mathrm{~Hz}) \mathrm{ppm}$. HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{FNO}[\mathrm{M}-\mathrm{H}]:$: 136.0199;

Found: 136.0205. IR (neat, $\mathbf{c m}^{-1}$): 3276, 2233, 1606, 1598, 1514, 1446, 1366, 1284, 1101, 980, 856.

Synthesis of 4-chloro-2-hydroxybenzonitrile (2m)

${ }^{\mathrm{Cl}}$ According to the modified literature procedure for $16 \mathrm{~h},{ }^{16}$ the reaction was carried out with 3 -chlorophenol 1 m ($128.6 \mathrm{mg}, 1$ $\mathrm{mmol}), \mathrm{CH}_{3} \mathrm{SCN}(82 \mathrm{uL}, 1.2 \mathrm{mmol}), \mathrm{AlCl}_{3}(133.3 \mathrm{mg}, 1 \mathrm{mmol})$ and $\mathrm{BCl}_{3}(1.2 \mathrm{~mL}, 1.2$ $\mathrm{mmol}, 1.0 \mathrm{M}$ in dichloromethane). The product $\mathbf{2 m}$ was obtained as a colorless solid in 84% yield (129.0 mg). m.p. $159-160{ }^{\circ} \mathrm{C} . \mathbf{R}_{\mathbf{f}}=0.33\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EA}=10 / 1\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (400 MHz, DMSO- \boldsymbol{d}_{6}) $\delta 11.56(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 6.95$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, DMSO- $\boldsymbol{d}_{\boldsymbol{6}}$) δ 161.0, 139.0, 134.6, 119.9, 116.2, 116.1, 98.2 ppm. HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{ClNO}[\mathrm{M}-\mathrm{H}]$: 151.9903; Found: 151.9910. IR (neat, $\mathbf{c m}^{-1}$): 3159, 2242, 1601, 1592, 1499, 1427, 1259, 1086, 917, 855.

Synthesis of 4-bromo-2-hydroxybenzonitrile (2n)
Br According to the modified literature procedure for $20 \mathrm{~h},{ }^{16}$ the reaction was carried out with 3-bromophenol 1 n ($173 \mathrm{mg}, 1 \mathrm{mmol}$), $\mathrm{CH}_{3} \mathrm{SCN}(82 \mathrm{uL}, 1.2 \mathrm{mmol}), \mathrm{AlCl}_{3}(133.3 \mathrm{mg}, 1 \mathrm{mmol})$ and $\mathrm{BCl}_{3}(1.2 \mathrm{~mL}, 1.2 \mathrm{mmol}$, 1.0 M in dichloromethane). The product $\mathbf{2 n}$ was obtained as a colorless solid in 76% yield (150.5 mg). m.p. $162-163{ }^{\circ} \mathrm{C} . \mathbf{R}_{\mathbf{f}}=0.32\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EA}=10 / 1\right) .{ }^{1} \mathbf{H} \mathbf{N M R}(400$ MHz, DMSO-d \boldsymbol{d}_{6}) $11.57(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, DMSO- $\boldsymbol{d}_{\boldsymbol{6}}$) δ 160.9, 134.7, 127.8, 122.7, 119.0, 116.3, 98.5 ppm. HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{BrNO}[\mathrm{M}-\mathrm{H}]{ }^{-}$: 195.9398; Found: 195.9405. IR (neat, $\mathbf{c m}^{-1}$): 3146, 2241, 1631, 1594, 1493, 1422, 1256, 1075, 896, 854.

Synthesis of 6-hydroxy-2, 3-dihydrobenzofuran-5-carbonitrile (2o)
the title compound 20 was synthesized from 6-hydroxy-2,3-dihydrobenzofuran 10 according to the general procedure B and isolated as a colorless solid in 87% yield (140.2 mg). m.p. $200-201{ }^{\circ} \mathrm{C} . \mathbf{R}_{\mathbf{f}}=0.45\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EA}=10 / 1\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}\right.$, DMSO- $\left.\boldsymbol{d}_{6}\right) \delta 10.83$
(s, 1H), $7.29(\mathrm{~s}, 1 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$ ppm. ${ }^{13}$ C NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, DMSO- $\boldsymbol{d}_{\boldsymbol{6}}$) $\delta 164.9,161.8,128.6,119.5,118.0,97.2,90.3$, 72.8, 27.7 ppm. HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]{ }^{-}: 160.0399$; Found: 160.0405. IR (neat, $\mathbf{c m}^{-1}$): 3248, 2956, 2224, 1626, 1606, 1492, 1451, 1314, 1192, 1079, 835.

Synthesis of 6-hydroxy-benzo [1, 3] dioxole-5-carbonitrile (2p) ${ }^{17}$
 The title compound $\mathbf{2 p}$ was synthesized from sesamol $\mathbf{1 p}$ according to the general procedure B and isolated as a colorless solid in 56% yield (91.4 mg). m.p. $235-236{ }^{\circ} \mathrm{C} . \mathbf{R}_{\mathbf{f}}=0.43\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EA}=10 / 1\right) .{ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- \boldsymbol{d}_{6}) $\delta 10.81$ ($\mathrm{s}, 1 \mathrm{H}$), 7.09 ($\mathrm{s}, 1 \mathrm{H}$), 6.55 ($\left.\mathrm{s}, 1 \mathrm{H}\right), 6.04$ ($\mathrm{s}, 2 \mathrm{H}$) ppm. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{D M S O}-\boldsymbol{d}_{\boldsymbol{6}}$) δ 157.9, 152.4, 140.2, 117.4, 109.9, 102.3, 97.8, 89.2 ppm .

Synthesis of 3-hydroxy-[1,1'-biphenyl]-4-carbonitrile (2q)

The title compound $\mathbf{2 q}$ was synthesized from $\mathbf{1 q}$ according to the general procedure B and isolated as a colorless solid in 72\% yield $(140.5 \mathrm{mg})$. m.p. $180-181{ }^{\circ} \mathrm{C} . \mathbf{R}_{\mathbf{f}}=0.41\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EA}=\right.$ 10/1). ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, DMSO- \boldsymbol{d}_{6}) $\delta 11.25$ ($\mathrm{s}, 1 \mathrm{H}$), 7.66 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.61 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, DMSO- $\left.\boldsymbol{d}_{\boldsymbol{6}}\right) \delta 160.6,146.4,138.7,133.8,129.2,128.7,126.9,118.2$, 117.1, 114.0, 97.9 ppm. HRMS (ESI ${ }^{+}$): Calcd for $\left.\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{NO}^{[M-H}\right]{ }^{-}: 194.0606$; Found: 194.0613. IR (neat, $\mathbf{c m}^{-1}$): 3267, 2231, 1611, 1574, 1490, 1417, 1315, 1246, 874, 756.

Synthesis of 3-hydroxy-2'-methoxy-[1,1'-biphenyl]-4-carbonitrile (2r)

The title compound $\mathbf{2 r}$ was synthesized from $\mathbf{1 r}$ according to the general procedure B and isolated as a colorless solid in 81% yield (182.5 mg). m.p. $144-145{ }^{\circ} \mathrm{C} . \mathbf{R f}_{\mathbf{f}}=0.43\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EA}=\right.$ 10/1). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, DMSO- \boldsymbol{d}_{6}) $\delta 11.10$ ($\mathrm{s}, 1 \mathrm{H}$), 7.60 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.11$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C} \mathbf{~ N M R}(\mathbf{1 0 0} \mathbf{~ M H z}$,

DMSO- \boldsymbol{d}_{6}) $\delta 159.8,156.1,144.6,132.7,130.2,130.0,128.3,121.0,120.8,117.2$, 116.9, 112.0, 97.3, 55.6 ppm. HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]: 224.0712$; Found: 224.0718. IR (neat, $\mathbf{c m}^{-1}$): 3264, 2938, 2228, 1612, 1585, 1486, 1415, 1244, 1115, 877, 754.

Synthesis of 3-hydroxy-3'-methoxy-[1,1'-biphenyl]-4-carbonitrile (2s)

The title compound 2 s was synthesized from 1s according to the general procedure B and isolated as a colorless solid in 80% yield (180.2 mg). m.p. $142-143{ }^{\circ} \mathrm{C} \cdot \mathbf{R}_{\mathbf{f}}=0.43\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EA}=10 / 1\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.\boldsymbol{d}_{\boldsymbol{6}}\right) \delta 11.23$ (s, 1H), 7.66 (d, J=7.9 Hz, 1H), 7.40 (t, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.11(\mathrm{~m}, 4 \mathrm{H}), 7.00(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, DMSO-d \boldsymbol{d}_{6}) $\delta 160.5,159.8$, 146.3, 140.2, 133.7, 130.3, 119.2, 118.4, 117.1, 114.3, 114.2, 112.4, 98.0, 55.2 ppm . HRMS (ESI ${ }^{+}$: Calcd for $\left.\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]\right]^{-}: 224.0712$; Found: 224.0718. IR (neat, $\left.\mathbf{c m}^{-1}\right): 3259,2940,2228,1609,1574,1485,1283,1035,817,780$.

Synthesis of 3-hydroxy-3',5'-dimethyl-[1,1'-biphenyl]-4-carbonitrile (2t)

The title compound $\mathbf{2 t}$ was synthesized from $\mathbf{1 t}$ according to the general procedure B and isolated as a colorless solid in 83% yield (185.3 mg). m.p. $195-196{ }^{\circ} \mathrm{C} . \mathbf{R}_{\mathrm{f}}=0.45$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EA}=10 / 1\right) .{ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, DMSO- \boldsymbol{d}_{6}) δ $11.15(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, DMSO-d ${ }^{6}$) δ 160.5, 146.7, 138.7, 138.2, 133.5, 130.1, 124.7, 118.2, 117.1, 114.0, 97.7, 21.0 ppm. HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{NO}[\mathrm{M}-\mathrm{H}]:$: 222.0919; Found: 222.0926. IR (neat, $\mathbf{c m}^{-1}$): 3250, 2917, 2230, 1612, 1580, 1483, 1443, 1404, 1244, 847, 816.

Synthesis of 3,3'-dihydroxy-[1,1'-biphenyl]-4-carbonitrile (2u)

The title compound $\mathbf{2 u}$ was synthesized from $\mathbf{1 u}$ according to the general procedure B and isolated as a colorless solid in 61% yield (128.8 mg). m.p. $222-223{ }^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=0.31\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EA}=5 / 1\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{D M S O}-\boldsymbol{d}_{\boldsymbol{6}}\right) \delta 11.21(\mathrm{~s}, 1 \mathrm{H}), 9.69$
(s, 1H), $7.65(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C} \mathbf{N M R}(\mathbf{1 0 0} \mathbf{~ M H z}$, DMSO- \boldsymbol{d}_{6}) $\delta 160.5,158.0,146.6,140.1,133.7,130.3,118.1,117.6,117.1,115.8$, 113.9, 113.6, 97.8 ppm. HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]{ }^{-}: 210.0555$; Found: 210.0562. IR (neat, $\mathbf{c m}^{-1}$): 3235, 2237, 1610, 1579, 1485, 1421, 1288, 1244, 844, 781.

Synthesis of 4'-fluoro-3-hydroxy-[1,1'-biphenyl]-4-carbonitrile (2v)

The title compound $\mathbf{2 v}$ was synthesized from $\mathbf{1 v}$ according to the general procedure B and isolated as a colorless solid in 81% yield (172.7 mg). m.p. $262-263{ }^{\circ} \mathrm{C} . \mathbf{R}_{\mathrm{f}}=0.37$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EA}=10: 1\right) .{ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, DMSO- \boldsymbol{d}_{6}) δ $11.26(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.32(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 2 \mathrm{H})$ ppm. ${ }^{13}$ C NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, DMSO- \boldsymbol{d}_{6}) $\delta 162.5(\mathrm{~d}, J=246.0 \mathrm{~Hz}), 160.5,145.3,135.2$ $(\mathrm{d}, J=3.0 \mathrm{~Hz}), 133.8,129.1(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 118.2,117.0,116.1(\mathrm{~d}, J=21.6 \mathrm{~Hz})$, 114.0, 97.9 ppm. HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{FNO}[\mathrm{M}-\mathrm{H}]{ }^{-}: 212.0512$; Found: 212.0518. IR (neat, $\mathbf{c m}^{-1}$): 3229, 2237, 1613, 1579, 1497, 1439, 1403, 1224, 1161, 842, 817.

Synthesis of 4'-chloro-3-hydroxy-[1,1'-biphenyl]-4-carbonitrile (2w)

The title compound $\mathbf{2 w}$ was synthesized from $\mathbf{1 w}$ according to the general procedure B and isolated as a colorless solid in 74% yield (170.0 mg). m.p. $279-280^{\circ} \mathrm{C}$. $\mathbf{R f}_{\mathbf{f}}=0.34\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EA}=10 / 1\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}$,

DMSO-d \boldsymbol{d}_{6}) $11.28(\mathrm{~s}, 1 \mathrm{H}), 7.68-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.50(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H})$, 7.17 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\left.\mathbf{1 0 0} \mathbf{~ M H z , ~ D M S O - d} \boldsymbol{d}_{\boldsymbol{6}}\right) \delta 160.6,145.0,137.5$, 133.8, 133.7, 129.1, 128.7, 118.1, 117.0, 114.0, 98.3 ppm. HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{ClNO}[\mathrm{M}-\mathrm{H}]:$: 228.0216; Found: 228.0223. IR (neat, cm $^{-1}$): 3229, 2234, 1609, 1587, 1486, 1438, 1281, 1091, 1012, 874, 804.

Synthesis of 4-(furan-3-yl)-2-hydroxybenzonitrile (2x)

The title compound $\mathbf{2 x}$ was synthesized from $\mathbf{1 x}$ according to the general procedure B and isolated as a colorless solid n 51% yield $(94.5 \mathrm{mg})$. m.p. $190-191{ }^{\circ} \mathrm{C} . \mathbf{R}_{\mathrm{f}}=0.37\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EA}=\right.$ 10/1). ${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- \boldsymbol{d}_{6}) $\delta 11.13(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H})$, $7.60(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, DMSO- $\boldsymbol{d}_{\boldsymbol{6}}$) $\delta 160.5,144.8,141.0,138.2,133.7,124.8,117.2,117.1$, 112.6, 108.6, 97.2 ppm. HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{11} \mathrm{H}_{6} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]:$: 184.0399; Found: 184.0405. IR (neat, $\mathbf{c m}^{-1}$): 3198, 2233, 1616, 1568, 1430, 1369, 1227, 1163, 1057, 862, 781.

Synthesis of 2-hydroxy-4-(thiophen-3-yl)benzonitrile (2y)

The title compound $\mathbf{2 y}$ was synthesized from $\mathbf{1 y}$ according to the general procedure B and isolated as a colorless solid in 86% yield $(173.1 \mathrm{mg})$. m.p. $202-203{ }^{\circ} \mathrm{C} . \mathbf{R}_{\mathbf{f}}=0.38\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EA}=\right.$ 10/1). ${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- \boldsymbol{d}_{6}) $\delta 11.18$ (s, 1H), 7.89 ($\mathrm{s}, 1 \mathrm{H}$), $7.65-7.56$ (m, $2 \mathrm{H}), 7.47(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{M H z}$, DMSO- \boldsymbol{d}_{6}) $\delta 160.6,141.0,140.0,133.7,127.7,126.0,123.5,117.7,117.2$, 113.2, 97.5 ppm . HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{11} \mathrm{H}_{6} \mathrm{NOS}[\mathrm{M}-\mathrm{H}]{ }^{-}: 200.0170$; Found: 200.0177. IR (neat, $\mathbf{c m}^{-1}$): $3205,2232,1610,1581,1443,1378,1230,1120,948,851$, 782.

Synthesis of 3-hydroxy-estra-1,3,5(10)-triene-2-carbonitrile (2z)

The title compound $\mathbf{2 z}$ was synthesized from $\mathbf{1 z}$ according to the general procedure B and isolated as a colorless solid in 74% yield (208.2 mg) using petroleum ether-ethyl acetate (v / v, from $4 / 1$ to $2 / 1$) as an eluent. m.p.

 207-208 ${ }^{\circ} \mathrm{C} . \mathbf{R}_{\mathbf{f}}=0.47(\mathrm{PE} / \mathrm{EA}=2 / 1) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ D M S O - \boldsymbol { d } _ { \boldsymbol { 6 } }) ~} \delta 10.59$ (s, $1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 2.78-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.93(\mathrm{~m}$, $1 \mathrm{H}), 1.81-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.48(\mathrm{~m}, 3 \mathrm{H}), 1.46-1.07(\mathrm{~m}, 7 \mathrm{H}), 1.06-0.94(\mathrm{~m}, 1 \mathrm{H})$, 0.64 (s, 3H) ppm. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~ D M S O - d} \boldsymbol{d}$) δ 157.6, 144.0, 132.0, 129.5, $117.5,115.7,96.3,52.9,42.9,40.5,40.0,38.3,38.1,29.4,27.1,26.0,24.7,20.2,17.2$ppm. HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}-\mathrm{H}]{ }^{-}:$280.1701; Found: 280.1708. IR (neat, $\mathbf{c m}^{-1}$): 3262, 2930, 2228, 1613, 1585, 1503, 1451, 1419, 1282, 1185, 890.

Synthesis of 17-Methoxy-3-hydroxy-estra-1,3,5(10)-triene-2-carbonitrile (2aa)

The title compound 2aa was synthesized from 1aa according to the general procedure B and isolated as a colorless solid in 73% yield (227.3 mg) using petroleum ether-ethyl acetate (v / v, from $4 / 1$ to $2 / 1$) as an eluent. m.p. 246-247 ${ }^{\circ} \mathrm{C} . \mathbf{R}_{\mathbf{f}}=0.49(\mathrm{PE} / \mathrm{EA}=2 / 1) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{D M S O}-\boldsymbol{d}_{\boldsymbol{6}}$) $\delta 10.63(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 3.20-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.66$ $(\mathrm{m}, 2 \mathrm{H}), 2.22-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.81(\mathrm{~m}, 3 \mathrm{H}), 1.76-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.46(\mathrm{~m}, 1 \mathrm{H})$, 1.39-1.11 (m, 6H), 1.06-0.96 (m, 1H), $0.62(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, DMSO-d \boldsymbol{d}_{6}) δ 157.7, 144.1, 131.8, 129.5, 117.5, 115.8, 96.4, 89.8, 57.2, 49.5, 42.8, 42.7, 37.8, 37.3, 29.3, 27.3, 26.3, 25.7, 22.6, 11.4 ppm. HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]^{-}: 310.1807$; Found: 310.1814. IR (neat, $\mathbf{c m}^{-1}$): 3436, 2931, 2232, 1612, 1552, 1502, 1421, 1288, 1096, 966.

4. Product transformations

To a solution of meta-methyl phenol $\mathbf{1 c}(10 \mathrm{mmol}, 1.08 \mathrm{~g}), \mathrm{CH}_{3} \mathrm{SCN}(1.35 \mathrm{~mL}, 1.46 \mathrm{~g}$, $20 \mathrm{mmol})$ and $\mathrm{AlCl}_{3}(1.33 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{DCE}(10 \mathrm{~mL})$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(2.5 \mathrm{~mL}$, $2.84 \mathrm{~g}, 20 \mathrm{mmol}$). The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 24 h . Upon completed, 4 M aq. $\mathrm{NaOH}(33 \mathrm{~mL})$ was added and refluxed for 0.5 h . After cooled, the organic layers were separated and the aqueous layer was washed with $\mathrm{CH}_{2} \mathrm{C1}_{2}$. The aqueous layer was acidified with $6.0 \mathrm{M} \mathrm{HC} 1(30 \mathrm{~mL})$, and then extracted with ethyl acetate (30 x 3). The combined organic layers were washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash chromatography
on silica gel (dichloromethane-ethyl acetate as eluent) to the desired cyanated product 2c ($1.24 \mathrm{~g}, 93 \%$).
Synthesis of (S)-2-(4-(tert-butyl)-4, 5-dihydrooxazol-2-yl)-5-methylphenol (3a) ${ }^{18}$

An oven-dried vial equipped with a magnetic stir bar was charged with 2c ($66.6 \mathrm{mg}, 0.5 \mathrm{mmol}$). The vial was then moved into a N_{2}-filled glovebox. (S)-2-amino-3,3-dimethylbutan-1-ol ($117.2 \mathrm{mg}, 1.0 \mathrm{mmol}$), $\mathrm{ZnCl}_{2}(68.2 \mathrm{mg}, 0.5$ $\mathrm{mmol})$, and $\mathrm{PhCl}(2 \mathrm{~mL})$ were added to the vial. The vial was capped, and the resulting reaction mixture was stirred at $131{ }^{\circ} \mathrm{C}$ for 3 days. The reaction was quenched with water, and extracted with ethyl acetate ($15 \mathrm{~mL} \times 3$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel to afford (S)-2-(4-(tert-butyl)-4,5-dihydrooxazol-2-yl)-5-methylphenol 3a in 88\% yield (102.7 $\mathrm{mg})$ as colorless oil. $\mathbf{R}_{\mathbf{f}}=0.51(\mathrm{PE} / \mathrm{EA}=5 / 1) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 12.36$ (br s, 1H), $7.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.36-4.29$ (m, 1H), $4.20(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.06(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}) . \mathrm{ppm}$. ${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 165.0,159.9,144.1,127.7,119.6,116.9,108.0,74.8$, 67.9, 33.7, 25.7, 21.7 ppm. HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 234.1499; Found: 234.1489. IR (neat, $\mathbf{c m}^{-1}$): 2959, 2870, 1650, 1578, 1480, 1359, 1263, 1147, 1079, 965, 790.
Synthesis of (3-amino-6-methylbenzofuran-2-yl) (phenyl) methanone (3b) ${ }^{19}$

To a suspension of $\mathbf{2 c}(66.6 \mathrm{mg}, 0.5 \mathrm{mmol})$ and potassium carbonate ($138.2 \mathrm{mg}, 1.0 \mathrm{mmol}$) in acetone (1 mL) was added α-bromoacetophenone ($99.6 \mathrm{mg}, 0.5 \mathrm{mmol}$). The resulting reaction mixture was refluxed for 8 h . After cooled to room temperature, the reaction mixture was diluted with ethyl acetate (15 mL), and washed with water and brine, respectively. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=5 / 1$) to afford $\mathbf{3 b}$ in 90% yield $(113.1 \mathrm{mg})$ as a yellow solid. m.p. $155-156{ }^{\circ} \mathrm{C} . \mathbf{R}_{\mathbf{f}}=0.41(\mathrm{PE} / \mathrm{EA}=3 / 1) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}$,
$\left.\mathbf{C D C l}_{3}\right) \delta 8.28(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.63-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}$), 6.20 (br s, 2H), $2.50(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 182.5$, 155.0, 142.6, 140.9, 137.8, 135.0, 131.6, 129.1, 128.1, 123.9, 119.7, 118.3, 112.5, 22.0 ppm . HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 252.1018 ; Found: 252.1019. IR (neat, $\mathbf{c m}^{-1}$): 3410, 3293, 1612, 1589, 1513, 1479, 1407, 1355, 1310, 1181, 808.

Synthesis of 2-methoxy-4-methylbenzonitrile (3c) ${ }^{20}$

The title compound $\mathbf{3 c}$ was synthesized by the known literature procedure. ${ }^{21}$ A suspension of 2-hydroxy-4-methylbenzonitrile 2c $(666.0 \mathrm{mg}, 5.0 \mathrm{mmol})$ and potassium carbonate $(1.38 \mathrm{~g}, 10.0 \mathrm{mmol})$ in DMF $(15 \mathrm{~mL})$ was stirred for 30 min at room temperature, and then $\mathrm{CH}_{3} \mathrm{I}(0.62 \mathrm{~mL}, 10.0 \mathrm{mmol})$ was added dropwise. After stirring at $60^{\circ} \mathrm{C}$ for 5 h , the reaction was quenched with saturated aqueous ammonium chloride (20 mL), and extracted with ethyl acetate (10 $\mathrm{mL} x$ 3). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuo. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=10 / 1$) to give the desired product $\mathbf{3 c}$ in 94% yield (692.0 mg) as a colorless solid. m.p. $72-73{ }^{\circ} \mathrm{C} . \mathbf{R}_{\mathbf{f}}=$ $0.53(\mathrm{PE} / \mathrm{EA}=5 / 1) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.42(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C} \mathbf{~ N M R}(\mathbf{1 0 0} \mathbf{~ M H z}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 161.2, 145.7, 133.4, 121.6, 116.8, 112.0, 98.8, 55.8, 22.2 ppm .

Synthesis of 4-methyl-2-(($(1 R, 2 S, 4 S)$-1, 3, 3-trimethylbicyclo [2.2.1] heptan-2-yl) oxy) benzonitrile (3d)

The title compound 3d was synthesized by the known literature procedure. ${ }^{22}$ An oven-dried vial equipped with a magnetic stir bar was charged with $3 \mathbf{c}(73.6 \mathrm{mg}, 0.5 \mathrm{mmol})$, and the vial was then moved into a N_{2}-filled glovebox. ${ }^{t} \mathrm{BuOK}(112.2 \mathrm{mg}, 1.0$ $\mathrm{mmol})$, (+)-fenchol (1.0 mmol), and 1,4-dioxane $(0.5 \mathrm{~mL})$ were added to the vial. The vial was capped, and the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 16 h . The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$, filtered through a plug of silica gel, and washed with THF. The filtrate was concentrated in vacuo and purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=10 / 1$) to provide 3d as
colorless oil in 69% yield $(92.9 \mathrm{mg}) . \mathbf{R}_{\mathrm{f}}=0.50(\mathrm{PE} / \mathrm{EA}=5 / 1) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (4 0 0 ~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 7.37(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.71(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$, 2.21-2.11 (m, 1H), 1.84-1.72 (m, 2H), $1.60(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.54-1.45(\mathrm{~m}, 1 \mathrm{H})$, 1.29-1.21 (m, 2H), $1.19(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 161.8,145.2,133.4,121.2,117.0,114.1,99.5,91.0,49.7,49.0,41.4,40.1$, 30.5, 26.3, 25.8, 22.3, 20.4, 19.8 ppm. HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 270.1853; Found: 270.1852. IR (neat, $\mathbf{c m}^{-1}$): 2957, 2873, 2225, 1606, 1568, 1499, 1462, 1286, 1161, 1044, 808.

Synthesis of 2-methoxy-4-methylbenzoic acid (3e) ${ }^{23}$

The title compound $\mathbf{3 e}$ was synthesized by the known literature procedure. ${ }^{23}$ A Schlenk tube equipped with a magnetic stir bar was charged with 3c ($73.6 \mathrm{mg}, 0.5 \mathrm{mmol}$). EtOH (4 mL) and KOH ($4 \mathrm{~mL}, 34 \%$ aqueous solution) were added via syringe. The resulting reaction mixture was heated to $80^{\circ} \mathrm{C}$ and stirred overnight. The reaction mixture was quenched and acidified with $\mathrm{HCl}(2 \mathrm{M})$, and then extracted with ethyl acetate ($15 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=5 / 1$) to afford $\mathbf{3 e}$ as a colorless solid in 85% yield $(70.6 \mathrm{mg}) . \mathbf{m} . \mathbf{p}$. $102-103{ }^{\circ} \mathrm{C} \cdot \mathbf{R}_{\mathbf{f}}=0.50(\mathrm{PE} / \mathrm{EA}=2.5 / 1) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{D M S O}-d_{6}\right) \delta 12.40(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 7.57$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.32$ (s, 3H) ppm. ${ }^{13}$ C NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~ D M S O - d ~} \boldsymbol{d}_{6}$) δ 167.1, 158.5, 143.8, 131.1, 120.7, 118.0, 113.1, 55.7, 21.4 ppm .

Synthesis of 2-methoxy-4-methylbenzamide (3f)

procedure. ${ }^{24}$ To a solution of $\mathbf{3 c}(73.6 \mathrm{mg}, 0.5 \mathrm{mmol})$ in ${ }^{t} \mathrm{BuOH}(10 \mathrm{~mL})$ was added solid $\mathrm{KOH}(420.8 \mathrm{mg}, 7.5 \mathrm{mmol})$ in a N_{2}-filled glovebox. The reaction was heated to $60^{\circ} \mathrm{C}$ and stirred overnight. Upon completion, the mixture was diluted with ethyl acetate (20 mL), and washed with water and brine, respectively. The organic layer
was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=1 / 1$) to afford $\mathbf{3 f}$ as a colorless solid in 81% yield (66.9 mg). m.p. $143-144{ }^{\circ} \mathrm{C} \cdot \mathbf{R}_{\mathbf{f}}=0.35(\mathrm{PE} / \mathrm{EA}=1 / 1) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{D M S O}-\boldsymbol{d}_{\boldsymbol{6}}\right) \delta 7.75(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.48$ (br s, 1H), 6.95 (s, 1H), 6.83 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.87 (s, 3H), 2.33 ($\mathrm{s}, 3 \mathrm{H}$) ppm. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~ D M S O - d} \boldsymbol{d}_{6}$) δ 166.1, 157.3, 143.0, 131.0, 121.2, 119.5, 112.5, 55.8, 21.2 ppm. HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 166.0863$; Found: 166.0863. IR (neat, $\mathbf{c m}^{-1}$): 3450, 3157, 1666, $1598,1467,1422,1371,1274,1176,1032,805$.

Synthesis of methyl 6-methoxy-3-((3, 4, 5-trimethoxyphenyl) amino) benzofuran-2-carboxylate ($\mathbf{3 g})^{25}$

2-Hydroxy-4-methoxybenzonitrile $\mathbf{2 g}$ was prepared on a gram scale $(94 \%$ yield, 1.40 g). Methyl 3-(3,4,5-trimethoxyphenylamino)-6-methoxybenzofuran -2-carboxylate 3g' was synthesized by the known procedure. ${ }^{26}$ Under N_{2}, a dry Schlenk tube equipped with a magnetic stir bar was charged with $\mathbf{3 g}{ }^{\prime}(110.6 \mathrm{mg}$, $0.5 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(6.7 \mathrm{mg}, 6 \mathrm{~mol} \%)$, rac- $\mathrm{BINAP}(37.0 \mathrm{mg}, 12 \mathrm{~mol} \%), \mathrm{CsCO}_{3}$ ($230.0 \mathrm{mg}, 0.7 \mathrm{mmol}$), 5-bromo-1,2,3-trimethoxybenzene ($148.0 \mathrm{mg}, 0.6 \mathrm{mmol}$), and dry toluene $(5 \mathrm{~mL})$. The reaction mixture was stirred at $120^{\circ} \mathrm{C}$ for 18 h . After cooling, the mixture was diluted with ethyl acetate $(10 \mathrm{~mL})$, filtered through a plug of silica gel, and washed with ethyl acetate (10 mL). The filtrate was washed with water (5 mL) and brine (5 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacco. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=4 / 1$ to $2 / 1$) to give $\mathbf{3 g}$ in 75% yield (145.3 mg) as a yellow solid. m.p. $138-139{ }^{\circ} \mathrm{C} . \mathbf{R}_{\mathbf{f}}=0.49(\mathrm{PE} / \mathrm{EA}=2 / 1) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.70(\mathrm{~s}$, $1 \mathrm{H}), 7.19$ (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.92$ (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.71$ (dd, $J=8.9$ and 2.3 Hz , 1H), 6.41 (s, 2H), 3.95 (s, 3H), 3.84 (s, 3H), 3.83 (s, 3H), 3.76 (s, 6H) ppm. ${ }^{13}$ C NMR $\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 161.8,161.2,156.1,153.5,137.2,136.6,134.7,126.9,123.9$,
113.9, 112.1, 99.6, 95.7, 61.0, 56.0, 55.6, 51.5 ppm .

Synthesis of 2,2-difluoro-7-methyl-4-(methylthio)-2H-2 λ^{4}-benzo $[e][1,3,2]$ oxazaborinine (4)

To a solution of m-cresol $\mathbf{1 c}(108.1 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathrm{CH}_{3} \mathrm{SCN}$ $(0.14 \mathrm{~mL}, 146.2 \mathrm{mg}, 2.0 \mathrm{mmol})$, and $\mathrm{AlCl}_{3}(133.3 \mathrm{mg}, 1.0$ $\mathrm{mmol})$ in DCE $(1 \mathrm{~mL})$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.25 \mathrm{~mL}, 283.8$ $\mathrm{mg}, 2.0 \mathrm{mmol}$). The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 24 h . Upon completion, the mixture was diluted with ethyl acetate, and then concentrated under vacco. The residue was purified by flash column chromatography on silica gel using dichloromethane-ethyl acetate (v / v, from 20/1 to $10 / 1$) as an eluent to give the desired product 4 in 87% yield (199.3 mg) as a white solid. m.p. $276-277{ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.49(\mathrm{DCM} / \mathrm{EA}=10 / 1) .{ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- \boldsymbol{d}_{6}) $\delta 10.42(\mathrm{~s}$, $1 \mathrm{H}), 7.67$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{~s}, 3 \mathrm{H}), 2.32$ (s, 3H) ppm. ${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z , ~ D M S O - d 6) ~} \delta-133.70 \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~}$ DMSO-d6) δ 176.8, 156.3, 148.6, 126.9, 121.2, 119.4, 113.0, 21.4, 12.8 ppm. HRMS $\left(\mathbf{E I}^{+}\right)$: Calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{BF}_{2} \mathrm{NOS}[\mathrm{M}]^{+}$: 229.0539; Found: 229.0542. IR (neat, cm^{-1}): 3325, 2933, 1621, 1593, 1498, 1444, 1325, 1280, 1222, 1156, 1046, 938.

5. Reference

1. Z. He, H. J. Shrives, J. A. Fernandez-Salas, A. Abengozar, J. Neufeld, K. Yang, A. P. Pulis and D. J. Procter, Synthesis of C2 substituted benzothiophenes via an interrupted pummerer/[3,3]-sigmatropic/1,2-migration cascade of benzothiophene S-oxides, Angew. Chem. Int. Ed., 2018, 57, 5759.
2. M. Mor, S. Rivara, A. Lodola, P. V. Plazzi, G. Tarzia, A. Duranti, A. Tontini, G. Piersanti, S. Kathuria and D. Piomelli, Cyclohexylcarbamic acid 3'- or 4'-substituted biphenyl-3-yl esters as fatty acid amide hydrolase inhibitors: synthesis, quantitative structure-activity relationships, and molecular modeling studies, J. Med. Chem., 2004, 47, 4998.
3. L.W. L. Woo, B. Leblond, A. Purohit and B. V. L. Potter, Synthesis and evaluation
of analogues of estrone-3-O-sulfamate as potent steroid sulfatase inhibitors, Bioorg. Med. Chem., 2012, 20, 2506-2519.
4. J. Feng, X.-B. Yang, S. Liang, J. Zhang and X.-Q. Yu, An efficient oxidative coupling method for synthesis of novel diastereomeric biaryl diols derived from estrone, Tetrahedron Lett., 2013, 54, 355.
5. B. Schmidt and M. Riemer, Suzuki-Miyaura coupling of halophenols and phenol boronic acids: systematic investigation of positional isomer effects and conclusions for the synthesis of phytoalexins from pyrinae, J. Org. Chem., 2014, 79, 4104.
6. Y.-F. Liang, S. Song, L. Ai, X. Li, N. Jiao, Highly efficient metal-free approach to meta- and multiple-substituted phenols via a simple oxidation of cyclohexenones, Green Chem., 2016, 18, 6462.
7. J. Luo, S. Preciado, I. Larrosa, Overriding ortho-para selectivity via a traceless directing group relay strategy: the meta-selective arylation of phenols. J. Am. Chem. Soc., 2014, 136, 4109.
8. J. J. Molloy, R. P. Law, J. W. B. Fyfe, C. P. Seath, D. J. Hirst, A. J. B. Watson, A modular synthesis of functionalised phenols enabled by controlled boron speciation, Org. Biomol. Chem., 2015, 13, 3093.
9. G. A. Molander, S. L. J. Trice, S. M. Kennedy, Scope of the two-step, one-pot palladium-catalyzed borylation/suzuki cross-coupling reaction utilizing bis-boronic acid, J. Org. Chem., 2012, 77, 8678.
10. L. Prokai, S.-M. Oon, K. Prokai-Tatrai, K. A. Abboud, J. W. Simpkins, Synthesis and biological evaluation of 17β-alkoxyestra-1,3,5(10)-trienes as potential neuroprotectants against oxidative stress, J. Med. Chem., 2001, 44, 110.
11. J.-H. Liu, C.-T. Yang, X.-Y. Lu, Z.-Q. Zhang, L. Xu, M. Cui, X. Lu, B. Xiao, Y. Fu, L. Liu, Copper-catalyzed reductive cross-coupling of nonactivated alkyl tosylates and mesylates with alkyl and aryl bromides, Chem. Eur. J., 2014, 20, 15334-15338.
12. Y. Nakai, K. Moriyama and H. Togo, Facile one-pot transformation of phenols into o-cyanophenols, Eur. J. Org. Chem., 2014, 6077.
13. N. Tezuka, K. Shimojo, K. Hirano, S. Komagawa, K. Yoshida, C. Wang, K.

Miyamoto, T. Saito, R. Takita and M. Uchiyama, Direct hydroxylation and amination of arenes via deprotonative cupration, J. Am. Chem. Soc., 2016, 138, 9166.
14. E. Whiting, M.E. Lanning, J. A. Scheenstra, S. Fletcher, Chromatography-free entry to substituted salicylonitriles: mitsunobu-triggered domino reactions of salicylaldoximes, J. Org. Chem., 2015, 80, 1229.
15. E. Marcus, ueber stickstoffhsltige Abkommlinge einiger Dioxybenzaldehyde, Ber. Dtsch. Chem. Ges., 1891, 24, 3650.
16. M. Adachi and T. Sugasawa, Exclusive ortho cyanation and alkylthiocarbonylation of anilines and phenols using boron trichloride, Synth. Commun., 1990, 20, 71.
17. M. Mulzer and G. W. Coates, A catalytic route to ampakines and their derivatives, Org. Lett., 2011, 13, 1426.
18. H. C. Aspinall, O. Beckingham, M. D. Farrar, N. Greeves and C. D Thomas, A general and convenient route to oxazolyl ligands, Tetrahedron Lett. 2011, 52, 5120.
19. M. N. Kumaraswamy, D. A. Prathima Mathias, C. Chandrashekhar and V. P. Vaidya, Synthesis and pharmacological evaluation of 2-mercapto-4-substituted-naphtho[2,1-b]furo[3,2-d]pyrimidines, Indian J. Pharm. Sci. 2006, 68, 731.
20. Y. Gan, G. Wang, X. Xie and Y. Liu, Nickel-catalyzed cyanation of phenol derivatives with $\mathrm{Zn}(\mathrm{CN})_{2}$ involving $\mathrm{C}-\mathrm{O}$ bond cleavage, J. Org. Chem. 2018, 83, 14036.
21. H. Park, J. Choi, S. Choi, M. Park, J. Lee, Y.-G. Suh, H. Cho, U. Oh, H.-D. Kim, Y. H. Joo, S.-Y. Kim, Y.-H. Park, Y. S. Jeong, J. K. Choi, J. K. Kim and S. Jew, N-4-Methansulfonamidobenzyl- N-2-substituted-4-tert-butyl-benzyl thioureas as potent vanilloid receptor antagonistic ligands, Bioorg. Med. Chem. Lett. 2004, 14, 1693.
22. X. Wang, C. Li, X. Wang, Q. Wang, X.-Q. Dong, A. Duan, W. Zhao, Metal-free etherification of aryl methyl ether derivatives by $\mathrm{C}-\mathrm{OMe}$ bond cleavage, Org. Lett. 2018, 20, 4267.
23. F. M. Hauser and S. R Ellenberger, Regiospecific oxidation of methyl groups in dimethylanisoles, Synthesis, 1987, 8, 723.
24. C. W. Liskey, X. Liao and J. F. Hartwig. Cyanation of arenes via iridium-catalyzed borylation, J. Am. Chem. Soc., 2010, 132, 11389.
25. R. Romagnoli, P. G. Baraldi, M. K. Salvador, F. Prencipe, C. Lopez-Cara, S. S. Ortega, A Brancale, E. Hamel, I. Castagliuolo, S. Mitola, R. Ronca, R. Bortolozzi, E. Porcu, G. Basso and G. Viola, Design, synthesis, in vitro, and in vivo anticancer and antiangiogenic activity of novel 3-arylaminobenzofuran derivatives targeting the colchicine site on tubulin, J. Med. Chem., 2015, 58, 3209.

6. Copies of ${ }^{\mathbf{1}} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 k}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 o}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 o}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 r}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 s}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR spectrum of $\mathbf{1 s}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 t}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 t}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 v}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 v}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 w}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 w}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 x}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 y}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 y}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 a a}\left(400 \mathrm{MHz}\right.$, DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 a a}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 a}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 b}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$
(
${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 b}$ (100 MHz , DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 c}\left(400 \mathrm{MHz}\right.$, DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 d}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 d}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 e}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 f}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 g}\left(400 \mathrm{MHz}\right.$, DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 g}\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 h}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13}$ C NMR spectrum of $\mathbf{2 h}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 i}$ (400 MHz , DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 i}$ (100 MHz , DMSO- d_{6})

\circ	∞	∞	8
$\stackrel{\circ}{0}$	$\stackrel{0}{\circ}$	∞	$\overleftarrow{0}$

$\stackrel{ }{\stackrel{N}{N}}$

2200
2100 2000

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 j}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2} \mathbf{j}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 i}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 k}\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 l}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 m}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 n}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 n}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 0}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$
(

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 p}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 q}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

(
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 r}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 r}\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 s}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 s}\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 t}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 t}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 u}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 u}\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 v}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 v}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 w}\left(400 \mathrm{MHz}\right.$, DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 w}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 x}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 y}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 z}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 z}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 a a}\left(400 \mathrm{MHz}\right.$, $\left.\mathrm{DMSO}-d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 a a}\left(100 \mathrm{MHz}\right.$, DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3} \mathbf{a}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 b}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 b}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 c}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 d}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 d}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 e}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 e}\left(100 \mathrm{MHz}\right.$, DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 f}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 g}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 g}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{19} \mathrm{~F}$ NMR spectrum of $4\left(376 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

