Cu-Photoredox-Catalyzed C(sp)-C(sp3) Coupling of Redox-Active Esters

with Terminal Alkynes

Yajing Zhang, Dayong Zhang *

School of Science, China Pharmaceutical University, Nanjing 210009, P.R. China * Corresponding author email: <u>zhangdayong@cpu.edu.cn</u>

Table of Contents

1 General Information	S2
2 Experimental Details	S2
(1) Optimization of the reaction conditions	S2
(2)Reaction setup	S3
(3)General procedure and characterizations of products	S4
(4) Gram-Scale Reaction	S11
3 Mechanistic investigations	S11
(1) Considerations of the reaction's active intermediate	S11
(2)Cyclic Woltammetry analysis	S12
(3)Quantum Yield Measurement	S15
4 References	S16
5 Copies of NMR spectra	S16

1 General information

All reagents and solvents were purchased from commercial suppliers, and the reactions were carried out under a nitrogen atmosphere. ¹H-NMR, ¹³C-NMR, and ¹⁹F-NMR spectra were recorded with a Bruker (400 MHz), Varian Inova (400 MHz) or Aglient (400 MHz) spectrometer. All chemical shifts (δ) are quoted in parts per million (ppm) and CDCl₃ (77.16 ppm for ¹³C and 7.260 ppm for ¹H) was the test solvent unless otherwise noted. The abbreviations were used for an explanation of multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, and m = multiplet. Blue LED lamps (40W, Kessil A160WE tuna blue) were used for reactions. Cyclic voltammetry were obtained from Shanghai Chen Hua CHI660. Photolysis experiments were performed on FZ-A Photolysis Spectrometer.

2 Experimental Details

(1) Optimization of the reaction conditions

Copper salt Screen

Copper Salt Screen

13

Entry	Copper salt	Yield $(\%)^a$
1	CuCl	53
2	CuBr	50
3	Cu(MeCN) ₄ PF ₆	38
4	CuCN	40
5	$Cu(ClO_4)_2 \cdot 6H_2O$	49
6	CuOAc	34
7	Cu(OTf) ₂	32

"Yields determined by¹HNMR analysis. NR: no reaction

Base Screen

1	Li ₂ CO ₃	13
2	Na ₂ CO ₃	21
3	K ₂ CO ₃	81
4	Cs ₂ CO ₃	34
5	K ₃ PO ₄	46
6	Na ₂ HPO ₄	5
7	Et ₃ N	NR
8	LiOtBu	trace
9	KOtBu	trace

^aYields determined by¹HNMR analysis. NR: no reaction

Solvent Screen

"Yields determined by¹HNMR analysis. NR: no reaction

(2) Reaction setup

Fig. S1 shows the emission spectra of the light. The vials are borosilicate glass and composed of a 3.0 cm long and 1.0 cm wide. It was placed 5cm away from blue LED lamps, and then place a fan blowing down on the vials. The strength of the air flow is adjusted so that the reaction temperature of the vials never exceeded 25 °C (Fig. 2).

Fig. 1 Emission spectra¹
Fig. 2 Reaction chamber
(3) General procedure and characterizations of products
General procedure for decarboxylative alkylation

General procedure: Under nitrogen atmosphere, 2, 2', 6', 2''-terpyridine (0.04 mmol, 20 mol %), CuI (0.02 mmol, 10 mol %), K₂CO₃ (0.6 mmol, 3.0 equiv), alkyne (0.2 mmol, 1 equiv), and N-acyloxyl derivatives (0.4 mmol, 2.0 equiv) were added in a dried reaction vessel with 2 mL of MeCN. The reaction mixture was stirred at room temperature under Blue LED for 24h. After completion, the reaction was quenched and the suspension was filtered by CH_2Cl_2 over a pad of silica gel. The volatile solvent was evaporated in vacuum. The crude product was purified by column chromatography.

Note: The electron deficient tetrachloro derivative proved to be unstable², carboxylic acids at activated position compounds **a2-a8** were N-hydroxyphthalimide esters. Others substrates are TCNHPI esters

4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl 2-phenylpropanoate a1

According to the published procedures³, **a1** was obtained from 2-phenyllpropionic acid (1.50g, 10mmol) as a white solid (3.4g, 79%). ¹H NMR (400 MHz, CDCl₃): δ 7.42-7.38 (m, 4H), 7.35-7.31 (m, 1H), 4.12 (q, *J*=7.1Hz, 1H), 1.67 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 170.4, 141.1, 138.0, 130.5, 129.1, 128.1, 127.6, 124.8, 43.0, 19.0 HRMS(ESI): C₁₇H₁₀Cl₄NO₄, calcd [M+H]⁺: 431.9283 found:431.9288 *1,3-dioxoisoindolin-2-yl 2-(2-bromophenyl)acetate* **a4**

According to the published procedures³, **a4** was obtained from 2-bromophenylacetic acid (1.08g, 5mmol) as a white solid (1.48g, 82%). ¹H NMR (400 MHz, CDCl₃): δ 7.90-7.86(m, 2H), 7.80-7.76 (m, 2H), 7.61(dd, J = 8.0, 0.8 Hz, 1H), 7.44 (dd, J = 7.6, 1.2 Hz, 1H), 7.33 (td, J = 7.6, 1.2 Hz, 1H), 7.19 (dd, J = 7.6, 1.6 Hz, 1H), 4.16 (s, 2H); ¹³C NMR (101 MHz, CDCl₃): 167.0, 161.9, 134.9, 133.1, 132.0, 131.4, 129.7, 129.0, 127.9, 125.1, 124.1, 38.5 HRMS(ESI): C₁₆H₁₁BrNO₄, calcd [M+H]⁺: 359.9795 found: 359.9789

1,3-dioxoisoindolin-2-yl 2-(4-(trifluoromethyl)phenyl)acetate a5

According to the published procedures³, **a5** was obtained from 2-(4-(trifluoromethyl)phenyl)acetic acid (1.02g, 5mmol) as a white solid (1.31g, 75%). ¹H NMR (400 MHz, CDCl₃): δ 7.87-7.84 (m, 2H), 7.78-7.75 (m, 2H), 7.63 (d, *J* = 8.0 Hz, 2H), 7.51 (d, *J* = 8.0 Hz, 2H), 4.05 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃): -62.6 (s, 1F);¹³C NMR (101 MHz, CDCl₃): 167.2, 161.8, 135.6 (q, *J* = 1.2 Hz), 135.0, 129.8, 129.7 (q, *J* = 32.7 Hz), 128.8, 125.9 (q, *J* = 3.8 Hz), 124.11, 124.08 (q, *J* = 273.2 Hz), 37.5 HRMS(ESI): C₁₇H₁₁F₃NO₄, calcd [M+H]⁺: 350.0565 found: 350.05659 *1,3-dioxoisoindolin-2-yl 2-methyl-2-phenylpropanoate* **a7**

According to the published procedures³, **a7** was obtained from 2-methyl-2-phenylpropanoic acid (0.82g, 5mmol) as a white solid (0.57g, 37%). ¹H NMR (400 MHz, CDCl₃): δ 7.87-7.85 (m, 2H), 7.79-7.76 (m, 2H), 7.51-7.50 (m, 2H), 7.44-7.41 (m, 2H), 7.34-7.30 (m, 1H), 1.79 (s, 6H); ¹³C NMR (101 MHz, CDCl₃): 173.3, 162.0, 142.7, 134.8, 129.0, 128.8, 127.5, 125.9, 123.9, 46.4, 26.9. HRMS(ESI): C₁₈H₁₆NO₄, calcd [M+H]⁺: 310.1005 found: 310.1001

1,3-dioxoisoindolin-2-yl 1-(p-tolyl)cyclopropane-1-carboxylate a8

According to the published procedures³, **a8** was obtained from 1-(p-tolyl)cyclopropane-1-carboxylic acid (0.88g, 5mmol) as a white solid (0.63g, 39%). ¹H NMR (400 MHz, CDCl₃): δ 7.86-7.82 (m, 2H), 7.77-7.73 (m, 2H), 7.43-7.41 (m, 2H), 7.19-7.17 (m, 2H), 2.35 (s, 2H), 1.89 (q, *J* = 3.9 Hz, 2H), 1.47 (q, *J* = 3.9 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃): 171.3, 162.0, 137.8, 134.7, 134.1, 130.5, 129.3, 129.0, 123.9, 27.0, 21.3, 18.9 HRMS(ESI): C₁₉H₁₅NO₄Na, calcd [M+Na]⁺: 344.1000 found: 344.1004

4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl 3-cyclohexylpropanoate **a10**

According to the published procedures³, **a10** was obtained from cyclohexanepropionic acid (0.78g, 5mmol) as a white solid (1.67g, 76%). ¹H NMR (400 MHz, CDCl₃): δ 2.67-2.63 (m, 2H), 1.75-1.63 (m, 7H), 1.39-1.09 (m, 4H), 0.97-0.87 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 169.5, 157.6, 140.9, 130.4, 124.8, 37.0, 32.9, 32.0, 28.6, 26.5, 26.2 HRMS(ESI): C₁₇H₁₆Cl₄NO₄, calcd [M+H]⁺: 437.9751 found: 437.9747

4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl cyclobutanecarboxylate a13

According to the published procedures³, **a13** was obtained from cyclobutanecarboxylicc acid (0.50g, 5mmol) as a white solid (1.74g, 91%). ¹H NMR (400 MHz, CDCl₃): δ 3.55-3.47 (m, 1H), 2.55-2.37 (m, 4H), 2.17-2.01 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 171.1, 157.8, 141.1, 130.6, 124.9, 35.0, 25.5, 18.9 HRMS(ESI): C₁₃H₈ Cl₄NO₄, calcd [M+H]⁺: 381.9123 found: 381.9128

4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl 2-phenoxypropanoate a17

According to the published procedures³, **a17** was obtained from 2-phenoxypropionic acid (0.83g, 5mmol) as a white solid (0.76g, 34%). ¹H NMR (400 MHz, CDCl₃): δ 7.36-7.32 (m, 2H), 7.06-7.02 (m, 1H), 6.99-6.96 (m, 2H), 5.10 (q, *J*=6.8Hz, 1H), 1.86 (d, *J*=6.8Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 168.5, 157.0, 141.3, 130.7, 129.9, 124.7, 122.6, 115.2, 70.9, 19.1 HRMS(ESI): C₁₇H₁₀ Cl₄NO₅, calcd [M+H]⁺: 447.9241 found: 447.9242

4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl 2-phenylacetate a18

According to the published procedures³, **a18** was obtained from phenylacetic acid (0.68g, 5mmol) as a white solid (0.32g, 43%). ¹H NMR (400 MHz, CDCl₃): δ 7.41-7.31 (m, 5H), 3.99 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 167.3, 157.5, 141.2, 131.3, 130.6, 129.4, 129.1, 128.1, 124.8, 37.8 HRMS(ESI): C₁₆H₈ Cl₄NO₄, calcd [M+H]⁺: 417.9131 found: 417.9127

but-1-yne-1,3-diyldibenzene **c1**

Following the general procedure, **c1** was obtained after flash column chromatography (PE) as colourless oil³ (33.3mg, 81%). ¹H NMR (400 MHz, CDCl₃): δ 7.50-7.46 (m, 3H), 7.40-7.36 (m, 2H), 7.34- 7.28 (m, 4H), 4.02 (q, *J* = 7.1 Hz, 1H), 1.61 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 143.5, 131.77, 128.7, 128.3, 127.9, 127.1, 126.8, 123.9, 92.7, 82.6, 32.6, 24.7 HRMS (EI⁺, 70eV): C₁₆H₁₄ [M]⁺: calcd: 206.1096, found: 206.1100.

4-(3-phenylprop-2-yn-1-yl)-1,1'-biphenyl c2

Following the general procedure, **c2** was obtained after flash column chromatography (PE:EA=100:1) as colourless oil (38.1mg, 71%). ¹H NMR (400 MHz, CDCl₃): δ 7.62-7.58 (m, 4H), 7.51-7.43 (m, 6H), 7.37-7.30(m, 4H), 3.89 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 141.1, 139.8, 136.0, 131.8, 128.9, 128.5, 128.4, 128.0, 127.5, 127.3, 127.2, 123.8, 87.6, 82.9, 25.6 HRMS (EI⁺, 70eV): C₂₁H₁₆ [M]⁺: calcd:268.1252, found: 268.1242

2-(3-phenylprop-2-yn-1-yl)naphthalene c3

Following the general procedure, **c3** was obtained after flash column chromatography (petroleum ether) as colourless oil⁴ (35.8mg, 74%). ¹H NMR (400 MHz, CDCl₃): δ 7.88

(s, 1H), 7.84-7.82 (m, 3H), 7.53-7.43(m, 5H), 7.33-7.31 (m, 3H), 4.00 (s, 2H). 13 C NMR (101 MHz, CDCl₃): δ 134.4, 133.7, 132.5, 131.8, 128.4, 128.3, 128.0, 127.8, 126.7, 126.4, 126.3, 125.7, 123.8, 87.6, 83.0, 26.1 HRMS (EI⁺, 70eV): C₂₁H₁₆ [M]⁺: calcd: 242.1096, found: 242.1100

1-bromo-2-(3-phenylprop-2-yn-1-yl)benzene c4

Following the general procedure, **c4** was obtained after flash column chromatography (petroleum ether) as colourless oil⁴ (38.3mg, 71%). ¹H NMR (400 MHz, CDCl₃): δ 7.70-7.69 (m, 1H), 7.59-7.56 (m, 1H), 7.49-7.46 (m, 2H), 7.35-7.31(m, 4H), 7.16-7.12 (m, 1H), 3.91 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 136.3, 132.7, 131.8, 129.9, 128.5, 128.4, 128.1, 127.8, 124.0, 123.6, 86.4, 83.8, 26.9 HRMS (EI⁺, 70eV): C₁₅H₁₁Br [M]⁺: calcd: 270.0044, found: 270.0041

1-(3-phenylprop-2-yn-1-yl)-4-(trifluoromethyl)benzene c5

Following the general procedure, **c5** was obtained after flash column chromatography (PE:EA=100:1) as colourless oil⁴ (30.7, 59%).¹H NMR (400 MHz, CDCl₃): δ 7.62-7.60 (m, 2H), 7.56-7.54 (m, 2H), 7.48-7.46 (m, 2H), 7.34-7.31 (m, 3H), 3.90 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 141.0, 131.8, 129.2 (q, *J*=32.5 Hz), 128.5, 128.2, 125.6 (q, *J*=3.8 Hz), 123.4, 86.4, 83.5, 25.8 ¹⁹F-NMR (374 MHz, CDCl₃):-62.37 (s, 3F). HRMS (EI⁺, 70eV): C₁₆H₁₁F₃ [M]⁺: calcd: 200.1565, found: 200.1573

but-1-yne-1,4-diyldibenzene c6

Following the general procedure, **c6** was obtained after flash column chromatography (petroleum ether) as colourless oil⁵(21.4mg, 52%). ¹H NMR (400 MHz, CDCl₃): δ 7.43-7.40 (m, 2H), 7.39-7.35 (m, 2H), 7.33-7.30(m, 4H), 7.28-7.26 (m, 2H), 2.98 (t, *J*= 7.6Hz, 2H), 2.74 (t, *J*= 7.4Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 140.8, 131.7, 128.7, 128.5, 128.3, 127.6, 126.4, 124.0, 89.6, 81.4, 35.3, 21.8 HRMS (EI⁺, 70eV): C₁₆H₁₄ [M]⁺: calcd:206.1096, found: 206. 1097

(4-cyclohexylbut-1-yn-1-yl)benzene c7

Following the general procedure, **c7** was obtained after flash column chromatography (petroleum ether) as colourless oil⁶(27.6mg, 65%). ¹H NMR (400 MHz, CDCl₃): δ 7.39-7.38 (m, 2H), 7.28-7.25 (m, 3H), 2.43-2.38 (m, 2H), 1.77-1.64 (m, 5H), 1.56-1.47 (m, 2H), 1.43-1.36(m, 1H), 1.28-1.16 (m, 3H), 0.95-0.87 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 131.7, 128.3, 127.6, 124.3, 90.8, 80.5, 37.0, 36.4, 33.1, 26.8, 26.4, 17.0 HRMS (EI⁺, 70eV): C₁₆H₂₀ [M]⁺: calcd: 212.1565, found: 212.1569

(4-cyclopentylbut-1-yn-1-yl)benzene c8

Following the general procedure, **c8** was obtained after flash column chromatography (petroleum ether) as colourless oil (23.3, 59%). ¹H NMR (400 MHz, CDCl₃): δ 7.40-7.38 (m, 2H), 7.30-7.26 (m, 3H), 2.41 (t, *J*= 7.4Hz, 2H), 1.99-1.89 (m, 1H), 1.85-1.77 (m, 2H), 1.65-1.58 (m, 4H), 1.55-1.49 (m, 2H), 1.17-1.08 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 131.7, 128.3, 127.6, 124.2, 90.8, 80.5, 39.6, 35.3, 32.5, 25.3, 18.8 HRMS (EI⁺, 70eV): C₁₅H₁₈ [M]⁺: calcd: 198.1409, found: 198.1400

1-(phenylethynyl)adamantine **c9**

Following the general procedure, **c9** was obtained after flash column chromatography (petroleum ether) as colourless oil (30.1mg, 0.57%). ¹H NMR (400 MHz, CDCl₃): δ 7.42-7.40 (m, 2H), 7.31-7.26 (m, 3H), 2.16 (s, 2H), 2.00 (s, 3H), 1.74-1.64 (m, 12H). ¹³C NMR (101 MHz, CDCl₃): δ 131.7, 128.3, 127.5, 124.4, 88.0, 82.8, 42.3, 37.1, 34.8,

33.2, 28.8 HRMS (EI⁺, 70eV): C₁₉H₂₂ [M]⁺: calcd: 250.1722, found: 250.1729 *(cyclobutylethynyl)benzene* **c10**

Following the general procedure, **c10** was obtained after flash column chromatography (petroleum ether) as colourless oil (20.0mg, 64%). ¹H NMR (400 MHz, CDCl₃): δ 7.41-7.37 (m, 2H), 7.30-7.25 (m, 3H), 3.27-3.19 (m, 1H), 2.37-2.29 (m, 2H), 2.27-2.17 (m, 2H), 2.02-1.88 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 131.7, 128.3, 127.6, 124.1, 94.1, 81.3, 30.2, 25.7, 19.4 HRMS (EI⁺, 70eV): C₁₂H₁₂ [M]⁺: calcd: 156.0939, found: 156.0941

(cyclopentylethynyl)benzene c11

Following the general procedure, **c11** was obtained after flash column chromatography (petroleum ether) as colourless oil⁷(22.4mg, 66%). ¹H NMR (400 MHz, CDCl₃): δ 7.43-7.40 (m, 2H), 7.33-7.27 (m, 3H), 2.89-2.82 (m, 1H), 2.06-1.99 (m, 2H), 1.83-1.69 (m, 4H), 1.68-1.61 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 141.0, 131.8, 129.2 (q, *J*=32.5 Hz), 128.5, 128.2, 125.6 (q, *J*=3.8 Hz), 123.4, 86.4, 83.5, 25.8 HRMS (EI⁺, 70eV): C₁₃H₁₄ [M]⁺: calcd: 170.1096, found: 170.1094

(cyclohexylethynyl)benzene c12

Following the general procedure, **c12** was obtained after flash column chromatography (petroleum ether) as colourless oil⁵(23.6mg, 64%). ¹H NMR (400 MHz, CDCl₃): δ 7.41-7.38 (m, 2H), 7.30-7.23 (m, 3H), 2.62-2.56(m, 1H), 1.90-1.86 (m, 2H), 1.78-1.73 (m, 2H), 1.58-1.51(m, 4H), 1.36-1.33 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 131.7, 128.3, 127.5, 124.3, 94.6, 80.6, 32.9, 29.8, 26.1, 25.1 HRMS (EI⁺, 70eV): C₁₄H₁₆ [M]⁺: calcd:184.1247, found: 184.1247

(3-ethylhept-1-yn-1-yl)benzene c13

Following the general procedure, **c13** was obtained after flash column chromatography (petroleum ether) as colourless oil (22.4mg, 60%). ¹H NMR (400 MHz, CDCl₃): δ 7.41-7.38 (m, 2H), 7.30-7.24 (m, 3H), 2.50-2.43 (m, 1H), 1.62-1.51 (m, 5H), 1.46-1.32 (m, 3H), 1.06 (t, *J*= 7.4 Hz, 3H), 0.93 (t, *J*= 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 131.7, 128.3, 127.5, 124.4, 93.9, 81.9, 34.7, 34.2, 29.9, 28.3, 22.8, 14.2, 12.0 HRMS (EI⁺, 70eV): C₁₅H₂₀ [M]⁺: calcd: 200.1565, found: 200.1573

(3-phenoxybut-1-yn-1-yl)benzene c14

Following the general procedure, **c14** was obtained after flash column chromatography (PE:EA=50:1) as colourless oil⁸(30.6mg, 69%). ¹H NMR (400 MHz, CDCl₃): δ 7.41-7.39 (m, 2H), 7.34-7.27 (m, 5H), 7.09-7.08 (m, 2H), 7.01-6.97 (m, 1H), 5.10 (q, *J*= 6.5 Hz, 1H), 1.75 (d, *J*= 6.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 157.7, 131.9, 129.5, 128.6, 128.4, 122.6, 121.4, 116.0, 88.5, 85.8, 64.4, 22.5. HRMS (EI⁺, 70eV): C₁₆H₁₄O [M]⁺: calcd: 222.1045, found: 222.1047

4-methoxy-4'-(4-phenylbut-3-yn-2-yl)-1,1'-biphenyl c15

Following the general procedure, **c15** was obtained after flash column chromatography (PE:EA=50:1) as colourless oil (40.0mg, 70%). ¹H NMR (400 MHz, CDCl₃): δ 7.81 (s, 1H), 7.74-7.72 (m, 2H), 7.55-7.53 (m, 1H), 7.48-7.46 (m, 2H), 7.32-7.29 (m, 3H), 7.16-7.13 (m, 2H), 4.12 (q, *J*= 7.2Hz, 1H), 3.92 (s, 3H), 1.65 (d, *J*= 7.2Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 157.6, 138.6, 133.6, 131.8, 129.4, 129.1, 128.4, 127.9, 127.3, 126.2, 125.1, 123.9, 119.0, 105.8, 92.9, 82.7, 55.4, 32.6, 24.5 HRMS (EI⁺, 70eV): C₂₁H₁₈O [M]⁺: calcd: 286.1358, found: 286.1362

4-(3-methyl-3-phenylbut-1-yn-1-yl)-1,1'-biphenyl c16

Following the general procedure, **c16** was obtained after flash column chromatography (PE:EA=100:1) as colourless oil(45.0mg, 76%). ¹H NMR (400 MHz, CDCl₃): δ 7.68-7.66 (m, 2H), 7.63-7.61 (m, 2H), 7.59-7.54 (m, 4H), 7.49-7.45(m, 2H), 7.41-7.36 (m, 3H), 7.30-7.26 (m, 1H), 1.73 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 147.1, 140.64, 140.56, 132.2, 129.0, 128.4, 127.6, 127.1, 127.0, 126.6, 125.8, 122.9, 97.4, 82.0, 36.6, 31.9 HRMS (EI⁺, 70eV): C₂₃H₂₀ [M]⁺: calcd: 296.1565, found: 296.1564

4-((1-(p-tolyl)cyclopropyl)ethynyl)-1,1'-biphenyl c17

Following the general procedure, **c17** was obtained after flash column chromatography (petroleum ether) as colourless oil (38.5mg, 83%). ¹H NMR (400 MHz, CDCl₃): δ 7.61-7.59 (m, 2H), 7.55-7.50 (m, 4H), 7.47-7.43 (m, 2H), 7.38-7.31 (m, 3H), 7.15-7.13 (m, 2H), 2.35 (m, 3H), 1.56-1.54 (m, 2H), 1.35-1.33 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 140.6, 140.6, 139.0, 135.8, 132.2, 129.2, 129.0, 127.6, 127.1, 127.0, 125.8, 122.9, 95.0, 78.1, 21.1, 20.4, 16.2 HRMS (EI⁺, 70eV): C₂₄H₂₀ [M]⁺: calcd: 308.1565, found: 308.1570

1-chloro-2-(3-phenylbut-1-yn-1-yl)benzene c18

Following the general procedure, **c18** was obtained after flash column chromatography (petroleum ether) as colourless oil(31.7mg, 66%). ¹H NMR (400 MHz, CDCl₃): δ 7.51-7.46 (m, 3H), δ 7.41-7.34 (m, 3H), 7.28-7.17 (m, 3H), 4.05 (q, *J* = 7.07 Hz, 1H), 1.62 (d, *J* = 7.20 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 143.1, 136.1, 133.4, 129.3, 128.9, 128.7, 127.1, 126.9, 126.5, 123.7, 98.2, 79.6, 32.9, 24.7 HRMS (EI⁺, 70eV): C₁₃H₁₆Cl [M]⁺: calcd: 240.0700, found: 240.0702

1-methyl-3-(3-phenylbut-1-yn-1-yl)benzene **c19**

Following the general procedure, **c19** was obtained after flash column chromatography (petroleum ether) as colourless oil⁴(35.6mg, 81%). ¹H NMR (400 MHz, CDCl₃): δ 7.47-7.45 (m, 2H), 7.37-7.33 (m, 2H), 7.28-7.23 (m, 3H), 7.19 (t, *J* = 7.6 Hz, 1H), 7.11-7.09 (m, 1H), 3.98 (q, *J* = 7.1 Hz, 1H), 2.32 (s, 3H), 1.58 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 143.5, 138.0, 132.4, 128.8 (d, *J* = 3.5 Hz), 128.7, 128.2, 127.1, 126.8, 123.7, 92.4, 82.7, 32.6, 24.7, 21.3 HRMS (EI⁺, 70eV): C₁₇H₁₆ [M]⁺: calcd: 220.1247, found: 220.1246

4-(3-phenylbut-1-yn-1-yl)-1,1'-biphenyl c20

Following the general procedure, **c20** was obtained after flash column chromatography (petroleum ether) as colourless oil (44.6mg, 79%). ¹H NMR (400 MHz, CDCl₃): δ 7.60-7.58 (m, 2H), 7.55-7.50 (m, 4H), 7.49-7.42 (m, 4H), 7.38-7.34 (m, 2H), 7.28-7.24 (m, 2H), 4.01 (q, *J* = 7.1 Hz, 1H), 1.60 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 143.5, 140.6, 132.2, 129.0, 128.7, 127.7, 127.14, 127.09, 127.04, 126.8, 122.8, 93.5, 82.4, 32.7, 24.7 HRMS (EI⁺, 70eV): C₁₇H₁₆ [M]⁺: calcd: 220.1247, found: 220.1246 *1-chloro-4-(3-phenylprop-1-yn-1-yl)benzene* **c21**

Following the general procedure, **c21** was obtained after flash column chromatography (petroleum ether) as colourless oil⁹(31.6mg, 70%). ¹H NMR (400 MHz, CDCl₃): δ 7.43-7.35 (m, 6H), 7.30-7.28 (m, 3H), 3.84(s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 136.6, 133.9, 133.0, 128.75, 128.70, 128.1, 126.9, 122.3, 88.8, 81.7, 25.9. HRMS (EI⁺, 70eV): C₁₅H₁₁Cl [M]⁺: calcd: 226.0549, found: 226.0546

1-bromo-4-(3-phenylprop-1-yn-1-yl)benzene c22

Following the general procedure, **c22** was obtained after flash column chromatography (petroleum ether) as colourless oil¹⁰ (34.6mg, 64%). ¹H NMR (400 MHz, CDCl₃): δ 7.43-7.35 (m, 6H), 7.30-7.28 (m, 3H), 3.84(s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 136.6, 133.2, 131.6, 128.7, 128.1, 126.9, 122.7, 122.1, 89.0, 81.7, 25.9 HRMS (EI⁺, 70eV): C₁₅H₁₁Br [M]⁺: calcd: 270.0044, found: 270.0042

6-methoxy-1-(3-phenylbut-1-yn-1-yl) naphthalene c23

Following the general procedure, **c23** was obtained after flash column chromatography (PE:EA=50:1) as colourless oil (48.0mg, 84%). ¹H NMR (400 MHz, CDCl₃): δ 7.89(s, 1H), 7.67 (t, *J*=8.6Hz, 2H), 7.51-7.46 (m, 3H), 7.39-7.35 (m, 2H), 7.28-7.24 (m, 1H), 7.16-7.10 (m, 2H), 4.03(q, *J*=7.1Hz, 1H), 1.62 (d, *J*=7.2Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 158.2, 143.6, 134.0, 131.2, 129.4, 129.3, 128.7, 128.6, 127.1, 126.801, 126.785, 119.4, 118.8, 105.9, 92.3, 82.9, 55.5, 32.7, 24.7 HRMS (EI⁺, 70eV): C₂₂H₁₈O [M]⁺: calcd: 286.1352, found: 286.1361

4-(3-([1,1'-biphenyl]-4-yl)prop-1-yn-1-yl)benzonitrile c24

Following the general procedure, **c24** was obtained after flash column chromatography (PE:EA=30:1) as colourless oil (20.5mg, 35%). ¹H NMR (400 MHz, CDCl₃): δ 7.61-7.56 (m, 6H), 7.54-7.52 (m, 2H), 7.47-7.40 (m, 5H), 7.37-7.33 (m, 1H), 3.90 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 140.9, 140.1, 135.1, 132.4, 132.1, 129.0, 128.8, 128.5, 127.6, 127.5, 127.2, 118.7, 111.4, 92.7, 81.5, 25.7. HRMS (EI⁺, 70eV): C₂₂H₁₅N [M]⁺: calcd: 239.1204 found: 239.1209

4-(3-(4-(tert-butyl)phenyl)prop-2-yn-1-yl)-1,1'-biphenyl c25

Following the general procedure, **c25** was obtained after flash column chromatography (petroleum ether) as colourless oil(53.8mg, 83%). ¹H NMR (400 MHz, CDCl₃): δ 7.61-7.56 (m, 4H), 7.50-7.40 (m, 6H), 7.37-7.32 (m, 3H), 3.88 (s, 2H), 1.32 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 151.2, 141.1, 139.8, 136.2, 131.5, 128.9, 128.5, 127.4, 127.3, 127.2, 125.4, 120.7, 86.8, 82.9, 34.9, 31.3, 25.6 HRMS (EI⁺, 70eV): C₂₅H₂₄ [M]⁺: calcd: 324.1878, found: 324.1800

2-(3-phenylbut-1-yn-1-yl)thiophene c26

Following the general procedure, **c26** was obtained after flash column chromatography (PE:EA=40:1) as colourless oil¹¹ (27.3mg, 88%). ¹H NMR (400 MHz, CDCl₃): δ 7.44-7.42 (m, 2H), 7.37-7.33 (m, 2H), 7.27-7.24 (m, 1H), 7.21-7.17 (m, 2H), 6.97-6.94 (m, 1H), 4.09 (q, *J* = 7.1Hz, 1H), 1.58 (d, *J* = 7.2Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 143.1, 131.4, 128.7, 127.1, 126.95, 126.90, 126.4, 123.9, 96.6, 75.6, 32.9, 24.4 HRMS (EI⁺, 70eV): C₁₄H₁₂S [M]⁺: calcd: 212.0660, found: 212.0665

3-(3-phenylbut-1-yn-1-yl)pyridine **c27**

Following the general procedure, **c27** was obtained after flash column chromatography (PE:EA=20:1) as colourless oil¹²(29.8mg, 72%). ¹H NMR (400 MHz, CDCl₃): δ 8.57-8.56 (m, 2H), 7.62 (td, *J* = 7.6, 1.6Hz, 1H), 7.47-7.40 (m, 3H), 7.36-7.33 (m, 2H), 7.27-7.18 (m, 2H), 4.02 (q, *J* = 7.1Hz, 1H), 1.62 (d, *J* = 7.2Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 150.0, 143.8, 142.7, 136.2, 128.8, 127.2, 127.1, 126.9, 122.6, 93.1, 82.1, 32.5, 24.2 HRMS (EI⁺, 70eV): C₁₅H₁₃N [M]⁺: calcd: 207.1048, found: 207.1039 *4-(3-(4-methoxyphenyl)prop-2-yn-1-yl)-1, 1'-biphenyl* **c28**

Following the general procedure, **c28** was obtained after flash column chromatography (PE:EA=50:1) as colourless oil (46.5mg, 78%). ¹H NMR (400 MHz, CDCl₃): δ 7.61-

7.55(m, 4H), 7.53-7.40 (m, 5H), 7.36-7.33 (m, 1H), 6.85-6.83 (m, 2H), 3.87 (s, 2H), 3.81(s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 159.4, 141.1, 139.8, 136.2, 133.2, 128.9, 128.5, 127.4, 127.3, 127.2, 115.9, 114.0, 86.0, 82.6, 55.4, 25.6 HRMS (EI⁺, 70eV): C₂₂H₁₈O [M]⁺: calcd: 298.1358, found: 298.1361.

(3-([1,1'-biphenyl]-4-yl)prop-1-yn-1-yl)trimethylsilane c29

Following the general procedure, **c29** was obtained after flash column chromatography (petroleum ether) as colourless oil (36.9mg, 70%). ¹H NMR (400 MHz, CDCl₃): δ 7.60-7.55 (m, 4H), 7.46-7.41 (m, 4H), 7.36-7.33 (m, 1H), 3.70 (s, 1H), 0.21 (m, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 141.0, 139.8, 135.6, 128.9, 128.4, 127.39, 127.33, 127.2, 104.3, 87.1, 26.0, 0.3 HRMS (EI⁺, 70eV): C₁₈H₂₀Si [M]⁺: calcd:263.1326, found: 263.1334

(3-([1,1'-biphenyl]-4-yl)prop-1-yn-1-yl)triethylsilane c30

Following the general procedure, **c30** was obtained after flash column chromatography (petroleum ether) as colourless oil (45.2mg, 74%). ¹H NMR (400 MHz, CDCl₃): δ 7.62-7.57 (m, 4H), 7.47-7.43 (m, 4H), 7.37-7.33 (m, 1H), 3.75 (s, 1H), 1.05 (t, *J*= 8.0Hz, 9H), 0.66 (t, *J* = 7.9Hz, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 141.0, 139.7, 135.8, 128.9, 128.4, 127.33, 127.30, 127.2, 105.3, 84.5, 26.0, 7.7, 4.7 HRMS (EI⁺, 70eV): C₂₁H₂₆Si [M]⁺: calcd:306.1809, found: 306.1804

(3-([1,1'-biphenyl]-4-yl)prop-1-yn-1-yl)triisopropylsilane c31

Following the general procedure, **c31** was obtained after flash column chromatography (petroleum ether) as colourless oil (52.2mg, 75%). ¹H NMR (400 MHz, CDCl₃): δ 7.62-7.57 (m, 4H), 7.48-7.43 (m, 4H), 7.37-7.33 (m, 1H), 3.76 (s, 1H), 1.13-1.12 (m, 21H). ¹³C NMR (101 MHz, CDCl₃): δ 141.0, 139.6, 136.0, 128.9, 128.4, 127.3, 127.2, 105.7, 83.2, 26.1, 18.8, 11.5 HRMS (EI⁺, 70eV): C₂₄H₃₂Si [M]⁺: calcd:348.2273, found: 348.2280

4-(5-methylhex-2-yn-1-yl)-1,1'-biphenyl c32

Following the general procedure, **c32** was obtained after flash column chromatography (petroleum ether) as colourless oil (31.2mg, 63%). ¹H NMR (400 MHz, CDCl₃): δ 7.60-7.54 (m, 4H), 7.46-7.42 (m, 4H), 7.36-7.32 (m, 1H), 3.64 (t, *J*=2.0 Hz, 1H), 2.16-2.13 (m, 2H), 1.89-1.79 (m, 1H), 1.01 (d, *J* = 6.4Hz, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 141.1, 139.5, 136.9, 128.9, 128.4, 127.31, 127.26, 127.2, 81.8, 78.4, 28.4, 28.3, 25.0, 22.2 HRMS (EI⁺, 70eV): C₁₉H₂₀ [M]⁺: calcd: 248.1565, found: 248.1564

4-(*hex-2-yn-1-yl*)-1,1'-biphenyl **c33**

Following the general procedure, **c33** was obtained after flash column chromatography (petroleum ether) as colourless oil (32.8mg, 70%). ¹H NMR (400 MHz, CDCl₃): δ 7.61-7.55 (m, 4H), 7.47-7.43 (m, 4H), 7.37-7.33(m, 1H), 3.65 (t, *J*= 2.0Hz, 1H), 2.26-2.22 (m, 2H), 1.64-1.55 (m, 2H), 1.03 (t, *J*= 7.4Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 141.1, 139.5, 136.9, 128.9, 128.4, 127.31, 127.25, 127.2, 82.8, 77.7, 25.0, 22.6, 21.0, 13.7 HRMS (EI⁺, 70eV): C₁₈H₁₈ [M]⁺: calcd:234.1409, found: 234.1414 *4-(hept-2-yn-1-yl)-1,1'-biphenyl* **c34**

Following the general procedure, **c34** was obtained after flash column chromatography (petroleum ether) as colourless oil (33.7mg, 68%). ¹H NMR (400 MHz, CDCl₃): δ 7.60-7.54 (m, 4H), 7.46-7.42 (m, 4H), 7.36-7.32 (m, 1H), 3.63 (t, *J*= 2.0Hz, 1H), 2.28-2.23 (m, 2H), 1.58-1.43 (m, 4H), 0.94 (t, *J*= 7.2Hz, 3H). ¹³C NMR (101 MHz, CDCl₃):

δ141.1, 139.6, 136.9, 128.8, 128.4, 127.32, 127.26, 127.2, 82.9, 77.5, 31.3, 25.0, 22.2, 18.7, 13.8 HRMS (EI⁺, 70eV): C₁₉H₂₀ [M]⁺: calcd:248.1565, found: 248.1570 *4-(oct-2-yn-1-yl)-1,1'-biphenyl* **c35**

Following the general procedure, **c35** was obtained after flash column chromatography (petroleum ether) as colourless oil (39.3mg, 75%). ¹H NMR (400 MHz, CDCl₃): δ 7.60-7.54 (m, 4H), 7.45-7.41 (m, 4H), 7.35-7.32 (m, 1H), 3.63 (t, *J*=2.2 Hz, 1H), 2.26-2.21 (m, 2H), 1.59-1.52 (m, 2H), 1.44-1.34 (m, 4H), 0.91 (t, *J* = 7.0Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 141.2, 139.6, 136.9, 128.9, 128.4, 127.32, 127.27, 127.2, 83.0, 77.6, 31.3, 28.9, 25.0, 22.4, 19.0, 14.2 HRMS (EI⁺, 70eV): C₂₀H₂₂ [M]⁺: calcd: 262.1722, found: 262.1724

4-(pentadec-2-yn-1-yl)-1,1'-biphenyl c36

Following the general procedure, **c36** was obtained after flash column chromatography (PE:EA=50:1) as colourless oil (53.3mg, 74%). ¹H NMR (400 MHz, CDCl₃): δ 7.60-7.54 (m, 4H), 7.46-7.42 (m, 4H), 7.36-7.32(m, 1H), 3.63 (t, *J*= 2.0Hz, 1H), 2.26-2.22 (m, 2H), 1.58-1.51 (m, 2H), 1.43-1.38(m, 2H), 1.29-1.27 (m, 16H), 0.88 (t, *J*= 6.8Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 141.1, 139.5, 136.9, 128.9, 128.4, 127.31, 127.26, 127.2, 83.0, 77.5, 32.1, 29.85, 29.81, 29.8, 29.7, 29.5, 29.3, 29.1, 25.0, 22.8, 19.0, 14.3 HRMS (EI⁺, 70eV): C₂₇H₃₆ [M]⁺: calcd:360.2817, found: 360.2820

(4)Gram-Scale Reaction

Under nitrogen atmosphere, 2, 2', 6', 2"-terpyridine (1.6 mmol, 20 mol %), CuI (0.8 mmol, 10 mol %), K_2CO_3 (24 mmol, 3.0 equiv), alkyne (8.0 mmol, 1 equiv), and N-acyloxyl derivatives (16mmol, 2.0 equiv) were added in a dried reaction vessel with 30 mL of MeCN. After 48h, the reaction was quenched with ice water and extracted with DCM, then dried over anhydrous Na₂SO₄ and concentrated. The crude product was purified by column chromatography. (1.2g, 73%)

3 Mechanistic Investigations

(1) Considerations of the reaction's active intermediate¹³

phenylethynylcopper was obtained according to literature (eq 1).

Control experiment (eq 2): under our standard conditions, stoichiometry (phenylethynyl)copper or catalytic amount (phenylethynyl)copper, ethynylbenzene (0 mmol or 0.09 mmol), **a1** (0.2 mmol, 2.0 equiv) and K_2CO_3 (0.3 mmol, 3.0 equiv) were added sequentially for 24h. After completion, Trace product was obtained.

We prepared the Cu-tpy-alkyne complex and isolated it as a crude yellow powder (eq 3). The yellow complex as the catalyst catalyzed the reaction in 43% yield (eq 4). Thus, Cu-tpy-alkyne complex played a role of catalyst for this reaction.

(2) Cyclic Woltammetry analysis¹³

Cyclic Woltammetry analysis was performed by Shanghai Chen Hua CHI660D. Pt electrode(area= 0.03 cm^2), and Pt sheet were working electrode and auxiliary electrode, respectively. A saturated calomel electrode (SCE) was reference electrode. Tetrabutylammonium hexafluorophosphata (nBu₄NPF₆) was supporting electrolyte and electrolysis was conducted at room temperature. 0.1mol substrate was added in 0.1M solution of nBu₄NPF₆ (10mL MeCN). The reduction potentials of selected TCNHPI esters of primary, secondary, tertiary and acids were exhibited. However, the reduction potential of ligand-Cu-acetylide complex in suite genernated is difficult to test. Based on the report¹³, ligand-Cu-acetylide complex have higher reduction potential.

 $E_{1/2} = -0.79$ V vs SCE

 $E_{1/2} = -0.77 V vs SCE$

 $E_{1/2} = -0.79$ V vs SCE

 $E_{1/2} = -0.78$ V vs SCE

 $E_{1/2} = -0.80$ V vs SCE

 $E_{1/2} = -0.86$ V vs SCE

(3) Quantum Yield Measurement¹⁴

The quantum yield measurement of the photoinduced reaction was performed based on our previous publication. The cuvette placed 5cm away from blue LED lamps and the incident area was $1 \text{ cm}\beta 1 \text{ cm}^4$.

Prepared following the general procedure showed above and the reaction mixture was stirred under Blue LED for 30min. After completion, the reaction was quenched and the yield of crud product was determined by ¹H NMR. Diethyl phthalate was internal standard. The photon flux was 379 mW (average of three experiments).

Photon flux=
$$\frac{P}{N_A \cdot hc/\lambda} = \frac{379.0 \times 10^{-3}}{6.02 \times 10^{23} \times 6.63 \times 10^{-34} \times 3 \times 10^8/(400 \times 10^{-9})} = 1.3 \text{ (1)}$$

QY calculated by the equation (2). T is the reaction time (30 \Re 60s).QY was Φ =0.8%.

 $\Phi = \frac{mol \, product}{photon \, flux \cdot t \cdot f} = \frac{1.9 \times 10^{-5}}{1.3 \times 10^{-6} \times 30 \times 60} = 0.8 \%.$ (2)

4 References

[1] "Kessil LED Light " can be found under <u>https://www.marine-aquatics.eu/kessil-a160we-tuna-sun-sladkovodni-led-osvetleni-40w?langid=4</u>

[2] I. Bosque, T. Bach, 3- Acetoxyquinuclidine as Catalyst in Electron Donor-Acceptor Complex-Mediated Reactions Triggered by Visible Light *ACS. Catal.* **2019**, 9, 9103-9109.

[3] Y. Li, J. Zhang, D. F. Li, Y. Y. Chen, Metal-Free C(sp³)-H Allylation via Aryl Carboxyl Radicals Enabled by Donor-Acceptor Complex *Org.Lett.* **2018**, 20, 3296-3299.

[4] H. R. Zhang, N. Sun, B. X. Hu, Z. L. Shen, X. Q. Hu, L. Q. Jin, Copper-catalyzed direct coupling of terminal alkynes with primary and secondary benzyl bromides *Org. Chem. Front.* **2019**, 6, 1983-1988.

[5] L. Chen, Y. Kametanic, K. Imamura, T. Abe, Y. Shiota, K. Yoshizawa, Y. Hisaeda, H. Shimakoshi, Visible lightdriven cross-coupling reactions of alkyl halides with phenylacetylene derivatives for C(sp³)-C(sp) bond formation catalyzed by B₁₂ complex *Chem.Commun.* **2019**, 55, 13070-13073.

[6] K. Indukuri, O. Riant, Transmetalation of Alkylzirconocenes in Copper-Catalyzed Alkyl-Alkynyl Cross-Coupling Reactions *Adv.Synth.Catal.* **2017**, 359, 2425-2433.

[7] M. Ociepa, J. Turkowska, D. Gryko, Redox-Activated Amines in C(sp³)-C(sp) and C(sp³)-C(sp²) Bond Formation Enabled by Metal-Free Photoredox Catalysis *ACS. Catal.* **2018**, 8,11362-11367.

[8] M. Wan, Z. L. Meng, H. X. Lou, L. Liu, Practical and Highly Selective C-H Functionalization of Structurally Diverse Ethers *Angew.Chem.Int.Ed.* **2014**, 53, 1-6.

[9] W. W. Zhang, X. G. Zhang, J. H. Li, Palladium-Catalyzed Decarboxylative Coupling of Alkynyl Carboxylic Acids with Benzyl Halides or Aryl Halides *J.Org.Chem.* **2010**, 75, 5259-5264.

[10] C. K. Li, J. B. Wang, Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidates: Synthesis of 1,3-Diarylpropynes *J.Org. Chem.* 2007, 72, 7431-7434.

[11] M. Guisán-Ceinos, V. Martín-Heras, M. Tortosa, Stereospecific Copper-Catalyzed Substitution Reaction of Propargylic Ammonium Salts with Aryl Grignard Reagents *J.Am.Chem.Soc.* **2017**, 139, 8448-8451.

[12] H. Fang, Z. Y. Yang, L. J. Zhang, W. Wang, Y. M. Li, X. L. Xu, S. L. Zhou, Transmetal-Catalyzed Enantioselective Cross-Coupling Reaction of Racemic Secondary Benzylic Bromides with Organoaluminum *Org.Lett.* **2016**, 18, 6022-6025.

[13] See references 16a, 16b of manuscript

[14] L. Zhang, L. Jiao, Visible-Light-Induced Organocatalytic Borylation of Aryl Chlorides J.Am. Chem.Soc. 2019, 141, 9124-9128.

5 Copies of NMR Spectra

4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl 2-phenylpropanoate **a1** ¹H-NMR

1,3-dioxoisoindolin-2-yl 2-(2-bromophenyl)acetate **a4** ¹H-NMR

-4.049

¹H-NMR

¹⁹F NMR

1,3-dioxoisoindolin-2-yl 2-methyl-2-phenylpropanoate a7

1,3-dioxoisoindolin-2-yl 1-(p-tolyl)cyclopropane-1-carboxylate **a8** ¹H-NMR

4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl 3-cyclohexylpropanoate **a10** ¹H-NMR

4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl cyclobutanecarboxylate **a13** ¹H-NMR

4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl 2-phenoxypropanoate a17

4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl 2-phenylacetate a18

but-1-yne-1,3-diyldibenzene c1

4-(3-phenylprop-2-yn-1-yl)-1,1'-biphenyl c2

2-(3-phenylprop-2-yn-1-yl)naphthalene c3

1-bromo-2-(3-phenylprop-2-yn-1-yl)benzene c4

1-(3-phenylprop-2-yn-1-yl)-4-(trifluoromethyl)benzene c5

¹⁹F-NMR

¹³C NMR

¹³C NMR

S35

S38

10.5 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.4 fl (ppm)

S46

6-methoxy-1-(3-phenylbut-1-yn-1-yl)naphthalene c23

2-(3-phenylbut-1-yn-1-yl)thiophene c26

4-(3-(4-methoxyphenyl)prop-2-yn-1-yl)-1,1'-biphenyl **c28 ¹H NMR**

(3-([1,1'-biphenyl]-4-yl)prop-1-yn-1-yl)trimethylsilane c29

(3-([1,1'-biphenyl]-4-yl)prop-1-yn-1-yl)triisopropylsilane c31

S58

S61

S62

