Cu -Photoredox-Catalyzed $\mathrm{C}(\mathrm{sp})-\mathrm{C}\left(\mathrm{sp}^{3}\right)$ Coupling of Redox-Active Esters
with Terminal Alkynes
Yajing Zhang, Dayong Zhang *
School of Science, China Pharmaceutical University, Nanjing 210009, P.R. China* Corresponding author email: zhangdayong@cpu.edu.cn
Table of Contents
1 General Information S2
2 Experimental Details S2
(1) Optimization of the reaction conditions S2
(2)Reaction setup 3
(3)General procedure and characterizations of products S4
(4) Gram-Scale Reaction S11
3 Mechanistic investigations S11
(1) Considerations of the reaction's active intermediate S11
(2)Cyclic Woltammetry analysis S12
(3)Quantum Yield Measurement S15
4 References S16
5 Copies of NMR spectra S16

1 General information

All reagents and solvents were purchased from commercial suppliers, and the reactions were carried out under a nitrogen atmosphere. ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$, and ${ }^{19} \mathrm{~F}-\mathrm{NMR}$ spectra were recorded with a Bruker (400 MHz), Varian Inova (400 MHz) or Aglient $(400 \mathrm{MHz})$ spectrometer. All chemical shifts (δ) are quoted in parts per million (ppm) and CDCl_{3} (77.16 ppm for ${ }^{13} \mathrm{C}$ and 7.260 ppm for ${ }^{1} \mathrm{H}$) was the test solvent unless otherwise noted. The abbreviations were used for an explanation of multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, and $\mathrm{m}=$ multiplet. Blue LED lamps (40W, Kessil A160WE tuna blue) were used for reactions. Cyclic voltammetry were obtained from Shanghai Chen Hua CHI660. Photolysis experiments were performed on FZ-A Photolysis Spectrometer.

2 Experimental Details

(1) Optimization of the reaction conditions

Copper salt Screen

Copper Salt Screen

Entry	Copper salt	Yield $(\%)^{a}$
1	CuCl	53
2	CuBr	50
3	$\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}$	38
4	CuCN	40
5	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	49
6	CuOAc	34
7	$\mathrm{Cu}(\mathrm{OTf})_{2}$	32
${ }^{a} \mathrm{Y}$ ields determined by ${ }^{1} \mathrm{HNMR}$ analysis.		
NR: no reaction		

Base Screen

1	$\mathrm{Li}_{2} \mathrm{CO}_{3}$	13
2	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	21
3	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	81
4	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	34
5	$\mathrm{~K}_{3} \mathrm{PO}_{4}$	46
6	$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	5
7	$\mathrm{Et}_{3} \mathrm{~N}$	NR
8	LiOtBu_{2}	trace
9	KOtBu	trace

${ }^{a}$ Yields determined by ${ }^{1} \mathrm{HNMR}$ analysis.
NR: no reaction

Solvent Screen

${ }^{a}$ Yields determined by ${ }^{1} \mathrm{HNMR}$ analysis.
NR: no reaction

(2) Reaction setup

Fig. S1 shows the emission spectra of the light. The vials are borosilicate glass and composed of a 3.0 cm long and 1.0 cm wide. It was placed 5 cm away from blue LED lamps, and then place a fan blowing down on the vials. The strength of the air flow is adjusted so that the reaction temperature of the vials never exceeded $25^{\circ} \mathrm{C}$ (Fig. 2).

Fig. 1 Emission spectra ${ }^{1}$

Fig. 2 Reaction chamber

(3) General procedure and characterizations of products

General procedure for decarboxylative alkylation

General procedure: Under nitrogen atmosphere, 2 , 2^{\prime}, $6^{\prime}, 2^{\prime \prime}$-terpyridine ($0.04 \mathrm{mmol}, 20$ $\mathrm{mol} \%$), $\mathrm{CuI}(0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(0.6 \mathrm{mmol}, 3.0$ equiv), alkyne (0.2 mmol , 1 equiv), and N -acyloxyl derivatives ($0.4 \mathrm{mmol}, 2.0$ equiv) were added in a dried reaction vessel with 2 mL of MeCN . The reaction mixture was stirred at room temperature under Blue LED for 24 h . After completion, the reaction was quenched and the suspension was filtered by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ over a pad of silica gel. The volatile solvent was evaporated in vacuum. The crude product was purified by column chromatography.
Note: The electron deficient tetrachloro derivative proved to be unstable ${ }^{2}$, carboxylic acids at activated position compounds $\mathbf{a} 2-\mathrm{a8}$ were N -hydroxyphthalimide esters. Others substrates are TCNHPI esters
4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl 2-phenylpropanoate a1
According to the published procedures ${ }^{3}$, a1 was obtained from 2-phenyllpropionic acid $(1.50 \mathrm{~g}, 10 \mathrm{mmol})$ as a white solid ($3.4 \mathrm{~g}, 79 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42-$ $7.38(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.4,141.1,138.0,130.5,129.1,128.1,127.6,124.8$, 43.0, 19.0 HRMS(ESI): $\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{Cl}_{4} \mathrm{NO}_{4}$, calcd [M+H] ${ }^{+}: 431.9283$ found:431.9288

1,3-dioxoisoindolin-2-yl 2-(2-bromophenyl)acetate a4

According to the published procedures ${ }^{3}, \mathbf{a} 4$ was obtained from 2-bromophenylacetic acid $(1.08 \mathrm{~g}, 5 \mathrm{mmol})$ as a white solid $(1.48 \mathrm{~g}, 82 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $7.90-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.80-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{dd}, J=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=7.6$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33$ (td, $J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 167.0, 161.9, 134.9, 133.1, 132.0, 131.4, 129.7, 129.0, 127.9, 125.1, 124.1, 38.5 HRMS(ESI): $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{BrNO}_{4}$, calcd $[\mathrm{M}+\mathrm{H}]^{+}: 359.9795$ found: 359.9789

1,3-dioxoisoindolin-2-yl 2-(4-(trifluoromethyl)phenyl)acetate a5

According to the published procedures ${ }^{3}$, a5 was obtained from 2-(4(trifluoromethyl)phenyl)acetic acid $(1.02 \mathrm{~g}, 5 \mathrm{mmol})$ as a white solid $(1.31 \mathrm{~g}, 75 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.87-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.78-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{~s}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -62.6 (s, 1F); ${ }^{13} \mathrm{C} \quad$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 167.2, 161.8, 135.6 (q, $J=1.2 \mathrm{~Hz}$), 135.0, 129.8, $129.7(\mathrm{q}, J=32.7 \mathrm{~Hz}), 128.8,125.9(\mathrm{q}, J=3.8 \mathrm{~Hz}), 124.11,124.08(\mathrm{q}, J=273.2 \mathrm{~Hz})$, 37.5 HRMS(ESI): $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{NO}_{4}$, calcd [M+H] ${ }^{+}: 350.0565$ found: 350.05659

1,3-dioxoisoindolin-2-yl 2-methyl-2-phenylpropanoate a7
According to the published procedures ${ }^{3}$, a7 was obtained from 2-methyl-2phenylpropanoic acid $(0.82 \mathrm{~g}, 5 \mathrm{mmol})$ as a white solid $(0.57 \mathrm{~g}, 37 \%) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.87-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.79-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.41$ $(\mathrm{m}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 173.3, 162.0, 142.7, 134.8, 129.0, 128.8, 127.5, 125.9, 123.9, 46.4, 26.9. HRMS(ESI): $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}_{4}$, calcd $[\mathrm{M}+\mathrm{H}]^{+}: 310.1005$ found: 310.1001

1,3-dioxoisoindolin-2-yl 1-(p-tolyl)cyclopropane-1-carboxylate a8

According to the published procedures ${ }^{3}$, $\mathbf{a 8}$ was obtained from 1-(p-tolyl)cyclopropane1 -carboxylic acid $(0.88 \mathrm{~g}, 5 \mathrm{mmol})$ as a white solid $(0.63 \mathrm{~g}, 39 \%) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta 7.86-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.77-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.17(\mathrm{~m}, 2 \mathrm{H})$, $2.35(\mathrm{~s}, 2 \mathrm{H}), 1.89(\mathrm{q}, J=3.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.47(\mathrm{q}, J=3.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz ,
CDCl_{3}): 171.3, 162.0, 137.8, 134.7, 134.1, 130.5, 129.3, 129.0, 123.9, 27.0, 21.3, 18.9 HRMS(ESI): $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{Na}$, calcd [M+Na] ${ }^{+}: 344.1000$ found: 344.1004

4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl 3-cyclohexylpropanoate a10

According to the published procedures ${ }^{3}$, $\mathbf{a 1 0}$ was obtained from cyclohexanepropionic acid $(0.78 \mathrm{~g}, 5 \mathrm{mmol})$ as a white solid $(1.67 \mathrm{~g}, 76 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 2.67-2.63 (m, 2H), 1.75-1.63 (m, 7H), 1.39-1.09 (m, 4H), 0.97-0.87 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.5,157.6,140.9,130.4,124.8,37.0,32.9,32.0,28.6,26.5$, 26.2 HRMS(ESI): $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Cl}_{4} \mathrm{NO}_{4}$, calcd [M+H]+: 437.9751 found: 437.9747 4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl cyclobutanecarboxylate $\mathbf{a} 3$
According to the published procedures ${ }^{3}$, a13 was obtained from cyclobutanecarboxylicc acid $(0.50 \mathrm{~g}, 5 \mathrm{mmol})$ as a white solid $(1.74 \mathrm{~g}, 91 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.55-3.47(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.37(\mathrm{~m}, 4 \mathrm{H}), 2.17-2.01(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 171.1,157.8,141.1,130.6,124.9,35.0,25.5,18.9$ HRMS(ESI): $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{4} \mathrm{NO}_{4}$, calcd [M+H] ${ }^{+}: 381.9123$ found: 381.9128 4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl 2-phenoxypropanoate $\mathbf{a} 17$
According to the published procedures ${ }^{3}$, a17 was obtained from 2-phenoxypropionic acid $(0.83 \mathrm{~g}, 5 \mathrm{mmol})$ as a white solid $(0.76 \mathrm{~g}, 34 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.36-7.32 (m, 2H), 7.06-7.02 (m, 1H), 6.99-6.96 (m, 2H), $5.10(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.86$ (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.5,157.0,141.3,130.7,129.9$, 124.7, 122.6, 115.2, 70.9, 19.1 HRMS(ESI): $\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{Cl}_{4} \mathrm{NO}_{5}$, calcd $[\mathrm{M}+\mathrm{H}]^{+}: 447.9241$ found: 447.9242
4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl 2-phenylacetate $\mathbf{a 1 8}$
According to the published procedures ${ }^{3}$, a18 was obtained from phenylacetic acid $(0.68 \mathrm{~g}, 5 \mathrm{mmol})$ as a white solid $(0.32 \mathrm{~g}, 43 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.41-$ $7.31(\mathrm{~m}, 5 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.3,157.5,141.2,131.3$, 130.6, 129.4, 129.1, 128.1, 124.8, 37.8 HRMS(ESI): $\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{Cl}_{4} \mathrm{NO}_{4}$, calcd $[\mathrm{M}+\mathrm{H}]^{+}$: 417.9131 found: 417.9127
but-1-yne-1,3-diyldibenzene $\mathbf{c 1}$
Following the general procedure, $\mathbf{c 1}$ was obtained after flash column chromatography (PE) as colourless oil ${ }^{3}$ ($33.3 \mathrm{mg}, 81 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.50-7.46(\mathrm{~m}$, $3 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 4 \mathrm{H}), 4.02(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 143.5,131.77,128.7,128.3,127.9,127.1$, 126.8, 123.9, 92.7, 82.6, 32.6, 24.7 HRMS (EI ${ }^{+}, 70 \mathrm{eV}$): $\mathrm{C}_{16} \mathrm{H}_{14}[\mathrm{M}]^{+}$: calcd: 206.1096, found: 206.1100.
4-(3-phenylprop-2-yn-1-yl)-1,1'-biphenyl c2
Following the general procedure, $\mathbf{c 2}$ was obtained after flash column chromatography (PE:EA=100:1) as colourless oil ($38.1 \mathrm{mg}, 71 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.62-$ 7.58 (m, 4H), 7.51-7.43 (m, 6H), 7.37-7.30(m, 4H), 3.89 (s, 2H). ${ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}): $\delta 141.1,139.8,136.0,131.8,128.9,128.5,128.4,128.0,127.5,127.3,127.2$, 123.8, 87.6, 82.9, 25.6 HRMS (EI $\left.{ }^{+}, 70 \mathrm{eV}\right): \mathrm{C}_{21} \mathrm{H}_{16}\left[\mathrm{M}^{+}\right.$: calcd:268.1252, found: 268.1242

2-(3-phenylprop-2-yn-1-yl)naphthalene c3

Following the general procedure, $\mathbf{c 3}$ was obtained after flash column chromatography (petroleum ether) as colourless oil ${ }^{4}(35.8 \mathrm{mg}, 74 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.88$
$(\mathrm{s}, 1 \mathrm{H}), 7.84-7.82(\mathrm{~m}, 3 \mathrm{H}), 7.53-7.43(\mathrm{~m}, 5 \mathrm{H}), 7.33-7.31(\mathrm{~m}, 3 \mathrm{H}), 4.00(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 134.4,133.7,132.5,131.8,128.4,128.3,128.0,127.8,126.7$, 126.4, 126.3, 125.7, 123.8, 87.6, 83.0, 26.1 HRMS (EI $\left.{ }^{+}, 70 \mathrm{eV}\right): \mathrm{C}_{21} \mathrm{H}_{16}[\mathrm{M}]^{+}$: calcd: 242.1096, found: 242.1100

1-bromo-2-(3-phenylprop-2-yn-1-yl)benzene $\mathbf{c 4}$
Following the general procedure, $\mathbf{c 4}$ was obtained after flash column chromatography (petroleum ether) as colourless oil ${ }^{4}$ ($38.3 \mathrm{mg}, 71 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.70-7.69 (m, 1H), 7.59-7.56 (m, 1H), 7.49-7.46 (m, 2H), 7.35-7.31(m, 4H), 7.16-7.12 $(\mathrm{m}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 136.3,132.7,131.8,129.9,128.5$, 128.4, 128.1, 127.8, 124.0, 123.6, 86.4, 83.8, 26.9 HRMS (EI $\left.{ }^{+}, 70 \mathrm{eV}\right): \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{Br}[\mathrm{M}]^{+}:$ calcd: 270.0044, found: 270.0041

1-(3-phenylprop-2-yn-1-yl)-4-(trifluoromethyl)benzene $\mathbf{~} 5$

Following the general procedure, $\mathbf{c 5}$ was obtained after flash column chromatography (PE:EA=100:1) as colourless oil ${ }^{4}(30.7,59 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.62-7.60$ $(\mathrm{m}, 2 \mathrm{H}), 7.56-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 3 \mathrm{H}), 3.90(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 141.0,131.8,129.2(\mathrm{q}, J=32.5 \mathrm{~Hz}), 128.5,128.2,125.6(\mathrm{q}$, $J=3.8 \mathrm{~Hz}$), 123.4, 86.4, 83.5, $25.8{ }^{19}$ F-NMR ($374 \mathrm{MHz}, \mathrm{CDCl}_{3}$):-62.37 (s, 3F). HRMS ($\mathrm{EI}^{+}, 70 \mathrm{eV}$): $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~F}_{3}[\mathrm{M}]^{+}$: calcd: 200.1565, found: 200.1573
but-1-yne-1,4-diyldibenzene $\mathbf{c 6}$
Following the general procedure, $\mathbf{c 6}$ was obtained after flash column chromatography (petroleum ether) as colourless oil ${ }^{5}(21.4 \mathrm{mg}, 52 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.43-$ $7.40(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 2 \mathrm{H}), 2.98(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 140.8,131.7,128.7$, 128.5, 128.3, 127.6, 126.4, 124.0, 89.6, 81.4, 35.3, 21.8 HRMS (EI+, 70eV): $\mathrm{C}_{16} \mathrm{H}_{14}$ $[\mathrm{M}]^{+}$: calcd:206.1096, found: 206. 1097
(4-cyclohexylbut-1-yn-1-yl)benzene $\mathbf{c 7}$
Following the general procedure, $\mathbf{c 7}$ was obtained after flash column chromatography (petroleum ether) as colourless oil ${ }^{6}(27.6 \mathrm{mg}, 65 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39-$ 7.38 (m, 2H), 7.28-7.25 (m, 3H), 2.43-2.38 (m, 2H), 1.77-1.64 (m, 5H), 1.56-1.47 (m, $2 \mathrm{H}), 1.43-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.28-1.16(\mathrm{~m}, 3 \mathrm{H}), 0.95-0.87(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}): $\delta 131.7,128.3,127.6,124.3,90.8,80.5,37.0,36.4,33.1,26.8,26.4,17.0$ HRMS (EI ${ }^{+}, 70 \mathrm{eV}$): $\mathrm{C}_{16} \mathrm{H}_{20}[\mathrm{M}]^{+}$: calcd: 212.1565, found: 212.1569
(4-cyclopentylbut-1-yn-1-yl)benzene $\mathbf{c 8}$
Following the general procedure, $\mathbf{c 8}$ was obtained after flash column chromatography (petroleum ether) as colourless oil (23.3, 59\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40-$ $7.38(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 3 \mathrm{H}), 2.41(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.99-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.77$ $(\mathrm{m}, 2 \mathrm{H}), 1.65-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.17-1.08(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 131.7,128.3,127.6,124.2,90.8,80.5,39.6,35.3,32.5,25.3,18.8$ HRMS ($\mathrm{EI}^{+}, 70 \mathrm{eV}$): $\mathrm{C}_{15} \mathrm{H}_{18}[\mathrm{M}]^{+}$: calcd: 198.1409, found: 198.1400
1-(phenylethynyl)adamantine c9
Following the general procedure, c9 was obtained after flash column chromatography (petroleum ether) as colourless oil ($30.1 \mathrm{mg}, 0.57 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): ס7.42-7.40 (m, 2H), 7.31-7.26 (m, 3H), 2.16 (s, 2H), $2.00(\mathrm{~s}, 3 \mathrm{H}), ~ 1.74-1.64(\mathrm{~m}, 12 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 131.7,128.3,127.5,124.4,88.0,82.8,42.3,37.1,34.8$,
33.2, 28.8 HRMS ($\mathrm{EI}^{+}, 70 \mathrm{eV}$): $\mathrm{C}_{19} \mathrm{H}_{22}[\mathrm{M}]^{+}$: calcd: 250.1722, found: 250.1729 (cyclobutylethynyl)benzene c10
Following the general procedure, $\mathbf{c 1 0}$ was obtained after flash column chromatography (petroleum ether) as colourless oil ($20.0 \mathrm{mg}, 64 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.41-$ $7.37(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 3 \mathrm{H}), 3.27-3.19(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.27-2.17(\mathrm{~m}$, $2 \mathrm{H}), 2.02-1.88(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 131.7,128.3,127.6,124.1$, 94.1, 81.3, 30.2, 25.7, 19.4 HRMS (EI ${ }^{+}, 70 \mathrm{eV}$): $\mathrm{C}_{12} \mathrm{H}_{12}[\mathrm{M}]^{+}$: calcd: 156.0939, found: 156.0941

(cyclopentylethynyl)benzene c11

Following the general procedure, c11 was obtained after flash column chromatography (petroleum ether) as colourless oil ${ }^{7}(22.4 \mathrm{mg}, 66 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.43-$ $7.40(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 3 \mathrm{H}), 2.89-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.69(\mathrm{~m}$, $4 \mathrm{H}), 1.68-1.61(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 141.0,131.8,129.2(\mathrm{q}, J=32.5$ Hz), 128.5, 128.2, $125.6(\mathrm{q}, J=3.8 \mathrm{~Hz}), 123.4,86.4,83.5,25.8$ HRMS (EI', 70eV): $\mathrm{C}_{13} \mathrm{H}_{14}[\mathrm{M}]^{+}$: calcd: 170.1096 , found: 170.1094
(cyclohexylethynyl)benzene $\mathbf{c 1 2}$
Following the general procedure, $\mathbf{c 1 2}$ was obtained after flash column chromatography (petroleum ether) as colourless oil ${ }^{5}(23.6 \mathrm{mg}, 64 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41-$ $7.38(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 3 \mathrm{H}), 2.62-2.56(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.73(\mathrm{~m}$, $2 \mathrm{H}), 1.58-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.36-1.33(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $8131.7,128.3$, 127.5, 124.3, 94.6, 80.6, 32.9, 29.8, 26.1, 25.1 HRMS (EI ${ }^{+}, 70 \mathrm{eV}$): $\mathrm{C}_{14} \mathrm{H}_{16}[\mathrm{M}]^{+}$: calcd:184.1247, found: 184.1247
(3-ethylhept-1-yn-1-yl)benzene c13
Following the general procedure, $\mathbf{c 1 3}$ was obtained after flash column chromatography (petroleum ether) as colourless oil ($22.4 \mathrm{mg}, 60 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41-$ $7.38(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 3 \mathrm{H}), 2.50-2.43(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.46-1.32(\mathrm{~m}$, $3 \mathrm{H}), 1.06(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 131.7, 128.3, 127.5, 124.4, 93.9, 81.9, 34.7, 34.2, 29.9, 28.3, 22.8, 14.2, 12.0 HRMS (EI ${ }^{+}, 70 \mathrm{eV}$): $\mathrm{C}_{15} \mathrm{H}_{20}[\mathrm{M}]^{+}:$calcd: 200.1565, found: 200.1573
(3-phenoxybut-1-yn-1-yl)benzene $\mathbf{c 1 4}$
Following the general procedure, c14 was obtained after flash column chromatography (PE:EA=50:1) as colourless oil ${ }^{8}(30.6 \mathrm{mg}, 69 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41-$ 7.39 (m, 2H), 7.34-7.27 (m, 5H), 7.09-7.08 (m, 2H), 7.01-6.97 (m, 1H), $5.10(\mathrm{q}, J=6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.75(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.7,131.9,129.5$, 128.6, 128.4, 122.6, 121.4, 116.0, 88.5, 85.8, 64.4, 22.5. HRMS (EI ${ }^{+}, 70 \mathrm{eV}$): $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}$ $[\mathrm{M}]^{+}$: calcd: 222.1045 , found: 222.1047
4-methoxy-4'-(4-phenylbut-3-yn-2-yl)-1, l'-biphenyl c15
Following the general procedure, $\mathbf{c 1 5}$ was obtained after flash column chromatography (PE:EA=50:1) as colourless oil ($40.0 \mathrm{mg}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.81$ (s, $1 \mathrm{H}), 7.74-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.16-$ $7.13(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.6,138.6,133.6,131.8,129.4,129.1,128.4,127.9,127.3$, 126.2, 125.1, 123.9, 119.0, 105.8, 92.9, 82.7, 55.4, 32.6, 24.5 HRMS (EI $\left.{ }^{+}, 70 \mathrm{eV}\right)$: $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}[\mathrm{M}]^{+}$: calcd: 286.1358 , found: 286.1362

4-(3-methyl-3-phenylbut-1-yn-1-yl)-1,1'-biphenyl c16

Following the general procedure, $\mathbf{c 1 6}$ was obtained after flash column chromatography (PE:EA=100:1) as colourless oil($45.0 \mathrm{mg}, 76 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.68-$ $7.66(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.36(\mathrm{~m}$, $3 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.1,140.64$, 140.56, 132.2, 129.0, 128.4, 127.6, 127.1, 127.0, 126.6, 125.8, 122.9, 97.4, 82.0, 36.6, 31.9 HRMS ($\mathrm{EI}^{+}, 70 \mathrm{eV}$): $\mathrm{C}_{23} \mathrm{H}_{20}$ [M] ${ }^{+}$: calcd: 296.1565, found: 296.1564 4-((1-(p-tolyl)cyclopropyl)ethynyl)-1,1'-biphenyl c17
Following the general procedure, $\mathbf{c 1 7}$ was obtained after flash column chromatography (petroleum ether) as colourless oil ($38.5 \mathrm{mg}, 83 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.61-$ $7.59(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.13(\mathrm{~m}$, $2 \mathrm{H}), 2.35(\mathrm{~m}, 3 \mathrm{H}), 1.56-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.33(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right)$: $\delta 140.6,140.6,139.0,135.8,132.2,129.2,129.0,127.6,127.1,127.0,125.8,122.9$, 95.0, 78.1, 21.1, 20.4, 16.2 HRMS (EI ${ }^{+}, 70 \mathrm{eV}$): $\mathrm{C}_{24} \mathrm{H}_{20}\left[\mathrm{M}^{+}\right.$: calcd: 308.1565, found: 308.1570

1-chloro-2-(3-phenylbut-1-yn-1-yl)benzene c18

Following the general procedure, $\mathbf{c 1 8}$ was obtained after flash column chromatography (petroleum ether) as colourless oil($31.7 \mathrm{mg}, 66 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.51-$ $7.46(\mathrm{~m}, 3 \mathrm{H}), \delta 7.41-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.17(\mathrm{~m}, 3 \mathrm{H}), 4.05(\mathrm{q}, J=7.07 \mathrm{~Hz}, 1 \mathrm{H}), 1.62$ $(\mathrm{d}, J=7.20 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.1,136.1,133.4,129.3,128.9$, 128.7, 127.1, 126.9, 126.5, 123.7, 98.2, 79.6, 32.9, 24.7 HRMS (EI', 70eV): $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{Cl}$ [M] ${ }^{+}$: calcd: 240.0700 , found: 240.0702
1-methyl-3-(3-phenylbut-1-yn-1-yl)benzene $\mathbf{c 1 9}$
Following the general procedure, $\mathbf{c 1 9}$ was obtained after flash column chromatography (petroleum ether) as colourless oil ${ }^{4}(35.6 \mathrm{mg}, 81 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.47-$ 7.45 (m, 2H), 7.37-7.33 (m, 2H), 7.28-7.23 (m, 3H), 7.19 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.09$ $(\mathrm{m}, 1 \mathrm{H}), 3.98(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.5,138.0,132.4,128.8(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 128.7,128.2,127.1,126.8$, 123.7, 92.4, 82.7, 32.6, 24.7, 21.3 HRMS (EI $\left.{ }^{+}, 70 \mathrm{eV}\right)$: $\mathrm{C}_{17} \mathrm{H}_{16}[\mathrm{M}]^{+}$: calcd: 220.1247, found: 220.1246
4-(3-phenylbut-1-yn-1-yl)-1, 1'-biphenyl c20
Following the general procedure, $\mathbf{c 2 0}$ was obtained after flash column chromatography (petroleum ether) as colourless oil ($44.6 \mathrm{mg}, 79 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.60-$ 7.58 (m, 2H), 7.55-7.50 (m, 4H), 7.49-7.42 (m, 4H), 7.38-7.34 (m, 2H), 7.28-7.24 (m, $2 \mathrm{H}), 4.01(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.5,140.6,132.2,129.0,128.7,127.7,127.14,127.09,127.04,126.8,122.8,93.5$, 82.4, 32.7, 24.7 HRMS ($\mathrm{EI}^{+}, 70 \mathrm{eV}$): $\mathrm{C}_{17} \mathrm{H}_{16}[\mathrm{M}]^{+}$: calcd: 220.1247, found: 220.1246 1-chloro-4-(3-phenylprop-1-yn-1-yl)benzene $\mathbf{c 2 1}$
Following the general procedure, $\mathbf{c 2 1}$ was obtained after flash column chromatography (petroleum ether) as colourless oil ${ }^{9}(31.6 \mathrm{mg}, 70 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.43-$ $7.35(\mathrm{~m}, 6 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 136.6$, 133.9, 133.0, 128.75, 128.70, 128.1, 126.9, 122.3, 88.8, 81.7, 25.9. HRMS (EI $\left.{ }^{+}, 70 \mathrm{eV}\right)$: $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{Cl}[\mathrm{M}]^{+}$: calcd: 226.0549 , found: 226.0546
1-bromo-4-(3-phenylprop-1-yn-1-yl)benzene $\mathbf{c 2 2}$

Following the general procedure, $\mathbf{c 2 2}$ was obtained after flash column chromatography (petroleum ether) as colourless oil ${ }^{10}$ ($34.6 \mathrm{mg}, 64 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.43-7.35 (m, 6H), 7.30-7.28 (m, 3H), 3.84(s, 2H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 136.6, 133.2, 131.6, 128.7, 128.1, 126.9, 122.7, 122.1, 89.0, 81.7, 25.9 HRMS (EI ${ }^{+}$, $70 \mathrm{eV}): \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{Br} \quad[\mathrm{M}]^{+}$: calcd: 270.0044 , found: 270.0042
6-methoxy-1-(3-phenylbut-1-yn-1-yl) naphthalene $\mathbf{c 2 3}$
Following the general procedure, $\mathbf{c 2 3}$ was obtained after flash column chromatography (PE:EA=50:1) as colourless oil ($48.0 \mathrm{mg}, 84 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.89$ (s, $1 \mathrm{H}), 7.67(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H})$, $7.16-7.10(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}): $\delta 158.2,143.6,134.0,131.2,129.4,129.3,128.7,128.6,127.1,126.801$, $126.785,119.4,118.8,105.9,92.3,82.9,55.5,32.7,24.7$ HRMS (EI $\left.{ }^{+}, 70 \mathrm{eV}\right): \mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}$ [M] ${ }^{+}$: calcd: 286.1352, found: 286.1361
4-(3-([1, 1'-biphenyl]-4-yl)prop-1-yn-1-yl)benzonitrile $\mathbf{c 2 4}$
Following the general procedure, c24 was obtained after flash column chromatography (PE:EA=30:1) as colourless oil ($20.5 \mathrm{mg}, 35 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.61-$ $7.56(\mathrm{~m}, 6 \mathrm{H}), 7.54-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 140.9,140.1,135.1,132.4,132.1,129.0,128.8,128.5$, 127.6, 127.5, 127.2, 118.7, 111.4, 92.7, 81.5, 25.7. HRMS (EI', 70eV): $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~N}[\mathrm{M}]^{+}:$ calcd: 239.1204 found: 239.1209
4-(3-(4-(tert-butyl)phenyl)prop-2-yn-1-yl)-1,1'-biphenyl c25
Following the general procedure, $\mathbf{c 2 5}$ was obtained after flash column chromatography (petroleum ether) as colourless oil($53.8 \mathrm{mg}, 83 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 7.61-$ $7.56(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.40(\mathrm{~m}, 6 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 151.2,141.1,139.8,136.2,131.5,128.9,128.5,127.4$, 127.3, 127.2, 125.4, 120.7, 86.8, 82.9, 34.9, 31.3, 25.6 HRMS (EI $\left.{ }^{+}, 70 \mathrm{eV}\right): \mathrm{C}_{25} \mathrm{H}_{24}$ [M] ${ }^{+}$: calcd: 324.1878 , found: 324.1800
2-(3-phenylbut-1-yn-1-yl) thiophene c26
Following the general procedure, c26 was obtained after flash column chromatography (PE:EA=40:1) as colourless oil ${ }^{11}$ ($27.3 \mathrm{mg}, 88 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.44-$ $7.42(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.94(\mathrm{~m}$, $1 \mathrm{H}), 4.09(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 143.1, 131.4, 128.7, 127.1, 126.95, 126.90, 126.4, 123.9, 96.6, 75.6, 32.9, 24.4 HRMS ($\mathrm{EI}^{+}, 70 \mathrm{eV}$): $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~S}[\mathrm{M}]^{+}$: calcd: 212.0660 , found: 212.0665
3-(3-phenylbut-1-yn-1-yl)pyridine c27
Following the general procedure, c27 was obtained after flash column chromatography (PE:EA=20:1) as colourless oil ${ }^{12}(29.8 \mathrm{mg}, 72 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.57-$ $8.56(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.27-$ $7.18(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \quad \mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 150.0,143.8,142.7,136.2,128.8,127.2,127.1,126.9,122.6,93.1,82.1$, 32.5, 24.2 HRMS (EI ${ }^{+}, 70 \mathrm{eV}$): $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}[\mathrm{M}]^{+}$: calcd: 207.1048, found: 207.1039 4-(3-(4-methoxyphenyl)prop-2-yn-1-yl)-1, l'-biphenyl c28
Following the general procedure, $\mathbf{c 2 8}$ was obtained after flash column chromatography (PE:EA=50:1) as colourless oil ($46.5 \mathrm{mg}, 78 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.61-$
$7.55(\mathrm{~m}, 4 \mathrm{H}), 7.53-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 1 \mathrm{H}), 6.85-6.83(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.4,141.1,139.8,136.2,133.2,128.9$, 128.5, 127.4, 127.3, 127.2, 115.9, 114.0, 86.0, 82.6, 55.4, 25.6 HRMS (EI $\left.{ }^{+}, 70 \mathrm{eV}\right)$: $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}[\mathrm{M}]^{+}$: calcd: 298.1358, found: 298.1361.
(3-([1,1'-biphenyl]-4-yl)prop-1-yn-1-yl)trimethylsilane c29
Following the general procedure, $\mathbf{c 2 9}$ was obtained after flash column chromatography (petroleum ether) as colourless oil ($36.9 \mathrm{mg}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.60-$ $7.55(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 1 \mathrm{H}), 0.21(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 141.0,139.8,135.6,128.9,128.4,127.39,127.33,127.2$, 104.3, 87.1, 26.0, 0.3 HRMS ($\mathrm{EI}^{+}, 70 \mathrm{eV}$): $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{Si}[\mathrm{M}]^{+}:$calcd:263.1326, found: 263.1334
(3-([1, l'-biphenyl]-4-yl)prop-1-yn-1-yl)triethylsilane $\mathbf{c 3 0}$
Following the general procedure, $\mathbf{c 3 0}$ was obtained after flash column chromatography (petroleum ether) as colourless oil ($45.2 \mathrm{mg}, 74 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 7.62-$ $7.57(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 1 \mathrm{H}), 1.05(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $9 \mathrm{H}), 0.66(\mathrm{t}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 141.0,139.7,135.8,128.9$, 128.4, 127.33, 127.30, 127.2, 105.3, 84.5, 26.0, 7.7, 4.7 HRMS (EI ${ }^{+}, 70 \mathrm{eV}$): $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{Si}$ [M] ${ }^{+}$: calcd:306.1809, found: 306.1804
(3-([1,1'-biphenyl]-4-yl)prop-1-yn-1-yl)triisopropylsilane $\mathbf{c 3 1}$
Following the general procedure, $\mathbf{c 3 1}$ was obtained after flash column chromatography (petroleum ether) as colourless oil ($52.2 \mathrm{mg}, 75 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.62-$ $7.57(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 1 \mathrm{H}), 1.13-1.12(\mathrm{~m}, 21 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 141.0,139.6,136.0,128.9,128.4,127.3,127.2,105.7$, 83.2, 26.1, 18.8, 11.5 HRMS ($\mathrm{EI}^{+}, 70 \mathrm{eV}$): $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{Si}[\mathrm{M}]^{+}$: calcd:348.2273, found: 348.2280

4-(5-methylhex-2-yn-1-yl)-1, 1'-biphenyl c32

Following the general procedure, $\mathbf{c 3 2}$ was obtained after flash column chromatography (petroleum ether) as colourless oil ($31.2 \mathrm{mg}, 63 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.60-$ $7.54(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.13$ $(\mathrm{m}, 2 \mathrm{H}), 1.89-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 141.1,139.5,136.9,128.9,128.4,127.31,127.26,127.2,81.8,78.4,28.4,28.3,25.0$, 22.2 HRMS ($\mathrm{EI}^{+}, 70 \mathrm{eV}$): $\mathrm{C}_{19} \mathrm{H}_{20}[\mathrm{M}]^{+}$: calcd: 248.1565 , found: 248.1564 4-(hex-2-yn-1-yl)-1, 1'-biphenyl c33
Following the general procedure, $\mathbf{c 3 3}$ was obtained after flash column chromatography (petroleum ether) as colourless oil ($32.8 \mathrm{mg}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.61-$ $7.55(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.22$ (m, 2H), 1.64-1.55 (m, 2H), $1.03(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \quad$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 141.1,139.5,136.9,128.9,128.4,127.31,127.25,127.2,82.8,77.7,25.0,22.6,21.0$, 13.7 HRMS (EI ${ }^{+}, 70 \mathrm{eV}$): $\mathrm{C}_{18} \mathrm{H}_{18}[\mathrm{M}]^{+}$: calcd:234.1409, found: 234.1414 4-(hept-2-yn-1-yl)-1, l'-biphenyl c34
Following the general procedure, $\mathbf{c 3 4}$ was obtained after flash column chromatography (petroleum ether) as colourless oil ($33.7 \mathrm{mg}, 68 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.60-$ $7.54(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.23$ $(\mathrm{m}, 2 \mathrm{H}), 1.58-1.43(\mathrm{~m}, 4 \mathrm{H}), 0.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \quad \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$
$\delta 141.1,139.6,136.9,128.8,128.4,127.32,127.26,127.2,82.9,77.5,31.3,25.0,22.2$, 18.7, 13.8 HRMS (EI ${ }^{+}, 70 \mathrm{eV}$): $\mathrm{C}_{19} \mathrm{H}_{20}[\mathrm{M}]^{+}$: calcd:248.1565, found: 248.1570 4-(oct-2-yn-1-yl)-1, l'-biphenyl c35
Following the general procedure, $\mathbf{c 3 5}$ was obtained after flash column chromatography (petroleum ether) as colourless oil ($39.3 \mathrm{mg}, 75 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.60-$ $7.54(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.21$ $(\mathrm{m}, 2 \mathrm{H}), 1.59-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.34(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 141.2,139.6,136.9,128.9,128.4,127.32,127.27,127.2,83.0,77.6$, 31.3, 28.9, 25.0, 22.4, 19.0, 14.2 HRMS (EI', 70 eV): $\mathrm{C}_{20} \mathrm{H}_{22}[\mathrm{M}]^{+}$: calcd: 262.1722, found: 262.1724
4-(pentadec-2-yn-1-yl)-1,1'-biphenyl c36
Following the general procedure, $\mathbf{c 3 6}$ was obtained after flash column chromatography (PE:EA=50:1) as colourless oil ($53.3 \mathrm{mg}, 74 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.60-$ $7.54(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.22$ $(\mathrm{m}, 2 \mathrm{H}), 1.58-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.27(\mathrm{~m}, 16 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 141.1,139.5,136.9,128.9,128.4,127.31,127.26$, 127.2, 83.0, 77.5, 32.1, 29.85, 29.81, 29.8, 29.7, 29.5, 29.3, 29.1, 25.0, 22.8, 19.0, 14.3 HRMS (EI', 70 eV): $\mathrm{C}_{27} \mathrm{H}_{36}[\mathrm{M}]^{+}$: calcd:360.2817, found: 360.2820
(4)Gram-Scale Reaction

Under nitrogen atmosphere, 2, $2^{\prime}, 6^{\prime}, 2^{\prime \prime}$-terpyridine ($1.6 \mathrm{mmol}, 20 \mathrm{~mol} \%$), $\mathrm{CuI}(0.8$ $\mathrm{mmol}, 10 \mathrm{~mol} \%$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($24 \mathrm{mmol}, 3.0$ equiv), alkyne ($8.0 \mathrm{mmol}, 1$ equiv), and $\mathrm{N}-$ acyloxyl derivatives ($16 \mathrm{mmol}, 2.0$ equiv) were added in a dried reaction vessel with 30 mL of MeCN . After 48 h , the reaction was quenched with ice water and extracted with DCM, then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified by column chromatography. (1.2g, 73\%)
3 Mechanistic Investigations
(1) Considerations of the reaction's active intermediate ${ }^{13}$

phenylethynylcopper was obtained according to literature (eq 1).
Control experiment (eq 2): under our standard conditions, stoichiometry (phenylethynyl)copper or catalytic amount (phenylethynyl)copper, ethynylbenzene (0 mmol or 0.09 mmol), a1 ($0.2 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($0.3 \mathrm{mmol}, 3.0$ equiv) were added sequentially for 24 h . After completion, Trace product was obtained.
We prepared the Cu-tpy-alkyne complex and isolated it as a crude yellow powder (eq 3). The yellow complex as the catalyst catalyzed the reaction in 43% yield (eq 4). Thus, Cu-tpy-alkyne complex played a role of catalyst for this reaction.
(2) Cyclic Woltammetry analysis ${ }^{13}$

Cyclic Woltammetry analysis was performed by Shanghai Chen Hua CHI660D. Pt electrode (area $=0.03 \mathrm{~cm}^{2}$), and Pt sheet were working electrode and auxiliary electrode, respectively. A saturated calomel eleetrode (SCE) was reference electrode. Tetrabutylammonium hexafluorophosphata ($\mathrm{nBu}_{4} \mathrm{NPF}_{6}$) was supporting electrolyte and electrolysis was conducted at room temperature. 0.1 mol substrate was added in 0.1 M solution of $\mathrm{nBu}_{4} \mathrm{NPF}_{6}(10 \mathrm{~mL} \mathrm{MeCN})$. The reduction potentials of selected TCNHPI esters of primary, secondary, tertiary and acids were exhibited. However, the reduction potential of ligand-Cu-acetylide complex in suite genernated is difficult to test. Based on the report ${ }^{13}$, ligand-Cu-acetylide complex have higher reduction potential.

$\mathrm{E}_{1 / 2}=-0.79 \mathrm{~V}$ vs SCE

$$
\mathrm{E}_{1 / 2}=-0.73 \mathrm{~V} \text { vs } \mathrm{SCE}
$$

$\mathrm{E}_{1 / 2}=-0.77 \mathrm{~V}$ vs SCE

$\mathrm{E}_{1 / 2}=-0.79 \mathrm{~V}$ vs SCE

$\mathrm{E}_{1 / 2}=-0.78 \mathrm{~V}$ vs SCE

$\mathrm{E}_{1 / 2}=-0.80 \mathrm{~V}$ vs SCE

$\mathrm{E}_{1 / 2}=-0.86 \mathrm{~V}$ vs SCE

(3) Quantum Yield Measurement ${ }^{14}$

The quantum yield measurement of the photoinduced reaction was performed based on our previous publication. The cuvette placed 5 cm away from blue LED lamps and the incident area was 1 cm 81 cm^{4}.

Prepared following the general procedure showed above and the reaction mixture was stirred under Blue LED for 30 min . After completion, the reaction was quenched and the yield of crud product was determined by ${ }^{1} \mathrm{H}$ NMR. Diethyl phthalate was internal standard.
The photon flux was 379 mW (average of three experiments).

Photon flux $=\frac{P}{N_{A} \cdot h c / \lambda}=\frac{379.0 \times 10^{-3}}{6.02 \times 10^{23} \times 6.63 \times 10^{-34} \times 3 \times 10^{8} /\left(400 \times 10^{-9}\right)}=1.3810^{-6}$ einstein $\cdot \mathrm{s}^{-1} \quad$ (1)
QY calculated by the equation (2). T is the reaction time (30 260 s). QY was $\Phi=0.8 \%$.
$\Phi=\frac{\text { mol product }}{\text { photon flux } \cdot t \cdot f}=\frac{1.9 \times 10^{-5}}{1.3 \times 10^{-6} \times 30 \times 60}=0.8 \%$.

4 References

[1] " Kessil LED Light " can be found under https://www.marine-aquatics.eu/kessil-a160we-tuna-sun-sladkovodni-led-osvetleni-40w?langid=4
[2] I. Bosque, T. Bach, 3- Acetoxyquinuclidine as Catalyst in Electron Donor-Acceptor Complex-Mediated Reactions Triggered by Visible Light ACS. Catal. 2019, 9, 9103-9109.
[3] Y. Li, J. Zhang, D. F. Li, Y. Y. Chen, Metal-Free C(sp^{3})-H Allylation via Aryl Carboxyl Radicals Enabled by Donor-Acceptor Complex Org.Lett. 2018, 20, 3296-3299.
[4] H. R. Zhang, N. Sun, B. X. Hu, Z. L. Shen, X. Q. Hu, L. Q. Jin, Copper-catalyzed direct coupling of terminal alkynes with primary and secondary benzyl bromides Org.Chem.Front. 2019, 6, 1983-1988.
[5] L. Chen, Y. Kametanic, K. Imamura, T. Abe, Y. Shiota, K. Yoshizawa, Y. Hisaeda, H. Shimakoshi, Visible lightdriven cross-coupling reactions of alkyl halides with phenylacetylene derivatives for $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{C}(\mathrm{sp})$ bond formation catalyzed by B_{12} complex Chem.Commun. 2019, 55, 13070-13073.
[6] K. Indukuri, O. Riant, Transmetalation of Alkylzirconocenes in Copper-Catalyzed Alkyl-Alkynyl CrossCoupling Reactions Adv.Synth.Catal. 2017, 359, 2425-2433.
[7] M. Ociepa, J. Turkowska, D. Gryko, Redox-Activated Amines in $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{C}(\mathrm{sp})$ and $\mathrm{C}\left(\mathrm{sp}^{3}\right)$-C(sp $\left.{ }^{2}\right)$ Bond Formation Enabled by Metal-Free Photoredox Catalysis ACS. Catal. 2018, 8,11362-11367.
[8] M. Wan, Z. L. Meng, H. X. Lou, L. Liu, Practical and Highly Selective C-H Functionalization of Structurally Diverse Ethers Angew.Chem.Int.Ed. 2014, 53, 1-6.
[9] W. W. Zhang, X. G. Zhang, J. H. Li, Palladium-Catalyzed Decarboxylative Coupling of Alkynyl Carboxylic Acids with Benzyl Halides or Aryl Halides J.Org.Chem. 2010, 75, 5259-5264.
[10] C. K. Li, J. B. Wang, Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidates: Synthesis of 1,3-Diarylpropynes J.Org.Chem. 2007, 72, 7431-7434.
[11] M. Guisán-Ceinos, V. Martín-Heras, M. Tortosa, Stereospecific Copper-Catalyzed Substitution Reaction of Propargylic Ammonium Salts with Aryl Grignard Reagents J.Am.Chem.Soc. 2017, 139, 8448-8451.
[12] H. Fang, Z. Y. Yang, L. J. Zhang, W. Wang, Y. M. Li, X. L. Xu, S. L. Zhou, Transmetal-Catalyzed Enantioselective Cross-Coupling Reaction of Racemic Secondary Benzylic Bromides with Organoaluminum Org.Lett. 2016, 18, 6022-6025.
[13] See references 16a, 16b of manuscript
[14] L. Zhang, L. Jiao, Visible-Light-Induced Organocatalytic Borylation of Aryl Chlorides J.Am.Chem.Soc. 2019, 141, 9124-9128.

5 Copies of NMR Spectra

4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl 2-phenylpropanoate a1 ${ }^{1} \mathrm{H}$-NMR

$\begin{aligned} & \stackrel{\text { ® }}{甘} \\ & \stackrel{\ominus}{7} \end{aligned}$			$\begin{aligned} & \text { Ì } \\ & \text { ָ } \end{aligned}$

230	210	190	170	150	130		90	80	70	60	50	40	30	20	10	0	10
						fl (ppm)									10		-10

1,3-dioxoisoindolin-2-yl 2-(2-bromophenyl)acetate a4
${ }^{1} \mathrm{H}$-NMR

${ }^{13}$ C-NMR

1,3-dioxoisoindolin-2-yl 2-(4-(trifluoromethyl)phenyl)acetate a5

${ }^{1}$ H-NMR

${ }^{19}$ F NMR

${ }^{13}$ C-NMR

1,3-dioxoisoindolin-2-yl 2-methyl-2-phenylpropanoate a7

${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathbf{C}$-NMR

1,3-dioxoisoindolin-2-yl 1-(p-tolyl)cyclopropane-1-carboxylate a8
${ }^{1} \mathbf{H}$-NMR

${ }^{13}$ C-NMR

4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl 3-cyclohexylpropanoate a10

${ }^{1} \mathbf{H}-$ NMR

${ }^{13}$ C-NMR

4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl cyclobutanecarboxylate a13

${ }^{1} \mathbf{H}-$ NMR

${ }^{13} \mathbf{C}$-NMR

4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl 2-phenoxypropanoate a17

${ }^{1} \mathrm{H}$-NMR

${ }^{13}$ C－NMR

点㐘誌
2
i
i

230	210	190	170	150	130	$\begin{gathered} 110 \\ \mathrm{fl}(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0	－10

4，5，6，7－tetrachloro－1，3－dioxoisoindolin－2－yl 2－phenylacetate a18

${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13}$ C-NMR

(

but-1-yne-1,3-diyldibenzene c1
${ }^{1} \mathrm{H}$-NMR

${ }^{13}$ C-NMR

4-(3-phenylprop-2-yn-1-yl)-1,1'-biphenyl c2

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

2-(3-phenylprop-2-yn-1-yl)naphthalene c3
${ }^{1} \mathrm{H}$ NMR

1-bromo-2-(3-phenylprop-2-yn-1-yl)benzene c4
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

	あ
¢	

1-(3-phenylprop-2-yn-1-yl)-4-(trifluoromethyl)benzene $\mathbf{c 5}$
${ }^{1} \mathbf{H}$ NMR

${ }^{13}$ C-NMR

${ }^{19}$ F-NMR

${ }^{13} \mathrm{C}$ NMR

(4-cyclohexylbut-1-yn-1-yl)benzene c7

${ }^{13} \mathrm{C}$ NMR

(4-cyclopentylbut-1-yn-1-yl)benzene $\mathbf{c 8}$

${ }^{13}$ C NMR

1-(phenylethynyl)adamantine c9
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

(cyclobutylethynyl)benzene c10
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

(cyclopentylethynyl)benzene c11
${ }^{1} \mathrm{H}$-NMR

${ }^{13}$ C－NMR

奇镸唇 	$\begin{gathered} \text { on } \\ \stackrel{c}{c} \\ \substack{2} \end{gathered}$	

（cyclohexylethynyl）benzene c12
${ }^{1}$ H NMR

${ }^{13}$ C NMR

(3-ethylhept-1-yn-1-yl)benzene c13

${ }^{13} \mathrm{C}$ NMR

(3-phenoxybut-1-yn-1-yl)benzene c14

${ }^{13} \mathrm{C}$ NMR

T				,			1	,									
230	210	190	170	150	130	110	90	80	70	60	50	40	30	20	10	0	-10
						fl (ppm)											

4-methoxy-4'-(4-phenylbut-3-yn-2-yl)-1,1'-biphenyl c15
${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13}$ C-NMR

4-(3-methyl-3-phenylbut-1-yn-1-yl)-1,1'-biphenyl c16
${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

4-((1-(p-tolyl)cyclopropyl)ethynyl)-1,1'-biphenyl c17
${ }^{1} \mathrm{H}$-NMR

${ }^{13}$ C-NMR

1-chloro-2-(3-phenylbut-1-yn-1-yl)benzene (c18)
${ }^{1} \mathrm{H}$ NMR
 $\int_{\text {anc }}$

${ }^{13}$ C NMR

そてZ’86-

$\begin{array}{ll}\bar{\infty} & \bar{\infty} \\ \underset{\sim}{\infty} & \stackrel{j}{1} \\ \cdots & 1\end{array}$

1-methyl-3-(3-phenylbut-1-yn-1-yl)benzene c19
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

4-(3-phenylbut-1-yn-1-yl)-1,1'-biphenyl c20
${ }^{1} H$ NMR

${ }^{13} \mathrm{C}$ NMR

1-chloro-4-(3-phenylprop-1-yn-1-yl)benzene c21
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

1-bromo-4-(3-phenylprop-1-yn-1-yl)benzene c22
${ }^{1}$ H NMR

${ }^{13} \mathrm{C}$ NMR

6-methoxy-1-(3-phenylbut-1-yn-1-yl)naphthalene c23

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

4-(3-([1,1'-biphenyl]-4-yl)prop-1-yn-1-yl)benzonitrile c24
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

4-(3-(4-(tert-butyl)phenyl)prop-2-yn-1-yl)-1,1'-biphenyl c25

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

2-(3-phenylbut-1-yn-1-yl)thiophene c26
${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

3-(3-phenylbut-1-yn-1-yl)pyridine c27
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

4-(3-(4-methoxyphenyl)prop-2-yn-1-yl)-1,1'-biphenyl c28
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

(3-([1,1'-biphenyl]-4-yl)prop-1-yn-1-yl)trimethylsilane c29

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

3-([1,1'-biphenyl]-4-yl)prop-1-yn-1-yl)triethylsilane c30
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

テ	$\begin{aligned} & \tilde{\ddot{a}} \\ & \stackrel{0}{0} \\ & \underset{\sim}{1} \end{aligned}$		

(3-([1,1'-biphenyl]-4-yl)prop-1-yn-1-yl)triisopropylsilane c31
${ }^{1} \mathrm{H}$ NMR

$\stackrel{\text { co }}{\stackrel{y}{c}}$
$\stackrel{m}{-}$

/1,

${ }^{13} \mathrm{C}$ NMR

4-(5-methylhex-2-yn-1-yl)-1,1'-biphenyl c32

${ }^{13} \mathrm{C}$ NMR

4-(hex-2-yn-1-yl)-1,1'-biphenyl c33
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

4-(hept-2-yn-1-yl)-1,1'-biphenyl c34
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

4-(oct-2-yn-1-yl)-1,1'-biphenyl c35

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

4-(pentadec-2-yn-1-yl)-1,1'-biphenyl c36
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

