Synthesis of quinazoin-4-ones through acid ion exchange resin mediated cascade reaction

Huiyong Yang, ${ }^{\ddagger}$ Jun Xu, ${ }^{\ddagger}$ Yilan Zhang, Lei He, Pengfei Zhang, and Wanmei Li*

College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China.

E-mail: liwanmei@hznu.edu.cn
¥ These authors contributed equally to this work.

Supporting Information

Table of contents

1. Procedures to synthesize starting materials $\mathbf{1}$ 2
2. Characterization of starting materials $\mathbf{1}$ 2
3. Optimization of reaction conditions 10
4. X-ray Crystal Data for 2a 12
5. Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR Spectra 13

1. Procedures to synthesize starting materials 1

2-aminobenzonitrile $(19.00 \mathrm{~g}, 250 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(3.34 \mathrm{~g}, 25 \mathrm{mmol})$ was added to a 500 mL three-necked flask, and then suspended in chlorobenzene (350 mL) under nitrogen. 2aminoethanol ($45 \mathrm{~mL}, 750 \mathrm{mmol}$) was added to the suspension via a syringe. The mixture was slowly heated to reflux until no gas was produced. After refluxing for 36 hours, the reaction mixture was cooled down to room temperature and the solvent was removed in a rotary evaporator. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$ was added to the residue and washed with saturated $\mathrm{NaHCO}_{3}(150 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$. The aqueous fraction was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(250 \mathrm{~mL} \times 3)$. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed in a rotary evaporator. The crude product was recrystallized from EA/PE to give the substituted 2-(4,5-dihydrooxazol-2-yl)anilines.

Substituted 2-(4,5-dihydrooxazol-2-yl)anilines (5 mmol) and acid chloride (5.5 mmol) were added to a 100 mL flask and then dissolved with $\mathrm{DCM}(20 \mathrm{~mL}) . \mathrm{Et}_{3} \mathrm{~N}(7.5 \mathrm{mmol})$ was taken to the vigorously stirred solution via a syringe. The reaction was stirred at room temperature for 10 h and quenched with saturated NaHCO_{3}. And then the mixture was extracted with EtOAc. Combined organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude product was further recrystallized from EA/PE to give the starting materials 1.

2. Characterization of starting materials 1

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)benzamide (1a)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.02(\mathrm{~s}, 1 \mathrm{H}), 8.97(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.11-8.06(\mathrm{~m}, 2 \mathrm{H})$, $7.89(\mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.10(\mathrm{td}, J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{t}, J$ $=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{t}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H})$.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-2-methylbenzamide (1b)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.58(\mathrm{~s}, 1 \mathrm{H}), 8.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.63$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.52 (t, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36$ (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.26$ $(\mathrm{m}, 2 \mathrm{H}), 7.12(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{t}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{t}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{~s}$, $3 \mathrm{H})$.

2-Chloro-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)benzamide (1c)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.70(\mathrm{~s}, 1 \mathrm{H}), 8.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{dd}, J=7.9$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{dd}, J=7.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=7.8,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{dd}, J=12.8,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{t}$, $J=9.5 \mathrm{~Hz}, 2 \mathrm{H})$.

N -(2-(4,5-dihydrooxazol-2-yl)phenyl)-2-fluorobenzamide (1d)

${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.81(\mathrm{~s}, 1 \mathrm{H}), 8.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{td}, J=7.6,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.86(\mathrm{dd}, J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.33$ (t, $J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{t}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H})$.

N -(2-(4,5-dihydrooxazol-2-yl)phenyl)-3-methylbenzamide (1e)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.98(\mathrm{~s}, 1 \mathrm{H}), 8.96(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.91-$ $7.84(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.07(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{t}, J=$ $9.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{t}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})$.

N -(2-(4,5-dihydrooxazol-2-yl)phenyl)-3-(trifluoromethyl)benzamide (1f)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.30(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.92$ (dd, $J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.52(\mathrm{~m}$, $1 \mathrm{H}), 7.15(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{t}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{t}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H})$.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-4-methylbenzamide (1g)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.96$ (s, 1H), 8.96 (d, $\left.J=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.99$ (d, $J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.89(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.40(\mathrm{t}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{t}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$.
N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-4-methoxybenzamide (1h)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.90(\mathrm{~s}, 1 \mathrm{H}), 8.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, 2H), $7.93-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 4.40(\mathrm{t}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{t}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$.

4-Chloro- N -(2-(4,5-dihydrooxazol-2-yl)phenyl)benzamide (1i)

${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.03(\mathrm{~s}, 1 \mathrm{H}), 8.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.07-8.00(\mathrm{~m}, 2 \mathrm{H})$, 7.90 (dd, $J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.09(\mathrm{~m}$, $1 \mathrm{H}), 4.43$ (dd, $J=14.4,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{t}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H})$.

4-Bromo-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)benzamide (1j)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.03(\mathrm{~s}, 1 \mathrm{H}), 8.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.89(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{t}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{t}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H})$.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-4-fluorobenzamide (1k)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.01(\mathrm{~s}, 1 \mathrm{H}), 10.70-10.68(\mathrm{~m}, 1 \mathrm{H}), 8.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.15-8.05$ (m, 2H), 7.90 (dd, $J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.46$ (m, 1H), 7.16 (t, $J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{t}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{t}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H})$.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-4-(trifluoromethyl)benzamide (11)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.15(\mathrm{~s}, 1 \mathrm{H}), 8.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.17$ (d, $J=8.0 \mathrm{~Hz}$, 2 H), 7.86 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.73 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11$ (t, $J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{t}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{t}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H})$.

2,4-Dichloro-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)benzamide (1m)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.75(\mathrm{~s}, 1 \mathrm{H}), 8.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{dd}, J=7.9$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35$ (dd, $J=8.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{td}, J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{t}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{t}, J=$ $9.5 \mathrm{~Hz}, 2 \mathrm{H})$.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-2-naphthamide (1n)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.17(\mathrm{~s}, 1 \mathrm{H}), 9.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{~s}, 1 \mathrm{H}), 8.16$ (dd, $J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.98-7.88(\mathrm{~m}, 4 \mathrm{H}), 7.60-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.13$ (td, $J=7.9,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.49-4.40(\mathrm{~m}, 2 \mathrm{H}), 4.24$ (dd, $J=14.3,5.1 \mathrm{~Hz}, 2 \mathrm{H})$.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)furan-2-carboxamide (10)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.05(\mathrm{~s}, 1 \mathrm{H}), 8.85(\mathrm{dd}, J=8.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{ddd}, J=$ $19.5,16.8,5.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.58-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.15-6.95$ (m, 2H), 4.37 (dd, $J=20.4,10.3$ $\mathrm{Hz}, 2 \mathrm{H}), 4.23-4.09(\mathrm{~m}, 2 \mathrm{H})$.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)thiophene-2-carboxamide (1p)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.08(\mathrm{~s}, 1 \mathrm{H}), 8.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.92-7.86(\mathrm{~m}, 1 \mathrm{H})$, $7.82-7.77(\mathrm{~m}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=4.8,3.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{t}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{t}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H})$.
N-(2-(4,5-dihydrooxazol-2-yl)phenyl)cyclohexanecarboxamide (1r)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.11(\mathrm{~s}, 1 \mathrm{H}), 8.78(\mathrm{dd}, J=8.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{dd}, J=$ $7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.00(\mathrm{~m}, 1 \mathrm{H}), 4.39(\mathrm{t}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{t}$, $J=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.32$ (ddd, $J=11.7,7.6,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{dd}, J=13.7,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.82$ (d, $J=2.5 \mathrm{~Hz}, 2 \mathrm{H}$), $1.74-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.58(\mathrm{ddd}, J=24.7,12.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.37-1.24$ (m, 3H).

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)cyclobutanecarboxamide (1s)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.10(\mathrm{~s}, 1 \mathrm{H}), 8.78(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{dd}, J=7.9$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.45$ (dd, $J=11.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.00(\mathrm{~m}, 1 \mathrm{H}), 4.38(\mathrm{t}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H})$, 4.13 (dd, $J=20.0,10.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{p}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.43$ (dtd, $J=18.2,9.2,2.3 \mathrm{~Hz}$, $2 \mathrm{H}), 2.33-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.85(\mathrm{~m}, 2 \mathrm{H})$.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)cyclopropanecarboxamide (1t)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.41(\mathrm{~s}, 1 \mathrm{H}), 8.73(\mathrm{dd}, J=8.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{dd}, J=$ $7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{td}, J=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{dd}, J=14.4,5.0$ $\mathrm{Hz}, 2 \mathrm{H}), 4.17(\mathrm{t}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.66(\mathrm{tt}, J=7.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.15-1.06(\mathrm{~m}, 2 \mathrm{H}), 0.90-$ 0.82 (m, 2H).

N -(2-(4,5-dihydrooxazol-2-yl)phenyl)-2-phenylacetamide (1u)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.11(\mathrm{~s}, 1 \mathrm{H}), 8.76(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79$ (dd, $J=7.9$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.01$ (m, $1 \mathrm{H}), 4.28(\mathrm{td}, J=9.5,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{td}, J=9.5,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H})$.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)propionamide (1w)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.15(\mathrm{~s}, 1 \mathrm{H}), 8.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.06$ (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.38$ (t, $J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.15$ (t, $J=$ $9.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.47$ (q, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
N-(2-(4,5-dihydrooxazol-2-yl)phenyl)octanamide (1x)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.15(\mathrm{~s}, 1 \mathrm{H}), 8.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{dd}, J=7.9$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{t}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{t}$, $J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.80-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.26(\mathrm{~m}, 8 \mathrm{H}), 0.88(\mathrm{t}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)tetradecanamide (1y)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.15(\mathrm{~s}, 1 \mathrm{H}), 8.76(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.44(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{t}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{t}, J=$ $9.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.83-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 17 \mathrm{H}), 0.88$ (t, $J=6.1 \mathrm{~Hz}, 4 \mathrm{H}$).
(3r,5r,7r)-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)adamantane-1-carboxamide (1z)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.12(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{dd}, J=8.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{dd}, J=$ $7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.00(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{t}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{t}$, $J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.75(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 6 \mathrm{H})$.

N-(2-(4,5-dihydrooxazol-2-yl)-3-fluorophenyl)benzamide (1aa)

${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.01(\mathrm{~s}, 1 \mathrm{H}), 8.74(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.11-7.99(\mathrm{~m}, 2 \mathrm{H})$, $7.59-7.42(\mathrm{~m}, 4 \mathrm{H}), 6.91-6.82(\mathrm{~m}, 1 \mathrm{H}), 4.48(\mathrm{t}, J=9.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{t}, J=9.7 \mathrm{~Hz}, 2 \mathrm{H})$.
N-(2-(4,5-dihydrooxazol-2-yl)-4-methoxyphenyl)benzamide (1ab)

${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.79(\mathrm{~s}, 1 \mathrm{H}), 8.91(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.10-8.02(\mathrm{~m}, 2 \mathrm{H})$, $7.53-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.42(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=9.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{t}, J=$ $9.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{t}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$.

N-(2-(4,5-dihydrooxazol-2-yl)-5-methylphenyl)benzamide (1ac)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.00(\mathrm{~s}, 1 \mathrm{H}), 8.82(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.76$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=14.3,6.7 \mathrm{~Hz}, 3 \mathrm{H}), 6.91(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{t}, J=9.4$ $\mathrm{Hz}, 2 \mathrm{H}), 4.15(\mathrm{t}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$.

N-(5-chloro-2-(4,5-dihydrooxazol-2-yl)phenyl)benzamide (1ad)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.07(\mathrm{~s}, 1 \mathrm{H}), 9.07(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.81(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{dd}, J=8.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{t}, J$ $=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{t}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H})$.
N-(2-(4,5-dihydrooxazol-2-yl)-5-fluorophenyl)benzamide (1ae)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.01(\mathrm{~s}, 1 \mathrm{H}), 8.75(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.08-7.99(\mathrm{~m}, 2 \mathrm{H})$, $7.58-7.44(\mathrm{~m}, 4 \mathrm{H}), 6.86(\mathrm{ddd}, J=11.5,8.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{t}, J=9.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{t}$, $J=9.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H})$.
N-(2-(4,5-dihydrooxazol-2-yl)-5-methylphenyl)cyclohexanecarboxamide (1ag)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.08(\mathrm{~s}, 1 \mathrm{H}), 8.64(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-$ $6.81(\mathrm{~m}, 1 \mathrm{H}), 4.36(\mathrm{t}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{t}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.31$ (ddd, $J=$ $11.6,7.6,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{dd}, J=13.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.87-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.67$ (m, $1 \mathrm{H}), 1.58(\mathrm{qd}, J=12.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.39-1.25(\mathrm{~m}, 3 \mathrm{H})$.

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.05(\mathrm{~s}, 1 \mathrm{H}), 8.96(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.57(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=8.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.54$ (dd, $J=3.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.41$ (dd, $J=14.4,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{t}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H})$.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)acetamide (1aj)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.17(\mathrm{~s}, 1 \mathrm{H}), 8.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.45(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{t}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{t}, J=$ $9.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.60-3.58(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H})$.

3. Optimization of reaction conditions

The effect of ratios of mixed solvents on the reaction ${ }^{\text {a,b }}$

Entry	$\mathbf{H}_{\mathbf{2}} \mathbf{O} /$ Acetone $(\mathbf{v} / \mathbf{v})$	Yield [\%/ ${ }^{b}$
1	$19: 1$	45
2	$14: 1$	72
3	$9: 1$	83
4	$4: 1$	82
5	$1: 1$	85

${ }^{\text {a }}$ Reaction conditions: 1a $(0.3 \mathrm{mmol})$, dowex $50 \mathrm{WX} 2(150 \mathrm{mg}), \mathrm{H}_{2} \mathrm{O} /$ Acetone $(5.0 \mathrm{~mL})$, $100^{\circ} \mathrm{C}, 6 \mathrm{~h}$, air. ${ }^{\mathrm{b}}$ Isolated yields.

The effect of strong acids on the reaction ${ }^{\text {a,b }}$

${ }^{a}$ Reaction conditions: 1a $(0.3 \mathrm{mmol})$, dowex 50WX2 $(150 \mathrm{mg}), \mathrm{H}_{2} \mathrm{O} /$ Acetone $(5.0 \mathrm{~mL}, \mathrm{v} / \mathrm{v}$ $=9: 1), 100{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}$, air. ${ }^{\mathrm{b}}$ Isolated yields. ${ }^{\mathrm{c}} \mathrm{HCl}(12 \mathrm{M})(0.3 \mathrm{mmol}) .{ }^{\mathrm{d}} \mathrm{H}_{2} \mathrm{SO}_{4}(18.4 \mathrm{M})(0.3$ mmol).

4. X-ray Crystal Data for 2a

Figure 1 Single-crystal X-ray structure of 2a. Ellipsoids are represented at 30\% probability.
Table S1. Crystallographic data and structure refinement for 2a

CCDC	1959603
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$
Formula weight	266.29
Temperature K	296.15
Wavelength \AA	0.71073
Crystal system	Triclinic
Space group	$\mathrm{P}-1$
$a, b, c \AA$	$4.9529(7), 11.1696(16), 13.2334(19)$
$\alpha, \beta, \gamma^{\circ}$	$112.6230(10), 99.490(2), 94.354(2)$
Volume \AA^{3}	$658.67(16)$
Z	2
Calculated density, Mg/m^3	1.343
$F(000)$	280
Theta range for data collection ${ }^{\circ}$	1.705 to 27.744
Limiting indices	$-6<=\mathrm{h}<=6,-14<=\mathrm{k}<=13,-16<=1<=16$
Reflections collected $/$ unique	$5331 / 2834[\mathrm{R}($ int $)=0.0150]$
Absorption correction	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$2834 / 0 / 181$
Goodness of fit on F^{2}	1.064

5. Copies of ${ }^{\mathbf{1}} \mathbf{H},{ }^{13} \mathbf{C}$ and ${ }^{19} \mathrm{~F}$ NMR Spectra

1a ${ }^{1} \mathrm{H}$ NMR

1b ${ }^{\mathbf{1}} \mathrm{H}$ NMR

1c ${ }^{1} \mathrm{H}$ NMR

1d ${ }^{1} \mathrm{H}$ NMR

1m ${ }^{\mathbf{1}} \mathrm{H}$ NMR

$10{ }^{1} \mathrm{H}$ NMR

1p ${ }^{\mathbf{1}} \mathrm{H}$ NMR

1s ${ }^{1} \mathrm{H}$ NMR

$\mathbf{l u}^{1}{ }^{1} \mathrm{H}$ NMR

1aa ${ }^{1} \mathrm{H}$ NMR

1ab ${ }^{1} H$ NMR

2a ${ }^{1} \mathrm{H}$ NMR

2b ${ }^{13}$ C NMR
$\begin{array}{llllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$

$2 c^{13} \mathrm{C}$ NMR

2d ${ }^{19}$ F NMR

0	10	0	-10	-30	-50	-70	-90	-110	-130	-150	-170	-190	-210

2f ${ }^{19}$ F NMR

2h ${ }^{13}$ C NMR

$\begin{array}{ll}n & n \\ \text { nे } & \infty \\ i & i\end{array}$

2k ${ }^{1}$ H NMR

[^0]

2k ${ }^{19}$ F NMR

$21{ }^{19}$ F NMR

0	-5	-10	-20	-30	-40	-50	-60 $\mathrm{fl}(\mathrm{ppm})$	-70	-80	-90

2n ${ }^{1} \mathrm{H}$ NMR

2n ${ }^{13}$ C NMR

[^1]

2p ${ }^{13} \mathrm{C}$ NMR

$2 q^{1}{ }^{1}$ NMR

$2 q{ }^{13} \mathrm{C}$ NMR

-60.96
-46.05
-38.45
-26.51
-17.56

2s ${ }^{13}$ C NMR

$\begin{array}{llllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 \\ 20 & 10\end{array}$

2w ${ }^{\mathbf{1}} \mathrm{H}$ NMR

$2 x^{13} \mathrm{C}$ NMR

$2 y^{1}{ }^{1}$ NMR

$$
\begin{aligned}
& \begin{array}{l}
2 \\
0 \\
0 \\
\hline
\end{array}
\end{aligned}
$$

2aa ${ }^{19}$ F NMR

2ad ${ }^{13}$ C NMR

2ae ${ }^{19}$ F NMR

	10	0	-20	-40	-60	-80	-100	-120	-140	-160
-180	-200									

2af ${ }^{19}$ F NMR

2ah ${ }^{13}$ C NMR

2ai ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$

[^0]: $\begin{array}{llllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & \underset{\mathrm{fl}(\mathrm{ppm})}{90} & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array} 0$

[^1]: $\left.\begin{array}{llllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppm})\end{array}\right)$

