Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Convenient Synthesis of Pyrimidine 2'-Deoxyribonucleoside Monophosphates

with Important Epigenetic Marks at the 5-Position

Song Zheng[†], Ai Tran[†], Alyson M. Curry[‡], Dawanna S. White[‡], Yana Cen^{‡,#,*}

[†]Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences,

Colchester, VT 05446

[‡]Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219

[#]Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219

*Correspondence: <u>ceny2@vcu.edu</u>, phone: 804-828-7405

Synthesis of 5'-*O*-(4,4'-dimethoxytrityl)-5-formyl-2'-deoxyuridine-3'-*O*-(2-cyanoethyl-*N*,*N*-diisopropyl)phosphoramidite and 5'-*O*-(4,4'-dimethoxytrityl)-5-methoxycarbonyl-2'-deoxyuridine-3'-*O*-(2-cyanoethyl-*N*,*N*-diisopropyl)phosphoramidite.

Synthesis of 5-formyl-2'-deoxyuridine.

Place 3',5'-O-di-*t*-butylsilyl-5-formyl-2'-deoxyuridine¹ (190 mg, 0.48 mmol) in a 50 mL polypropylene tube. Add 8 mL of anhydrous THF followed by HF-pyridine (12 μ L, 0.48 mmol) under argon atmosphere. The mixture was stirred at room temperature for 1 h before 4 g of silica gel was added. Solvent was evaporated under reduced pressure to afford a silica gel mixed residue. Crude product was purified by column chromatography (CH₂Cl₂ with 6% to 12% methanol) to afford 5-formyl-2'-deoxyuridine¹ (100 mg, 0.39 mmol, 81% yield) as a white solid. ¹H NMR (300 MHz, DMSO) δ : 9.76 (s. 1H), 8.71 (s, 1H), 6.09, (t, *J* = 6.3 Hz, 1H), 5.27 (br, 1H), 5.11 (br, 1H), 4.23 (dd, *J* = 4.2, 8.9 Hz, 1H), 3.85 (dd, *J* = 3.5, 6.9 Hz, 1H), 3.62 (m, 2H), 2.21 (m, 2H). HRMS (*m*/*z*): calculated for C₁₀H₁₃N₂O₆ (M+H): 257.0768; found: 257.0772. The ¹H NMR spectrum of 5-formyl-2'-deoxyuridine is consistent with CAS 4494-26-2.¹

Synthesis of 5'-O-(4,4'-dimethoxytrityl)-5-formyl-2'-deoxyuridine.

To a solution of 5-formyl-2'-deoxyuridine (60 mg, 0.23 mmol) in 3 mL of anhydrous pyridine was added 4,4'-dimethoxytrityl chloride (119 mg, 0.35 mmol) under argon atmosphere. The mixture was stirred overnight at room temperature before it was quenched with the addition of 0.5 mL of methanol. Solvent was evaporated under reduced pressure. The residue was redissolved in CH₂Cl₂, washed with 5% NaHCO₃, water, brine and dried over anhydrous Na₂SO₄. Solvent was removed *in vacuo*, crude product was purified by column chromatography (CH₂Cl₂ with 2.5% methanol) to afford 5'-*O*-(4,4'-dimethoxytrityl)-5-formyl-2'-deoxyuridine (115 mg, 0.21 mmol, 90% yield) as a white foam. ¹H NMR (300 MHz, CDCl₃) δ : 9.65 (s, 1H), 8.42 (s, 1H), 7.24 (m, 2H), 7.22 (m, 7H), 6.80 (dd, *J* = 0.84, 9 Hz, 4H), 6.15 (t, *J* = 6.6 Hz, 1H), 4.42 (m, 1H), 4.10 (m, 1H), 3.73

(s, 6H), 3.38 (m, 2H), 2.59 (m, 1H), 2.25 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ : 185.3, 161.6, 158. 6, 149.3, 145.8, 144.3, 135.4, 135.3, 130.0, 127.9, 127.0, 113.3, 111.1, 87.06, 87.00, 86.8, 72.4, 63.4, 55.2, 41.5. HRMS (*m/z*): calculated for C₃₁H₃₁N₂O₈ (M+H): 559.2075; found: 559.2078. The ¹H and ¹³C NMR spectra of 5'-O-(4,4'-dimethoxytrityl)-5-formyl-2'-deoxyuridine are consistent with CAS 157022-75-8.²

Synthesis of 5'-O-(4,4'-dimethoxytrityl)-5-formyl-2'-deoxyuridine-3'-O-(2-cyanoethyl-N,Ndiisopropyl)phosphoramidite.

To a solution of 5'-O-(4,4'-dimethoxytrityl)-5-formyl-2'-deoxyuridine (40 mg, 0.072 mmol) in 1 mL of anhydrous CH₃CN were added diisopropylethylamine (28 mg, 0.215 mmol), tetrazole in CH₃CN (0.24 mL, 0.108 mmol) and 2-cyanoethyl N,N,N',N'-tetraisopropylphosphordiamidite (33 mg, 0.108 mmol). The reaction was kept at room temperature and monitored by TLC. Ten minutes later, precipitate appeared. Upon completion, the reaction was quenched with the addition of 0.5 mL of absolute ethanol. Reaction was diluted with ethyl acetate with 1% triethylamine, washed with 5% NaHCO₃, water, brine, and dried over anhydrous Na₂SO₄. Solvent was removed under reduced pressure, crude product was purified by column chromatography (CH₂Cl₂ with 2% methanol and 1% triethylamine) to afford 5'-O-(4,4'-dimethoxytrityl)-5-formyl-2'-deoxyuridine-3'-O-(2-cyanoethyl-N,N-diisopropyl)phosphoramidite (48 mg, 0.063 mmol, 88% yield) as a white foam. ¹H NMR (300 MHz, CDCl₃) δ: 9.64 (d, J = 3.34 Hz, 1H), 8.46 (s, 0.53H), 8.42 (s, 0.47H), 7.99 (s, 1H), 7.21 (m, 10H), 6.81 (m, 4H), 6.14 (m, 1H), 5.86 (s, 1H), 4.49 (m, 1H), 4.15 (m, 1H), 3.76 (s, 6H), 3.61 (m, 8H), 2.72 (m, 2H), 2.58 (m, 1H), 2.42 (m, 1H), 1.23 (m, 12H). ¹³C NMR (75 MHz, CD₃OD) δ: 187.5, 163.7, 160.4, 151.1, 149.0, 146.2, 137.1, 136.9, 131.53, 131.50, 129.4, 129.0, 128.1, 114.4, 112.2, 88.9, 88.8, 88.3, 72.7, 64.8, 55.9, 55.0, 41.7, 26.7, 26.4, 19.4, 19.0. ³¹P NMR (120 MHz, CDCl₃) δ: 149.2, 148.8. HRMS (*m/z*): calculated for C₄₀H₄₈N₄O₉P (M+H): 759.3153; found: 759.3158. The ¹H and ¹³C NMR spectra of 5'-O-(4,4'-dimethoxytrityl)-5-formyl2'-deoxyuridine-3'-O-(2-cyanoethyl-N,N-diisopropyl)phosphoramidite are consistent with CAS 181421-94-3.²

Synthesis of 5-methoxycarbonyl-2'-deoxyuridine.

To a solution of 5-iodo-2'-deoxyuridine (100 mg, 0.282 mmol) in 4 mL of anhydrous DMF were added triphenylphosphine (45 mg, 0.17 mmol), triethylamine (57 mg, 0.566 mmol), $Pd_2(dba)_3$ (26 mg, 0.028 mmol) and 0.5 mL of methanol. The reaction flask was vacumm-flushed with carbon monoxide for three times. The reaction was then allowed to proceed at 70°C under CO atmosphere overnight. Reaction was filtered, filtrate was concentrated and purified by column chromatography (CH₂Cl₂ with 10% methanol) to afford 5-methoxycarbonyl-2'-deoxyuridine³ (79 mg, 0.276 mmol, 98% yield) as a pale yellow oil. ¹H NMR (300 MHz, DMSO) δ : 8.81 (s, 1H), 6.08 (t, *J* = 6.3 Hz, 1H), 5.23 (br, 1H), 5.03 (br, 1H), 4.23 (m, 1H), 3.83 (m, 1H), 3.68 (s, 3H), 3.58 (m, 2H), 2.20 (m, 2H). HRMS (*m/z*): calculated for C₁₁H₁₅N₂O₇ (M+H): 287.0874; found: 287.0871. The ¹H NMR spectrum of 5-methoxycarbonyl-2'-deoxyuridine is consistent with CAS 158021-27-3.³

Synthesis of 5'-O-(4,4'-dimethoxytrityl)-5-methoxycarbonyl-2'-deoxyuridine.

To a solution of 5-methoxycarbonyl-2'-deoxyuridine (250 mg, 0.874 mmol) in 20 mL of anhydrous pyridine was added 4,4'-dimethoxytrityl chloride (355 mg, 1.049 mmol) under argon atmosphere. The mixture was stirred overnight at room temperature before it was quenched with the addition of 1 mL of methanol. Solvent was evaporated under reduced pressure. The residue was redissolved in CH_2CI_2 , washed with 5% NaHCO₃, water, brine and dried over anhydrous Na₂SO₄. Solvent was removed *in vacuo*, crude product was purified by column chromatography (CH_2CI_2 with 3% methanol) to afford 5'-O-(4,4'-dimethoxytrityl)-5-methoxycarbonyl-2'-deoxyuridine⁴ (450 mg, 0.765 mmol, 88% yield) as a white foam. ¹H NMR (300 MHz, CD_3COCD_3) δ : 8.61 (s, 1H),

7.51 (m, 2H), 7.31 (m, 7H), 6.88 (m, 4H), 6.24 (t, J = 6.8 Hz, 1H), 4.47 (m, 1H), 4.11 (m, 1H), 3.79 (s, 6H), 3.42 (dd, J = 3.3, 10.5 Hz, 1H), 3.33 (dd, J = 4.3, 10.5 Hz, 1H), 3.31 (s, 3H), 2.37 (m, 2H). HRMS (m/z): calculated for C₃₂H₃₃N₂O₉ (M+H): 589.2181; found: 589.2189. The ¹H NMR spectrum of 5'-O-(4,4'-dimethoxytrityl)-5-methoxycarbonyl-2'-deoxyuridine is consistent with CAS 158021-28-4.⁴

Synthesis of 5'-O-(4,4'-dimethoxytrityl)-5-methoxycarbonyl-2'-deoxyuridine-3'-O-(2-cyanoethyl-N,N-diisopropyl)phosphoramidite.

To a solution of 5'-O-(4,4'-dimethoxytrityl)-5-methoxycarbonyl-2'-deoxyuridine (80 mg, 0.136 mmol) in 2 mL of anhydrous CH₃CN were added diisopropylethylamine (53 mg, 0.408 mmol), tetrazole in CH₃CN (0.45 mL. 0.204 mmol) and 2-cyanoethyl N.N.N'.N'tetraisopropylphosphordiamidite (61 mg, 0.204 mmol). The reaction was kept at room temperature and monitored by TLC. Ten minutes later, a white precipitate appeared. Upon completion, the reaction was quenched with the addition of 0.5 mL of absolute ethanol. Reaction was diluted with ethyl acetate with 1% triethylamine, washed with 5% NaHCO₃, water, brine, and dried over anhydrous Na₂SO₄. Solvent was removed under reduced pressure, crude product was purified by column chromatography (CH₂Cl₂ with 1.5% methanol and 1% triethylamine) to afford 5'-O-(4.4'-dimethoxytrityl)-5-methoxycarbonyl-2'-deoxyuridine-3'-O-(2-cyanoethyl-N.Ndiisopropyl)phosphoramidite⁴ (105 mg, 0.133 mmol, 98% yield) as a white foam. ¹H NMR (300

MHz, CDCl₃) δ : 8.69 (s, 0.52H), 8.65 (s, 0.48H), 7.39 (m, 2H), 7.23 (m, 7H), 6.79 (m, 4H), 6.22 (m, 1H), 4.48 (m, 1H), 4.20 (m, 1H), 3.74 (s, 6H), 3.54 (m, 5H), 3.21 (m, 1H), 3.18 (s, 1.5H), 3.17 (s, 1.5H), 2.72 (m, 2H), 2.57 (m, 1H), 2.22 (m, 1H), 1.23 (m, 12H). ³¹P NMR (120 MHz, CDCl₃) δ : 149.2, 148.6. HRMS (*m/z*): calculated for C₄₁H₅₀N₄O₁₀P (M+H): 789.3259; found: 789.3264. The ¹H NMR spectrum of 5'-O-(4,4'-dimethoxytrityl)-5-methoxycarbonyl-2'-deoxyuridine-3'-O-(2-cyanoethyl-*N*,*N*-diisopropyl)phosphoramidite is consistent with CAS 158021-31-9.⁴

3'-dNMPs.

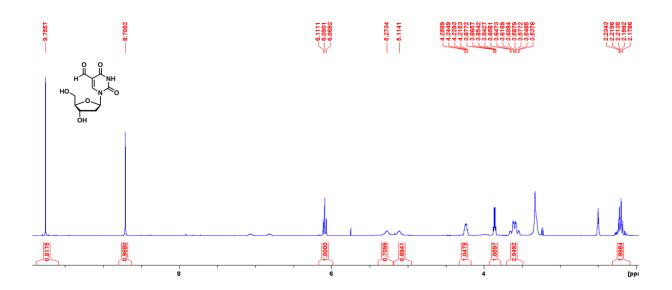
3'-^{ca}dUMP ¹H NMR (300 MHz, D₂O) δ: 8.45 (s, 1H), 6.35 (dd, J = 6.1, 7.4 Hz, 1H), 4.76 (m, 1H), 4.25 (m, 1H), 3.88 (m, 2H), 2.63 (m, 1H), 2.44 (m, 1H). ³¹P NMR (120 MHz, D₂O) δ: 2.5. HRMS (*m/z*): calculated for C₁₀H₁₂N₂O₁₀P (M-H): 351.0230; found: 351.0236.

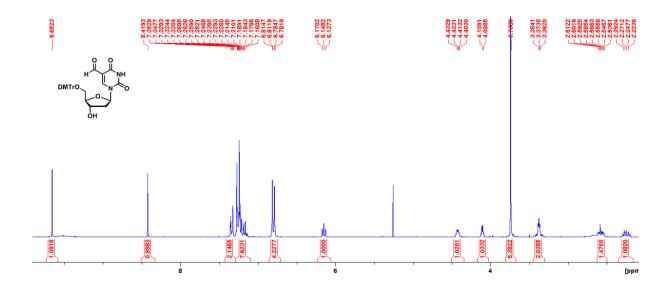
 $3'^{-ca}dCMP$ ¹H NMR (300 MHz, D₂O) δ : 8.56 (s, 1H), 6.32 (dd, J = 6.1, 7.4 Hz, 1H), 4.78 (m, 1H), 4.29 (m, 1H), 3.88 (m, 2H), 2.67 (m, 1H), 2.36 (m, 1H). ³¹P NMR (120 MHz, D₂O) δ : 2.7. HRMS (*m/z*): calculated for C₁₀H₁₃N₃O₉P (M-H): 350.0389; found: 350.0390.

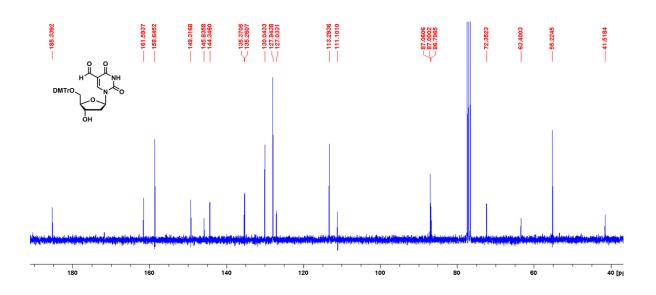
3'-^{hm}*dCMP* ¹H NMR (300 MHz, D₂O) δ : 7.92 (s, 1H), 6.29 (dd, *J* = 5.9, 8.0 Hz, 1H), 4.70 (m, 1H), 4.46 (s, 2H), 4.17 (m, 1H), 3.84 (m, 2H), 2.58 (m, 1H), 2.36 (m, 1H). ³¹P NMR (120 MHz, D₂O) δ : 1.1. HRMS (*m/z*): calculated for C₁₀H₁₅N₃O₈P (M-H): 336.0597; found: 336.0586.

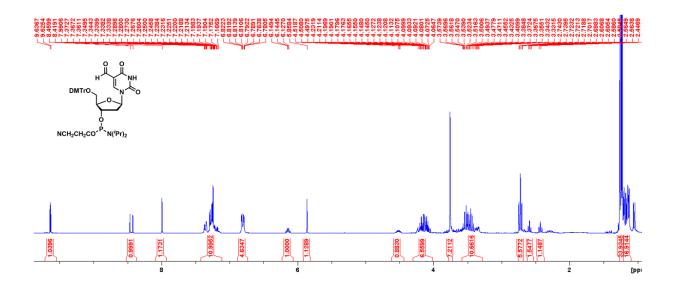
3'-dCMP ¹H NMR (300 MHz, D₂O) δ : 7.90 (d, *J* = 7.6 Hz, 1H), 6.34 (t, *J* = 6.9 Hz, 1H), 6.11 (d, *J* = 7.6 Hz, 1H), 4.76 (m, 1H), 4.25 (m, 1H), 3.87 (m, 2H), 2.63 (m, 1H), 2.39 (m, 1H). ³¹P NMR (120 MHz, D₂O) δ : 1.9. HRMS (*m/z*): calculated for C₉H₁₃N₃O₇P (M-H): 306.0491; found: 306.0490.

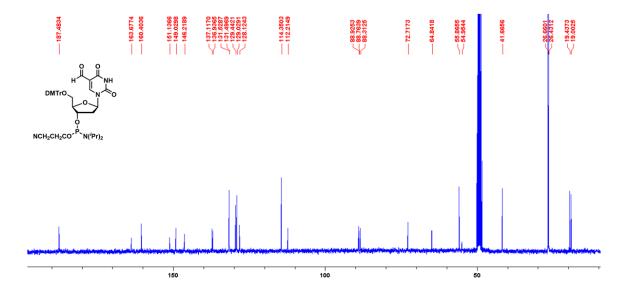
3'-*dUMP* ¹H NMR (300 MHz, D₂O) δ : 7.87 (d, *J* = 8.1 Hz, 1H), 6.29 (t, *J* = 7.0 Hz, 1H), 5.90 (d, *J* = 8.1 Hz, 1H), 4.77 (m, 1H), 4.20 (m, 1H), 3.80 (m, 2H), 2.57 (m, 1H), 2.39 (m, 1H). ³¹P NMR (120 MHz, D₂O) δ : 1.1. HRMS (*m/z*): calculated for C₉H₁₂N₂O₈P (M-H): 307.0331; found: 307.0345.

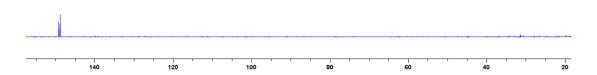

3'-^{hm}dUMP ¹H NMR (300 MHz, D₂O) δ : 8.04 (s, 1H), 6.34 (dd, *J* = 6.1, 7.3 Hz, 1H), 4.75 (m, 1H), 4.49 (s, 2H), 4.37 (m, 1H), 4.10 (m, 2H), 2.60 (m, 1H), 2.37 (m, 1H). ³¹P NMR (120 MHz, D₂O) δ : 0.8. HRMS (*m/z*): calculated for C₁₀H₁₄N₂O₉P (M-H): 337.0437; found: 337.0444.

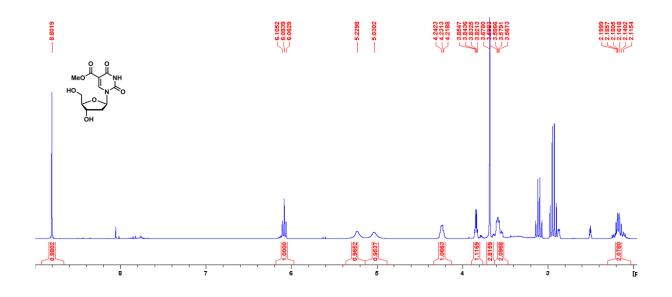

3'-^{fo}*dUMP* ¹H NMR (300 MHz, D₂O) δ : 9.69 (s, 1H), 8.56 (s, 1H), 6.33 (dd, J = 6.0, 7.2 Hz, 1H), 4.73 (m, 1H), 4.27 (m, 1H), 3.93 (m, 2H), 2.75 (m, 1H), 2.49 (m, 1H). ³¹P NMR (120 MHz, D₂O) δ : 3.2. HRMS (*m/z*): calculated for C₁₀H₁₂N₂O₉P (M-H): 335.0280; found: 335.0289.

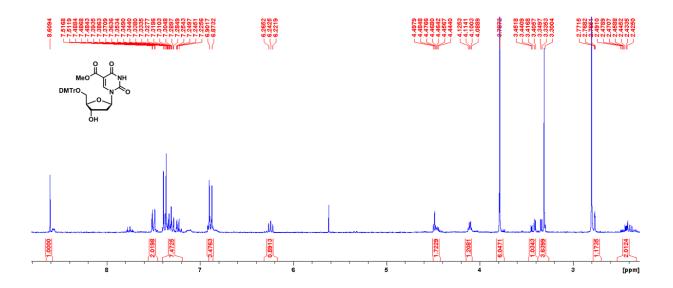

3'-^mdCMP ¹H NMR (300 MHz, D₂O) δ: 7.68 (s, 1H), 6.30 (t, J = 6.8 Hz, 1H), 4.73 (m, 1H), 4.18 (m, 1H), 3.85 (m, 2H), 2.57 (m, 1H), 2.33 (m, 1H), 1.97 (s, 3H). ³¹P NMR (120 MHz, D₂O) δ: 1.0. HRMS (*m/z*): calculated for C₁₀H₁₅N₃O₇P (M-H): 320.0648; found: 320.0643.

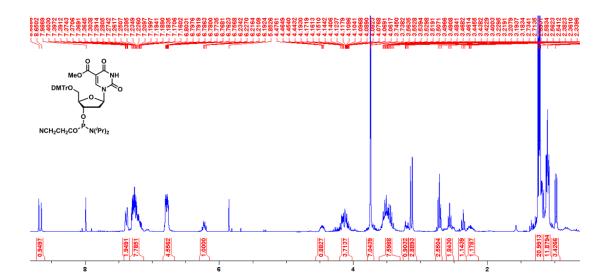

3'-dTMP ¹H NMR (300 MHz, D₂O) δ : 7.65 (s, 1H), 6.27 (t, *J* = 6.8 Hz, 1H), 4.76 (m, 1H), 4.14 (m, 1H), 3.81 (m, 2H), 2.52 (m, 1H), 2.39 (m, 1H), 1.88 (s, 3H). ³¹P NMR (120 MHz, D₂O) δ : 1.5. HRMS (*m/z*): calculated for C₁₀H₁₄N₂O₈P (M-H): 321.0488; found: 321.0493.

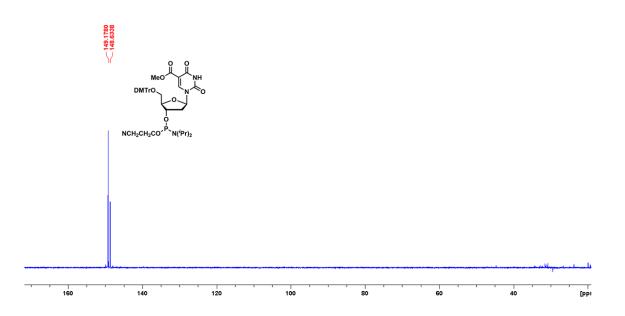

3'-^{fo}*dCMP* ¹H NMR (300 MHz, CD₃OD) δ: 9.58 (s, 1H), 9.06 (s, 1H), 6.24 (t, J = 5.9 Hz, 1H), 4.44 (m, 1H), 4.06 (m, 1H), 3.96 (m, 1H), 3.84 (m, 1H), 2.56 (m, 1H), 2.31 (m, 1H). ³¹P NMR (120 MHz, D₂O) δ: 2.3. HRMS (*m/z*): calculated for C₁₀H₁₃N₃O₈P (M-H): 334.0440; found: 334.0424.

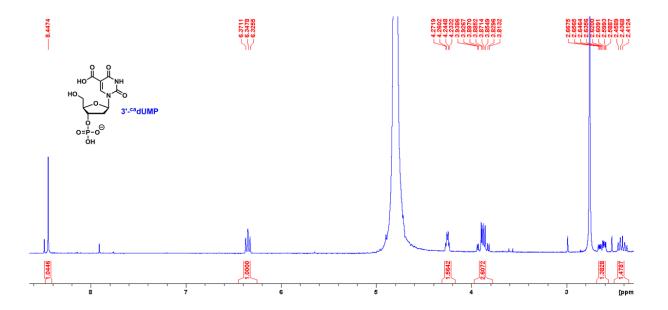


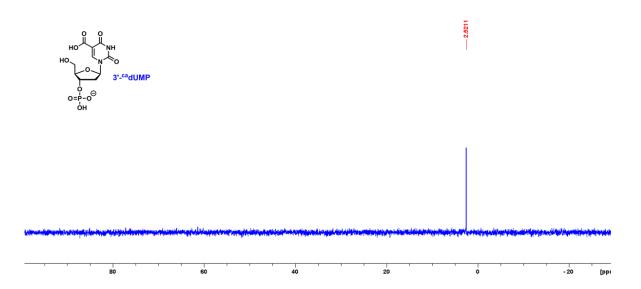


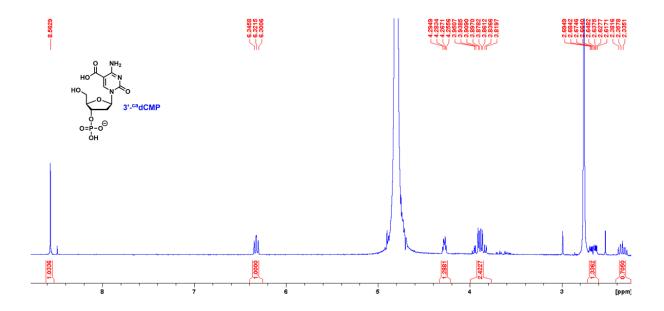


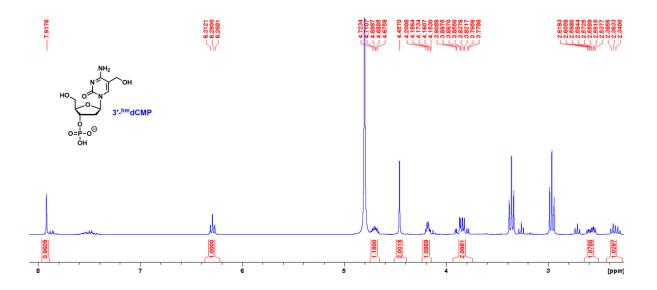


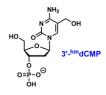

NCH₂CH₂CO^{·P}·N([/]Pr)₂

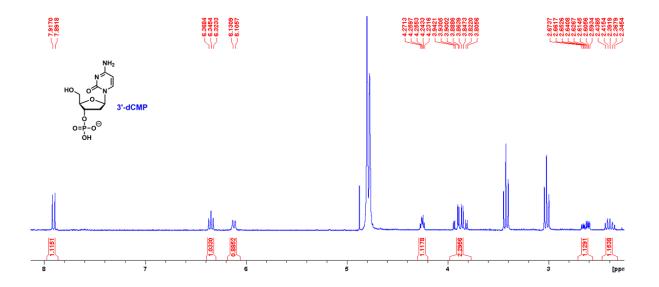




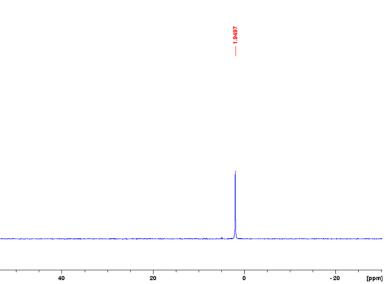


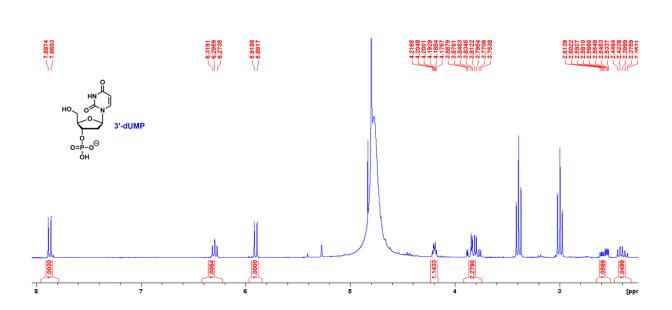


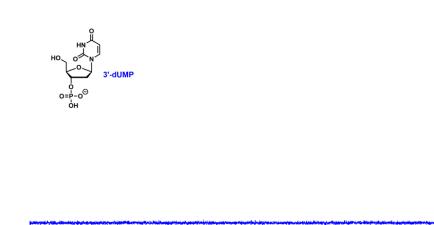


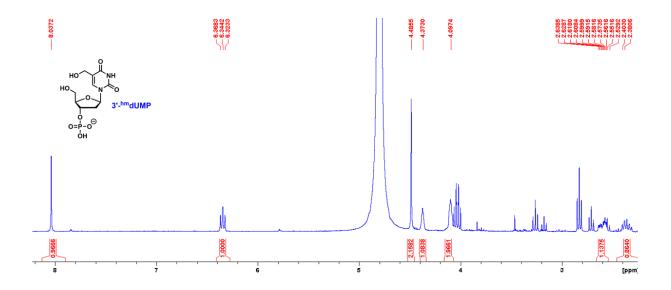


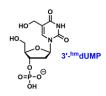
		1	-	· · · ·							·				1				
80				60			40			20			0					20	Em m mai
											20							- 20	[ppm]

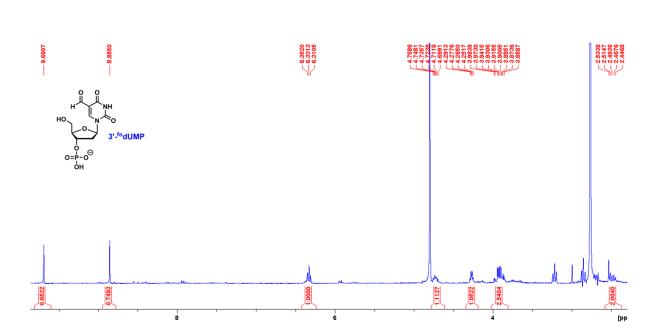


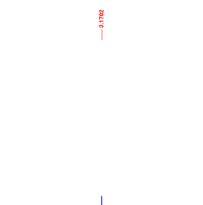


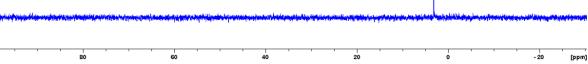

 		 	 1	 	 _	 	 	 	 -	-	 		
	80		50		40		20		0			- 20	[ppm

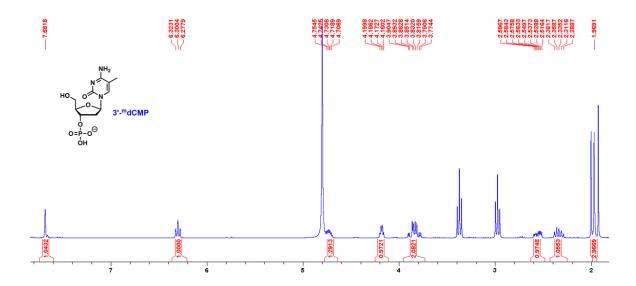


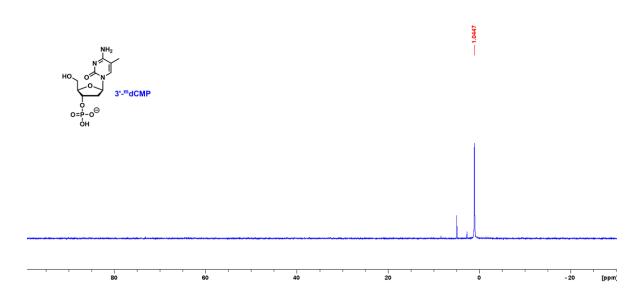


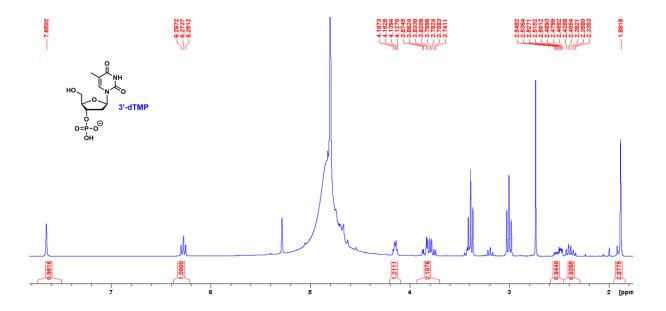


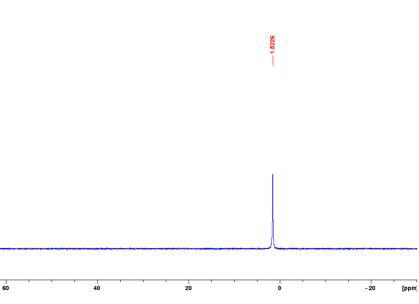


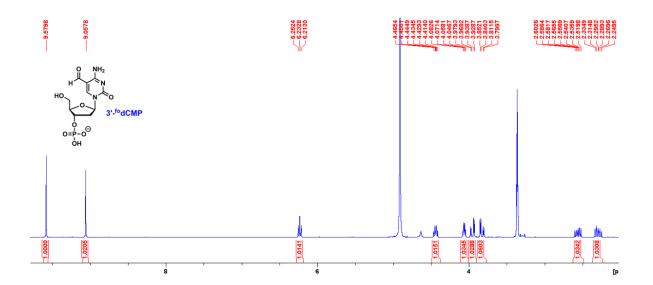


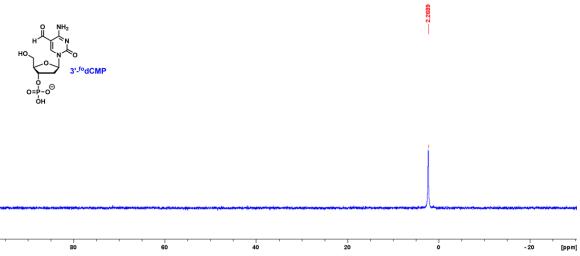

[ppn

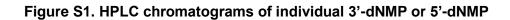


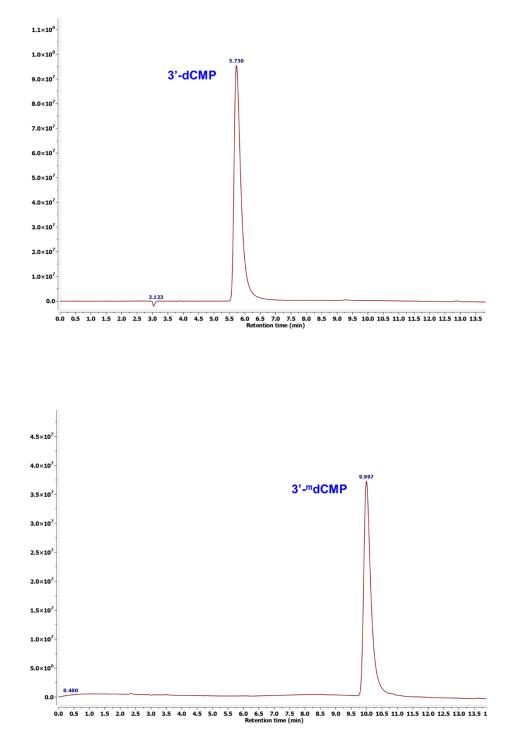


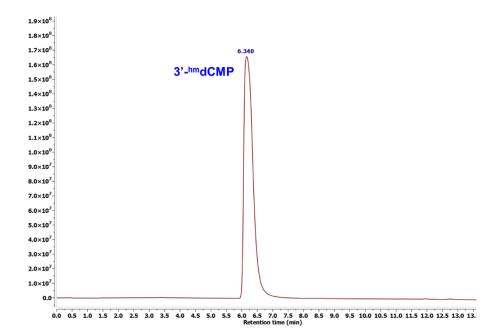


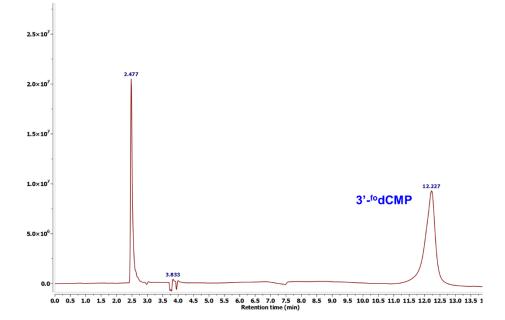


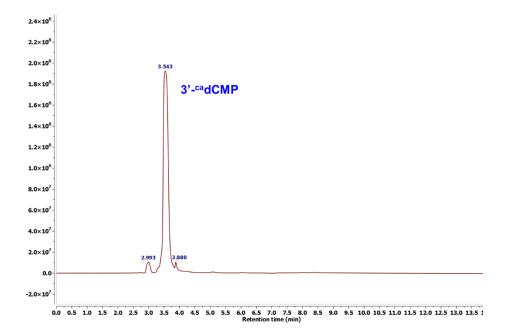


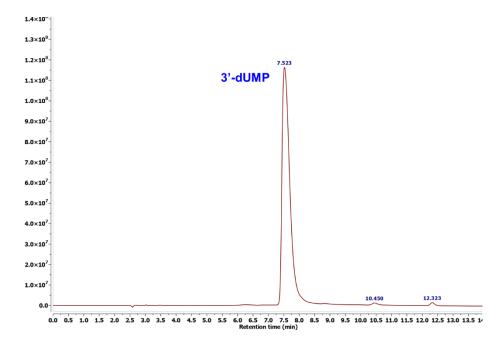


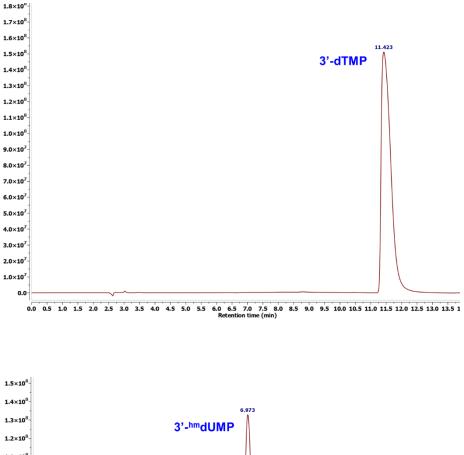


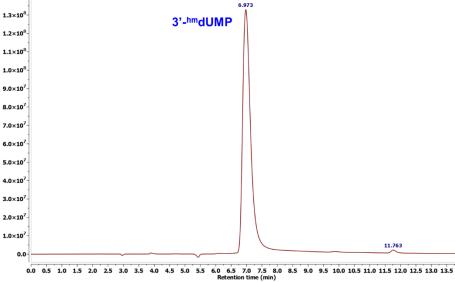


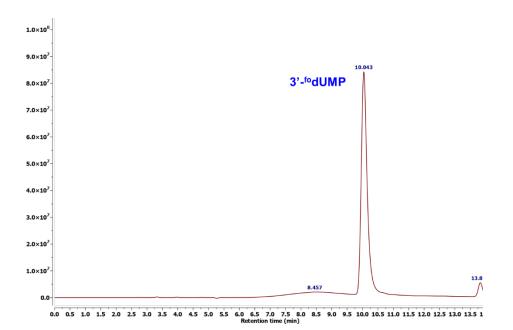


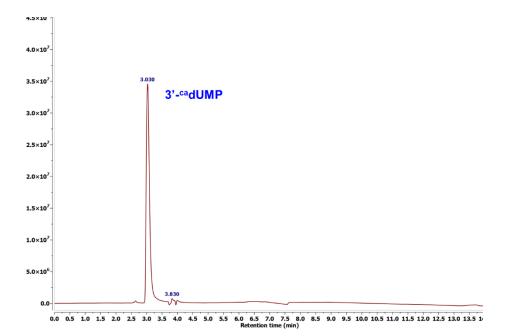


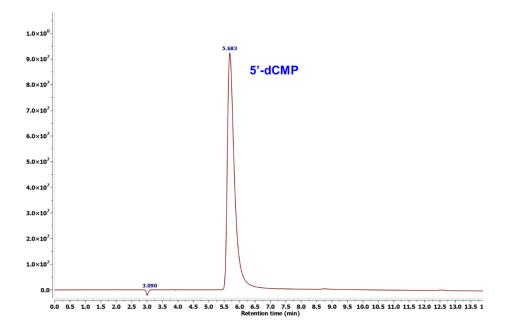


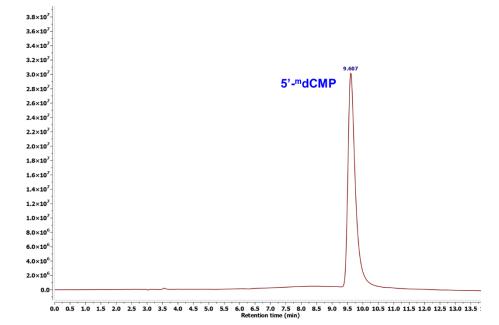


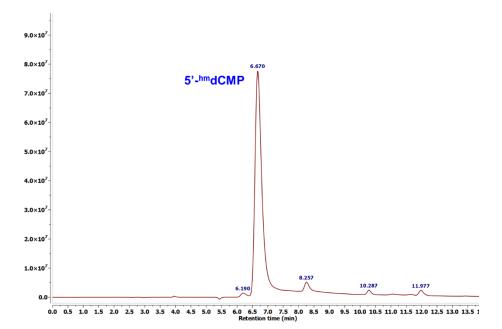


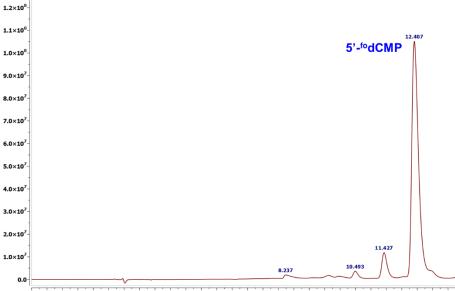


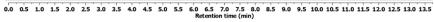


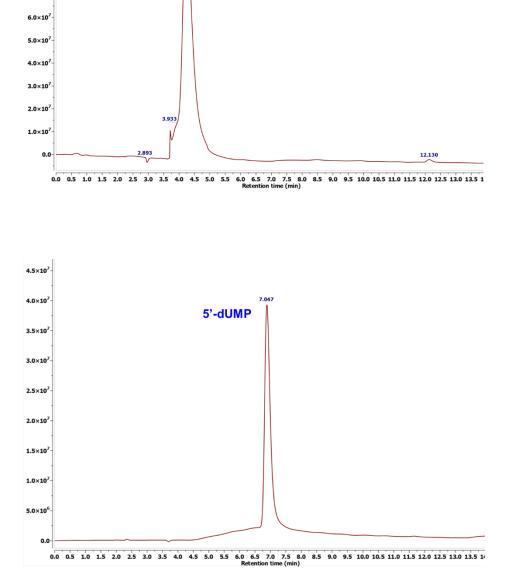


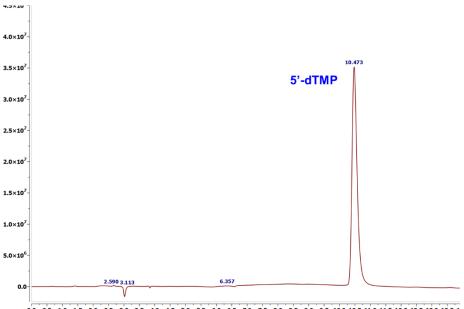




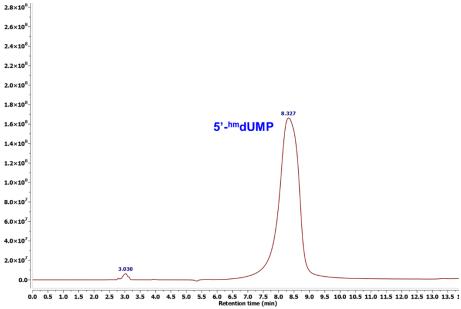


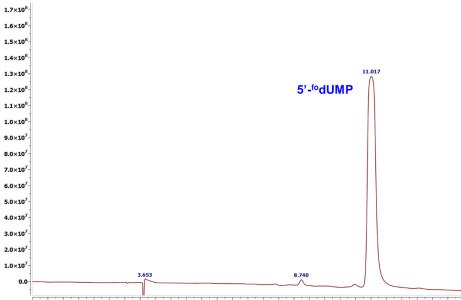


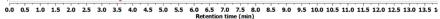


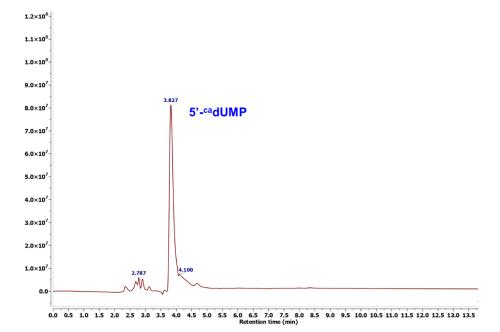

4.237

5'-cadCMP


1.2×10⁸-. 1.1×10⁸-


1.0×10⁸


9.0×10⁷ 8.0×10⁷ 7.0×10⁷



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 1 Retention time (min)

REFERENCES

- 1. K. Sato, W. Hirose and A. Matsuda, *Curr Protoc Nucleic Acid Chem*, 2008, **Chapter 1**, Unit 1 21.
- 2. T. Berthod, Y. Petillot, A. Guy, J. Cadet, E. Forest and D. Molko, *Nucleos Nucleot*, 1996, **15**, 1287-1305.
- 3. A. Ono, N. Haginoya, M. Kiyokawa, N. Minakawa and A. Matsuda, *Bioorganic & Medicinal Chemistry Letters*, 1994, **4**, 361-366.
- 4. N. Haginoya, A. Ono, Y. Nomura, Y. Ueno and A. Matsuda, *Bioconjug Chem*, 1997, **8**, 271-280.