Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

Sulfur-mediated annulation of 1,2-phenylenediamines towards benzofuro- and

benzothieno-quinoxalines

Loan T. Tran,^[a,b] Tuan H. Ho,^[a,b] Nhu T. A. Phan,^[a,b] Tung T. Nguyen,*^[a,b] and Nam T.

S. Phan*[a,b]

^[a]Faculty of Chemical Engineering, Ho Chi Minh City University of Technology

(HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam

^[b]Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District,

Ho Chi Minh City, Vietnam

*Email: tungtn@hcmut.edu.vn, ptsnam@hcmut.edu.vn

Ph: (+84 8) 38647256 ext. 5681 Fx: (+84 8) 38637504

Supporting information

1. Materials and instrumentation

All reagents and starting materials were obtained commercially and used as received without any further purification unless otherwise noted. Gas chromatographic (GC) analyses were performed using a Shimadzu GC 2010-Plus equipped with a flame ionization detector (FID) and an SPB-5 column (length = 30 m, inner diameter = 0.25 mm, and film thickness = 0.25 μ m). GC-MS analyses were analyzed on a Shimadzu GCMS-QP2010Ultra with a ZB-5MS column (length = 30 m, inner diameter = 0.25 mm, and film thickness = 0.25 μ m). The ¹H NMR and ¹³C NMR were recorded on Bruker AV 500 spectrometers. Without notice, chemical shifts were reported in ppm and referenced to the residual peak for CDCl₃ (δ = 7.26 ppm for ¹H NMR and δ = 39.5 ppm for ¹³C NMR) or DMSO-*d*₆ (δ = 2.50 ppm for ¹H NMR and δ = 39.5 ppm for ¹³C NMR). Splitting was reported with the following symbols: s = singlet, bs = broad singlet, d = doublet, t = triplet, q = quartet, td =

triplet of doublets, dd = doublet of doublets, ddd = doublet of doublets of doublets, and m = multiplet. Coupling constants (*J*) were reported in hertz. HR-MS spectra were recorded by an Agilent HPLC 1200 Series coupled to Bruker micrOTOF-QII.

2. Studies of reaction conditions

2.1. General procedure

In a typical experiment, a vial equipped with a magnetic stir bar was charged with *o*-phenylenediamine **1a** (27.0 mg, 0.25 mmol), 2'-hydroxyacetophenone **2a**, elemental sulfur (32 mg/mmol), DABCO, and DMSO. The vial was placed on a pre-heated oil bath at 120 °C, then stirred for 30 min. Upon the completion of the reaction, ethyl acetate (2 mL) was added to dilute the reaction mixture. The GC yield of desired product was monitored by withdrawing aliquots from the resulting mixture, quenching with brine (1 mL) before extracting with ethyl acetate (3 x 1 mL), drying over anhydrous Na₂SO₄, filtering, and then analyzing the sample by GC regarding diphenyl ether (42.5 mg, 0.25 mmol) as internal standard.

2.2 Optimization studies

2.2.1. Effect of bases

Entry	base	yield of 3aa , %	entry	base	yield of 3aa , %
1	NaOH	74	7	3-picoline	62
2	КОН	69	8	<i>N</i> -methyl morpholine	70

3	Na ₂ CO ₃	71	9	N,N'-	81
				dimethylpiperazine	
4	K ₂ CO ₃	46	10	DABCO	97
5	K ₃ PO ₄	69	11	NH ₄ OAc	49
6	NaOAc	56	12	no base	61

condition: **1a** (0.25 mmol), **2a** (0.5 mmol), elemental sulfur (0.5 mmol), base (0.375 mmol), DMSO (0.5 mL), 120 °C, 16 h, under argon. Yields are GC yields using diphenyl ether internal standard.

2.2.2. Effect of sulfur amount

Entry	sulfur amount (equivalent)	yield of 3aa , %
1	0	trace
2	0.25	40
3	0.5	86

9	4	quantitative
8	3	quantitative
7	2.5	98
6	2	97
5	1.5	95
4	1	92

condition: **1a** (0.25 mmol), **2a** (0.5 mmol), elemental sulfur (x equivalents), DABCO (0.375 mmol), DMSO (0.5 mL), 120 °C, 16 h, under argon. Yields are GC yields using diphenyl ether internal standard.

2.2.3. Effect of inert atmosphere

Entry		yield of 3aa , %
1	under argon	quantitative
2	under air	quantitative

3	under oxygen	96

condition: **1a** (0.25 mmol), **2a** (0.5 mmol), elemental sulfur (3 equivalents), DABCO (0.375 mmol), DMSO (0.5 mL), 120 °C, 16 h. Yields are GC yields using diphenyl ether internal standard.

2.2.4. Effect of solvents

Entry	solvent	yield of 3aa , %
1	<i>n</i> -butanol	12
2	1,4-dioxane	14
3	DMSO	quantitative
4	DMF	7
4 5	DMF pyridine	7

condition: **1a** (0.25 mmol), **2a** (0.5 mmol), elemental sulfur (3 equivalents), DABCO (0.375 mmol), solvent (0.5 mL), 120 °C, 16 h, under air. Yields are GC yields using diphenyl ether internal standard.

2.2.5. Effect of DMSO amount

Entry	equivalent of DMSO	yield of 3aa , %
1	0 (solvent-free)	24
2	1	46
3	2	77
4	3	95
5	4	quantitative
6	0.1 mL	quantitative
7	0.5 mL	quantitative

6

condition: **1a** (0.25 mmol), **2a** (0.5 mmol), elemental sulfur (3 equivalents), DABCO (0.375 mmol), DMSO (x equivalents to y mL), 120 °C, 16 h, under air. Yields are GC yields using diphenyl ether internal standard.

2.2.7. Effect of reaction time

condition: **1a** (0.25 mmol), **2a** (0.5 mmol), elemental sulfur (3 equivalents), DABCO (0.375 mmol), DMSO (1 mmol), 120 °C, under air. Yields are GC yields using diphenyl ether internal standard.

3. Copies of NMR spectra

Fig. S1. ¹H NMR spectrum of 3aa.

Fig. S2. ¹³C NMR spectrum of 3aa.

Fig. S3. ¹H NMR spectrum of 3ba + 3b'a.

Fig. S4. ¹³C NMR spectrum of 3ba+ 3b'a.

Fig. S5. ¹H NMR spectrum of 3ca + 3c'a.

Fig. S6. ¹³C NMR spectrum of 3ca + 3c'a.

Fig. S7. ¹H NMR spectrum of **3da** + **3d'a**.

Fig. S9. ¹H NMR spectrum of 3ea.

Fig. S10. ¹³C NMR spectrum of 3ea.

Fig. S12. ¹³C NMR spectrum of 3fa + 3f'a.

Fig. S13. ¹H NMR spectrum of 3ga.

Fig. S14. ¹³C NMR spectrum of 3ga.

Fig. S16. ¹³C NMR spectrum of **3ha**.

Fig. S18. ¹³C NMR spectrum of 3ia + 3i'a.

Fig. S19. ¹H NMR spectrum of 3ja.

Fig. S20. ¹³C NMR spectrum of 3ja.

Fig. S21. ¹H NMR spectrum of 3ab.

Fig. S22. ¹³C NMR spectrum of 3ab.

Fig. S24. ¹³C NMR spectrum of 3ac.

Fig. S25. ¹H NMR spectrum of 3ad.

Fig. S26. ¹³C NMR spectrum of 3ad.

Fig. S28. ¹³C NMR spectrum of 3ae.

Fig. S30. ¹³C NMR spectrum of 3af.

Fig. S31. ¹H NMR spectrum of 3ag.

Fig. S32. ¹³C NMR spectrum of 3ag.

Fig. S33. ¹H NMR spectrum of 3ah.

Fig. S34. ¹³C NMR spectrum of 3ah.

Fig. S35. ¹H NMR spectrum of 3ai.

Fig. S36. ¹³C NMR spectrum of 3ai.

Fig. S37. ¹H NMR spectrum of 3aj.

Fig. S38. ¹³C NMR spectrum of 3aj.

Fig. S39. ¹H NMR spectrum of 5aa.

Fig. S40. ¹³C NMR spectrum of 5aa.

Fig. S41. ¹H NMR spectrum of 5ba + 5b'a.

Fig. S42. ¹³C NMR spectrum of **5ba + 5b'a**.

Fig. S43. ¹H NMR spectrum of 3ea + 3e'a.

Fig. S44. ¹³C NMR spectrum of 3ea + 3e'a.

Fig. S46. ¹³C NMR spectrum of 5ha.

Fig. S47. ¹H NMR spectrum of 5la + 5l'a.

Fig. S48. 13 C NMR spectrum of 5la + 5l'a.

Fig. S49. ¹H NMR spectrum of 5ab.

Fig. S50. ¹³C NMR spectrum of 5ab.

Fig. S51. ¹H NMR spectrum of 5ac.

Fig. S52. ¹³C NMR spectrum of 5ac.

Fig. S53. ¹H NMR spectrum of 5ad.

Fig. S54. ¹³C NMR spectrum of 5ad.

Fig. S55. ¹H NMR spectrum of 7aa.

Fig. S56. ¹³C NMR spectrum of 7aa.

Fig. S57. ¹H NMR spectrum of 7ab.

Fig. S58. ¹³C NMR spectrum of 7ab.

Fig. S59. ¹H NMR spectrum of 8.

Fig. S60. ¹³C NMR spectrum of 8.

Fig. S61. ¹H NMR spectrum of 9.

Fig. S62. ¹³C NMR spectrum of 9.

- DCM Actor DCM
- 4. Study of photophysical properties

Solutions (concentration 4.5 * 10⁻⁵ M) of compound **3ga** in different solvents: (from left to right) CH₂Cl₂, acetone, THF, and CHCl₃. Top: without irradiation, bottom: irradiation with $\lambda = 365$ nm.

5. Limitation of reaction scope

The following compounds gave the products in less than 10% yields.

