Supplementary Material for

Synthesis and sequential diastereoselective incorporation of hydroxyl groups into hexahydrofuro[2,3-f]indolizin-7(2H)-one to give mono-, di- and tetra-hydroxyfuroindolizidines

Peter Šafář, ^a Štefan Marchalín, ^{*a,b} Matej Cvečko, ^a Ján Moncol, ^c Viera Dujnič, ^d Michal Šoral, ^e and Adam Daïch^{*b,†}

- ^{a.} Department of Organic Chemistry, Faculty of Chemical & Food Technology, Slovak University of Technology, Radlinského 9, SK-81237 Bratislava, Slovakia
- ^{b,} Normandie Univ, UNILEHAVRE, CNRS, URCOM, 76600 Le Havre, France.
- ^{c,} Department of Inorganic Chemistry, Faculty of Chemical & Food Technology, Slovak University of Technology, Radlinského 9, SK-81237 Bratislava, Slovakia
- ^d, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38, Bratislava, Slovakia
- e, Central Laboratories, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 81237 Bratislava, Slovak Republic
- [†] <u>Corresponding author.</u> Tel.: (+33) 02-32-74-44-03; <u>adam.daich@univ-lehavre.fr</u>; ORCID AD: orcid.org/0000-0002-6942-0519

Complete address: Normandie Univ, UNILEHAVRE, URCOM EA 3221, INC3M CNRS-FR 3038, UFR des Sciences et Techniques, Université Le Havre Normandie, BP : 1123, 25 rue Philipe Lebon, F-76063 Le Havre Cedex, France.

Peter Šafář ORCID: https://orcid.org/0000-0002-9502-3365

Štefan Marchalin ORCID: https://orcid.org/0000-0003-0680-3771; E-Mail: stefan.marchalin@stuba.sk Jan Moncol ORCID: https://orcid.org/0000-0003-2153-9753

Table of contents

General methods	S02
Synthetic experiments	S03
Dihydroxylation of compound 5 (methods A-C)	S03-S04
Synthesis of compound 8c	S03
Synthesis of compound 18c	S04
Synthesis of compound 19c	S04
Synthesis of compound 20	S04
Synthesis of compound 21	S05
Synthesis of compound 9c	S05
Synthesis of compound 28	S06
Synthesis of compound 14	S 07
Synthesis of compound 23a	S 07
Synthesis of compound 24	S08
Synthesis of compound 25	S08
Synthesis of compound 29a	S08
Synthesis of compound 31	S09
Synthesis of compounds 30a and 30b	S09-S10
Epoxidation of compound 5 (Methods A-E)	S10-S11
Synthesis of compound 6	S10
Synthesis of compound 8a	S11

Synthesis of compound 26	S12
Synthesis of compound 18a	S12
Synthesis of compound 9a	S13
Synthesis of compound 23	S13
Synthesis of compound 32a	S13
Synthesis of compound 33a	S14
¹ H and ¹³ C NMR, HMBC, HSQC, COSY and NOESY spectra	S15-S71
X-ray Crystallographic Data of compounds	S72-S75

General methods

Melting points were obtained using a Boetius apparatus and are corrected. Commercial reagents were used without further purification. All solvents were distilled before use. Flash column liquid chromatography (FLC) was performed on silica gel Kieselgel pore size 60 Å (40–63 µm particle size, 230-400 mesh particlesize) and analytical thin-layer chromatography (TLC) was performed on aluminium plates pre-coated with either 0.2 mm (DC-Alufolien, Merck) or 0.25 mm silica gel 60 F254 (ALUGRAM-SIL G/UV254, Macherey-Nagel). The compounds were visualized by UV fluorescence and by dipping the plates in anaqueous H₂SO₄ solution of cerium sulfate/ammonium molybdate followed by charring with a hea tgun (250 °C). HPLC analyses were performed on Varian system 9012 with diodearray Varian 9065 polychrom UV detector: column CC 250/3 Nucleosil 120-5 C18, 250x3 mm (Macherey-Nagel). Mobile phase: solvent A: water-acetonitrile-methanesulfonic acid (1000:20:1), solvent B: water-acetonitrile-methanesulfonic acid (20/1000/1), elution mode: gradient with 5-50% solvent B, flow rate: 0.65 mL/min, UV detection: 210 nm (DAD), 35 °C, 20 minutes. GC-MS analyses were performed on GC-MS Varian Saturn 2100 T, ion trap MS detector, 70 eV. Column: Varian, Factor Four capillary column VF-5ms 30mx0.25 mm ID, DF = 0.25. Optical rotations were measured with a POLAR L-IP polarimeter (IBZ Messtechnik) with a water jacketed 10 cm cell at the wave length of the sodium line D ($\lambda = 589$ nm). Specific rotations are given in units of 10⁻¹ deg cm.g⁻¹ and concentrations are given in g/100 mL. Infrared spectra were recorded on a Nicolet 5700 FT-IR spectrometer as ATR discs (ATR) or as thin films on ATR plates(film). NMR spectra were recorded on a VNMRS 600 NMR spectrometer (Varian) with operating frequencies 599.76 MHz for ¹H and 150.82 MHz for ¹³C. NMR spectra from all samples were measured in CDCl₃, d_6 -Acetone or CD₃OD at 25 °C. Chemical shifts (δ) are quoted in ppm; the chemical shift axes were calculated using the reference signals of TMS (for ¹H and ¹³C NMR). Depending on the possibilities and amount of information needed to provide the best possible structural proof ¹H, standard ¹³C, quantitative ¹³C, ¹³C-attached proton test, within versegated ¹H decoupling, supported by ¹H-¹HCOSY (with gradient coherence selection and with/without zero quantum filtering), ¹H-¹³C HSQC (with varied use of gradient coherence selection, adiabatic 180° pulses on the ¹³C channel and non-uniform sampling), ¹H-¹³CHMBC (with gradient coherence selection and varied use of adiabatic 180° pulses on the ¹³C channel and semi-selective ¹³C excitation with WURST2 ipulses), ¹³C-¹³C INADEQUATE (withan adiabatic 180° pulse). For the precise extraction of chemical shift and J-coupling values manual spin simulation was preformed if needed in the spin simulation package built in the MestReNova software (version 11.0.2-18153). MS analysis was performed using a Thermo Scientific LTQ Orbitrap with ETD, mass spectrometer, a syringe pump, and an ESI source in the positive ion source mode, run by Xcalibur 2.0 software (Thermo Electron Corporation). The spray needle voltage was set at 5.0 kV and the spray was stabilized with a nitrogen sheath gas (30 psi). The capillary temperature was 275 °C. A syringe pump delivering 6 µl/min was used for the direct injections of compounds diluted in methanol (c = 1 mg/ml). Mass spectra were acquired in full mass scan mode and recorded with a limited mass range from m/z 80-600. All the samples were diluted in methanol (LC-MS quality, Sigma Aldrich). High-resolution spectrometry was performed on Micromass Q-Tof Micro MS system with ESI⁺ionization (measured mass represents M+1⁺) and LC-MS chromatographic separation

was performed on Agilent 1260B LC-MS system using HALO C18 column (2.1×50 mm, 5.0 µm particle size). A 10 min gradient elution was performed at 1.5 mL/min flow rate as follows: maintain H₂O/MeOH with 0.1% formic acid from 5% to 100%. MS detector used combine dionization (ESI + APCI) in positive mode, 50% scan and 50% SIM. All samples for analysis and NMR spectroscopy were dried at room temperature for 48 hours at Laboratory Freeze Dryer Alpha 2–4 LD plus Lyophilizer.

Synthetic experiments

(3S,3aS,4aS,9aR)-3,3a-Dihydroxyoctahydrofuro[2,3-f]indolizin-7(2H)-one (8c)

Method A: Upjohn dihydroxylation with OsO4 and NMO.

A solution of NMO (10.35 g, 88.2 mmol) in water (10 ml) was added to a mixture of t-BuOH, acetone and water (500 ml, 1:5:1) at 0 °C. DHF-5 (15.8 g, 88.2 mmol) was then added in one portion, the mixture allowed to stirred for 10 minutes and then OsO4 (125 mg, 0.5 mmol) in t-BuOH (10 ml) was added dropwise over 10 minutes. The mixture could continue stirring and warm slowly to room temperature (TLC monitoring, 18 hours). The reaction was quenched by the addition of sodium sulfite (25 g) and was stirred at room temperature 15 minutes, 75 g of SiO₂ was added and concentrated in vacuo. [The crude mixture (30 mg) was redissolved in 1 : 1 acetic anhydride and Et_3N (~1.0 ml) and DMAP (1 mg) was added. The mixture was stirred at room temperature overnight and concentrated in vacuo on a hot bath (~65 °C). An ¹H NMR spectrum was obtained on the crude mixture of diastereometric acetonides endo/exo in the ratio 99:1]. The crude solid was purified by flash chromatography (CH₂Cl₂, CH₂Cl₂:MeOH 5:1) to afford the diol as a white solid (17.1 g, 91%), which was recrystallized from isopropanol to afford white needles (14.7 g, 78%); mp 114.7-116.1 °C. $[\alpha]_D^{22} = -10.9$ (c 1, MeOH). TLC (Silica gel): R_f = 0.21 (CH₂Cl₂:isopropanol 5:1). IR (ATR): v = 3375, 3283, 2952, 2907, 2862, 1680, 1651, 1465, 1439, 1411, 1357, 1330, 1290, 1254, 1296, 1204, 1175, 1133, 1111, 1067, 1041, 1024, 977, 968, 947, 931, 880, 837, 807, 749, 623, 500, 480, 438. ¹H NMR (600 MHz, CD₃OD): δ 4.33 (t, J = 7.4 Hz, 1H, H-3), 4.11 (dd, J = 8.6, 7.3 Hz, 1H, H-2), 3.96 (dd, J = 13.8, 6.6 Hz, 1H, H-9_{e0}), 3.81 (dd, *J* = 8.0, 6.6 Hz, 1H, H-9a), 3.72 (dddd, *J* = 12.0, 7.4, 6.4, 3.6 Hz, 1H, H-4a), 3.69 (dd, *J* = 8.6, 7.6 Hz, 1H, H-2'), 2.85 (tdd, J = 13.8, 8.0, 0.8 Hz, 1H, H9_{ax}), 2.44 – 2.35 (m, 2H, 2xH-6), 2.27(tdd, J = 12.8, 7.5, 6.4 Hz, 1H, H-5), 2.22 (dd, J = 13.6, 3.6 Hz, 1H, H-4_{eq}), 1.69 (dtd, J = 12.8, 9.0, 6.3 Hz, 1H, H-5'), 1.56 (dd, J = 13.6, 12.0 Hz, 1H). ¹³C NMR (150 MHz, CD₃OD): δ 176.6 (s, C-7), 80.5 (d, C-9a), 77.0 (d, C-3a), 73.2 (d, C-3), 72.1 (t, C-2), 54.3 (d, C-4a), 42.4 (t, C-9), 40.33 (t, C-4), 31.3 (t-C-6), 25.8 (t, C-5) ppm. HRMS (ESI): m/z calcd. for C₁₀H₁₅NO₄ [M+H]⁺ 214.1074, found 214.1073.

Method B: Sharpless dihydroxylation with AD-mix α .

The crude diol was prepared from a solution of DHF-5 (1.27 g, 7.1 mmol), AD-mix α (9,94 g) and methylsulfonamide (675 mg, 7.1 mmol) in a mixture of 3:1 *t*-BuOH/water (75 ml) according to the procedure and work-up described above (method A). Purification by flash chromatography (CH₂Cl₂, CH₂Cl₂:MeOH 5:1) afforded the desired diol **8c** as a white solid (968 mg, 64%). *The crude mixture (25 mg) was redissolved in 1:1 acetic anhydride/Et₃N (~1.0 ml) and DMAP (1 mg) was added. The mixture was stirred at room temperature overnight and concentrated in vacuo on a hot bath (~70 °C). An NMR spectrum was obtained on the crude mixture of diastereomeric acetonides endo/exo (99:1) from ¹H NMR analysis).*

Method C: Sharpless dihydroxylation with AD-mix β .

The crude diol was prepared from a solution of DHF-5 (1.27 g, 7.1 mmol), AD-mix β (9.94 g) and methyl sulfonamide (675 mg, 7.1 mmol) in a mixture of 3:1 *t*-BuOH:water (75 ml) according to the procedure and work-up described above (method A). Purification by flash chromatography (CH₂Cl₂, CH₂Cl₂:MeOH 5:1) afforded the desired diol **8c** as a white solid (1.03 g, 68%). *The crude mixture (22*

mg) was redissolved in 1:1 acetic anhydride/ Et_3N (~1.0 ml) and DMAP (1 mg) was added. The mixture was stirred at room temperature overnight and concentrated in vacuo on a hot bath (~70 °C). An NMR spectrum was obtained on the crude mixture of diastereomeric acetonides endo/exo (99:1) from ¹H NMR analysis).

(3S,3aR,4aS,9aR)-7-Oxooctahydrofuro[2,3-f]indolizine-3,3a(4H)-diyl diacetate (18c)

To a stirred solution of optically active (3S, 3aS, 4aS, 9aR)-3, 3a-dihydroxy-octahydrofuro[2,3-f] indolizin-7(2H)-one (8c) (1.10 g, 5.2 mmol) in dry CH₂Cl₂ (50 mL) was added acetic anhydride (1.33 g, 1.44 mL, 13 mmol, 2.5 eq.), DMAP (85 mg, 0.7 mmol) and triethylamine (1.32 g, 1.82 mL, 13 mmol, 2.5 eq.). The reaction mixture was stirred until disappearance of the starting material (monitored by TLC CH₂Cl₂:acetone, 3:1). The mixture was quenched with a saturated aqueous NaHCO₃ solution. The aqueous layer was extracted with diethyl ether and the organic layers were washed with a saturated aqueous CuSO₄ solution and water, dried over MgSO₄ and concentrated under vacuum. The vellow oil was purified by flash chromatography on silica gel column (CH₂Cl₂, CH₂Cl₂/acetone 10:1 to afford diacetyl 18c (838 mg, 54.6%) and CH₂Cl₂:acetone 5:1 to afford monoacetyl 19c (305 mg, 23%) as an oil, which quickly crystallized on standing in a fridge. Analytically pure compound of diacetate-18c was obtained by crystallization from cyclohexane; mp 116.8-117.6 °C. $[\alpha]_D^{20.3}$ +48.7 (c 0.95, acetone). TLC (Silica gel): R_f = 0.42 (CH₂Cl₂:isopropanol 15/1). IR (ATR): v = 2930, 1737, 1661, 1473, 1453, 1426, 1367, 1346, 1302, 1233, 1175, 1120, 1083, 1064, 1040, 998, 976, 942, 922, 904, 856, 770, 735, 684, 656, 599, 578, 566, 512, 499, 485, 451. ¹H NMR (600 MHz, CDCl₃): δ 5.47 (t, J = 4.6 Hz, 1H, H-3), 4.32- 4.24 (m, 2H, H-2 and H-9a), 3.87 -3.74 (m, 3H, H-2', H-4a and H-9ax), 3.50 (dd, J = 14.4, 1.5 Hz, 1H, H-9ea), 2.66 (dd, J = 14.4 Hz, 1H, 10.5 Hz, 10.5 Hz) $H-4_{eq}$, 2.46 - 2.32 (m, 2H, 2xH-6), 2.30 - 2.23 (m, 1H, H-5), 2.08 (s, 6H, 2xCH₃), 1.92 (t, J = 12.7 Hz, 1H, H-4_{ax}), 1.59 (qd, J = 11.9, 9.4Hz, 1H H-5′). ¹³C NMR (150 MHz, CDCl₃): δ 174.3 (s, C-7), 169.8 (s, CH₃CO) 169.6 (s, CH₃CO), 81.2 (d, C-3a), 75.7 (d, C-3), 70.3 (t, C-2), 50.7 (d, C-4a), 40.2 (t, C-4), 40.0 (t, C-9), 30.3 (t-C-6), 26.3 (t, C-5), 21.3 (q, CH₃), 20.7 (q, CH₃) ppm. HRMS (ESI): *m/z* calcd. for C₁₄H₁₉NO₆[M+H]⁺ 298.1285, found 298.1285.

(*3S*,*3aR*,*4aS*,*9aR*)-**3a**-Hydroxy-7-oxodecahydrofuro[2,3-*f*]indolizin-3-yl acetate (19c); mp 215.6-217.7 °C. $[\alpha]_D^{20.4} = +3.79$ (c 0.85, acetone); TLC (Silica gel): $R_f = 0.16$ (CH₂Cl₂/isopropanol 15/1). IR (ATR): v = 3174, 2985, 2946, 2895, 2871, 1743, 1661, 1473, 1453, 1426, 1367, 1346, 1302, 1266, 1233, 1175, 1120, 1083, 1064, 1040, 998, 976, 942, 922, 904, 856, 770, 735, 684, 656, 599, 579, 566, 512, 499, 485, 451. ¹H NMR (600 MHz, CDCl₃): δ 5.25 (t, J = 7.3 Hz, 1H. H-3), 4.27 (dd, J = 9.4, 7.4 Hz, 1H, H-2), 4.01 (dd, J = 14.1, 6.1 Hz, 1H, H-9_{eq}), 3.89 (dd, 1H, J = 7.2, 6.3 Hz, H-9a), 3.84 (dd, J = 9.4, 7.2 Hz, 1H, H-2′), 3.75 (ddt, J = 10.8, 7.0, 3.5 Hz, 1H, H-4a), 2.96 (dd, J = 14.1, 7.3 Hz, 1H, H-9_{ax}), 2.48 – 2.38 (m, 2H, 2xH-6), 2.33 – 2.25 (m, 1H, H-5), 2.28 (dd, J = 14.0, 3.5 Hz, 1H, H-4_{eq}), 2.17 (s, 3H, CH₃), 1.69 (tq, J = 9.2, 6.6 Hz, 1H, H-5′), 1.63 (dd, J = 13.7, 11.8 Hz, 1H, H-4_{ax}). ¹³C NMR (150 MHz, CDCl₃): δ 175.2 (s, C-7), 171.4 (s, CH₃<u>CO</u>), 79.4 (d, C-9a), 75.9 (d, C-3a), 74.5 (d, C-3), 68.8 (t, C-2), 52.6 (d, C-4a), 40.9 (t, C-9), 40.0 (t, C-4), 30.6 (t, C-6), 25.2 (t, C-5), 20.7 (q, CH₃) ppm. HRMS (ESI): *m/z* calcd. for C₁₂H₁₇NO₅ [M+H]⁺ 256.1179, found 256.1178.

(*3aS*, *5aR*, *10aS*, *11aR*)-2, 2-Dimethyloctahydro-8*H*-[1,3]dioxolo[4', 5':3,4]furo[2,3-*f*]indolizin-8-one (20)

Freshly distilled (dried with molecular sieves) 2,2-dimethoxypropane (31 mL, 0.245 mol, 5.0 eq.) and PTSA (172 mg, 1.0 mmol) were added to a solution of *cis*-dihydroxy-THF (**8c**) (10.67 g, 50.0 mmol) in dry acetone (300 mL) under argon at room temperature. After stirring for 18 h, the reaction mixture was quenched with 5% Na₂CO₃(10 mL) and the solvent was removed under reduced pressure. The solid

residue was purified by column chromatography on silica gel eluted with CH₂Cl₂ and then CH₂Cl₂:acetone (5:1) to provide **20** (11.46 g, 90.42%) as a white solid. Recrystallization from a mixture of EtOAc:*i*-hexane gave material (10.26 g, 81%) as colorless needles, mp 113.8-115.2 °C. $[\alpha]_D^{20.2} = +$ 25.9 (*c* 1.0, acetone). TLC (Silica gel): R_f = 0.35 (CH₂Cl₂:isopropanol 15:1). IR (ATR): v = 2979, 2940, 2871, 1681, 1444, 1422, 1373, 1310, 1270, 1231, 1217, 1153, 1113, 1094, 1074, 1051, 1033, 922, 877, 858, 816, 729, 678, 662, 611, 563, 527, 496, 427. ¹H NMR (600 MHz, CDCl₃): δ 4.63 (dd, *J* = 5.5, 2.3 Hz, 1H, H-3a), 4.09 (dd, *J* = 11.0, 5.4 Hz, 1H, H-4), 4.08 (t, *J* = 6.1 Hz, 1H, H-5a), 3.98 (dd, *J* = 14.2, 6.5 Hz, 1H, H-6_{eq}), 3.92 (dd, *J* = 11.1, 2.3 Hz, 1H, H-4'), 3.56 (dtd, *J* = 11.0, 7.0, 3.2 Hz, 1H), 3.00 (dd, *J* = 14.2, 7.2 Hz, 1H, H-6_{ax}), 2.44 – 2.40 (m, 2H, 2xH-9), 2.30 (dd, *J* = 13.7, 3.2 Hz, 1H, H-11_{eq}), 2.25 (dd, *J* = 12.8, 7.0 Hz, 1H, H-10), 1.85 (dd, *J* = 13.6, 11.9 Hz, 1H, H-11_{ax}), 1.69 (qt, *J* = 9.2, 6.7 Hz, 1H), 1.52 (s, 3H, CH₃), 1.41 (s, 3H, CH₃). ¹³C NMR (150 MHz, CDCl₃): δ 174.1 (s, C-8), 113.4 (s, C-2), 89.5 (d, C-11a), 85.3 (d, C-3a), 78.9 (d, C-5a), 72.2 (t, C-4), 52.9 (d, C-10a), 40.2 (t, C-11), 38.9 (t, C-6), 30.4 (t, C-9), 28.6 (q, CH₃), 27.9 (q, CH₃), 25.2 (t, C-10) ppm. HRMS (ESI): *m/z* calcd. for C₁₃H₁₉NO₄ [M+H]⁺254.1387, found 254.1386.

(*3aS*, *5aR*, *10aS*, *11aR*)-2, 2-Dimethyloctahydro-8*H*-[1,3]dioxolo[4',5':3,4]furo[2,3-*f*]indolizine (21)

Me₂S·BH₃ (2.0 M solution in THF, 5.4 mL, 11.0 mmol) was added to a stirred solution of DMPprotected cis-diol 20 (317 mg, 1.25 mmol) in dry THF (10 mL) under argon and the mixture was stirred at room temperature for 30 minutes, then heated at reflux 5 h. The mixture was then cooled to room temperature, quenched by the careful addition of MeOH (15 mL) and concentrated under vacuum. The crude colorless oil of the borane-tetrahydrofuran complex **21** · BH₃ · THF (290 mg, 97%) ¹³C NMR (150 MHz, CDCl₃): 113.2, 92.4, 86.5, 81.8, 73.8, 65.0 (THF), 62.8, 54.9, 52.8, 39.7, 31.2, 30.2 (THF), 29.5, 28.1, 23.1] was dissolved in MeOH (25 mL) and water (5 mL) was added. The resulting mixture was heated at reflux for 30 h. After cooling to room temperature, the reaction mixture was filtered through Celite and the filtrate was concentrated to afford free base 21 (266 mg, 89 %) as a colorless oil. Subjection of this oil to flash chromatography (CH₂Cl₂, CH₂Cl₂:acetone 8:1) gave a free base **21** (218 mg, 73%) as a colorless needles, mp 42.6-46.8 °C. $[\alpha]_D^{24} = +18.6$ (*c* 1.03, acetone); TLC (Silica gel): $R_f = 0.48$ (CH₂Cl₂:isopropanol 1:2). IR (ATR): v = 2984, 2958, 2931, 2860, 2807, 2787, 1479, 1453, 1379, 1369, 1333, 1296, 1229, 1218, 1155, 1109, 1072, 1059, 1032, 971, 943, 906, 873, 833, 788, 734, 681, 604, 537, 524, 497, 443. ¹H NMR (600 MHz, CD₃OD): δ 4.65 (dd, J = 5.3, 1.2 Hz, 1H, H-3a), 4.14 (dd, J = 10.1, 7.3 Hz, 1H, H-5a), 4.03 (dd, J = 11.1, 5.3 Hz, 1H, H-4), 3.82 (dd, J = 11.0, 1.5 Hz, 1H, H-4'), 3.12 (dd, J = 11.6, 7.3 Hz, 1H, H-6_{eq}), 2.98 (td, J = 9.0, 2.7 Hz, 1H, H-8), 2.37 (dd, J = 13.4, 2.8 Hz, 1H, H-11_{eq}), 2.19 (q, J = 9.1 Hz, 1H, H-8'), 2.09 (dd, J = 11.6, 10.3 Hz, 1H, H-6_{ax}), 2.09 - 2.03 (m, 1H, H-10a), 1.97 (dddd, J = 12.4, 9.6, 6.6, 3.9 Hz, 1H, H-10), 1.92 - 1.78 $(m, 2H, 2xH-9), 1.71 (dd, J = 13.3, 12.1 Hz, 1H, H-11_{ax}), 1.48 - 1.40 (m, 1H, H-10'), 1.45 (s, 3H, CH_3), 1.48 - 1.40 (m, 1H, H-10'), 1.48 - 1.40 (m, 1H,$ 1.38 (s, 3H, CH₃). ¹³C NMR (151 MHz, CD₃OD): δ 113.3 (s, C-2), 92.5 (d, C-11a), 86.5 (d, C-3a), 81.9 (d, C-5a), 73.9 (t, C-4), 62.8 (d, C-10a), 55.0 (t, C-8), 52.8 (t, C-6), 39.7 (t, C-11), 31.3 (t, C-10), 29.6 (q, CH₃), 28.2 (q, CH₃), 23.1 (t, C-9) ppm. HRMS (ESI): m/z calcd. for C₁₃H₂₁NO [M+H]⁺ 240.1594, found 240.1591.

(3S,3aS,4aS,9aR)-Octahydrofuro[2,3-f]indolizine-3,3a(4H)-diol (9c)

DOWEX 50W x 8 (200-400 mesh) (2 g) was washed with MeOH (3 x 15 mL), free base of DMPprotected *cis*-diol **21** (750 mg, 3.1 mmol) was added in MeOH (35 mL) and reaction mixture was stirred overnight. After complete disappearance of the starting material (TLC monitored) and full deprotection (LC-MS analysis), the MeOH was decanted, DOWEX was washed with MeOH (2 x 10 mL) and aqueous ammonia (25%, 15 mL) was added, the mixture was stirred for 2 h at room temperature, filtered, and water was removed in vacuo. This crude diol was subjection to flash chromatography (CH₂Cl₂, CH₂Cl₂:MeOH 5:1) gave a free base **9c** (517 mg, 82.8%) as a colorless needle. Recrystallization from *n*-heptane gave material (431 mg, 68%) as colorless needles; mp 166.2-167.6 °C. $[\alpha]_D^{24} = +29.38$ (*c* 0.5, MeOH). TLC (Silica gel): R_f = 0.15 (CH₂Cl₂:isopropanol 1:2). IR (ATR): v = 3491, 3085, 2994, 2939, 2881, 2840, 2822, 2740, 1455, 1439, 1384, 1327, 1241, 1205, 1136, 1111, 1057, 1022, 964, 934, 904, 858, 787, 752, 689, 661, 558, 443. ¹H NMR (600 MHz, CD₃OD): δ 4.36 (t, *J* = 8.2 Hz, 1H, H-3), 4.04 (t, *J* = 8.0 Hz, 1H, H-2), 4.00 (dd, *J* = 10.0, 6.9 Hz, 1H, H-9a), 3.69 (t, *J* = 8.4 Hz, 1H, H-2'), 3.15 (dd, *J* = 11.4, 6.9 Hz, 1H, H-9eq), 2.97 (dt, *J* = 8.7, 2.5 Hz, 1H, H-7), 2.24 (dd, *J* = 13.3, 3.0 Hz, 1H, H-4eq), 2.20 (q, *J* = 9.1 Hz, 1H, H-7), 2.19 – 2.12 (m, 1H, H-4a), 1.95 (dd, *J* = 11.3, 10.1 Hz, 1H, H-9ax), 1.94 - 1.76 (m, 3H, H-5 and 2x H-6), 1.47 (dd, *J* = 13.3, 11.8 Hz, 1H, H-4ax), 1.46 - 1.40 (m, 1H,H-5'). ¹³C NMR (151 MHz, CD₃OD): δ 82.8 (d, C-9a), 77.6 (s, C-3a), 72.2 (d, C-3), 71.6 (t, C-2), 61.8 (d, C-4a), 56.1 (t, C-9), 54.6 (t, C-7), 37.5 (t, C-4), 31.1 (t, C-5), 23.0 (t, C-6). HRMS (ESI): *m/z* calcd. for C₁₀H₁₇NO₃ [M+H]⁺200.1281, found 200.1281.

(*3aS*, *5aR*, *10aR*, *11aR*)-2,2-Dimethyl-3*a*, 4, 5*a*, 6, 10*a*, 11-hexahydro-8*H*-[1,3]dioxolo[4',5':3,4]furo-[2,3-*f*]indolizin-8-one (28)

n-BuLi (2.5 M in hexanes, 15.0 mL, 35.0 mmol) was added dropwise to freshly distilled *i*-Pr₂NH (4.94 mL, 35.0 mmol) in THF (25 mL) at 0° C (Ar). After stirring for 15 min at 0 °C, the solution was cooled to -78° C and *cis*-acetonide **20** (3.64 g, 14.4 mmol) in dry THF (25 mL) at -78 °C was added dropwise under Ar. The resulting solution was stirred at -78 °C for 45 minutes before being transferred dropwise *via* cannula (45 minutes) to PhSeBr (3.66 g, 14.4 mmol) in THF (80 mL) at -78 °C under Ar. After stirring at -78 °C for 45 minutes. (TLC monitoring, two products are formed, R_f = 0.36 polar *cis*-selanyl and R_f = 0.57 *trans*-selanyl less polar, EtOAc:*n*-hexane 2:1), saturated aqueous NH₄Cl (50 mL) and Et₂O (100 ml) were added, the layers were separated, and the aqueous phase was further extracted with Et₂O (2 x 35 mL). The combined organic extracts were washed with brine, dried (MgSO₄), filtered, rotary evaporated and chromatographed (EtOAc:hexanes 3:1) to give the two mono(phenylselanyl)-acetonide **27** (5.25 g, 89.5%, 55:45 from ¹H NMR analysis) as a light-yellow oil.

Elimination of phenylselanyl-acetonides 27. H₂O₂ (19.5 ml, 0.25 mmol, 30%) was added dropwise to the diastereomeric mixture of phenylselanyl-acetonides 27 (5.1 g, 12.5 mmol) in CH₂Cl₂ (250 mL) at -10 °C. The light-yellow reaction mixture became colorless and temperature rises slowly to +10 °C. After stirring for 3 hours at 10 °C, the reaction was carefully quenched by the addition of saturated Na₂CO₃ (35 ml) and stirred for 15 minutes. The layers were separated, and the aqueous phase was further extracted with CH₂Cl₂ (2 x 35 mL). The combined organic extracts were washed with brine, dried (MgSO₄), filtered and after rotary evaporated (3.05 g, 97%) purified by column chromatography (CH₂Cl₂, CH₂Cl₂:MeOH 15:1) to provide alkene-amide 28 (2.72 g, 87%) as a white solid. Recrystallization from *n*-heptane gave alkene-amide (2.34 g, 75%) as colorless needles, mp 106.1-108.2 °C. $[\alpha]_D^{20.2} = +7.1$ (*c* 1.0, acetone). TLC (Silica gel): $R_f = 0.71$ (CH₂Cl₂:isopropanol 5:1). IR (ATR): v = 2982, 2948, 2879, 1662, 1581, 1457, 1424, 1379, 1370, 1310, 1260, 1233, 1213, 1151, 1090,1064, 1052, 1034, 4022, 972, 934, 918, 883, 862, 805, 748, 735, 705, 674, 637, 566, 525, 496, 432. ¹H NMR (600 MHz, CDCl₃): δ 7.24 (dd, J = 5.9, 1.7 Hz, 1H, H-10), 6.05 (dd, J = 5.9, 1.7 Hz, 1H, H-9), 4.89 (dd, *J* = 5.4, 1.8 Hz, 1H, H-3a), 4.19 (tdd, *J* = 12.7, 3.5, 1.7 Hz, 1H, H-10a), 4.15 (dd, *J* = 11.0, 5.9 Hz, 1H, H-4), 4.06 - 3.99 (m, 2H, H-6_{ea} and H-5), 3.84 (dd, J = 11.0, 1.9 Hz, 1H, H-4'), 3.06 (ddd, J = 12.9, 6.7, 0.8 Hz, 1H, H-6_{ax}), 2.60 (dd, J = 13.4, 3.6 Hz, 1H, H-11_{eq}), 1.51 (t, J = 13.0 Hz, 1H, H-11_{ax}), 1.45 (s, 3H, CH₃), 1.37 (m, 3H, CH₃). ¹³C NMR (150 MHz, CDCl₃): δ 169.8 (s, C-8), 148.7 (d, C-10), 128.1 (d, C-9), 113.4 (s, C-2), 91.1 (d, C-11a), 85.7 (d, C-3a), 79.9 (d, C-5a), 73.2 (t, C-4), 58.3

(d, C-10a), 38.8 (t, C-6), 37.6 (t, C-11), 29.2 (q, CH₃), 28.3 (q, CH₃) ppm. HRMS (ESI): m/z calcd. for $C_{13}H_{17}NO_4$ [M+H]⁺ 252.1230, found 252.1233.

(3aS,4aS,9aS)-Hexahydrofuro[2,3-f]indolizine-3,7(2H,3aH)-dione (14)

To a well stirred solution of PPh₃ (20 g, 76.3 mmol, 2.56 eq.) and iodine (9.7 g, 76.3 mmol, 2.56 eq.) in dry THF (250 ml, yellow solution was formed) was added in four portions imidazole (5.2 g, 76.3 mmol, 2.56 eq.) at 0 °C. After 30 minutes, a solution of cis-diol 8c (6.35 g, 29.8 mmol) in THF (5 mL) was added. Reaction was allowed to warm slowly to room temperature and stirred overnight (colorless solution). Reaction mixture was poured into CH₂Cl₂ (300 mL) and treated with aqueous Na₂S₂O₃ solution (50 mL). Organic layer was separated, and aqueous phase was extracted with CH₂Cl₂ (3x20 mL), the combined organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated. A mixture (12.5 g) containing unreacted triphenylphosphine, triphenylphosphine oxide and ketone are obtained. This mixture was purified by slow column chromatography (EtOAc:*i*-hexane 1:1 removed PPh₃ and EtOAc:i-hexane 4:1 removed PPh₃=O), and finally using a mixture of CH₂Cl₂:acetone 3:1 afforded ketone 14 (4.68 g, 80.5%). Recrystallization from a mixture of THF:n-heptane gave material (4.13 g, 71%) as colorless needles, mp 148.0-148.6 °C. $[\alpha]_D^{24} = +150,13$ (*c* 1, CH₂Cl₂). TLC (Silica gel): R_f= 0.56 (CH₂Cl₂:isopropanol 10:1). IR (ATR): v = 2971, 2952, 2881, 2849, 1748, 1669, 1468, 1435, 1379, 1344, 1307, 1290, 1251, 1230, 1212, 1183, 1124, 1037, 987, 927, 912, 859, 815, 754, 742, 715, 669, 654, 608, 559, 538, 484, 465, 442. ¹H NMR (600 MHz, CDCl₃): δ 4.66 (td, *J* = 8.3, 6.8 Hz, 1H, H-9a), 4.20 (dd, J = 13.9, 6.5 Hz, 1H, H-9_{eq}), 4.15 (dd, J = 17.7, 1.2 Hz, 1H, H-2), 4.00 (d, J = 17.7Hz, 1H, H-2'), 3.36 (dddd, J = 11.9, 7.4, 6.2, 3.7 Hz, 1H, H-4a), 2.84 (t, J = 7.4 Hz, 1H, H-3a), 2.80 (dd, J = 14.0, 8.8 Hz, 1H, H-9_{ax}), 2.46 – 2.35 (m, 3H, 2xH-6 and H-4_{co}), 2.24 (dddd, J = 13.1, 9.3, 7.6, 5.6Hz, 1H, H-5), 1.64 -1.57 (m, 2H, H-5' and H-4_{ax}). ¹³C NMR (150 MHz, CDCl₃): δ 214.2 (s, C-3), 174.0 (s, C-7), 72.9 (d, C-9a), 69.1 (t, C-2), 52.7 (d, C-4a), 45.7 (d, C-3a), 40.0 (t, C-9), 30.3 (t, C-6), 29.5 (t, C-4), 24.8 (t, C-5) ppm. HRMS (ESI): m/z calcd. for $C_{10}H_{13}NO_3 [M+H]^+ 196.0968$, found 196.0968.

(3S,3aR,4aS,9aS)-3-Hydroxyoctahydrofuro[2,3-f] indolizin-7(2H)-one (23a)

The freshly crystallized keto-lactam 14 (585 mg, 3 mmol) was dissolved in dry THF (30 mL) and cooled to -45° C with stirring. K-Selectride (4 mL of a 1.0 M solution in THF) was added (5 minutes) dropwise via a syringe and the reaction mixture was stirred for 45 minutes at -45° C, then was quenched at the same temperature by addition of MeOH (3 mL), NaOH (1.5 mL, 25%) and 30% aqueous H₂O₂(1.5 mL) and stirred for 30 minutes. The mixture was concentrated to dryness and extracted with hot AcOEt (3 x 30 mL). The combined organic solvents were washed with water, dried over anhydrous MgSO₄ and concentrated in vacuo. Recrystallization of the solid (564 mg, 95.2%) from toluene gave cis-alcohol 23a (473 mg, 84%) as a colorless crystal; mp 164.5-165.3 °C. $[\alpha]_D^{24} = +22,6$ (*c* 1, MeOH). TLC (Silica gel): R_f = 0.56 (CH₂Cl₂:isopropanol 10:1). IR (ATR): v = 3312, 2986, 2908, 1651, 1455, 1446, 1421, 1361, 1305, 1264, 1248, 1217, 1161, 1115, 1092, 1064, 1002, 989, 970, 921, 822, 793, 765, 750, 694, 656, 603, 560, 529, 452, 422. ¹H NMR (600 MHz, CD₃OD): δ4.42 (t, *J* = 5.0 Hz, 1H, H-3), 4.06 (q, J = 7.8 Hz, 1H, H-9a), 4.03 - 3.96 (m, 1H, H-4a), 4.01 (dd, J = 9.6, 4.6 Hz, 1H, H-2), 3.93 (dd, J = 9.6 (dd, J = 9.612.5, 6.6 Hz, 1H, H-9_{eq}), 3.85 (d, J = 9.7 Hz, 1H, H-2'), 3.82 - 3.76 (m, 1H, H-4a), 3.05 (dd, J = 12.5, 9.6 Hz, 1H, H-9_{ax}), 2.45 - 2.32 (m, 3H, 2xH-6 and H-3a), 2.28 (dd, J = 13.6, 3.9 Hz, 1H, H-4_{eq}), 2.27-2.20 (m, 1H, H-5), 1.67 (ddd, J = 13.6, 12.2, 7.2 Hz, 1H, H-4_{ax}), 1.61 -1.53 (m, 1H, H-5'). ¹³C NMR (150 MHz, CD₃OD): δ 176.6 (s, C-7), 77.4 (t, C-2), 75.0 (d, C-3), 74.9 (d, C-9a), 55.8 (d, C-4a), 43.6 (t, C-9), 42.3 (d, C-3a), 31.7 (t, C-6), 31.2 (t, C-4), 26.3 (t, C-5) ppm. HRMS (ESI): m/z calcd. for $C_{10}H_{15}NO_3$ [M+H]⁺ 198.1125, found 198.1122. Reduction of the ketone 14 with NaBH₄ at -40 °C or 0 °C provided a mixture of *cis/trans* alcohols in a ratio 96:4 (from ¹H NMR analysis), finally when the reduction was carried out under reflux in methanol, a mixture of *cis/trans* alcohols in a ratio 9:1 was obtained.

(3S,3aS,4aS,9aS)-7-Oxodecahydrofuro[2,3-f]indolizin-3-yl acetate (24)

To a stirred solution of secondary-alcohol 23a (513 mg, 2.6 mmol) in of dry CH₂Cl₂ (30 mL) was added acetic anhydride (0.67 g, 0.72 mL, 6.5 mmol, 2.5 eq.), 4-(dimethylamino)pyridine (DMAP, 43 mg, 0.35 mmol) and triethylamine (0.66 g, 0.91 mL, 6.5 mmol, 2.5 eq.). The reaction mixture was stirred until disappearance of the starting material (monitored by TLC CH₂Cl₂:acetone 4:1). The mixture was quenched with a saturated aqueous NaHCO₃ solution (10 mL). The aqueous layer was extracted with diethyl ether and the organic layers were washed with a saturated aqueous CuSO₄ solution and water, dried over MgSO4 and concentrated under vacuum. The yellow oil was purified by flash chromatography on silica gel column (CH₂Cl₂, CH₂Cl₂:acetone 12:1) to afford acetyl 24 (590 mg, 95%) as an oil, which quickly crystallized on standing in a fridge. Analytically pure compound was obtained by crystallization from *n*-hexane (491 mg, 79%); mp 67.2-67.9 °C. $[\alpha]_D^{24} = -4.17$ (c 1.0, acetone); TLC (Silica gel): R_f = 0.33 (CH₂Cl₂:isopropanol 15:1). IR (ATR): v = 2977, 2943, 2877, 1732, 1680, 1434, 1422, 1373, 1349, 1283, 1227, 1160, 1089, 1077, 1060, 1043, 1020, 998, 957, 932, 908, 855, 819, 763, 725, 655, 631, 601, 565, 536, 525, 509, 442, 428. ¹H NMR (600 MHz, CD₃OD): δ 5.37 (ddd, *J* = 6.1, 4.8, 1.3 Hz, 1H, H-3), 4.08 (dd, *J* = 10.7, 4.9 Hz, 1H, H-2), 4.05 (dt, *J* = 9.5, 7.3 Hz, 1H, H-9a), 3.94 (dd, J = 12.8, 6.8 Hz, 1H, H-9_{eq}), 3.85 (dd, J = 10.7, 1.4 Hz, 1H, H-2'), 3.82 -3.76 (m, 1H, H-4a), 2.81 (dd, J = 12.7, 9.7 Hz, 1H, H-9_{ax}), 2.65 (q, J = 6.7 Hz, 1H, H-3a), 2.30 - 2.19 (m, 3H, 2xH-6 and H-5), 2.17 (ddd, J = 14.3, 4.1, 1.2 Hz, 1H, H-4_{eq}), 1.70 (dd, J = 14.3, 11.5, 7.4 Hz, 1H, H-4_{ax}), 1.59 – 1.48 (m, 1H, H-5'). ¹³C NMR (150 MHz, CD₃OD): δ 173.7 (s, C-7), 170.9 (s, CH₃CO), 77.3 (d, C-3), 74.5 (t, C-2), 74.4 (d, C-9a), 53.9 (d, C-4a), 42.3 (d, C-9), 40.3 (t, C-3a), 30.9 (t, C-6), 30.7 (t, C-4), 26.2 (t, C-5), 21.3 (q, CH₃) ppm. HRMS (ESI): m/z calcd. for C₁₂H₁₇NO₄ [M+H]⁺240.1230, found 240.1232.

(3S,4aS,9aS)-Decahydrofuro[2,3-f]indolizin-3-ol (25)

LAH (320 mg, 8.4 mmol, 4 eq.) was added to a solution of a freshly crystallized secondary acetyl-THF 24 (501 mg, 2.1 mmol) in dry THF (25 mL) at room temperature and the mixture then heated at reflux for 2.5 h. The slurry was then warmed to ambient temperature and after an additional 40 minutes was carefully quenched with 2:1 w:w Na₂SO₄.10H₂O:Celite (10 g). The reaction mixture was diluted with THF (50 mL) and NaOH (1 g) in H₂O (50 mL) was added. After 30 minutes, the solid was filtered, washed with hot THF (2 x 50 mL), and the combined organic layers were dried with MgSO₄, filtered and concentrated in vacuo to give a solid (323 mg, 84%). Recrystallization of the solid from anhydrous *n*-hexane gave 25 as white crystals; mp 112.3-113.8 °C. $[\alpha]_D^{24} = +27.3$ (c 0.50, MeOH). TLC (Silica gel): R_f= 0.31 (CH₂Cl₂:isopropanol 3:1). IR (ATR): v = 3143, 2904, 2832, 1458, 1429, 1387, 1345, 1314, 1271, 1159, 1116, 1080, 1068, 1029, 1010, 931, 914, 880, 851, 759, 735, 508, 453, 422. ¹H NMR (600 MHz, CD₃OD): δ 4.42 (t, *J* = 5.0 Hz, 1H, H-3), 4.06 (q, *J* = 7.8 Hz, 1H, H-9a), 4.03 - 3.96 (m, 1H, H-4a), 4.01 (dd, J = 9.6, 4.6 Hz, 1H, H-2), 3.93 (dd, J = 12.5, 6.6 Hz, 1H, $H-9_{eq}$, 3.85 (d, J = 9.7 Hz, 1H, H-2'), 3.82 - 3.76 (m, 1H, H-4a), 3.05 (dd, J = 12.5, 9.6 Hz, 1H, $H-9_{ax}$), 2.45 - 2.32 (m, 3H, 2xH-6 and H-3a), 2.28 (dd, J = 13.6, 3.9 Hz, 1H, H-4_{eo}), 2.27 - 2.20 (m, 1H, H-5), $1.67 (ddd, J = 13.6, 12.2, 7.2 Hz, 1H, H-4_{ax}), 1.61 - 1.53 (m, 1H, H-5').$ ¹³C NMR (151 MHz, CD₃OD): δ 176.6 (s, C-7), 77.4 (t, C-2), 75.0 (d, C-3), 74.9 (d, C-9a), 55.8 (d, C-4a), 43.6 (t, C-9), 42.3 (d, C-3a), 31.7 (t, C-6), 31.2 (t, C-4), 26.3 (t, C-5) ppm. HRMS (ESI): m/z calcd. for $C_{10}H_{17}NO_2$ [M+H]⁺ 184.1332, found 184.1331.

(*3aS*, *5aR*, *9R*, *10R*, *10aR*, *11aR*)-9,10-Dihydroxy-2,2-dimethyloctahydro-8*H*-[1,3]dioxolo-[4',5':3,4]-furo[2,3-*f*]indolizin-8-one (29a)

A solution of NMO (586 mg, 5.0 mmol) in water (1 mL) was added to a mixture of acetone and water (50 ml, 5:1) at 0° C. Olefin **20** (1.25 g, 5.0 mmol) was then added in one portion, the mixture allowed

to stirred for 10 minutes and then OsO4 (64 mg, 0.3 mmol) in t-BuOH (2 mL) was added dropwise over 5 minutes. The mixture was allowed to continue stirring and warm slowly to room temperature (TLC monitoring, 14 hours). The reaction was quenched by the addition of sodium sulfite (10 g) and was stirred at room temperature 15 minutes, 45 g of SiO₂ was added and concentrated in vacuo. The resulting solid was purified by flash chromatography (CH₂Cl₂, CH₂Cl₂:MeOH 5:1) to afford the diastereomeric mixture of *endo/exo*-diols (28:72 from ¹H NMR analysis) as white solid (1.14 g, 80.3%). This mixture was redissolved in CH_2Cl_2 and converted to acetonide **30a** (see experiment below). The small amount (100 mg) of crude diols was separated by slow column chromatography (CH₂Cl₂, CH₂Cl₂:MeOH 10:1 to CH₂Cl₂:MeOH 5:1) to yield exo-diol **29a** (62 mg). Analytically pure compound was obtained by crystallization from isopropanol:n-heptane (47 mg was obtained from 62 mg); mp 144.1-146.9 °C. $[\alpha]_D^{20.3} = +17.8$ (c 1.0, MeOH). TLC (Silica gel): $R_f = 0.27$ (CH₂Cl₂:isopropanol 3:1). IR (ATR): v =3330, 3250, 3020, 2937, 1668, 1575, 1416, 1370, 1297, 1139, 1105, 1064, 987, 933, 877, 771, 673, 522, 489, 430. ¹H NMR (600 MHz, CD₃OD): δ 4.82 (dd, J = 5.4, 1.3 Hz, 1H, H-3a), 4.20 (t, J = 5.9 Hz, 1H, H-9), 4.14 (dd, J = 11.0, 5.3 Hz, 1H, H-4), 4.00 (ddd, J = 8.9, 5.8, 3.2 Hz, 1H, H-10), 3.93 (t, J = 7.5 Hz, 1H, H-5a), 3.88 (dd, J = 13.5, 7.1 Hz, 1H, H-6_{eq}), 3.81 (dd, J = 10.9, 1.9 Hz, 1H, H-4), 3.46 (dd, J = 12.4, 3.2 Hz, 1H, H-10a), 2.95 (dd, J = 13.5, 7.6 Hz, 1H, H-6ax), 2.43 (dd, J = 13.6, 3.5 Hz, 1H, H-10a)H-11_{eq}), 1.81 (dd, J = 13.4, 12.7 Hz, 1H, H-11_{ax}), 1.43 (s, 3H, CH₃), 1.38 (s, 3H, CH₃). ¹³C NMR (150 MHz, CD₃OD): δ 171.7 (s, C-8), 113.3 (s, C-2), 91.0 (d, C-11a), 85.8 (d, C-3a), 79.6 (d, C-5a), 72.9 (t, C-4), 59.2 (d, C-10a), 39.3 (t, C-6), 36.7 (t, C-11), 29.1 (q, CH₃), 28.2 (q, CH₃) ppm. HRMS (ESI): *m/z* calcd. for C₁₃H₁₉NO₆ [M+H]⁺286.1285, found 286.1287.

Preparation of diacetonides (30a,b) from a mixture of *cis*- and *trans*-dioles (29a,b)

2,2-Dimethoxypropane (6.9 mL, 56.0mmol, 10 eq.) and PTSA (50 mg, 0.3 mmol) were added to a crude mixture of diols (**29a,b**) (1.59 g, 5.6 mmol), prepared above, in dry acetone (100 mL) under argon at room temperature. After stirring for 18 h, the reaction mixture was quenched with 15% Na₂CO₃ (5 mL) and the solvent was removed under reduced pressure. The solid residue was purified by column chromatography on silica gel (CH₂Cl₂, CH₂Cl₂:acetone 15:1, CH₂Cl₂:acetone 5:1) and provided three products: less polar *endo*-diacetonid-olefin **30b** (74mg, 4.1%) as a white solid, polar *exo*-diacetonide **30a** (1.29 g, 71.2 %) as a white solid and most polar *endo*-diacetonide **31** (199 mg, 11%) as a white solid.

(*3aS*, *5aR*, *8aS*, *11aS*, *12aR*)-2, 2, 10, 10-Tetramethyl-3*a*, 4, *5a*, 6, *8a*, 11*a*-hexahydro-8*H*-[1,3]-dioxolo [4',5':3,4]furo[2,3-*f*][1,3]dioxolo[4,5-*a*]indolizin-8-one (31); mp 158.4-159.6 °C. $[\alpha]_D^{20.3} = +56.7$ (*c* 0.5, acetone). TLC (Silica gel): $R_f = 0.53$ (CH₂Cl₂:acetone 5:1). IR (ATR): v = 2987, 2939, 2910, 1728, 1675, 1451, 1419, 1381, 1371, 1309, 1249, 1238, 1215, 1173, 1149, 1092, 1054, 1028, 1003, 965, 941, 905, 865, 833, 821, 800, 759, 700, 691, 662, 625, 607, 516, 504, 474, 414. ¹H NMR (600 MHz, CD₃COCD₃): δ 4.91 (dd, J = 5.4, 1.5 Hz, 1H, H-3a), 4.72 (d, J = 6.4 Hz, 1H, H-8a), 4.51 (d, J = 6.4 Hz, 1H, H-11a), 4.15 (dd, J = 11.1, 5.5 Hz, 1H, H-4), 4.04 (dd, J = 13.8, 8.0 Hz, 1H, H-6_{eq}), 3.91 (dd, J = 8.9, 8.3 Hz, 1H, H-5a), 3.81 (dd, J = 11.1, 1.7 Hz, 1H, H-4'), 3.64 (ddd, J = 13.1, 3.5, 0.6 Hz, 1H, H-11b), 2.82 (dd, J = 14.3, 5.9 Hz, 1H, H-6_{ax}), 2.48 (dd, J = 13.4, 3.5 Hz, 1H, H-12_{eq}), 1.73 (t, J = 13.3 Hz, 1H, H-12_{ax}), 1.42 (s, 3H, CH₃), 1.37 (s, 3H, CH₃), 1.33 (s, 3H, CH₃), 1.32 (s, 3H, CH₃). ¹³C NMR (151 MHz, CD₃COCD₃): δ 169.4 (s, C-8), 112.9 (s, C-2), 112.7 s, (C-10), 91.5 (d, C-12a), 85.1 (d, C-3a), 78.6 (d, C-5a), 78.2 (d, C-8a), 77.8 (d, C-11a), 73.0 (t, C-4), 58.3 (d, C-11b), 38.9 (t, C-6), 37.9 (t, C-12), 29.5 (q, CH₃), 28.1 (q, CH₃), 27.1 (q, CH₃), 25.6 (q, CH₃) ppm. HRMS (ESI): *m/z* calcd. for C₁₆H₂₁NO₆ [M+H]⁺ 324.1442, found 324.1442.

(3aS,5aR,8aR,11aR,11bR,12aR)-2,2,10,10-Tetramethyloctahydro-8*H*-[1,3]dioxolo[4',5':3,4]-furo-[2,3-*f*][1,3]dioxolo[4,5-*a*]indolizin-8-one (30a); mp 226.1–226.9 °C. [α]_D²⁴ = + 24.1 (*c* 0.5, acetone). TLC (Silica gel): R_f = 0.53 (CH₂Cl₂:acetone 5:1). IR (ATR): ν = 2988, 2947, 1702, 1683, 1456, 1380,

1369, 1331, 1270, 1214, 1157, 1111, 1089, 1076, 1043, 980, 968, 943, 866, 823, 803, 762, 732, 709, 633, 604, 573, 523, 492, 424. ¹H NMR (600 MHz, CD₃OD): δ =4.91 (dd, *J* = 5.4, 1.3 Hz, 1H), 4.72 (d, *J* = 6.3 Hz, 1H), 4.51 (d, *J* = 6.3 Hz, 1H), 4.15 (dd, *J* = 11.1, 5.4 Hz, 1H), 4.04 (dd, *J* = 13.8, 8.0 Hz, 1H), 3.91 (dd, *J* = 8.87 Hz, 1H), 3.81 (dd, *J* = 11.1, 1.6 Hz, 1H), 3.64 (dd, *J* = 13.1, 3.4 Hz, 1H), 2.82 (dd, *J* = 13.8, 9.3 Hz, 1H), 2.48 (dd, *J* = 13.4, 3.5 Hz, 1H), 1.73 (t, *J* = 13.3 Hz, 1H), 1.42 (s, 3H), 1.37 (s, 3H), 1.33 (s, 3H), 1.32 (s, 3H). ¹³C NMR (150 MHz, CD₃OD): δ 169.4 (s, C-8), 112.9 (s, C-2), 112.7 s, (C-10), 91.5 (d, C-12a), 85.1 (d, C-3a), 78.6 (d, C-5a), 78.2 (d, C-8a), 77.8 (d, C-11a), 73.0 (t, C-4), 58.3 (d, C-11b), 38.9 (t, C-6), 37.9 (t, C-12), 29.5 (q, CH₃), 28.1 (q, CH₃), 27.1 (q, CH₃), 25.6 (q, CH₃) ppm. HRMS (ESI): *m/z* calcd. for C₁₆H₂₃NO₆ [M+H]⁺ 326.1598, found 326.1598.

(3aS,5aR,8aS,11aS,12aR)-2,2,10,10-Tetramethyloctahydro-8H-[1,3]dioxolo-[4',5':3,4]-furo-

[2,3-*f*][1,3]dioxolo[4,5-*a*]indolizin-8-one (30b); mp 154-156.8 °C. $[\alpha]_D^{20.2} = +47.8$ (*c* 0.75, acetone). TLC (Silica gel): $R_f = 0.38$ (CH₂Cl₂:acetone 5:1). IR (ATR): $v = 3330, 3250, 3020, 2937, 1668, 1575, 1416, 1370, 1297, 1139, 1105, 1064, 987, 933, 877, 771, 673, 522, 489, 430. ¹H NMR (600 MHz, CD₃COCD₃): <math>\delta$ 4.80 (dd, J = 5.6, 2.5 Hz, 1H, H-3a), 4.73 (dd, J = 5.6, 4.7 Hz, 1H, H-11a), 4.67 (d, J = 5.7 Hz, 1H, H-8a), 4.15 (dd, J = 10.7, 5.6 Hz, 1H, H-4), 4.03 (t, J = 5.6 Hz, 1H, H-5a), 3.80 (dd, J = 10.7, 2.5 Hz, 1H, H-4'), 3.77 (ddd, J = 12.8, 4.7, 3.0 Hz, 1H, H-11b), 3.65 (dd, J = 14.3, 5.3 Hz, 1H, H-6_{ax}), 2.28 (dd, J = 13.9, 3.0 Hz, 1H, H-12_{eq}), 2.17 (dd, J = 13.8, 12.9 Hz, 1H, H-12_{ax}), 1.46 (s, 3H, CH₃), 1.39 (s, 3H, CH₃), 1.34 (s, 3H, CH₃), 1.33 (s, 3H, CH₃). ¹³C NMR (151 MHz, acetone): δ 170.9 (s, C-8), 113.7, 112.7 (s, C-2 and C-10), 90.5 (s, C-12a), 86.5 (d, C-3a), 80.0 (d, C-5a), 79.2 (d, C-8a), 75.6 (d, C-11a), 72.6 (t, C-4), 53.4 (d, C-11b), 40.0 (t, C-6), 33.9 (t, C-12), 28.5 (q, CH₃), 28.3 (q, CH₃), 27.3 (q, CH₃), 26.3 (q, CH₃) ppm. HRMS (ESI): *m/z* calcd. for C₁₆H₂₃NO₆ (325,3610) [M+H]⁺ 326.1598, found 326.1597.

Epoxidation of DHF-5 under various conditions (Methods A–E)

Method A: Epoxidation with m-CPBA.

To a stirred and cooled (0 °C) solution of the DHF-**5** (896 mg, 5.0 mmol) in dry CH_2Cl_2 (30 mL) was added portion wise 68% *m*-CPBA (1.52 g, 6.0 mmol, 1,2 eq.). After standing at room temperature overnight the suspension was filtered, organic layer was washed with saturated Na₂CO₃, dried and evaporated in vacuum. The solid (838 mg, 86%) was a mixture of *endo:exo-*epoxide (25:75 from ¹H NMR analysis) as a non-separable mixture of two diastereomers.

Method B: Epoxidation with HCO_2H *and* H_2O_2 *.*

(1aS,3aR,8aS,9aR)-Octahydro-6H-oxireno[2',3':3,4]furo[2,3-f]indolizin-6-one То (6). concentrated formic acid (3.91 mL, 0.10 mol) was added hydrogen peroxide (30% aqueous solution, 2.29 mL, 0.13 mol). After 15 minutes DHF-5 (896 mg, 5.0 mmol) was added at cooling (0 °C). The reaction mixture was stirred for 20 h (TLC monitoring), diluted with water (10 mL), extracted with CH₂Cl₂ (3×50 mL), and combined organic layers were dried over MgSO₄ and concentrated to give a mixture of *endo:exo-*epoxide (78:22 from ¹H NMR analysis) as a pale yellow solid (732 mg, 75%). This mixture of epoxides was heated in dry Et₂O (50 ml) 10 minutes, cooled to 0 °C and after 30 minutes the solid was filtered off. Recrystallization from DIPE gave 6 (549 mg, 56.3%) as colorless needles; mp 114.5-116.2 °C. $[\alpha]_D^{24} = -10.9$ (c 1, MeOH). TLC (Silica gel): $R_f = 0.71$ (CH₂Cl₂:isopropanol 5:1). IR (ATR): v = 2974, 2930, 2875, 1669, 1444, 1425, 1368, 1308, 1297, 1260, 1224, 1191, 1174, 1149, 1086, 1072, 1055, 1014, 994, 937, 907, 874, 843, 818, 764, 726, 659, 650, 621, 567, 556, 493, 481, 429. ¹H NMR (600 MHz, CD₃OD): δ 4.34 (dd, *J* = 13.0, 7.2 Hz, 1H, H- 4_{eq} , 4.08 (d, J = 10.9 Hz 1H, H-2), 4.05 (d, J = 10.9 Hz 1H, H-2), 4.02 – 3.97 (m, 2H, H-1a and H-8a), 3.97 (dd, *J* = 10.1, 6.9 Hz, 1H, H-3a), 2.77 (ddd, *J* = 14.2, 10.2, 1.2 Hz, 1H, H-7), 2.66 (ddd, *J* = 17.3, 10.1, 5.5 Hz, 1H), 2.58 (dddd, J = 17.3, 10.1, 6.8, 1.6 Hz, 1H, H-7'), 2.48 (dddd, J = 12.9, 10.1, 7.9, 5.5

Hz, 1H, H-8), 2.24 (t, J = 12.5 Hz, 1H, H-9_{ax}), 2.16 (dd, J = 13.2, 4.2 Hz, 1H, H-9_{eq}), 1.92 (dddd, J = 12.9, 10.1, 6.6, 5.4 Hz, 1H, H-8'). ¹³C NMR (151 MHz, CD₃OD): δ 176.7 (s, C-6), 73.6 (d, C-3a), 68.1 (t, C-2), 67.6 (d, C-9a), 62.2 (d, C-1a), 57.4 (d, C-8a), 42.2 (t, C-4), 34.8 (t, C-9), 31.1 (t, C-7), 25.0 (t, C-8) ppm. HRMS (ESI): m/z calcd. for C₁₀H₁₃NO₃ [M+1]⁺ 196.0968, found 196.0968.

*Method C: Epoxidation with CH*₃*CO*₃*H.*

To commercially available concentrated peracetic acid (6.73 mL, 0.10 mol) DHF-5 (896 mg, 5.0 mmol) was added at cooling (0 °C). The reaction mixture was stirred for 32 h (TLC monitoring), diluted with water (10 ml), extracted with CH_2Cl_2 (3×50 mL). Combined organic layers were washed with saturated Na₂CO₃, dried with MgSO₄ and concentrated to give a mixture of *endo-* and exoepoxide (70:30 from ¹H NMR spectra) as pale yellow solid (693 mg, 71%). Worked-up the solid as above gives a *endo-*epoxide (497 mg, 51%) as colorless needles with the same physico-chemical date as above.

Method D: Epoxidation with CF_3CO_2H *and* H_2O_2 *.*

Using the procedure described in method B, from DHF-5 (896 mg, 5.0 mmol), CF_3CO_2H (7.65 mL, 0.1 mol) and hydrogen peroxide (30% aqueous solution, 2.29 mL, 0.13 mol) was stirred 8 hours. Worked-up the solid (702 mg, 71%, *endo:exo-*epoxide (27:73 from ¹H NMR analysis) as above gives a *endo-*epoxide (547 mg, 56%) as colorless needles with the same physico-chemical date as above.

Method E: Epoxidation with Na_2WO_4 *.* $10H_2O$ *and* H_2O_2 *.*

To hydrogen peroxide (30% aqueous solution, 2.5 mL, 0.105 mol) was added Na₂WO₄.10H₂O (330 mg, 1.0 mmol) at 0 °C. After 15 minutes DHF-**5** (360 mg, 2.0 mmol) was added at cooling (0 °C). The light-yellow reaction mixture was stirred for 13 h (TLC monitoring), diluted with water (10 mL), extracted with CH₂Cl₂ (3×50 mL), combined organic layers were dried over MgSO₄ and concentrated to give a mixture of *endo:exo-*epoxide (23/77 from ¹H NMR analysis) as a pale yellow solid (315 mg, 80.3%). Worked-up the solid as above gives a *endo-*epoxide (239 mg, 61%) as colorless needles with the same physico-chemical date as above.

(3R,3aS,4aS,9aR)-3,3a-Dihydroxyoctahydrofuro[2,3-f] indolizin-7(2H)-one (8a)

Method A: Preparation of trans-diol 8a from a mixture of epoxides (6,7).

A mixture of endo:exo-diols (ratio 25:75 from epoxidation of DHF-5 with m-CPBA) (585 mg, 3 mmol) was heated at 60 °C in a mixture of CF₃CO₂H:H₂O (10 mL, 3:1) for 12 hours. The mixture was cooled to 15 °C and concentrated under reduced pressure. The residue was dissolved in MeOH (45 mL), SiO₂ (15 g) was added, again concentrated and the remaining solid purified by flash chromatography (CH₂Cl₂. CH₂Cl₂:MeOH 5:1) to give 8a (518 mg, 81%). Recrystallization from a mixture of THF:n-heptane gave trans-diol 8a (441 mg, 69%) as colorless needles, mp 87.6-91.8 °C. $[\alpha]_D^{20.3} = +93.2$ (c 1.15, H₂O). TLC (Silica gel): R_f = 0.09 (CH₂Cl₂:isopropanol 3:1). IR (ATR): v = 3372, 3260, 2982, 2945, 2898, 1648, 1470, 1443, 1422, 1357, 1283, 1270, 1186, 1174, 1120, 1091, 1070, 1049, 1035, 1003, 987, 922, 899, 872, 812, 788, 736, 629, 606, 561, 523, 482, 464, 443. ¹H NMR (600 MHz, CD₃OD): δ 4.25 (dd, *J* = 9.5, 4.8 Hz, 1H, H-2), 4.07 (d, *J* = 4.3 Hz, 1H, H-3), 4.06 - $4.02 \text{ (m, 1H, H-4a)}, 4.03 \text{ (dd, } J = 12.9, 7.3 \text{ Hz}, 1\text{H}, \text{H-9}_{eq}\text{)}, 3.83 \text{ (dd, } J = 9.5, 1.0 \text{ Hz}, 1\text{H}, \text{H-2}\text{)}, 3.73 \text{ (dd, } J = 12.9, 7.3 \text{ Hz}, 1\text{H}, \text{H-9}_{eq}\text{)}, 3.83 \text{ (dd, } J = 9.5, 1.0 \text{ Hz}, 1\text{H}, \text{H-2}\text{)}, 3.73 \text{ (dd, } J = 12.9, 7.3 \text{ Hz}, 1\text{H}, \text{H-9}_{eq}\text{)}, 3.83 \text{ (dd, } J = 9.5, 1.0 \text{ Hz}, 1\text{H}, \text{H-2}\text{)}, 3.73 \text{ (dd, } J = 12.9, 7.3 \text{ Hz}, 1\text{H}, \text{H-9}_{eq}\text{)}, 3.83 \text{ (dd, } J = 9.5, 1.0 \text{ Hz}, 1\text{H}, \text{H-2}\text{)}, 3.73 \text{ (dd, } J = 12.9, 7.3 \text{ Hz}, 1\text{H}, 10.9 \text{ Hz}, 10.9$ J = 9.6, 7.3 Hz, 1H, H-9a), 3.03 (dd, J = 12.8, 10.3 Hz, 1H, H-9ax), 2.56 (dd, J = 13.7, 4.2 Hz, 1H, H- 4_{eq} , 2.47 - 2.36 (m, 2H, 2xH-6), 2.25 (dddd, J = 12.8, 9.2, 7.8, 6.1 Hz, 1H, H-5), 1.61 (dddd, J = 12.8, 9.8, 7.4, 5.7 Hz, 1H, H-5'), 1.60 (dd, J = 13.7, 11.4 Hz,1H, H-4_{ax}). ¹³C NMR (151 MHz, CD₃OD): δ 176.6 (s, C-7), 81.1 (d, C-9a), 80.7 (d, C-3), 80.3 (d, C-3a), 76.6 (t, C-2), 56.0 (d, C-4a), 42.7 (t, C-9), 41.4 (t, C-4), 31.4 (t, C-6), 26.0 (t, C-5) ppm. HRMS (ESI): m/z calcd. for $C_{10}H_{15}NO_4$ [M+H]⁺214.1074, found 214.1070.

Method B: Preparation of trans-diol 8a from exo-epoxide 6.

A *exo*-epoxide **6** (586 mg, 3 mmol) was added at room temperature to a mixture of CF₃CO₂H:H₂O (10 mL, 3:1). The mixture was heated at 55 °C (TLC monitoring), cooled and concentrated under reduced pressure. The residue was dissolved in MeOH (45 mL), SiO₂ (10 g) was added, again concentrated and the remaining solid purified by flash chromatography (CH₂Cl₂, CH₂Cl₂:MeOH 5:1) to give a *trans*-diol (498.7 mg, 78%). Recrystallization from a mixture of THF:*n*-heptane gave *trans*-diol **8a** (435 mg, 68%) as colorless needles, mp 87.7-91.6 °C. TLC (Silica gel): $R_f = 0.09$ (CH₂Cl₂:isopropanol 3:1).

Method C: Preparation of trans-diol 8a from DHF-5 without isolation of epoxide 6.

To CF₃COOH (7.65 ml, 0.1 mol) was added hydrogen peroxide (30% aqueous solution, 2.29 mL, 130 mmol). After 15 minutes DHF-5 (896 mg, 5.0 mmol) was added at cooling (0 °C). The reaction mixture was stirred for 6h at room temperature, then the temperature was raised to 60 °C, stirred 12 h (TLC monitoring), cooled and concentrated. The residue was dissolved in MeOH (50 ml), SiO₂ (20 g) was added, concentrated and the remaining solid purified by flash chromatography (CH₂Cl₂, CH₂Cl₂/MeOH 5/1) to give a *trans*-diole (864 mg, 81%). Recrystallization from a mixture of THF/*n*-heptane gave *trans*-diole **8a** (757 mg, 71%) as colorless needles, mp 87.9 - 91.5°C.

(3aS,4aS,9aR)-Octahydrofuro[2,3-f]indolizin-3a(4H)-ol (26)

To a solution of dry THF (50 mL) and LAH (350 mg, 9.2 mmol) a solution of epoxide 6 (586 mg, 3 mmol) in dry THF (10 mL) was added dropwise at room temperature. After 15 minutes, the reaction was heated to reflux for 90 minutes. The resulting mixture was cooled, Celite (10 g) was added, then Na₂SO₄.10H₂O (10 g) cautiously until the lithium complex was destroyed. The mixture was then diluted with THF (25 mL) and NaOH (3 g, 75 mmol, in 5 mL H₂O) was added. White precipitate was filtered off and heated again in THF (2 x 25 mL). The combined THF extracts were dried over MgSO₄, concentrated in vacuo to give a colorless oil (489 mg, 89%). Distillation bulb-to-bulb on Kugelrohr (215 $^{\circ}$ C/0.4 mbar) gave alcohol-free base **26** as a colorless oil, which immediately solidifies. Crystallization from dry *n*-hexane under argon atmosphere (hygroscopic) furnished **26** (417 mg, 76%) as a white crystal, mp 112.4-113.1 °C. $[\alpha]_D^{20.3} = +21.73$ (*c* 1.0 MeOH). TLC (Silica gel): $R_f = 0.32$ (CH₂Cl₂:isopropanol 1:2). IR (ATR): v = 3095, 2958, 2980, 2923, 2889, 2815, 1462, 1444, 1412, 1337, 1321, 1297, 1272, 1136, 1118, 1080, 1060, 1034, 989, 908, 874, 785, 697, 559, 509, 469. ¹H NMR (600 MHz, CD₃OD): δ 4.06 (dt, *J* = 10.1, 7.6 Hz, 1H, H-2), 3.98 (ddd, *J* = 10.0, 8.1, 2.2 Hz, 1H, H-2'), 3.86 $(dd, J = 9.2, 6.7 Hz, 1H), 3.10 (dd, J = 11.3, 6.7 Hz, 1H, H-9_{eq}), 2.97 (td, J = 8.8, 2.5 Hz, 1H, H-7), 2.30$ -2.25 (m, 1H, H-3), 2.24 (dd, J = 13.2, 3.0 Hz, 1H, H-4), 2.19 (q, J = 9.1 Hz, 1H, H-7'), 2.15 -2.08(m, 1H, H-4a), 1.93 (dddd, J = 12.2, 8.7, 6.4, 3.8 Hz, 1H, H-5), 1.87 (dd, J = 11.0, 10.1 Hz, 1H, H-9'), 1.87 - 1.79 (m, 2H, 2x H-6), 1.77 (ddd, J = 13.0, 7.1, 1.7 Hz, 2H, H-3'), 1.59 (dd, J = 13.0, 11.9 Hz, 1H, H-4'), 1.42 (ddt, J = 11.3, 7.4, 7.0 Hz, 1H, H-5'). ¹³C NMR (151 MHz, CD₃OD): δ 82.9 (d, C-9a), 79.8 (s, C-3a), 67.4 (t, C-2), 62.6 (d, C-4a), 56.2 (t, C-9), 54.6 (t, C-7), 40.1 (t, C-4), 36.1 (t, C-5), 31.0 (d, C-9a), 23.0 (t, C-6) ppm. HRMS (ESI): m/z calcd. for C₁₀H₁₇NO₂ [M+H]⁺ 184.1332, found 184,1333.

(3R,3aR,4aS,9aR)-7-Oxodecahydrofuro[2,3-f] indolizine-3,3a-diyl diacetate(18a)

To a stirred solution of *trans*-diol **8a** (2.13 g, 10.0 mmol) in of dry CH_2Cl_2 (50 mL) was added Ac₂O (3.9 mL, 35 mmol, 3.5 eq.), DMAP (43 mg, 0.35 mmol) and Et₃N (5.6 mL, 40.0 mmol, 4.0 eq.). The reaction mixture was heated at reflux until disappearance of the starting material (monitored by TLC, CH_2Cl_2 :acetone 10:1). The mixture was cooled and quenched with a saturated aqueous Na₂CO₃ solution (10 mL). The aqueous layer was extracted with CH_2Cl_2 (3 x 30 mL). The organic layers were washed with water, dried over MgSO₄ and concentrated under vacuum. The light-yellow oil was purified by flash chromatography on silica gel column (CH_2Cl_2 , CH_2Cl_2 :acetone 12:1) to afford *trans*-

diacetyl **18a** (2.47 g, 83%) as an oil, which quickly crystallized on standing. Recrystallization from a mixture of EtOAc/*n*-heptane furnished **18a** (2.2 g, 74%) as a white crystal; mp 181,8-183,1 °C. $[\alpha]_D^{20.3} = -78.3$ (*c* 1.05, acetone). TLC (Silica gel): $R_f = 0.59$ (CH₂Cl₂:isopropanol 5:1). IR (ATR): v = 2934, 2913, 2892, 1737, 1665, 1440, 1427, 1372, 1362, 1305, 1226, 1178, 1087, 1067, 1048, 1022, 977, 954, 938, 927, 899, 874, 853, 799, 757, 714, 659, 641, 603, 567, 528, 487, 441, 413. ¹H NMR (600 MHz, CD₃COCD₃): δ 5.59 (dd, *J* = 5.1, 1.3 Hz, 1H, H-3), 4.19 (dd, *J* = 10.8, 5.1 Hz, 1H, H-2), 4.08 (dd, *J* = 8.1, 6.7 Hz, 1H, H-9a), 3.95 (dd, *J* = 13.4, 6.6 Hz, 1H, H-9eq), 3.86 (dd, *J* = 10.8, 1.4 Hz, 1H, H-2), 3.88 – 3.81 (m, 1H, H-4a), 3.04 (dd, *J* = 13.4, 8.3 Hz, 1H, H-9ax), 3.00 (dd, *J* = 13.9, 3.9 Hz, 1H, H-4eq), 2.29 - 2.21 (m, 3H, 2xH-6 and H-5), 2.14 (s, 3H, CH₃), 2.01 (s, 3H, CH₃), 1.80 (dd, *J* = 13.9, 11.6 Hz, 1H, H-4ax), 1.64 – 1.56 (m, 1H, H-5). ¹³C NMR (151 MHz, CD₃COCD₃): δ 174.7 (s, C-7), 171.5 (s, CH₃<u>CO</u>), 171.1 (s, CH₃<u>CO</u>), 88.9 (d, C-3a), 80.5 (d, C-9a), 79.5 (d, C-3), 74.3 (t, C-2), 54.3 (d, C-4a), 42.1 (t, C-9), 38.3 (t, C-4), 31.6 (t, C-6), 27.1 (t, C-5), 22.9 (q, CH₃), 21.9 (q, CH₃) ppm. HRMS (ESI): *m/z* calcd. for C₁₄H₁₉NO₆ [M+H]⁺298.1285, found 298.1285.

(3R,3aS,4aS,9aR)-Octahydrofuro[2,3-f]indolizine-3,3a(4H)-diol (9a)

LAH (570 mg, 15 mmol, 6 eq.) was added to a solution of a freshly crystallized trans-diacetyl-THF 18a (742 mg, 2.5 mmol) in dry THF (35 mL) at room temperature and the mixture then heated under reflux for 2.5 h. The slurry was then warmed to ambient temperature and after an additional 40 minutes was carefully quenched with 2:1 w:w Na₂SO₄.10H₂O:Celite (20 g). The reaction mixture was diluted with THF (75 mL) and NaOH (1.5 g) in H₂O (5 mL) was added (a white precipitate is formed). After 30 minutes, the solid was filtered, washed with hot THF (2 x 75 mL), and the combined organic layers were dried over MgSO4, filtered and concentrated in vacuo to give a solid (453 mg, 91%). Recrystallization of the solid from anhydrous *n*-heptane gave *trans*-dihydroxy-THF **9a** (386 mg, 79%) as a white crystal; mp 139.1-139.7 °C. $[\alpha]_D^{24} = +31.65$ (*c* 1.0, MeOH). TLC (Silica gel): R_f = 0.17 (CH₂Cl₂/isopropanol 1/2). IR (ATR): v=3492, 2940, 2881, 2840, 2822, 2741, 1455, 1384, 1327, 1241, 1205, 1136, 1112, 1056, 1022, 965, 934, 904, 858, 788, 752, 689, 661, 558, 443. ¹H NMR (600 MHz, CD₃OD) δ 4.24 (dd, J = 9.4, 4.7 Hz, 1H, H-2), 4.00 (d, J = 4.4Hz, 1H, H-3), 3.97 (dd, J = 10.4, 7.2 Hz, 1H, H-9a), 3.79 (dd, J = 9.4, 1.1 Hz, 1H, H-2'), 3.11 (dd, J = 10.7, 7.1 Hz, 1H, H-9eq), 2.98 (dt, J = 9.0, 2.4 Hz, 1H, H-7), 2.59 (ddt, J = 10.8, 6.3, 3.6 Hz, 1H, H-4a), 2.53 (dd, J = 13.5, 3.5 Hz, 1H, H-4_{eq}), 2.35 (t, J = 10.6 Hz, 1H, H-9_{ax}), 2.19 (q, J = 9.1 Hz, 1H, H-7'), 1.94 - 1.76 (m, 3H, H-5 and 2x H-6), 1.57 (dd, J = 13.4, 11.7 Hz, 1H, H-4_{ax}), 1.31 (tq, J = 11.3, 6.8 Hz, 1H, H-5'). ¹³C NMR (151 MHz, CD₃OD) & 83.6 (d, 9a), 81.3 (d, C-3), 80.5 (s, C-3a), 76.3 (t, C-2), 62.9 (d, C-4a), 55.5 (t, C-9), 54.3 (t, C-7), 39.7 (t, C-4), 31.6 (t, C-5), 22.9 (t, C-6) ppm. HRMS (ESI): m/z calcd. for C10H17NO3 [M+H]⁺ 200.1281, found 200.1279.

(*3aS*, *5aR*, *8aS*, *11aR*, *11bR*, *12aR*)-2, 2, 10, 10-Tetramethyloctahydro-8*H*-[1,3]dioxolo[4',5':3,4]-furo[2,3-f][1,3]dioxolo[4,5-a]indolizine (32a)

Method A: LAH (750 mg, 2 mmol) was added to a solution of lactam **30a** (325 mg, 1 mmol) in dry THF (30 mL) at room temperature and the mixture was then heated at reflux for 2 h. The resulting mixture was cooled, Celite (5 g) and Na₂SO₄.10H₂O (5 g) were added cautiously until the lithium complex was destroyed. The mixture was then diluted with THF (25 mL) and NaOH (2 g in 5 mL H₂O) was added. White precipitate was filtered off and heated again twice in THF (2 x 25 mL). The combined THF extracts were dried over MgSO₄, concentrated in vacuo to give a white residue (300 mg, 88%) as THF complex (from ¹H NMR analysis) which was refluxed in a mixture of MeOH (50 ml) and water (5 mL) for 48 h. To cooled mixture, SiO₂ (10 g) was added and concentrated *in vacuo*. The resulting solid was purified by flash chromatography (CH₂Cl₂, CH₂Cl₂:acetone 10:1) to afford the free base as a white solid (218 mg, 70%).

Method B: Me₂S·BH₃ (2.0 M solution in THF, 10.8 mL, 22.0 mmol) was added to a stirred solution of lactam 30a (813 mg, 2.5 mmol) in dry THF (15 mL) under argon and the mixture was stirred at room temperature for 30 minutes, then heated at reflux 4 h. The mixture was quenched by the careful addition of MeOH (20 mL) and concentrated under vacuum. The crude colorless residue of the borane–tetrahydrofuran complex $32a \cdot BH_3 \cdot THF$ (805 mg) [¹³C NMR (CDCl₃): δ 114.2, 112.3, 90.9, 84.5, 84.2, 79.5, 78.5, 72.9, 66.6, 62.8 t (CH2O-THF), 62.2 t (CH2O-THF), 59.6, 51.5, 30.3 t (CH2CH2-THF), 29.9 t (CH₂CH₂-THF), 29.4 (q), 27.9 (q), 27.2 (q), 25.1 (q) ppm, TLC (Silica gel): $R_f = 0.87$ (CH₂Cl₂:isopropanol 3:1)] was dissolved in MeOH (35 mL) and water (10 mL) was added. The resulting mixture was heated at reflux for 5 days. The reaction mixture was filtered through Celite and the filtrate was concentrated to afford free base 32a (669 mg, 86 %) as a colorless oil. Subjection of this oil to flash chromatography (CH_2Cl_2 , CH_2Cl_2 :acetone 12:1) gave a free base **32a** (520.6 mg, 67%) as a white solid; mp 81.9-82.7 °C. $[\alpha]_D^{24} = +43.9$ (c 0.75, acetone); TLC (Silica gel): $R_f = 0.31$ (CH₂Cl₂:isopropanol 3:1). IR (ATR): v = 2863, 2838, 2812, 1482, 1441, 1381, 1368, 1301, 1285, 1208, 1147, 1101, 1057, 1048, 1018, 978, 918, 892, 853, 841, 813, 781, 718, 701, 603, 532, 504, 491, 426. ¹H NMR (600 MHz, CDCl₃): δ 4.74 (dt, J = 6.8, 5.3 Hz, 1H, H-8a), 4.64 (dd, J = 5.4, 1.2 Hz, 11.1, 5.5 Hz, 1H, H-4), 3.88 (dd, *J* = 11.1, 1.6 Hz, 1H, H-4'), 3.33 (dd, *J* = 9.6, 6.4 Hz, 1H, H-8), 3.08 $(dd, J = 11.6, 7.5 Hz, 1H, H-6_{ea})$, 2.48 $(dd, J = 13.1, 3.0 Hz, 1H, H-12_{ea})$, 2.32 $(dd, J = 9.6, 5.1 Hz, 1H, H-12_{ea})$ H-8), 2.12 (dd, J = 11.3, 10.4 Hz, 1H, H-6_{ax}), 2.10 (ddd, J = 12.0, 5.8, 2.9 Hz, 1H, H-11b), 1.78 (dd, J = 13.0, 12.3 Hz, 1H, H-12_{ax}), 1.51 (s, 3H, CH₃), 1.49 (s, 3H, CH₃), 1.42 (s, 3H, CH₃), 1.32 (s, 3H, CH₃). ¹³C NMR (151 MHz, CDCl₃): δ 114.2 (s, C-2) 112.2 (s, C-10), 90.9 (s, C-12a), 84.5 (d, C-3a) 84.2 (d, C-11a), 79.5 (d, C-5a), 78.5 (d, C-8a), 72.9 (t, C-4), 66.5 (d, C-11b), 59.6 (t, C-8), 51.4 (t, C-6), 36.7 (t, C-12), 29.4 (q, CH₃), 27.9 (q, CH₃), 27.1 (q, CH₃), 25.0 (q, CH₃) ppm. HRMS (ESI): m/z calcd. for $C_{16}H_{25}NO_5 [M+H]^+ 312.1805$, found 312.1807.

(3S,3aS,4aR,5R,6S,9aR)-Octahydrofuro[2,3-f]indolizine-3,3a,5,6(4H)-tetraol (33a)

To DOWEX 50W x 8 (200-400 mesh) (1 g) washed with MeOH (3 x 10 ml), free base of di-DMP protected tetraol (467 mg, 1.5 mmol) was added in MeOH (25 mL) and the reaction mixture was stirred overnight. After complete disappearance of the starting material (TLC monitored) and full deprotection (LC-MS analysis), the MeOH was decanted, DOWEX was washed with MeOH (2 x 5 mL) and aqueous ammonia (25%, 10 mL) was added. The mixture was stirred for 1 h at 40 °C, cooled, filtered, and water was removed in *vacuo*. This crude tetraol was subjection to flash chromatography (CH₂Cl₂, CH₂Cl₂:MeOH 3:1) and gave a free base **33a** (246 mg, 71%) as a very hydroscopic white foam. $[\alpha]_D^{24} = +261.3$ (c 1.03, MeOH). TLC (Silica gel): $R_f = 0.48$ (CH₂Cl₂:MeOH 1:1 + 0.05% 7 M NH₃:MeOH). IR (ATR): v = 3319, 2933, 2907, 2819, 1392, 1336, 1259, 1164, 1107, 1041, 967, 928, 885, 845, 755, 565, 432. ¹H NMR (600 MHz, CD₃OD): δ 4.35 (t, *J* = 8.2 Hz, 1H, H-3), 4.14 (td, *J* = 6.6, 5.1 Hz, 1H, H-6), 4.04 (t, *J* = 8.0 Hz, 1H, H-2), 3.93 (dd, *J* = 9.6, 6.8 Hz, 1H, H-9a), 3.68 (t, *J* = 8.4 Hz, 1H, H-2'), 3.60 (dd, J = 8.0, 7.0 Hz, 1H), 3.33 (dd, J = 10.4, 6.7 Hz 1H, H-7), 3.07 (dd, J = 11.3, 6.8Hz, 1H, H-9_{eq}), 2.39 (dd, J = 13.2, 3.2 Hz, 1H, H-4_{eq}), 2.25 (dd, J = 10.4, 4.9 Hz 1H, H-7'), 2.23 (ddd, J = 11.7, 8.2, 3.1 Hz, 1H, H-4a), 2.03 (t, J = 10.6 Hz, 1H, H-9_{ax}), 1.48 (dd, J = 13.1, 11.9 Hz, 1H, H-4_{ax}). ¹³C NMR (151 MHz, CD₃OD): δ 82.6 (d, C-9a), 77.3 (s, C-3a), 76.8 (d, C-5), 72.1 (d, C-3), 71.6 (t, C-2), 69.8 (d, C-6), 64.8 (d, C-4a), 61.8 (t, C-7), 56.2 (d, C-9), 35.8 (t, C-4) ppm. HRMS (ESI): *m/z* calcd. for C₁₀H₁₇NO₅ [M+H]⁺ 232.1179, found 232.1179.

Note: When di-DMP-protected free base of tetraol was retained on a column packed with DOWEX 50Wx8 (200-400 mesh), washed with MeOH, water, and then with 1N NH₄OH, a mixture of tetraol and monoacetonide was obtained (from ¹H NMR analysis).

¹H and ¹³C NMR, HMBC, HSQC, COSY and NOESY spectra

¹H NMR of **3**

 13 C NMR of **3**

 1 H NMR of **4**

¹³C NMR of **4**

¹³C NMR of **5**

¹H NMR of **6**

¹³C NMR of **6**

HMBC of 6

HMBC of 6

COSY of 6

¹H NMR of **8c**

¹³C NMR of **8c**

HMBC of **8c**

HMBC of 8c

COSY of 8c

¹³C NMR of **19c**

¹H NMR of **18c**

HSQC of 18c

-S28-

¹³C NMR (APT) of **28**

COSY of 28

 1 H NMR of **20**

 1 H NMR of 14

5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 fl(ppm)

¹H NMR of 8a

HMBC of 8a

COSY of 8a

¹H NMR of **18a**

¹³C NMR (APT) of **18a**

HMBC of 18a

HSQC of 18a

¹H NMR of **27a,b**

¹H NMR of **31**

-S42-

HSQC of 31

¹H NMR of **29a**

COSY of 29a

4.26 4.22 4.20 4.18 4.16 4.14 4.12 4.10 4.08 4.06 4.04 4.02 4.00 3.98 3.96 3.94 3.92 3.90 3.88 3.86 3.84 3.82 3.80 3.78 3.76 f2 (ppm)

HMBC of 29a

5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 fl (ppm)

¹H NMR of **30b**

¹³C NMR of **30b**

HMBC of **30b**

COSY of **30b**

¹H NMR of **30a**

¹³C NMR of **30a**

-S48-

¹H NMR of **32a**

¹³C NMR of **32a**

COSY of 32a

HSQC of 32a

¹H NMR of **33a**

HSQC of 33a

4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 12 (ppm)

HMBC of 33a

COSY of 33a

NOESY of 33a

¹H NMR of 21

HSQC of 21

¹H NMR of **26**

¹³C NMR of **26**

COSY of 26

50 45 f1 (ppm)

¹³C NMR of **25**

HSQC of 25

COSY of 25

¹H NMR of 23a

HSQC of 23a

¹H NMR of **24**

¹³C NMR of **24**

HSQC of 24

COSY of 24

¹³C NMR of **9a**

COSY of 9a

4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 f2 (ppm)

HMBC of **9a**

HSQC of 9a

¹H NMR of 9c

¹³C NMR of **9c**

HMBC of **9c**

HSQC of 9c

COSY of 9c

X-ray Crystallographic Data of compound 6, 8a, 14, 18c, 19c, 20, 23a and 30a.

Crystallographic data: single-crystals were mounted on Stoe StadiVari diffractometer possessing PILATUS3R 300K detector and microfocused sealed tube Xenocs Genix3D Cu HD ($\lambda = 1.54186$ Å) at 100K. The structures were solved by SUPERFLIP, SHELXTL or SIR-2011 and refined by SHELXL (ver. 2018/3).³⁷ The structures were drawn using OLEX2 program.³⁸ The absolute structures were confirmed by two methods (Parsons and Hooft methods).³⁹

Crystal data for **6**: C₁₀H₁₃NO₃ (M = 195.21 g/mol), orthorhombic space group $P2_12_12_1$ (no. 19), a = 5.8779(2), b = 9.4102(2), c = 16.0947(3) Å, V = 890.23(4) Å³, $Z = 4, D_c = 1.457$ g/cm³, $\mu = 0.895$ mm⁻¹, $R_1 = 0.0239$ [$I > 2\sigma(I)$], and w $R_2 = 0.0622, S = 1.059$ for all 23493 reflections. Flack parameter x = 0.05(5). Hooft parameter y = 0.09(3). *CCDC reference number 1976231*.

Crystal data for **8a**: C₁₀H₁₅NO₄ (M = 213.23 g/mol), orthorhombic space group $P2_12_12_1$ (no. 19), a = 19.1607(4), b = 7.5467(1), c = 6.7883(1) Å, V = 981.59(3) Å³, Z = 4, $D_c = 1.443$ g/cm³, $\mu = 0.936$ mm⁻¹, $R_1 = 0.0255$ [$I > 2\sigma(I)$], and w $R_2 = 0.0666$, S = 1.062 for all 28016 reflections. Flack parameter x = 0.00(5). Hooft parameter y = -0.04(2). *CCDC reference number 1976232*.

Crystal data for **14**: C₁₀H₁₃NO₃ (M = 195.21 g/mol), orthorhombic space group $P2_12_12_1$ (no. 19), a = 8.3442(2), b = 9.0461(2), c = 12.1350(3) Å, V = 915.98(4) Å³, $Z = 4, D_c = 1.416$ g/cm³, $\mu = 0.870$ mm⁻¹, $R_1 = 0.0245$ [$I > 2\sigma(I)$], and w $R_2 = 0.0656, S = 1.072$ for all 48750 reflections. Flack parameter x = 0.03(7). Hooft parameter y = 0.05(6). *CCDC reference number 1976233*.

Crystal data for **18c**: $C_{14}H_{19}NO_6$ (M = 297.30 g/mol), monoclinic space group $P2_1$ (no. 4), a = 12.2148(2), b = 6.8618(1), c = 17.7152(3) Å, $\beta = 103.182(2)^\circ$, V = 1445.68(4) Å³, Z = 4, $D_c = 1.366$ g/cm³, $\mu = 0.904$ mm⁻¹, $R_1 = 0.0346$ [$I > 2\sigma(I)$], and w $R_2 = 0.0960$, S = 1.086 for all 88404 reflections. Flack parameter x = -0.07(9). Hooft parameter y = -0.07(3). *CCDC reference number 1976234*.

Crystal data for **19c**: $C_{12}H_{17}NO_5$ (M = 255.26 g/mol), orthorhombic space group $P2_12_12_1$ (no. 19), a = 7.1742(1), b = 11.1860(1), c = 14.6964(2) Å, V = 1179.39(3) Å³, Z = 4, $D_c = 1.438$ g/cm³, $\mu = 0.944$ mm⁻¹, $R_1 = 0.0233$ [$I > 2\sigma(I)$], and w $R_2 = 0.0593$, S = 1.059 for all 71524 reflections. Flack parameter x = 0.00(2). Hooft parameter y = 0.005(14). *CCDC reference number 1976235*.

Crystal data for **20**: C₁₃H₁₉NO₄ (M = 253.29 g/mol), monoclinic space group $P112_1$ (no. 4), a = 5.9193(1), b = 11.8539(1), c = 17.5843(3) Å, $\beta = 89.986(1)^\circ$, V = 1233.83(3) Å³, Z = 4, $D_c = 1.364 \text{ g/cm}^3$, $\mu = 0.833 \text{ mm}^{-1}$, $R_1 = 0.0225 [I > 2\sigma(I)]$, and w $R_2 = 0.0581$, S = 1.038 for all 72818 reflections. Flack parameter x = -0.01(5). Hooft parameter y = -0.01(3). *CCDC reference number 1976236*.

Crystal data for **23a**: C₁₀H₁₅NO₃ (M = 197.23 g/mol), monoclinic space group $P2_{1}2_{1}2_{1}$ (no. 4), a = 6.72543(6), b = 9.3824(1), c = 7.51677(6) Å, $\beta = 97.6836(8)^{\circ}, V = 470.056(8)$ Å³, $Z = 2, D_{c} = 1.393$ g/cm³, $\mu = 0.848$ mm⁻¹, $R_{1} = 0.0263$ [$I > 2\sigma(I)$], and w $R_{2} = 0.0707, S = 1.057$ for all 21792 reflections. Flack parameter x = -0.03(12). Hooft parameter y = -0.04(5). *CCDC reference number 1976237*.

Crystal data for **30a**: C₁₆H₂₃NO₆ (M = 325.35 g/mol), monoclinic space group $P2_1$ (no. 4), a = 6.9165(6), b = 9.3607(6), c = 12.8322(9) Å, $\beta = 97.410(6)^\circ$, V = 823.86(11) Å³, Z = 2, $D_c = 1.312$
g/cm³, $\mu = 0.838$ mm⁻¹, $R_1 = 0.0266$ [$I > 2\sigma(I)$], and w $R_2 = 0.0701$, S = 1.081 for all 49488 reflections. Flack parameter x = -0.02(6). Hooft parameter y = -0.02(3). CCDC reference number 1976238.

Crystallographic data for the reported compounds

- Fig. X1 Molecular structure of 6 with the thermal ellipsoids shown at a 50% probability level.
- Fig. X2 Molecular structure of 8a with the thermal ellipsoids shown at a 50% probability level.
- Fig. X3 Molecular structure of 14 with the thermal ellipsoids shown at a 50% probability level.
- Fig. X4 Two crystallographic independent molecules of **18c** with the thermal ellipsoids shown at a 50% probability level. The disordered acetyl group is drawn by green and violet lines.
- Fig. X5 Molecular structure of **19c** with the thermal ellipsoids shown at a 50% probability level.
- Fig. X6 Two crystallographic independent molecules of **20** with the thermal ellipsoids shown at a 50% probability level.
- Fig. X7 Molecular structure of 23a with the thermal ellipsoids shown at a 50% probability level.
- Fig. X8 Molecular structure of **30a** with the thermal ellipsoids shown at a 50% probability level.

Fig. X1 Molecular structure of 6 with the thermal ellipsoids shown at a 50% probability level

Fig. X2 Molecular structure of 8a with the thermal ellipsoids shown at a 50% probability level.

Fig. X3 Molecular structure of 14 with the thermal ellipsoids shown at a 50% probability level.

Fig. X4 Two crystallographic independent molecules of **18c** with the thermal ellipsoids shown at a 50% probability level. The disordered acetyl group is drawn by green and violet lines.

Fig. X5 Molecular structure of **19c** with the thermal ellipsoids shown at a 50% probability level.

Fig. X6 Two crystallographic independent molecules of **20** with the thermal ellipsoids shown at a 50% probability level.

Fig. X7 Molecular structure of 23a with the thermal ellipsoids shown at a 50% probability level.

Fig. X8 Molecular structure of **30a** with the thermal ellipsoids shown at a 50% probability level.

Notes and references

37 a) L. Palatinus and G. Chapuis, J. Appl. Crystallogr. 2007, 40, 786-790; b) G. M. Sheldrick, Acta Crystallogr. 2015, A71, 3-8; c) M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, C. Giacovazzo, M. Mallamo, A. Mazzone, G. Polidori and R. Spagna, J. Appl. Crystallogr. 2012, 45, 357-361; d) G. M. Sheldrick, Acta Crystallogr. 2015, C71, 3-8.

38 O. Dolomanov, L. J. Bourhis, R. I. Gildea and J. A. K. Howard, *J. Appl. Crystallogr.* 2009, **42**, 339-341. 39 a) S. Parsons, H. D. Flack and T. Wagner, *Acta Crystallogr.* 2013, **B69**, 249-259.; b) R. W. W. Hooft, L.

H. Straver and A. L. Spek, *J. Appl. Crystallogr.* 2008, **41**, 96-103.

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 14, 18c, 19c, 20, 23a, 30a, 6, 8a

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 6

Bond precision:	C-C = 0.0020 A	Wavelengt	h=1.54186
Cell:	a=5.8779(2) alpha=90	b=9.4102(2) beta=90	c=16.0947(3) gamma=90
Temperature:	100 K		
	Calculated	Reported	L
Volume	890.23(4)	890.23(4	.)
Space group	P 21 21 21	P 21 21	21
Hall group	P 2ac 2ab	P 2ac 2a	b
Moiety formula	C10 H13 N O3	C10 H13	N 03
Sum formula	C10 H13 N O3	C10 H13	N 03
Mr	195.21	195.21	
Dx,g cm-3	1.457	1.457	
Z	4	4	
Mu (mm-1)	0.895	0.895	
F000	416.0	416.0	
F000'	417.38		
h,k,lmax	7,11,19	7,11,19	
Nref	1745[1043]	1719	
Tmin,Tmax	0.851,0.898	0.201,0.	580
Tmin'	0.731		
Correction metho AbsCorr = MULTI-	od= # Reported T Li -SCAN	.mits: Tmin=0.201	Tmax=0.580
Data completenes	ss= 1.65/0.99	Theta(max)= 71.7	16
R(reflections)=	0.0239(1692)	wR2(reflections)	= 0.0622(1719)
S = 1.059	Npar= 1	28	

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level G		
PLAT398_ALERT_2_G Deviating C-O-C Angle From 120) for 02	108.4 Degree
PLAT398_ALERT_2_G Deviating C-O-C Angle From 120	0 for 03	60.4 Degree
PLAT791_ALERT_4_G Model has Chirality at C4	(Chiral SPGR)	S Verify
PLAT791_ALERT_4_G Model has Chirality at C6	(Chiral SPGR)	R Verify
PLAT791_ALERT_4_G Model has Chirality at C7	(Chiral SPGR)	R Verify
PLAT791_ALERT_4_G Model has Chirality at C9	(Chiral SPGR)	S Verify
PLAT912_ALERT_4_G Missing # of FCF Reflections Above	e STh/L= 0.600	5 Note
PLAT978_ALERT_2_G Number C-C Bonds with Positive Res	sidual Density.	7 Info

0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 0 ALERT level C = Check. Ensure it is not caused by an omission or oversight 8 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 5 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Datablock: 8a

Bond precision:	C-C = 0.0021 A	Wavelength=1.54186		
Cell:	a=19.1607(4) alpha=90	b=7.5467(1) beta=90	c=6.7883(1) gamma=90	
Temperature:	100 K			
	Calculated	Reported		
Volume	981.59(3)	981.59(3)		
Space group	P 21 21 21	P 21 21 21		
Hall group	P 2ac 2ab	P 2ac 2ab)	
Moiety formula	C10 H15 N O4	C10 H15 N O4		
Sum formula	C10 H15 N O4	C10 H15 N 04		
Mr	213.23	213.23		
Dx,g cm-3	1.443	1.443		
Z	4	4		
Mu (mm-1)	0.936	0.936		
F000	456.0	456.0		
F000′	457.57			
h,k,lmax	23,9,8	23,9,8		
Nref	1930[1150]	1919		
Tmin,Tmax	0.874,0.981	0.543,0.8	95	
Tmin'	0.822			

Correction method= # Reported T Limits: Tmin=0.543 Tmax=0.895 AbsCorr = MULTI-SCAN

Data completeness= 1.67/0.	99 The	eta(max) = 71.706
R(reflections)= 0.0255(18	83) wR2	2(reflections)= 0.0666(1919)
S = 1.062	Npar= 138	

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

```
Alert level G
```

PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms 2 Report 109.5 Degree PLAT398_ALERT_2_G Deviating C-O-C Angle From 120 for O2 PLAT791_ALERT_4_G Model has Chirality at C4 S Verify (Chiral SPGR) PLAT791_ALERT_4_G Model has Chirality at C6 S Verify (Chiral SPGR) <code>PLAT791_ALERT_4_G Model</code> has Chirality at C7 (Chiral SPGR) R Verify PLAT791_ALERT_4_G Model has Chirality at C9 (Chiral SPGR) R Verify PLAT850 ALERT 4 G Check Flack Parameter Exact Value 0.00 and s.u. 0.05 Check PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 6 Note 8 Info PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.

0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 0 ALERT level C = Check. Ensure it is not caused by an omission or oversight 9 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 6 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Datablock: 14

Bond precision:	C-C = 0.0020 A	Wavelength=1.54186		
Cell:	a=8.3442(2)	b=9.0461(2)	c=12.1350(3)	
Temperature:	атрна-90 100 к	Deca-90	gamma-90	

	Calculated		Reported
Volume	915.98(4)		915.98(4)
Space group	P 21 21 21		P 21 21 21
Hall group	P 2ac 2ab		P 2ac 2ab
Moiety formula	C10 H13 N O3		C10 H13 N O3
Sum formula	C10 H13 N O3		C10 H13 N O3
Mr	195.21		195.21
Dx,g cm-3	1.416		1.416
Z	4		4
Mu (mm-1)	0.870		0.870
F000	416.0		416.0
F000'	417.38		
h,k,lmax	10,11,14		10,11,14
Nref	1796[1060]		1779
Tmin,Tmax	0.829,0.957		0.236,0.780
Tmin'	0.700		
Correction metho AbsCorr = MULTI-	od= # Reported -SCAN	. T Limits: Tr	nin=0.236 Tmax=0.780
Data completenes	ss= 1.68/0.99	Theta(m	ax)= 71.812
R(reflections)=	0.0245(1672)	wR2(ref	lections)= 0.0656(1779)
S = 1.072	Npa	ar= 127	

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test

Click on the hyperlinks for more details of the test.

Alert level G PLAT398_ALERT_2_G Deviating C-O-C Angle From 120 for O2 108.2 Degree PLAT791_ALERT_4_G Model has Chirality at C4 (Chiral SPGR) S Verify PLAT791_ALERT_4_G Model has Chirality at C6 (Chiral SPGR) S Verify PLAT791_ALERT_4_G Model has Chirality at C7 (Chiral SPGR) S Verify PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 5 Note PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density. 4 Info

0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 0 ALERT level C = Check. Ensure it is not caused by an omission or oversight 6 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Datablock: 18c

Bond precision:	C-C = 0.0030 A	Wavelengt	h=1.54186	
Cell: Temperature:	a=12.2148(2) alpha=90 100 K	b=6.8618(1) beta=103.182(1)	c=17.7152(3) gamma=90	
Volume Space group Hall group Moiety formula Sum formula Mr Dx,g cm-3 Z Mu (mm-1) F000 F000' h,k,lmax Nref Tmin,Tmax Tmin'	Calculated 1445.69(4) P 21 P 2yb C14 H19 N 06 C14 H19 N 06 297.30 1.366 4 0.904 632.0 634.24 14,8,21 5613[3054] 0.888,0.973 0.636	Reported 1445.68(P 1 21 1 P 2yb C14 H19 297.30 1.366 4 0.904 632.0 14,8,21 5157 0.192,0.	4) N 06 N 06 851	
Correction metho AbsCorr = MULTI-	Correction method= # Reported T Limits: Tmin=0.192 Tmax=0.851 AbsCorr = MULTI-SCAN			
Data completenes	ss= 1.69/0.92	Theta(max) = 71.1	L63	
R(reflections)=	0.0346(4804)	wR2(reflections))= 0.0960(5157)	
S = 1.086	Npar=	394		
The following ALERTS were generated. Each ALERT has the format				

test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level B PLAT112_ALERT_2_B ADDSYM Detects New (Pseudo) Symm. Elem B	92 %Fit
<pre> Alert level C PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # C14 H19 N 06 </pre>	1 Note
PLAT915_ALERT_3_C No Flack x Check Done: Low Friedel Pair Coverage	83 %
<pre> Alert level G PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite </pre>	6 Note
PLAT003_ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms	6 Report

```
PLAT171_ALERT_4_G The CIF-Embedded .res File Contains EADP Records
                                                                          3 Report
<code>PLAT175_ALERT_4_G</code> The CIF-Embedded .res File Contains SAME Records
                                                                          1 Report
PLAT187_ALERT_4_G The CIF-Embedded .res File Contains RIGU Records
                                                                          1 Report
PLAT301_ALERT_3_G Main Residue Disorder ......(Resd 1 )
                                                                        14% Note
PLAT398_ALERT_2_G Deviating C-O-C Angle From 120 for 08
                                                                      108.7 Degree
PLAT398_ALERT_2_G Deviating C-O-C Angle From 120 for O2
                                                                      109.4 Degree
PLAT790_ALERT_4_G Centre of Gravity not Within Unit Cell: Resd. #
                                                                          2 Note
             C14 H19 N O6
PLAT791_ALERT_4_G Model has Chirality at C4
                                                                          S Verify
                                                    (Chiral SPGR)
PLAT791_ALERT_4_G Model has Chirality at C6
                                                   (Chiral SPGR)
                                                                         R Verify
PLAT791_ALERT_4_G Model has Chirality at C7
                                                   (Chiral SPGR)
                                                                         R Verify
PLAT791_ALERT_4_G Model has Chirality at C9
                                                   (Chiral SPGR)
                                                                         S Verify
PLAT791_ALERT_4_G Model has Chirality at C18
                                                   (Chiral SPGR)
                                                                         S Verify
                                                                         R Verify
PLAT791_ALERT_4_G Model has Chirality at C20
                                                   (Chiral SPGR)
PLAT791_ALERT_4_G Model has Chirality at C21
                                                   (Chiral SPGR)
                                                                          R Verify
PLAT791_ALERT_4_G Model has Chirality at C23
                                                   (Chiral SPGR)
                                                                          S Verify
PLAT860_ALERT_3_G Number of Least-Squares Restraints .....
                                                                         22 Note
PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min).
                                                                         1 Note
PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600
                                                                          9 Note
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.
                                                                          2 Info
```

0 ALERT level A = Most likely a serious problem - resolve or explain
1 ALERT level B = A potentially serious problem, consider carefully
2 ALERT level C = Check. Ensure it is not caused by an omission or oversight
21 ALERT level G = General information/check it is not something unexpected
0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
6 ALERT type 2 Indicator that the structure model may be wrong or deficient
4 ALERT type 3 Indicator that the structure quality may be low
14 ALERT type 4 Improvement, methodology, query or suggestion
0 ALERT type 5 Informative message, check

Datablock: 19c

Bond precision:	C-C = 0.0020 A	Wavelength	n=1.54186
Cell:	a=7.1742(1) alpha=90	b=11.1860(1) beta=90	c=14.6964(2) gamma=90
Temperature:	100 K		

	Calculated	Reported
Volume	1179.40(3)	1179.39(3)
Space group	P 21 21 21	P 21 21 21
Hall group	P 2ac 2ab	P 2ac 2ab
Moiety formula	C12 H17 N O5	C12 H17 N O5
Sum formula	C12 H17 N O5	C12 H17 N 05
Mr	255.27	255.26
Dx,g cm-3	1.438	1.438
Z	4	4
Mu (mm-1)	0.944	0.944
F000	544.0	544.0
F000'	545.90	
h,k,lmax	8,13,18	8,13,18
Nref	2291[1341]	2260
Tmin,Tmax	0.844,0.893	0.331,0.930
Tmin'	0.654	
AbsCorr = MULTI Data completene R(reflections)=	-SCAN ss= 1.69/0.99 0.0233(2255)	Theta(max)= 71.216 wR2(reflections)= 0.0593(2260)
S = 1.059	Npar=	166
The following ALER test-name_A Click on the hyper Alert level (PLAT790_ALERT_4_C	TS were generated. Ea LERT_alert-type_alert links for more detail C Centre of Gravity not	ch ALERT has the format -level. s of the test. Within Unit Cell: Resd. # 1 Note
Alert level (G N 11	
WIELC TEAST (د.	

PLAT007_ALERT_5_G	Number of Unrefined Donor-H Ator	ms	1	Report
PLAT142_ALERT_4_G	s.u. on b - Axis Small or Missin	ng	0.00010	Ang.
PLAT398_ALERT_2_G	Deviating C-O-C Angle From 1	120 for O2	109.5	Degree
PLAT791_ALERT_4_G	Model has Chirality at C4	(Chiral SPGR)	S	Verify
PLAT791_ALERT_4_G	Model has Chirality at C6	(Chiral SPGR)	R	Verify
PLAT791_ALERT_4_G	Model has Chirality at C7	(Chiral SPGR)	R	Verify
PLAT791_ALERT_4_G	Model has Chirality at C9	(Chiral SPGR)	S	Verify
PLAT850_ALERT_4_G	Check Flack Parameter Exact Val	ue 0.00 and s.u.	0.02	Check
PLAT912_ALERT_4_G	Missing # of FCF Reflections Abo	ove STh/L= 0.600	3	Note
PLAT961_ALERT_5_G	Dataset Contains no Negative Int	tensities	Please	Check
PLAT978_ALERT_2_G	Number C-C Bonds with Positive J	Residual Density.	8	Info

0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 1 ALERT level C = Check. Ensure it is not caused by an omission or oversight 11 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 8 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Datablock: 20

Bond precision:	C-C = 0.0023 A	W	avelength	=1.54186
Cell:	a=5.9193(1)	b=11.8539(1)	c=17.5843(3)
	alpha=90	beta=89.98	6(1)	gamma=90
Temperature:	100 K			
	Calculated		Reported	
Volume	1233.83(3)		1233.83(3)
Space group	P 1 1 21		P 1 1 21	
Hall group	P 2c		P 2c	
Moiety formula	C13 H19 N O4		C13 H19 N	04
Sum formula	C13 H19 N O4		C13 H19 N	04
Mr	253.29		253.29	
Dx,g cm-3	1.364		1.364	
Z	4		4	
Mu (mm-1)	0.833		0.833	
F000	544.0		544.0	
F000'	545.78			
h,k,lmax	7,14,21		7,14,21	
Nref	4783[2476]		4529	
Tmin,Tmax	0.779,0.959		0.421,0.8	61
Tmin'	0.687			
Correction metho	od= # Reported T	Limits: Tm	in=0.421 7	Tmax=0.861
AbsCorr = MULTI	-SCAN			
Data completenes	ss= 1.83/0.95	Theta(ma	x)= 71.29	2
R(reflections)=	0.0225(4438)	wR2(refl	ections)=	0.0581(4529)
S = 1.038	Npar=	330		
The following ALERT	'S were generated. Ea	ch ALERT has	the format	

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level C

PLAT157_ALERT_4_C Non-standard Monoclinic Beta Angle less 90 Deg 89.99 Degree

plat790_	ALERT_	_4_C	Cent	re of	Gravity	/ not	Withi	n Unit	Cell:	Resd.	#	1	Note
		C13	H19 1	N 04									
PLAT915_	ALERT	_3_C	No F	lack :	x Check	Done	: Low 1	Friedel	l Pair	Coverag	ge	90	00

Alert level G

PLAT128_ALERT_4_G	Alternate	Setting for	r Input Space (Group P1121	P21	Note
PLAT142_ALERT_4_G	s.u. on b	- Axis Smal	ll or Missing .		. 0.00010	Ang.
PLAT398_ALERT_2_G	Deviating	C-O-C A	Angle From 120	for O2	106.6	Degree
PLAT398_ALERT_2_G	Deviating	C-O-C A	Angle From 120	for O5	108.9	Degree
PLAT398_ALERT_2_G	Deviating	C-O-C A	Angle From 120	for O8	106.5	Degree
PLAT398_ALERT_2_G	Deviating	C-O-C A	Angle From 120	for 011	109.2	Degree
PLAT790_ALERT_4_G	Centre of	Gravity not	: Within Unit (Cell: Resd.	# 2	Note
C13	H19 N O4					
PLAT791_ALERT_4_G	Model has	Chirality a	at C4	(Chiral SPGR	.) S	Verify
PLAT791_ALERT_4_G	Model has	Chirality a	at C6	(Chiral SPGR	.) R	Verify
PLAT791_ALERT_4_G	Model has	Chirality a	at C7	(Chiral SPGR	.) R	Verify
PLAT791_ALERT_4_G	Model has	Chirality a	at C9	(Chiral SPGR	.) S	Verify
PLAT791_ALERT_4_G	Model has	Chirality a	at C18	(Chiral SPGR	.) S	Verify
PLAT791_ALERT_4_G	Model has	Chirality a	at C20	(Chiral SPGR	.) R	Verify
PLAT791_ALERT_4_G	Model has	Chirality a	at C21	(Chiral SPGR	.) R	Verify
PLAT791_ALERT_4_G	Model has	Chirality a	at C23	(Chiral SPGR	.) S	Verify
PLAT912_ALERT_4_G	Missing #	of FCF Refl	lections Above	STh/L= 0.60	0 11	Note
PLAT978_ALERT_2_G	Number C-C	C Bonds with	n Positive Res	idual Density	·. 13	Info

0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 3 ALERT level C = Check. Ensure it is not caused by an omission or oversight 17 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 14 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Datablock: 23a

Bond precision:	C-C = 0.0027 A	Wavelength=	1.54186
Cell:	a=6.72543(6) alpha=90	b=9.38242(10) beta=97.6836(8)	c=7.51677(6) gamma=90
Temperature:	100 K		

	Calculated	Reported
Volume	470.056(8)	470.056(8)
Space group	P 21	P 1 21 1
Hall group	P 2yb	P 2yb
Moiety formula	C10 H15 N O3	C10 H15 N O3
Sum formula	C10 H15 N O3	C10 H15 N O3
Mr	197.23	197.23
Dx,g cm-3	1.393	1.393
Z	2	2
Mu (mm-1)	0.848	0.848
F000	212.0	212.0
F000'	212.69	
h,k,lmax	8,11,9	8,11,9
Nref	1838[979]	1464
Tmin,Tmax	0.960,0.987	0.532,0.935
Tmin'	0.809	
Correction meth AbsCorr = MULTI	od= # Reported T -SCAN	Limits: Tmin=0.532 Tmax=0.935
Data completene	ss= 1.50/0.80	Theta(max)= 71.501
R(reflections)=	0.0263(1438)	wR2(reflections)= 0.0707(1464)
S = 1.057	Npar=	128
The following ALER test-name_A Click on the hyper	TS were generated. Ea LERT_alert-type_alert links for more detail	ach ALERT has the format :-level . Is of the test.
Alert level (PLAT915_ALERT_3_C)] No Flack x Check Done	e: Low Friedel Pair Coverage 57 %
• Alert level (3 Number of Unrefined I	Donor-H Atoms

٩Ŀ PLAT143_ALERT_4_G s.u. on c - Axis Small or Missing 0.00006 Ang. PLAT398_ALERT_2_G Deviating C-O-C Angle From 120 for O2 109.0 Degree PLAT791_ALERT_4_G Model has Chirality at C4 (Chiral SPGR) S Verify PLAT791_ALERT_4_G Model has Chirality at C6 (Chiral SPGR) R Verify PLAT791_ALERT_4_G Model has Chirality at C7 (Chiral SPGR) S Verify PLAT791_ALERT_4_G Model has Chirality at C9 (Chiral SPGR) S Verify PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 6 Note PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density. 6 Info PLAT992_ALERT_5_G Repd & Actual _reflns_number_gt Values Differ by 1 Check

0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 1 ALERT level C = Check. Ensure it is not caused by an omission or oversight 10 ALERT level G = General information/check it is not something unexpected

```
0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
2 ALERT type 2 Indicator that the structure model may be wrong or deficient
1 ALERT type 3 Indicator that the structure quality may be low
6 ALERT type 4 Improvement, methodology, query or suggestion
2 ALERT type 5 Informative message, check
```

Datablock: 30a

Bond precision:	C-C = 0.0028 Z	Ą	Waveleng	th=1.54186	
Cell: Temperature:	a=6.9165(6) alpha=90 100 K	b=9.360 beta=97	7(6) .410(6)	c=12.8322(9) gamma=90	
	Calculated		Reporte	d	
Volume	823.86(11)		823.86(11)	
Space group	P 21		P 1 21	1	
Hall group	P 2yb		P 2yb		
Moiety formula	C16 H23 N O6		C16 H23	N 06	
Sum formula	C16 H23 N O6		C16 H23	N 06	
Mr	325.35		325.35		
Dx,g cm-3	1.312		1.312		
Z	2		2		
Mu (mm-1)	0.838		0.838		
F000	348.0		348.0		
F000'	349.19				
h,k,lmax	8,11,15		8,11,15		
Nref	3236[1722]		2353		
Tmin,Tmax	0.834,0.967		0.290,0	.873	
Tmin'	0.686				
Correction metho AbsCorr = MULTI	od= # Reported I -SCAN	7 Limits:	Tmin=0.290) Tmax=0.873	
Data completeness= 1.37/0.73 Theta(max)= 71.560					
R(reflections)=	0.0266(2329)	wR2(r	eflections)= 0.0701(2353)	
S = 1.081	Npar	= 213			

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level C		
PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density	4.00	Report
PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L= 0.600	7	Report
PLAT918_ALERT_3_C Reflection(s) with I(obs) much Smaller I(calc) .	1	Check
PLAT939_ALERT_3_C Large Value of Not (SHELXL) Weight Optimized S .	10.25	Check

Alert level G		
PLAT398_ALERT_2_G Deviating C-O-C Angle From 120 for O2 10)6.3	Degree
PLAT398_ALERT_2_G Deviating C-O-C Angle From 120 for 04 10	38.7	Degree
PLAT398_ALERT_2_G Deviating C-O-C Angle From 120 for 05 10)7.5	Degree
PLAT398_ALERT_2_G Deviating C-O-C Angle From 120 for 06 10	0.70	Degree
PLAT791_ALERT_4_G Model has Chirality at C2 (Chiral SPGR)	R	Verify
PLAT791_ALERT_4_G Model has Chirality at C3 (Chiral SPGR)	R	Verify
PLAT791_ALERT_4_G Model has Chirality at C4 (Chiral SPGR)	R	Verify
PLAT791_ALERT_4_G Model has Chirality at C6 (Chiral SPGR)	R	Verify
PLAT791_ALERT_4_G Model has Chirality at C7 (Chiral SPGR)	R	Verify
PLAT791_ALERT_4_G Model has Chirality at C9 (Chiral SPGR)	S	Verify
PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600	14	Note
PLAT961_ALERT_5_G Dataset Contains no Negative Intensities Ple	ease	Check
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.	10	Info
PLAT992_ALERT_5_G Repd & Actual _reflns_number_gt Values Differ by	1	Check

0 ALERT level A = Most likely a serious problem - resolve or explain 1 ALERT level B = A potentially serious problem, consider carefully 4 ALERT level C = Check. Ensure it is not caused by an omission or oversight 14 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 7 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 22/12/2019; check.def file version of 13/12/2019

Datablock 6 - ellipsoid plot

Datablock 8a - ellipsoid plot

Datablock 14 - ellipsoid plot

Datablock 18c - ellipsoid plot

Datablock 19c - ellipsoid plot

Datablock 20 - ellipsoid plot

Datablock 23a - ellipsoid plot

Datablock 30a - ellipsoid plot

