Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

Supplementary information for

A ¹⁹F-MRI probe for the detection of Fe(II) ions in an aqueous system

Ryo Kakiuchi,¹ Tasuku Hirayama,^{1,*} Daijiro Yanagisawa,² Ikuo Tooyama,² and Hideko Nagasawa¹

¹ Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigakunishi, Gifu-shi, Gifu, 501-1196, Japan

² Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan

Contents

General		
1.	Synthesis	S3
2.	¹⁹ F NMR analyses	S10
	2-1. Response of F-Nox-1 to Fe(II)	S10
	2-2. Metal selectivity test	S10
	2-3. Stability test against reactive oxygen species, biological thiols, and reductants	S10
	2-4. ¹⁹ F NMR detection of Fe(II) in FBS	S11
3.	Magnetic resonance imaging	S11
4.	Product analysis by LC-MS	S12
5.	Cell culture	S12
6.	Detection of Fe(II) in cell lysate by ¹⁹ F-NMR spectroscopy	S12
7.	Confocal fluorescence microscopy	
8.	MTT assay: Evaluation of cytotoxicity of F-Nox-1	S13
9.	References	
Supplementary figures		
	Figure S1. Water solubility tests for the probes	S14
	Figure S2. ¹⁹ F-NMR spectra: full-range of aryl fluoride	S14
	Figure S3. Reaction product analysis by LC-MS	S15
	Figure S4. Metal selectivity and stability to ROS	
	Figure S5. Dose-dependency test by LC-MS analysis	S17
	Figure S6. Dose-dependency test by ¹⁹ F-NMR spectroscopy	S18
	Figure S7. Dose-dependency test in the presence of residual iron ion by ¹⁹ F-NMR spectro	oscopy S19
	Figure S8. ¹⁹ F-NMR spectra in FBS	S19
	Figure S9. ¹⁹ F-NMR spectra of cell lysate	S20
	Figure S10. MTT assay	S20
	Figure S11. Fluorescence imaging of HepG2 stained with F-Nox-3-Ac	S20
¹ H-	, ¹³ C-, and ¹⁹ F-NMR spectra of the newly synthesized compounds	

General: All chemicals used in this study were commercial products of the highest available purity and were further purified by the standard methods, if necessary. ¹H-NMR spectra were obtained on a JEOL ECA-500 spectrometer at 500 MHz and JEOL ECZ-400 spectrometer at 400 MHz. ¹³C-NMR spectra were obtained on a JEOL ECA-500 spectrometer at 125 MHz and a JEOL ECZ-400 spectrometer at 100 MHz.¹⁹F-NMR spectra were obtained on a JEOL ECA-500 spectrometer at 471 MHz and a JEOL ECZ-400 spectrometer at 376 MHz. Chemical shifts of ¹H-NMR are referenced to tetramethylsilane (TMS). Chemical shifts of ¹³C-NMR are referenced to CDCl₃ (77.0), CD₃OD (49.0) or DMSO-*d*₆ (39.5). Chemical shifts of ¹⁹F-NMR are referenced to hexafluorobenzene (-164.9). Chemical shifts and coupling constants were recorded in units of ppm and Hz, respectively. Data for ¹H-NMR, ¹³C-NMR or ¹⁹F-NMR are reported as follows: chemical shift (multiplicity, coupling constants where applicable, number of hydrogens). Abbreviations are as follows: s (singlet), d (doublet), t (triplet), dd (doublet of doublet), dt (doublet of triplet), td (triplet of doublet), q (quartet), m (multiplet), br (broad). ESI-mass spectra were measured on a JEOL JMS-T100TD mass spectrometer. Highresolution mass spectra (HRMS) were measured on a JEOL JMS-T100TD by using polyethyleneglycol (PEG) or YOKUDELNA (JEOL) as an internal standard. Anhydrous organic solvents were prepared by distillation with appropriate drying reagents before every use. Reactions were monitored by TLC silica gel (Merck, Silica gel 60 F₂₅₄ or Silica gel 60 RP-18 F₂₅₄) with visualization of components by UV light (254 nm) or a visualization reagent (molybdophosphoric acid) or with visual observation of the dye spots. Products were purified on a silica gel column chromatography (Taiko-shoji, AP-300S) or an ODS silica gel column chromatography (Fuji Silysia, CHROMATOREX, ODS-DM1020T).

1. Synthesis

Preparation of 1,1'-(4,4'-(tetrafluoro-1,4-phenylene)bis(piperazine-4,1-diyl))dimethanone (1)¹

A solution of hexafluorobenzene (1.00 g, 5.37 mmol) and 1-acetylpiperazine (5.51 g, 43.0 mmol, 8.0 eq.) in 1,3-dimetyl-2-imidazolidinone (DMEU) (200 μ L) was heated in a sealed tube at 95 °C for 24 h. The reaction mixture was then poured into water (100 mL), and the mixture was extracted with CHCl₃ (100 mL × 3). The combined organic layers were washed with water (100 mL × 3), dried over MgSO₄, and evaporated to dryness. The residue was purified by silica gel column chromatography (CHCl₃: MeOH = 30: 1) to afford **1** as a white solid (1.23 g, 57%).

¹H-NMR (CDCl₃, 500 MHz): δ 3.73 (t, *J* = 5.2 Hz, 4H), 3.58 (t, *J* = 5.2 Hz, 4H), 3.19 (t, *J* = 5.2 Hz, 4H), 3.14 (t, *J* = 5.2 Hz, 4H), 2.14 (s, 6H).

¹³C-NMR (CDCl₃, 125 MHz): δ 169.0, 143.5 (dd, J_{C-F} = 248.3, 10.8 Hz), 124.9 (m), 51.1, 50.9, 46.9, 42.0, 21.4.

¹⁹F-NMR (CDCl₃,471 MHz): δ –154.41 (s, 4F).

HRMS (ESI+): m/z calcd for C₁₈H₂₂F₄N₄NaO₂⁺:425.1571, found 425.1560.

Preparation of 1,4-di(piperazin-1-yl)-2,3,5,6-tetrafluorobenzene (2)

A round-bottom flask was charged with a solution of **1** (894 mg, 2.22 mmol) in THF (150 mL) and 2 M aq. HCl (150 mL). Then, the mixture was stirred at 80 °C for 24 h. The reaction mixture was washed with CH₂Cl₂ (100 mL × 3). The aqueous phase was basified by 2 M aq. NaOH (pH > 11) and extracted with CHCl₃ (200 mL × 3). The combined organic layer was dried over MgSO₄ and evaporated to afford **2** as a white solid (634 mg, 90%). This material was used for the next step without further purification. ¹H-NMR (CDCl₃, 500 MHz): δ 3.14 (t, *J* = 4.6 Hz, 8H), 2.98 (t, *J* = 4.6 Hz, 8H). ¹³C-NMR (CDCl₃, 125 MHz): δ 143.5 (d, *J*_{C-F} = 248.3 Hz), 125.3 (m), 52.4, 46.6.

¹⁹F-NMR (CDCl₃, 471 MHz): δ –155.17 (s, 4F).

HRMS (ESI+): m/z calcd for C₁₄H₁₉F₄N₄⁺: 319.1540, found 319.1569.

Preparation of 2-(2-(2-(2-methoxy)ethoxy)ethoxy)ethyl (4-nitrophenyl) carbonate (3) (CAS: 143127-79-1)²

To a solution of 2-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)ethanol (1.00 g, 939 µL, 4.802 mmol) and diisopropylethylamine (3.10 g, 4.15 mL, 24.0 mmol) were dissolved in dry CH₂Cl₂ (20 mL), then 4-nitrophenyl chloroformate (1.16 g, 5.76 mmol) was added at 0 °C. After stirring at room temperature for 12 h under N₂ atmosphere, the mixture was diluted with CH₂Cl₂ (15 mL) and washed with 1 M phosphate buffer (pH 7, 20 mL× 3), brine (20 mL). The organic layer was dried over MgSO₄ and evaporated. The residue was purified by column chromatography on silica gel (Hexane: AcOEt = 1: 4) to afford **3** as a yellow liquid (673 mg, 36%). ¹H-NMR (400MHz, CDCl₃): δ 8.29 (d, *J* = 9.2 Hz, 2H), 7.40 (d, *J* = 9.2 Hz, 2H), 4.45 (m, 2H), 3.82 (m, 2H), 3.73-3.63 (m, 10H), 3.56 (m, 2H), 3.38 (s, 3H).

Preparation of 2-(2-(2-methoxy)ethoxy)ethyl (4-nitrophenyl) carbonate (4) (CAS: 122011-38-5)²

To a solution of 2-(2-(2-methoxy)ethoxy)ethoxy)ethanol (1.00 g, 952 μ L, 6.09 mmol) and diisopropylethylamine (3.94 g, 5.22 mL, 30.5 mmol) were dissolved in dry CH₂Cl₂ (20 mL), then 4-nitrophenyl chloroformate (1.47 g, 7.31 mmol) was added at 0 °C. After stirring at room temperature for 13 h under N₂ atmosphere, the mixture was diluted with CH₂Cl₂ (30 mL) and washed with 1 M phosphate buffer (pH 7, 50 mL× 3), brine (50 mL). The organic layer was dried over MgSO₄ and evaporated. The residue was purified by

column chromatography on silica gel (Hexane: AcOEt = 1: 2) to afford **4** as a yellow liquid (1.11 g, 55%). ¹H-NMR (500MHz, CDCl₃): δ 8.28 (dt, *J* = 9.2, 2.6 Hz, 2H), 7.39 (dt, *J* = 9.2, 2.6 Hz, 2H), 4.45 (m, 2H), 3.82 (m, 2H), 3.75-3.64 (m, 6H), 3.56 (m, 2H), 3.39 (s, 3H).

Preparation of F-1

A suspension of 2 (100 mg, 0.314 mmol) and diisopropylethylamine (97.4 mg, 129 µL, 0.754 mmol) in dry CH₂Cl₂ (10 mL) cooled to 0 °C under N₂ atmosphere. Then, was 2-(2-(2methoxyethoxy)ethoxy)ethoxy)ethyl (4-nitrophenyl) carbonate (282 mg, 0.754 mmol) was added to the suspension at 0 °C. After stirring at room temperature for 24 h, the reaction mixture was evaporated. THF (20 mL) and 2 M aq. NaOH (20 mL) were added to the residue. After stirring for 1 h, the reaction mixture was extracted with CH_2Cl_2 (20 mL \times 3). The combined organic layer was evaporated, and the residue was dissolved in CH_2Cl_2 (20 mL). Then, the mixture was washed with sat. aq. NaHCO₃ (20 mL × 3) and brine (20 mL), dried over MgSO₄, and evaporated. The residue was purified by silica gel column chromatography (CHCl₃: MeOH = 20: 1) to afford **F-1** as a pale yellow solid (232 mg, 94%).

¹H-NMR (500MHz, CDCl₃): δ 4.27 (m, 4H), 3.72 (m, 4H), 3.71–3.62 (br, 20H), 3.60 (t, *J* = 4.9 Hz, 8H), 3.55 (m, 4H), 3.38 (s, 6H), 3.14 (br, 8H).

¹³C-NMR (125 MHz, CDCl₃): δ 155.2, 143.4 (dd, *J* = 247.1, 9.6 Hz), 125.2 (m), 71.8, 70.5, 70.4, 69.5, 64.6, 58.9, 50.8, 44.3 (br).

¹⁹F-NMR (471 MHz, CDCl₃): δ –154.56 (s, 4F).

HRMS (ESI+): *m/z* calcd for C₃₄H₅₄F₄N₄NaO₁₂⁺: 809.3567, found 809.3551.

Preparation of F-Nox-1

To a solution of **F-1** (144 mg, 0.183 mmol) in CH₂Cl₂ (2 mL), *m*-CPBA (*m*-chloroperbenzoic acid) (37.9 mg, 0.219 mmol) and NaHCO₃ (18.4 mg, 0.219 mmol) were added at 0 °C. After stirring at room temperature for 30 min, the reaction mixture was diluted with CH₂Cl₂ (18 mL). The diluted mixture was washed with sat. NaHCO₃ aq. (20 mL × 3) and brine (20 mL), dried over MgSO₄, and evaporated. The residue was purified by silica gel column chromatography (CHCl₃: MeOH = 5: 1) to afford **F-Nox-1** as a white solid (71.4 mg, 49%).

¹H-NMR (500MHz, CDCl₃): δ 4.28 (m, 4H), 4.12 (br, 4H), 3.95 (br, 2H), 3.81 (br, 2H), 3.72 (m, 4H), 3.69– 3.58 (br, 24H), 3.55 (m, 4H), 3.38 (m, 6H), 3.27 (br, 4H).

¹³C-NMR (125 MHz, CDCl₃): δ 155.1, 154.6, 142.5 (dd, $J_{C-F} = 248.3$, 15.6 Hz), 141.6 (dd, $J_{C-F} = 254.3$, 15.6 Hz), 130.5 (t, $J_{C-F} = 10.8$ Hz), 125.6 (t, $J_{C-F} = 7.2$ Hz), 71.8, 70.5, 70.4, 69.4, 69.3, 67.8, 65.0, 64.7, 59.0, 50.3, 44.1 (br), 38.5 (br).

¹⁹F-NMR (471 MHz, CDCl₃): δ –144.42 (d, J_{F-F} = 18.3 Hz, 2F), –151.92 (d, J_{F-F} = 18.3 Hz, 2F). HRMS (ESI+): *m/z* calcd for C₃₄H₅₄F₄N₄NaO₁₃⁺: 825.3516, found 825.3490.

Preparation of F-2

A suspension of compound **2** (50.0 mg, 0.157 mmol) and diisopropylethylamine (48.7 mg, 64.6 μ L, 0.377 mmol) in dry CH₂Cl₂ (5 mL) was cooled to 0 °C under N₂ atmosphere. Then, 2-(2-(2-methoxyethoxy)ethoxy) ethyl (4-nitrophenyl) carbonate (124 mg, 0.377 mmol) was added to the suspension at 0 °C. After stirring at room temperature for 12 h, the reaction mixture was evaporated. The residue was diluted with THF (25 mL) and 2 M aq. NaOH (25 mL). After stirring for 1 h, the reaction mixture was extracted with CH₂Cl₂ (50 mL). The organic layer was evaporated, and the residue was diluted with CH₂Cl₂ (20 mL), then the mixture was washed with sat. NaHCO₃ aq. (20 mL × 3) and brine (20 mL), dried over MgSO₄, and evaporated. The residue was purified by silica gel column chromatography (CHCl₃: MeOH = 20: 1) to afford **F-2** as a white solid (79.4 mg, 72%).

¹H-NMR (500MHz, CDCl₃): δ 4.27 (t, J = 5.2 Hz, 4H), 3.72 (t, J = 5.2 Hz, 4H), 3.71–3.62 (br, 12H), 3.60 (t, J = 5.2 Hz, 8H), 3.56 (m, 4H), 3.39 (s, 6H), 3.14 (br, 8H).

¹³C-NMR (125 MHz, CDCl₃): δ 155.2, 143.4 (dd, J_{C-F} = 247.1, 9.6 Hz), 125.0 (m), 71.9, 70.56, 70.52, 70.48, 69.5, 64.6, 59.0, 50.9, 44.4 (br).

¹⁹F-NMR (471 MHz, CDCl₃): δ –154.57 (s, 4F).

HRMS (ESI+): *m/z* calcd for C₃₀H₄₆F₄N₄NaO₁₀⁺: 721.3042, found 721.3021.

Preparation of F-Nox-2

To a solution of F-2 (100 mg, 0.143 mmol) in CH₂Cl₂ (10 mL), m-CPBA (m-chloroperbenzoic acid) (29.6 mg,

0.172 mmol) and NaHCO₃ (14.4 mg, 0.172 mmol) were added at 0 °C. After stirring at room temperature for 2 h, the reaction mixture was diluted with CH₂Cl₂ (10 mL). The diluted mixture was washed with sat. NaHCO₃ aq. (20 mL × 3) and brine (20 mL), dried over MgSO₄, and evaporated. The residue was purified by silica gel column chromatography (CHCl₃: MeOH = 5: 1) to afford **F-Nox-2** as a white solid (44.6 mg, 44%).

¹H-NMR (500MHz, CDCl₃): δ 4.29 (m, 4H), 4.12 (br, 4H), 3.96 (br, 2H), 3.83 (br, 2H), 3.73 (m, 4H), 3.70– 3.59 (br, 16H), 3.55 (m, 4H), 3.38 (m, 6H), 3.27 (br, 4H).

¹³C-NMR (125 MHz, CDCl₃): δ 155.1, 154.6, 142.5 (dd, J_{C-F} = 248.3, 15.6 Hz), 141.5 (dd, J_{C-F} = 254.3, 15.6 Hz), 130.6 (t, J_{C-F} = 10.8 Hz), 125.4 (br), 71.8, 70.5, 70.45, 70.40, 69.4, 69.3, 67.7, 65.0, 64.7, 59.0, 50.3, 44.1 (br), 38.5 (br).

¹⁹F-NMR (471 MHz, CDCl₃): δ –144.39 (d, J_{F-F} = 14.67 Hz, 2F), –151.90 (d, J_{F-F} = 14.67 Hz, 2F). HRMS (ESI+): *m/z* calcd for [C₃₄H₅₄F₄N₄NaO₁₃⁺: 737.2991, found 737.2992.

Scheme S1. Synthesis of F-Nox-3-Ac and F-Nox-3.

Preparation of TEG-Ac-fluorescein

A solution of 14-amino-3,6,9,12-tetraoxadecanoic acid (1.51 g, 6.00 mmol) in dry CH₂Cl₂ (20 mL) was cooled to 0 °C, and 6-carboxyfluorescein diacetate *N*-hyroxysuccinimidyl ester (3.90 g, 7.20 mmol) was added. Then, the mixture was stirred at room temperature for 6 h under N₂ atmosphere. The reaction mixture was washed with 0.1 M aq. HCl (20 mL \times 3) and brine (20 mL), dried over MgSO₄, and evaporated. The residue was purified by silica gel column chromatography (CHCl₃: MeOH = 5: 1) to afford **TEG-Ac-fluorescein** as a white solid (644 g, 15%).

¹H-NMR (CDCl₃, 500 MHz): δ 8.17 (d, J = 8.0, 1H), 8.06 (d, J = 8.0 Hz, 1H), 7.72 (s, 1H), 7.53 (t, J = 5.2 Hz, 1H), 7.10 (m, 2H), 6.83 (m, 4H), 4.03 (s, 2H), 3.81–3.44 (br, 16H), 2.32 (s, 6H).

¹³C-NMR (CDCl₃, 500 MHz): δ 172.0, 168.8, 168.4, 165.8, 152.8, 152.1, 151.5, 141.3, 129.4, 129.0, 128.2, 125.4, 123.2, 117.8, 115.9, 110.4, 82.0, 70.9, 70.3, 70.12, 70.06, 69.99, 69.7, 68.8, 40.1, 21.1.

HRMS (ESI-): *m/z* calcd for C₃₅H₃₄NO₁₄⁻: 692.1985, found 692.2004.

Preparation of F-3-Ac

A solution of **2** (100 mg, 0.314 mmol) and **TEG-Ac-fluorescein** (523 mg, 0.754 mmol) in dry DMF (5 mL) was cooled to 0 °C. Then, DMT-MM (209 mg, 0.754 mmol) was added to the mixture. After stirring at room temperature for 4 h, the reaction mixture was poured into water (20 mL), and the mixture was extracted with AcOEt (20 mL × 3). The combined organic layers were washed with water (30 mL × 3) and brine (30 mL), dried over MgSO₄, and evaporated. The residue was purified by silica gel column chromatography (CHCl₃: MeOH = 20: 1) to afford **F-3-Ac** as a white solid (450 mg, 86%).

¹H-NMR (CDCl₃, 500MHz): δ 8.15 (dd, J = 8.0 Hz, 2H), 8.08 (d, J = 8.0 Hz, 2H), 7.38 (t, J = 5.2 Hz, 2H), 7.70 (s, 2H), 7.10 (m, 4H), 6.82 (m, 8H), 4.14 (s, 4H), 3.75–3.47 (m, 44H), 3.23-3.07 (br, 8H), 2.31 (s, 12H). ¹³C-NMR (CDCl₃, 125MHz): δ 168.7, 168.3, 167.7, 165.5, 153.1, 152.1, 151.4, 143.5 (d, $J_{C-F} = 249.5$ Hz), 141.4, 129.4, 129.0, 128.0, 125.3, 124.8 (br), 123.0, 117.9, 115.8, 110.4, 81.8, 70.5, 70.4, 70.32, 70.29, 70.18, 70.10, 70.06, 69.5, 51.1, 50.9, 45.6, 42.3, 40.2, 21.1.

¹⁹F-NMR (CDCl₃ ,471 MHz): δ –154.32 (s, 4F). HRMS (ESI+): *m/z* calcd for C₈₄H₈₄F₄N₆Na₂O₂₆²⁺: 857.2578, found 857.2556.

Preparation of F-Nox-3-Ac

To a solution of **F-3-Ac** (450 mg, 0.270 mmol) in CH₂Cl₂ (10 mL), *m*-CPBA (*m*-chloroperbenzoic acid) (55.8 mg, 0.324 mmol) and NaHCO₃ (27.2 mg, 0.324 mmol) were added at 0 °C. After stirring at room temperature for 3.5 h, the mixture was evaporated, and the residue was purified by silica gel column chromatography (CHCl₃: MeOH = 5: 1) to afford **F-Nox-3-Ac** as a white solid (223 mg, 49%).

¹H-NMR (CDCl₃, 400MHz): δ 8.66 (t, *J* = 5.0 Hz, 1H), 8.23 (d, *J* = 8.2 Hz, 1H), 8.15 (d, *J* = 8.2 Hz, 1H), 8.07 (d, *J* = 7.8 Hz, 1H), 7.99 (d, *J* = 7.8 Hz, 1H), 7.85 (s, 1H), 7.72 (s, 1H), 7.44 (t, *J* = 5.5 Hz, 1H), 7.15-7.02 (m, 4H), 6.88-6.70 (m, 8H), 4.43 (d, *J* = 12.8 Hz, 1H), 4.33–3.93 (m, 8H), 3.92–3.40 (m, 36H), 3.26 (m, 4H), 2.31 (m, 12H).

¹³C-NMR (CDCl₃, 100MHz): δ 168.8, 168.7, 168.5, 168.3, 167.8, 167.4, 165.8, 165.6, 153.1, 152.8, 152.1, 152.0, 151.5, 151.4, 142.4 (d, $J_{C-F} = 250.5$ Hz),141.5 (d, $J_{C-F} = 254.3$ Hz), 141.4, 141.4, 141.1, 140.2, 130.2, 129.7, 129.4, 129.1, 129.0, 128.9, 128.0, 127.9, 125.6, 125.53, 125.49, 125.3, 124.8, 123.7, 123.1, 117.9, 117.7, 116.0, 115.8, 110.4, 110.4, 110.3, 81.9, 81.8, 70.7, 70.5, 70.4, 70.33, 70.27, 70.24, 70.1, 70.03, 69.99, 69.5, 68.1, 50.7, 50.4, 45.4, 42.0, 40.5, 40.1, 40.0, 36.6, 21.1.

¹⁹F-NMR (CDCl₃, 376 MHz): δ –143.89 (d, J_{F-F} = 14.5 Hz, 2F), –151.99 (d, J_{F-F} = 14.5 Hz, 2F). HRMS (ESI+): *m/z* calcd for C₈₄H₈₄F₄N₆Na₂O₂₇²⁺: 865.2553, found 865.2532.

Preparation of F-3

To a solution of **F-3-Ac** (100 mg, 0.060 mmol) in MeOH (5 mL), K_2CO_3 (66.2 mg, 0.479 mmol) in water (2 mL) was added at 0 °C. After stirring at room temperature for 3.5 h, the mixture was neutralized by aq. HCl (1 M) and then evaporated. The residue was purified by column chromatography on ODS silica gel (water: MeOH = 1: 3) to afford to **F-3** as a red solid (80 mg, 89%).

¹H-NMR (CD₃OD, 500MHz): δ 8.05 (d, J = 8.0 Hz, 2H), 8.02 (dd, J = 8.0, 1.7 Hz, 2H), 7.69 (m, 2H), 7.00 (d, J = 9.2 Hz, 4H), 6.49 (dd, J = 9.2, 1.7 Hz, 2H), 6.47 (d, J = 1.7 Hz, 2H), 4.16 (s, 4H), 3.71–3.47 (m, 36H), 3.37 (t, J = 5.2 Hz, 4H), 3.13–2.99 (br, 8H).

¹³C-NMR (DMSO-*d*₆, 125MHz): δ 180.2, 168.8, 167.5, 165.6, 157.6, 154.9, 144.2, 143.0 (dd, J_{C-F} = 247.1, 10.8 Hz), 133.7, 133.2, 130.1, 129.7, 127.8, 126.8, 124.6 (br), 122.8, 108.7, 102.5, 69.7, 69.6, 69.5, 69.2, 68.9, 50.9, 50.6, 45.0, 41.7.

¹⁹F-NMR (DMSO-*d*₆,471 MHz): δ –153.61 (s, 4F).

HRMS (ESI-): *m/z* calcd for C₇₆H₇₄F₄N₆O₂₂²⁻: 749.2402, found 749.2408.

Preparation of F-Nox-3

To a solution of **F-Nox-3-Ac** (56 mg, 0.046 mmol) in MeOH (2 mL), K_2CO_3 (36 mg, 0.26 mmol) in water (1 mL) was added at 0 °C. After stirring at room temperature for 30 min, the mixture was neutralized by 1 M aq. HCl and then evaporated. The residue was purified by column chromatography on ODS silica gel (water: MeOH = 1: 1) to afford to **F-Nox-3** as a red solid (40 mg, 82%).

¹H-NMR (CD₃OD, 500 MHz): δ 8.04 (d, *J* = 8.0 Hz, 3H), 8.01 (dd, *J* = 8.0, 1.7 Hz, 3H), 7.69 (d, *J* = 1.7 Hz, 1H), 7.66 (m, 1H), 7.05–6.98 (m, 4H), 6.55–6.48 (m, 8H), 4.51 (d, *J* = 14.3 Hz, 1H), 4.34 (d, *J* = 14.3 Hz, 1H), 4.23 (d, *J* = 14.3 Hz, 1H), 4.18 (s, 3H), 4.14–4.02 (m, 2H), 3.92–3.83 (m, 3H), 3.73–3.51 (m, 35H), 3.43 (m, 2H), 3.25 (m, 2H), 3.19 (m, 2H).

¹³C-NMR (DMSO-*d*₆, 100 MHz): δ 180.3, 168.8, 167.6, 167.5, 165.7, 157.7, 155.1, 142.0 (dd, $J_{C-F} = 244.7$, 15.4 Hz), 141.1 (dd, $J_{C-F} = 251.4$, 15.51 Hz), 133.7, 133.2, 130.2, 130.0, 129.7, 129.3 (m), 127.9, 126.8, 126.1 (m), 122.8, 108.8, 102.6, 69.7, 69.6, 69.53, 69.50, 69.46, 69.2, 69.0, 68.9, 66.9, 55.1, 50.3, 49.9, 48.6, 44.8, 41.68, 39.5, 36.1.

¹⁹F-NMR (CD₃OD, 471 MHz): δ –141.78 (d, J_{F-F} = 14.67 Hz, 2F), –150.06 (d, J_{F-F} = 14.67 Hz, 2F). HRMS (ESI–): m/z calcd for C₇₆H₇₄F₄N₆O₂₃^{2–}: 753.2376, found 757.2358.

2. ¹⁹F NMR analyses

¹⁹F-NMR measurements for Fe(II)-detection studies were performed with a JEOL ECZ-400 spectrometer at 376 MHz using sodium trifluoroacetate (TFA•Na) as the internal standard (-76.0 ppm) and 10%(v/v) D₂O as the deuterated solvent solvents unless otherwise mentioned.

2-1. Response of F-Nox-1 to Fe(II)

F-Nox-1 or **F-1** (final 300 μ M, from stock solution of 30 mM in DMSO) and ferrous ammonium sulfate (FAS, final concentrations: 1, 0.6, 0.5, 0.3, 0.1, 0.075, 0.05, 0.025, and 0.01 mM, from 100, 60, 50, 30, 10, 5 and 1 mM stock solution in D₂O) were mixed in HEPES buffer (50 mM, pH 7.4) (total: 1.0 mL). The mixture was incubated at room temperature for 30 min. Then, a slurry of Chelex[®] 100 Resin (BioRad) (50 mg) was added to the mixture. After mixing for 1 min, the resins were removed by centrifugation at 15,000 rpm for 3 min. The supernatants (800 μ L) was transferred into new tubes. After addition of TFA•Na in D₂O (300 μ M, from 60 mM stock solution in D₂O) and D₂O (100 μ L), the samples were subjected to ¹⁹F NMR analysis (128 scans or 32 scans). The same amounts of the vehicles were added instead of FAS for the control experiments. For the no-Chelex[®] condition, the samples were subjected to ¹⁹F NMR analysis (32 scans) without the treatment with Chelex[®].

2-2. Metal selectivity test

Aqueous solutions of **F-Nox-1** (300 μ M) in HEPES buffer (1 mL, 50 mM, pH 7.4, 1%DMSO as colsolvent) were prepared. To the probe solutions was added each aqueous solution of transition metal ion species (stock solutions: 50 mM for MnCl₂, FeCl₃, CoSO₄, NiSO₄, CuSO₄, and ZnSO₄ in D₂O) (final concentration: 500 μ M) in the presence or absence of Fe(II) (as FAS). After incubation for 30 min at room temperature, the reaction mixture was added to a slurry of Chelex[®] 100 Resin (50 mg). After mixing for 1 min, the resins were removed by centrifugation at 15,000 rpm for 3 min. The supernatants (800 μ L) were carefully transferred into new tubes. After addition of TFA•Na in D₂O (300 μ M, from 60 mM stock solution in D₂O) and D₂O (100 μ L), the samples were subjected to ¹⁹F NMR analysis (32 scans).

2-3. Stability test against reactive oxygen species, biological thiols, and reductants

Aqueous solutions of **F-Nox-1** (300 μ M) in HEPES buffer (1 mL, 50 mM, pH 7.4, 1%DMSO as colsolvent) were prepared. The probe solutions were incubated with each chemical species for 30 min as follows.

L-Cysteine	: 500 μ M from 50 mM stock solution in D ₂ O		
Sodium L-ascorbate	: 300 μ M from 50 mM stock solution in D ₂ O		
H_2O_2	: 500 μ M from 50 mM stock solution in D ₂ O		
NaOCl	: 500 μ M from 50 mM stock solution in D ₂ O		
Glutathione	: 500 μ M from 50 mM stock solution in NaOD/D ₂ O (50 mM)		
Glutathione + CuSO ₄ : 500 μ M from 50 mM stock solution in NaOD/D ₂ O (50 mM)			
After incubation for 30 min at room temperature, the reaction mixture was added to a slurry of Chelex [®] 100			
Resin (50 mg). After mixing for 1 min, the resins were removed by centrifugation at 15,000 rpm for 3 min.			
The supernatants (800 µL) were carefully transferred into new tubes. After addition of TFA•Na in D ₂ O (300			

 μ M, from 60 mM stock solution in D₂O) and D₂O (100 μ L), the samples were subjected to ¹⁹F NMR analysis (32 scans).

2-4. ¹⁹F NMR detection of Fe(II) in FBS

A solution of **F-Nox-1** (600 μ M) and FAS (600 μ M, from 60 mM stock solution in D₂O) in fetal bovine serum (GE healthcare, cat.#SH30910.03) (FBS, 1.0 mL, 1% DMSO as co-solvent) was incubated at room temperature for 30 min. After incubation for 30 min at room temperature, the reaction mixture was added to a slurry of Chelex[®] 100 Resin (50 mg). After mixing for 1 min, the resins were removed by centrifugation at 15,000 rpm for 3 min. The supernatants (800 μ L) were carefully transferred into new tubes. After addition of TFA•Na in D₂O (300 μ M, from 60 mM stock solution in D₂O) and D₂O (100 μ L), the samples were subjected to ¹⁹F NMR analysis (2048 scans).

3. Magnetic resonance imaging

The samples for ¹⁹F-MR imaging were prepared as follows. Solutions of **F-Nox-1** (500 μ M) ± FAS (500 μ M, from 100 mM stock solution in water) in water (1.0 mL, 1% DMSO as co-solvent) were incubated at room temperature for 30 min. A solution of **F-1** (500 μ M) in water (1.0 mL, 1% DMSO as co-solvent) was used as the authentic sample to monitor ¹⁹F-signal of the deoxygenated compound. Each sample (100 μ L) was transferred to a flat bottom screw vial (200 μ L volume) (Agilent Technologies, P/N 5183-2090) just before the measurements.

Solutions of **F-Nox-1** (600 μ M) ± FAS (600 μ M, from 100 mM stock solution in water) in FBS (1.0 mL, 1% DMSO as co-solvent) were incubated at room temperature for 30 min. A solution of **F-1** (600 μ M) in FBS (1.0 mL, 1% DMSO as co-solvent) was used as the authentic sample to monitor ¹⁹F-signal of the deoxygenated compound. Each sample (100 μ L) was transferred to a flat bottom screw vial (200 μ L volume) (Agilent Technologies, P/N 5183-2090) just before the measurements.

In this investigation, a 7.0 T horizontal-bore MR scanner (Unity Inova; Agilent Technologies, Santa Clara, CA) was employed. A custom-built circular-type surface coil measuring 1.6 cm in diameter and tuned to both the ¹H and ¹⁹F frequencies (300 MHz and 282 MHz, respectively) was used to collect the data (Takashima seisakusho, Hino, Japan). The radio frequency coil was carefully adjusted at each resonance frequency using the tuning and matching capacitors just before the ¹H or ¹⁹F study. Gradient-echo sequence was used to obtain ¹H-MR images with 150-ms repetition time (TR), 3-ms echo time, 60° flip angle, 1.5-mm slice thickness, 24 mm × 24 mm field of view and 128 × 128 resolution. A nonlocalized ¹⁹F-NMR spectrum was obtained using a single pulse sequence with 8,192 data points, 40,000-Hz spectral width, 1-s TR and 600 acquisitions (for 10 min). To obtain ¹⁹F-MR images, free induction decay data of ¹⁹F chemical shift imaging were collected with a 40,000-Hz spectral width, 24 mm × 24 mm field of view in the coronal plane, 1-s TR, 200-µs phase-encoding time and 68 acquisitions for each central 44 phase-encoding step out of 8 × 8 steps. For the residual 20 phase-encoding steps in the periphery of k-space, zero data were used. The total acquisition time for one data set was 50 min. A slice-selective pulse was not used. Whole signals covered by the coil sensitivity were acquired. The raw data were processed by 3D-Fourier transformation with 40-Hz line broadening and zero filling and finally converted to 32 × 32 spectral data sets. The ¹⁹F-MR image was constructed by integrating the ¹⁹F signal

intensities of compound peaks in individual pixels.

4. Product analysis by LC-MS

To a solution of **F-Nox-1** (300 μ M) in water (1% DMSO as co-solvent) was added each solution of FAS (0.01, 0.05, 0.1, 0.3, 0.6, and 1 mM). After incubation for 30 min at room temperature, the reaction mixture was added to a slurry of Chelex[®] 100 Resin (50 mg). After mixing for 1 min, the resins were removed by centrifugation at 15,000 rpm for 3 min.. Then, the supernatants (300 μ L) were carefully transferred into new tubes and diluted with water (600 μ L).

Products were filtered by syringe filter and analyzed with LC-MS system (Chromaster[®]5110, Hitachi Hightech) equipped with a photodiode-array detector (Chromaster[®]5430, Hitachi High-tech) and a mass spectrometer (Chromaster[®]5610 MS Detector, Hitachi High-tech) and with CAPCELL PAK C₁₈ column (3 μ m, 4.6 × 100 mm) eluted with a gradient system consisting of water (solvent A) and CH₃CN (solvent B) containing 0.05% formic acid; 5–20 min, 20–80% B. The absorbance at 250 nm was monitored. The retention times were compared with those of the deoxygenated compounds. Assignments of the compounds were based on the observed *m/z* values at each peak.

5. Cell culture

Human hepatocellular carcinoma cells (HepG2, purchased from RIKEN Bioresource Research Center) were cultured in modified essential medium (MEM, Gibco) containing 10% fetal bovine serum (FBS, Biosera), 1% Antibiotic-Antimyocotic (ABAM, Gibco), and 2 mM glutamine at 37 °C in a 5% CO₂/ 95% air incubator.

6. Detection of Fe(II) in cell lysate by ¹⁹F-NMR spectroscopy

HepG2 cells (5 × 10⁴ cells per well) were seeded on three dishes (Φ 96 x 21 mm, TPP) and cultured in complete medium at 37 °C for 48 h in a 5% CO₂/95% air incubator. Then, the medium was replaced by fresh medium (5 mL) containing 10% fetal bovine serum (FBS, Gibco), and the cells were treated with or without FAS (final concentration 0.3 mM) for 1 h. Next, the medium was removed, and the cells were washed with EDTA (0.3 mM) in Hank's Balanced Salt Solution (HBSS, Gibco) three times. Then, the cells were treated with **F-Nox-1** (final concentration 0.3 mM) in HBSS containing DMSO (1%) with or without Bpy (final concentration 1 mM) for 2 h. The cells were harvested from the culture dishes and centrifuged at 1,000 rpm for 2 min. After removing the supernatant, the obtained cell pellets were suspended in cold phosphate-buffered saline (PBS, 1 mL) and centrifuged at 1,000 rpm for 2 min. After removing the supernatant, the obtained cell pellets were (20 µL). The cell pellets were dissolved by pipetting. The lysates were centrifuged at 15,000 rpm for 15 min, and the supernatants (200 µL) were carefully transferred into new tubes. Then, water (200 µL), D₂O (100 µL) and TFA•Na (100 µM) were added to the supernatant, and the samples were subjected to ¹⁹F-NMR analysis (ECZ-400 at 376 MHz).

7. Confocal fluorescence microscopy

Confocal fluorescence images were acquired by using an Olympus IX83 microscope equipped with a 130 W mercury lump and a laser diode illuminator (89 North, LDI with 7 laser lines), an EMCCD camera (Hamasmatsu Photonics, ImageEM), and a disk scan confocal unit (DSU, Olympus). Experiments were

performed with $20 \times \text{objective lens}$. For imaging experiment, Hank's Balanced Salt Solution (HBSS, Gibco) containing calcium and magnesium without phenol red was used. HepG2 cells ($5 \times 10^4 \text{ cells/mL}$) were seeded on an Advanced TC glass-bottomed dishes (CELL_{view}TM CellCulture Dish, Greiner) and cultured in complete medium at 37 °C for 48 h in a 5% CO₂/95% air incubator. After incubation for 48 h, the cells were washed with HBSS (×2), and then 5 μ M **F-Nox-3-Ac** in HBSS was added. After incubation for 30 min at 37 °C, the cells were washed with HBSS (×2), and imaged with an FITC filter set (excitation = 465–642 nm, emission = 516–566 nm, and dichronic mirror = 495 nm).

8. MTT assay

Evaluation of cytotoxicity of F-Nox-1

MTT assay was carried out according to the conditions of the cell lysate experiment as above. HepG2 cells (5 $\times 10^3$ cells per well) were seeded on a 96-well plastic dish (TPP) and cultured in complete medium at 37 °C for 48 h in a 5% CO₂/95% air incubator. Then, the cells were treated with various concentration of **F-Nox-1** (5, 10, 50, 100, 300 or 600 µM) containing DMSO (1%) in HBSS for 2 h. Next, the cells were treated with thiazolyl blue tetrazolium bromide (MTT reagent, Sigma Aldrich, final: 0.5 mg mL⁻¹ (form 5 mg mL⁻¹ stock)) at room temperature for 4 h, and then the media were removed. DMSO (100 µL) was added to each well, and absorption at 560 nm was measured to calculate cell viability.

9. References

- V. I. Sorokin, V. A. Ozeryanskii, G. S. Borodkin, A. V. Chernychev, M. Muir, J. Z. Baker, *Naturforsch*, 2006, 64, 615–625.
- J. Luo, R. Uprety, Y. Naro, C. Chow, S. P. Nguyen, J. W. Chin, A. Deitres, J. Am. Chem. Soc., 2014, 136, 15551–15558.

Figure S1. (a) The effect of contents of DMSO as co-solvent on the ¹⁹F-signal integration values of **F-1** (open square), **F-2** (filled square), **F-Nox-1** (open circle), and **F-Nox-2** (filled circle), (300 μ M) in D₂O. (b) Plots of ¹⁹F-signal integration values of **F-1** (open square), **F-2** (filled square), **F-Nox-1** (open circle), and **F-Nox-2** (filled circle) at various concentrations. The co-solvent (DMSO) concentration was kept at 1%(v/v). The integration values were acquired for the peaks at the corresponding chemical shifts (-151.3 ppm for **F-1** and **F-2**, -141.9 and -149.1 ppm for **F-Nox-1** and **F-Nox-2**) and calculated by using TFA (300 μ M, -76.0 ppm, 3F) as the internal standard.

Figure S2. ¹⁹F-NMR spectra (32 scans) of (a) **F-Nox-1** (300 μ M), (b) the reaction mixture of **F-Nox-1** (300 μ M) and Fe(II) (500 μ M, supplemented as (NH₄)₂Fe(SO₄)₂•6H₂O), FAS) (room temperature, 30 min), and (c) **F-1** (300 μ M) in HEPES buffer (50 mM, pH 7.4, 1%DMSO, 10%D₂O).

Figure S3. LC-MS analysis of the Fe(II)-mediated deoxygenation reaction of **F-Nox-1** (300 μ M) with 1 mM Fe(II) (FAS) in water (1% DMSO) at room temperature for 30 min. HPLC charts of (a) **F-Nox-1**, (b) the reaction mixture of **F-Nox-1** and Fe(II), and (c) **F-1**. The absorbance at 250 nm was monitored. Total ion mass spectra were simultaneously measured to give mass peaks of 825.3 (calcd. for [**F-Nox-1**+Na]⁺ = 825.4) at 13.3 min and 809.0 (calcd. for [**F-1**+Na]⁺ = 809.4) at 19.8 min.

Figure S4. (a) ¹⁹F-NMR spectra of **F-Nox-1** (300 μ M) after reaction with various metals (500 μ M) in the presence of Fe(II) (500 μ M) at room temperature for 30 minutes. Cu(II) catalytically oxidizes Fe(II) to Fe(III) in the presence of oxygen (C. J. Matocha, *et al. J. Environ. Qual.*, 2005, **34**, 1539–1546), which deprived Fe(II) before the reaction with the probe. (b) ¹⁹F-NMR spectra of **F-Nox-1** (300 μ M) after reaction with various biological molecules (see experimental details for the concentration of each reagent) at room temperature for 30 min. All the data were acquired in HEPES buffer (50 mM, pH 7.4, 1%DMSO, 10%D₂O) with 32 scans.

Figure S5. LC-MS analysis of the **F-Nox-1** (300 μ M) after the reaction with various concentrations of Fe(II) (FAS) in water (1% DMSO) at room temperature for 30 min. The absorbance at 250 nm was monitored. Total ion mass spectra were simultaneously measured to give mass peaks of 825.3 (calcd. for [**F-Nox-1**+Na]⁺ = 825.4) at 13.3 min and 809.0 (calcd. for [**F-1**+Na]⁺ = 809.4) at 19.8 min.

Figure S6. (a) ¹⁹F-NMR spectra (32 scans) of **F-Nox-1** (300 μ M) after the reaction with various concentrations of Fe(II) (FAS) at room temperature for 30 min in HEPES buffer (50 mM, pH 7.4, 1%DMSO, 10%D₂O) followed by removal of the residual metal ions. (b) A plot of integral values of the ¹⁹F-signals at –151.3 ppm (standardized by internal standard, TFA•Na (3F)) observed in (a) against the concentration of Fe(II). (c) A magnified plot of (b) at 0–100 μ M.

Figure S7. (a) ¹⁹F-NMR spectra (32 scans) of **F-Nox-1** (300 μ M) after the reaction with various concentrations of Fe(II) (FAS) at room temperature for 30 min in HEPES buffer (50 mM, pH 7.4, 1%DMSO, 10%D₂O) in the presence of the residual metal ions. (b) A plot of integral values of the ¹⁹F-signals at –151.3 ppm (standardized by internal standard, TFA•Na (3F)) observed in (a) against the concentration of Fe(II). (c) A magnified plot of (b) at 0–100 μ M. (d) Photographs of the NMR tubes of the samples containing the reaction mixtures which were subjected to ¹⁹F-NMR measurements.

Figure S8. ¹⁹F-NMR spectra (2048 scans) of (a) **F-Nox-1** (300 μ M), (b) the reaction mixture of **F-Nox-1** (300 μ M) and Fe(II) (600 μ M, FAS), and (c) **F-1** (300 μ M) in fetal bovine serum (1%DMSO, 10%D₂O).

Figure S9. ¹⁹F-NMR spectra (2048 scans) of cell lysate of HepG2 cells treated with **F-Nox-1** (300 μ M). (a) Control cells, (b) the cells supplemented with Fe(II) (FAS, 300 μ M), and (c) the cells supplemented with Fe(II) (FAS, 300 μ M) and 2,2'-bipyridyl (Bpy, 1 mM). The cells were incubated with **F-Nox-1** at 37 °C for 2 h after the incubation of the cells with Fe(II) ± Bpy at 37 °C for 1 h.

Figure S10. Cell viability assay of HepG2 cells treated with various concentrations of **F-Nox-1** at 37 °C for 2 h for 2 h. Error bars indicate \pm s.d. (n=3). No significant cytotoxicity was observed.

Figure S11. Bright field (left) and fluorescence (right) microscopic images of HepG2 cells treated with F-Nox-3-Ac (5μ M) at 37 °C for 30 min. Scale bars indicate 50 μ m.

¹H-, ¹³C-, and ¹⁹F-NMR spectra of the newly synthesized compounds ¹H-NMR (CDCl₃) spectrum of 1

¹³C-NMR (CDCl₃) spectrum of **1**

¹⁹F-NMR (CDCl₃) spectrum of 1

¹H-NMR (CDCl₃) spectrum of **2**

¹⁹F-NMR (CDCl₃) spectrum of **2**

¹H-NMR (CDCl₃) spectrum of **F-1**

¹³C-NMR (CDCl₃) spectrum of F-1

¹⁹F-NMR (CDCl₃) spectrum of F-1

¹H-NMR (CDCl₃) spectrum of **F-Nox-1**

¹³C-NMR (CDCl₃) spectrum of F-Nox-1

¹⁹F-NMR (CDCl₃) spectrum of F-Nox-1

¹H-NMR (CDCl₃) spectrum of **F-2**

¹³C-NMR (CDCl₃) spectrum of **F-2**

¹⁹F-NMR (CDCl₃) spectrum of F-2

¹H-NMR (CDCl₃) spectrum of **F-Nox-2**

¹³C-NMR (CDCl₃) spectrum of F-Nox-2

¹⁹F-NMR (CDCl₃) spectrum of **F-Nox-2**

¹H-NMR (CDCl₃) spectrum of **TEG-Ac-fluorescein**

 $^{13}\text{C-NMR}$ (CDCl_3) spectrum of TEG-Ac-fluorescein

¹H-NMR (CDCl₃) spectrum of **F-3-Ac**

¹³C-NMR (CDCl₃) spectrum of **F-3-Ac**

¹⁹F-NMR (CDCl₃) spectrum of **F-3-Ac**

¹H-NMR (CDCl₃) spectrum of **F-Nox-3-Ac**

¹³C-NMR (CDCl₃) spectrum of **F-Nox-3-Ac**

¹⁹F-NMR (CDCl₃) spectrum of **F-Nox-3-Ac**

¹H-NMR (CD₃OD) spectrum of **F-3**

¹³C-NMR (DMSO-*d*₆) spectrum of **F-3**

¹⁹F-NMR (DMSO-*d*₆) spectrum of **F-3**

¹H-NMR (CD₃OD) spectrum of **F-Nox-3**

¹³C-NMR (DMSO-*d*₆) spectrum of **F-Nox-3**

¹⁹F-NMR (CD₃OD) spectrum of **F-Nox-3**

