Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

Supporting Information

For

Remote Azidation of C(sp³)-H Bonds to Synthesize δ -Azido

Sulfonamides via Iron-catalyzed Radical Relay

Kang-Jie Bian, ‡ Cheng-Yu Wang, ‡ Yu-Ling Huang, Yi-Hao Xu and Xi-Sheng Wang *

Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry,

Center for Excellence in Molecular Synthesis of CAS,

University of Science and Technology of China,

96 Jinzhai Road, Hefei, Anhui 230026, China

Tabel of Contents

I. General Information	S2
II. Optimization of conditions	
Catalyst Screening	\$3
Ligand Screening	S4
Solvent Screening	S4
Other Variables	S4
III. Experimental procedures and data	
Synthesis of Products	S5
Analytical data for compounds	S7
Mechanistic studies	S17
IV. References	S18
NMR spectra of new compounds	S19

I. General Information:

NMR spectra were recorded on Bruker-400 and Bruker-500 (400 MHz for ¹H (Bruker-400); 500 MHz for ¹H (Bruker-500), 126 MHz for ¹³C (Bruker-500), and 376 MHz for ¹⁹F (Bruker-400)) instruments internally referenced to SiMe₄ signal. High resolution mass spectra were recorded on P-SIMS-Gly of Bruker Daltonics Inc. using ESI-TOF (electrospray ionization-time of flight) or Micromass GCT using EI (electron impact). Catalyst, TMSN₃, and solvent were purchased from J&K etc. and used as received.

II. Optimization of conditions

O2 Ph ^S N	Cat./ L (10 mol%) TMSN ₃ (3.0 equiv) Solvent (0.1 M), Ar 80 °C, 24 h	$Ph^{S} N_{H}^{N_{3}} Ph + 2a$	Ph ^{-S} N H 3a
Entry	Cat.	2a ^[b]	3a ^[b]
1	Cu(MeCN) ₄ PF ₆	75%	21%
2	CuCN	78%	15%
3	CuSCN	84%	20%
4	Cul	N.D.	~50%
5	Cu(OAc) ₂	77%	14%
6	Cu(OTf) ₂	trace	trace

Catalyst screening

[a] Reaction conditions: 1a (0.1 mmol. 1.0 equiv), Cu cat. (10 mol%), 1,10-Phen (12 mol%), TMSN₃ (3.0 equiv), DCE (0.1 M), Ar, 80 $^{\rm o}\text{C},$ 24 h. [b] Yields detected by crude ^{1}H NMR with

CH₂Br₂ as internal standard.

[a] Reaction conditions: 1a (0.1 mmol. 1.0 equiv), Fe cat. (10 mol%), 1,10-Phen (10 mol%), TMSN₃ (3.0 equiv), DCE (0.1 M), Ar, 80 °C, 24 h.

[b] Yields detected by crude ¹H NMR with CH₂Br₂ as internal standard.

Ligand screening

[a] Reaction conditions: 1a (0.1 mmol. 1.0 equiv), Fe(OAc)₂ (10 mol%), ligand (10 mol%), TMSN₃ (3.0 equiv), DCE (0.1 M), Ar, 80 °C, 24 h.

[b] Yields detected by crude ¹H NMR with CH_2Br_2 as internal standard.

Solvent screening

	Ph S N Ph F Ia	Fe(OAc) ₂ (10 mol%) 1,10-Phen (10 mol%) TMSN ₃ (3.0 equiv) solvent (0.1 M), Ar 80 °C, 24 h	$Ph^{S} \stackrel{O_2}{\underset{H}{\overset{N}{\underset{N_3}{\overset{N_3}{\overset{N_3}{\overset{Ph}{\overset{N_3}{\overset{N_{N}}{\overset{N_N}{\overset{N_N}{\overset{N_N}{\overset{N_N}{\overset{N}}{\overset{N_N}}{\overset{N_N}{\overset{N_N}{\overset{N}}{\overset{N_N}{\overset{N_N}{\overset{N_N}{\overset{N_N}{\overset{N}}{\overset{N_N}{\overset{N_N}{\overset{N_N}{\overset{N_N}{\overset{N_N}{\overset{N_N}{\overset{N_N}{\overset{N_N}{\overset{N_N}{\overset{N_N}{\overset{N_N}{\overset{N_N}{\overset{N_N}}{N}{N}}{\overset{N}}{\overset{N}}{N}}{\overset{N}}}{\overset{N}}{\overset{N}}{\overset{N}$
Entry	solvent		2a ^[b]
1	MeCN		89%
2	DCE		99% (94%) ^[c]
3	1,4-dioxane		81%
4	PhCl		87%
5	PhCF ₃		85%

[a] Reaction conditions: 1a (0.1 mmol. 1.0 equiv), Fe(OAc)₂ (10 mol%), 1,10-Phen (10 mol%), TMSN₃ (3.0 equiv), solvent (0.1 M), Ar, 80 $^{\rm o}$ C, 24 h. [b] Yields detected by crude $^{1}{\rm H}$ NMR with $\rm CH_2Br_2$ as internal standard.

[c] Isolated yields.

Other Variables

	$Ph^{-S}N^{Ph}$	Fe(OAc) ₂ (10 mol%) 1,10-Phen (10 mol%) TMSN ₃ (3.0 equiv) DCE (0.1 M), Ar 80 °C, 24 h	$Ph^{-S} \stackrel{N}{\underset{H}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset$	
Entry	deviation from standard cond	ition	2a ^[b]	
1	TMSN ₃ (2.0 equiv)		81%	
2	60 YC		93%	
3	w/o Fe/L		0%	
4	w/o L		56%	
5	under air		29%	

[a] Reaction conditions: 1a (0.1 mmol. 1.0 equiv), Fe(OAc)₂ (10 mol%), 1,10-Phen (10 mol%), TMSN₃ (3.0 equiv), DCE (0.1 M), Ar, 80 $^{\rm o}C$, 24 h. [b] Yields detected by crude 1H NMR with CH_2Br_2 as internal standard.

III. Experimental procedures and data

Synthesis of Products

General Procedure A – Iron-catalyzed Remote Azidation

Fe(OAc)₂ (1.7 mg, 0.01 mmol), 1,10-phenanthroline (1.8mg, 0.01mmol) were combined in a 25 mL oven-dried sealed tube. The vessel was evacuated and backfilled with N₂ (repeated for 3 times), after that, substrate **1** (0.1 mmol), TMSN₃ (0.3 mmol, 3.0 equiv) and DCE (1.0 mL) were then added via syringe under N₂. The tube was sealed with a Teflon lined cap and moved into a preheated oil bath at 80 °C for 24 h. The reaction mixture was then cooled to room temperature, diluted with EtOAc (10 mL) and filtered through a pad of celite. The filtrate was concentrated, and the residue was then purified by flash column chromatography to give **2a-2x**.

General Procedure B – Derivatization-Click Reaction²

Cul (2 equiv) was added in a 25 mL oven-dried sealed tube. The vessel was evacuated and backfilled with N₂ (repeated for 3 times), after that, product **2a** (0.1 mmol) dissolved in CH₃CN (0.05 M), DIPEA (3 equiv), phenylacetylene (1.1 equiv) were then added via syringe under N₂. The tube was sealed with a Teflon lined cap and moved into a preheated oil bath at RT for 2h. The reaction mixture was then cooled to room temperature, diluted with EtOAc (10 mL) and filtered through a pad of celite. The filtrate was concentrated, and the residue was then purified by flash column chromatography to give **4**.

Synthesis of Starting Materials

All known starting materials were synthesized through the method reported in Ref. S1

General Procedure C (for the synthesis of 1g, 1h)

Step 1 : To solution of cyclohexanecarbonitrile (1.0 equiv) in THF (0.25 M) was added LDA (1.1 equiv) dropwise under -78 °C and the mixture was allowed to stir for 1 h at room temperature. The solution was cooled to -78 °C again and added with (2-bromoethyl)benzene (1.2 equiv). Then, the mixture was warmed to room temperature and stirred overnight. Until completion, the reaction was quenched with saturated NH_4Cl (aq). The reaction mixture was then cooled to room

temperature, extracted with DCM three times. The combined organic layer was washed with brine, dried over anhydrous Na_2SO_4 and concentrated. The residue was then purified by column chromatography to afford the product.

Step 2 : To a mixture of LAH (3.0 equiv) dispersed in THF (0.25 M) was added the solution the product (1.0 equiv) obtained from step 1 under 0 °C and the mixture then transferred to oil bath and refluxed overnight. Until completion, the mixture was quenched with water and 10% NaOH (aq) in sequence and the slurry was added with anhydrous Na_2SO_4 and filtered over a pad of celite. The filtrate was collected and concentrated under vaccum to afford the crude product which can be used directly without further purification.

Step 3 : To a solution of amine (1.0 equiv) obtained in step 2 and Et_3N (1.2 equiv) in DCM (0.2 M) was slowly added with benzenesulfonyl chloride (1.05 equiv) under 0 °C. The mixture was allowed to warm to room temperature and stirred overnight. . Until completion, the reaction was diluted with DCM and the organic layer was washed with aqueous HCl (1N) and brine in sequence; the organic layer was dried over anhydrous Na_2SO_4 and concentrated. The residue was then purified by column chromatography to afford the product.

Step 4 : To a stirred suspension of NaH (6 mmol, 60 wt% in mineral oil) in anhydrous CH_2CI_2 (24 mL) in a 100 mL round-bottomed flask was slowly added a solution of sulfonamide obtained in step 3 (3 mmol) in anhydrous CH_2CI_2 (6 mL) at room temperature under an N₂ atmosphere. After the mixture was stirred for 30 min, N-fluorobenzenesulfonimide (NFSI, 5.67 g, 18 mmol) was added in one portion and allowed to stir for another 6 h. Until completion, the reaction was quenched by the addition of water. The mixture was extracted with DCM (3 × 30 mL) and the organic layers were combined, washed with brine, and dried over anhydrous Na₂SO₄. The crude mixture was filtered through celite and concentrated. The resulting residue was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate.

Analytical data for compounds

1. Substrates:

Most substrates data were reported in previous work¹. New substrates are shown as follow:

N-fluoro-N-((1-phenethylcyclopentyl)methyl)benzenesulfonamide was prepared following general procedure C and was purified by column chromatography with petroleum ether and ethyl acetate (PE/EA = 19:1) to afford the product **1g** (68% yield) as light yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 (d, *J* = 7.6 Hz, 2H), 7.75 (t, *J* = 7.5 Hz, 1H), 7.63 (t, *J* = 7.8 Hz, 2H), 7.27 (d, *J* = 7.8 Hz, 2H), 7.17 (d, *J* = 6.8 Hz, 3H), 3.30 (s, 1H), 3.19 (s, 1H), 2.64 – 2.45 (m, 2H), 1.82 – 1.74 (m, 2H), 1.71 – 1.51 (m, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 142.83, 134.96, 132.79, 129.94, 129.45, 128.49, 128.49, 125.83, 59.44 (d, *J* = 10.6 Hz), 46.12, 39.99, 36.32, 31.09, 24.46. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -40.78 (t, *J* = 44.0 Hz). HRMS (ESI) (*m/z*): [M+Na]⁺ calcd. for C₂₀H₂₄NO₂SFNa: 384.1404, found: 384.1414.

N-fluoro-N-((1-phenethylcyclohexyl)methyl)benzenesulfonamide was prepared following general procedure C and was purified by column chromatography with petroleum ether and ethyl acetate (PE/EA = 19:1) to afford the product **1h** (64% yield) as light yellow oil.. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 (d, *J* = 7.7 Hz, 2H), 7.75 (t, *J* = 7.5 Hz, 1H), 7.63 (t, *J* = 7.8 Hz, 2H), 7.26 (d, *J* = 7.0 Hz, 2H), 7.18 (d, *J* = 7.5 Hz, 3H), 3.30 (s, 1H), 3.19 (s, 1H), 2.61 – 2.37 (m, 2H), 1.86 – 1.66 (m, 2H), 1.50 – 1.36 (m, 10H). ¹³C NMR (101 MHz, CDCl₃) δ 143.03, 134.95, 132.88, 129.92, 129.45, 128.55, 128.49, 125.81, 59.49 (d, *J* = 9.9 Hz), 38.22, 36.77, 34.13, 29.39, 26.08, 21.43. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -36.19 (t, *J* = 42.6 Hz). HRMS (ESI) (*m/z*): [M+Na]⁺ calcd. for C₂₁H₂₆NO₂SFNa: 398.1560, found: 398.1569.

N-fluoro-N-hexylbenzenesulfonamide was prepared following general procedure C and was purified by column chromatography with petroleum ether and ethyl acetate (PE/EA = 19:1) to afford the product **1y** (68% yield) as light yellow oil. ¹H NMR (400 MHz, Chloroformd) δ 7.95 (d, J = 7.6 Hz, 2H), 7.75 (t, J = 7.5 Hz, 1H), 7.62 (t, J = 7.6 Hz, 2H), 3.27 (t, J = 7.0 Hz, 1H), 3.17 (t, J = 6.9 Hz, 1H), 1.71 (p, J = 7.2 Hz, 2H), 1.48 – 1.28 (m, 6H), 0.88 (t, J = 6.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 134.99, 132.21, 130.08, 129.41, 53.82 (d, *J* = 12.7 Hz), 31.40, 26.37, 22.58, 14.10. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -50.06 (t, *J* = 40.7 Hz). HRMS (ESI) (*m/z*): [M+Na]⁺ calcd. for C₁₂H₁₈NO₂SFNa: 282.0934, found: 282.0941.

N-(6-chlorohexyl)-N-fluorobenzenesulfonamide was prepared following general procedure C and was purified by column chromatography with petroleum ether and ethyl acetate (PE/EA = 19:1) to afford the product **1z** (69% yield) as light yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 (d, *J* = 7.6 Hz, 2H), 7.75 (t, *J* = 7.5 Hz, 1H), 7.63 (t, *J* = 7.8 Hz, 2H), 3.53 (t, *J* = 6.6 Hz, 2H), 3.29 (t, *J* = 6.9 Hz, 1H), 3.19 (t, *J* = 6.9 Hz, 1H), 1.82 – 1.70 (m, 4H), 1.54 – 1.40 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 135.05, 132.17, 130.08, 129.44, 53.59 (d, *J* = 12.6 Hz), 44.99, 32.44, 26.48, 26.26, 25.98. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -49.90 (t, *J* = 40.4 Hz). HRMS (ESI) (*m/z*): [M+Na]⁺ calcd. for C₁₂H₁₇NO₂SFCINa: 316.0545, found: 316.0549.

N-fluoro-N-octylbenzenesulfonamide was prepared following general procedure C and was purified by column chromatography with petroleum ether and ethyl acetate (PE/EA = 19:1) to afford the product **1aa** (69% yield) as light yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 (d, *J* = 7.4 Hz, 2H), 7.75 (t, *J* = 7.5 Hz, 1H), 7.62 (t, *J* = 7.8 Hz, 2H), 3.27 (t, *J* = 7.0 Hz, 1H), 3.17 (t, *J* = 7.0 Hz, 1H), 1.71 (p, *J* = 7.3 Hz, 2H), 1.44 – 1.35 (m, 2H), 1.33-1.23 (m, 8H), 0.87 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 134.98, 130.09, 129.41, 53.81 (d, *J* = 12.5 Hz), 31.85, 29.19, 26.70, 26.42, 22.74, 14.21. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -49.99 (t, *J* = 40.6 Hz). HRMS (ESI) (*m*/*z*): [M+Na]⁺ calcd. for C₁₄H₂₂NO₂SFNa: 310.1247, found: 310.1254.

N-fluoro-N-(5-methylhexyl)benzenesulfonamide was prepared following general procedure C and was purified by column chromatography with petroleum ether and ethyl acetate (PE/EA = 19:1) to afford the product **1ab** (66% yield) as light yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 (d, *J* = 7.7 Hz, 2H), 7.75 (t, *J* = 7.5 Hz, 1H), 7.63 (t, *J* = 7.8 Hz, 2H), 3.27 (t, *J* = 7.0 Hz, 1H), 3.17 (t, *J* = 7.0 Hz, 1H), 1.70 (p, *J* = 7.4 Hz, 2H), 1.56 – 1.50 (m, 1H), 1.40 (q, *J* = 7.9 Hz, 2H), 1.23 – 1.15 (m, 2H), 0.86 (d, *J* = 6.6 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 134.99, 132.22, 130.09, 129.42, 53.87

(d, J = 12.4 Hz), 38.51, 27.96, 26.66, 24.52, 22.65. ¹⁹F NMR (376 MHz, Chloroform-d) δ -50.04 (t, J = 40.6 Hz). HRMS (ESI) (m/z): [M+Na]⁺ calcd. for C₁₃H₂₀NO₂SFNa: 296.1091, found: 296.1094.

N-fluoro-N-(5-phenylpentyl)benzenesulfonamide was prepared following general procedure C and was purified by column chromatography with petroleum ether and ethyl acetate (PE/EA = 19:1) to afford the product **1ac** (66% yield) as light yellow oil. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.98 – 7.91 (m, 2H), 7.74 (t, *J* = 7.5 Hz, 1H), 7.61 (t, *J* = 7.9 Hz, 2H), 7.29-7.27 (m, 2H), 7.21 – 7.13 (m, 3H), 3.26 (t, *J* = 7.0 Hz, 1H), 3.18 (t, *J* = 7.0 Hz, 1H), 2.70 – 2.56 (m, 2H), 1.75 (p, *J* = 7.3 Hz, 2H), 1.64 (p, *J* = 7.7 Hz, 2H), 1.44 (p, *J* = 7.7, 7.2 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 142.24, 134.87, 132.13, 129.95, 129.29, 128.39, 128.34, 125.78, 53.54 (d, *J* = 12.5 Hz), 35.68, 30.90, 26.19. ¹⁹F NMR (376 MHz, Chloroform-d) δ -49.88 (t, *J* = 40.6 Hz). HRMS (ESI) (m/z): [M+Na]⁺ calcd. for C₁₇H₂₀NO₂SFNa: 344.1091, found: 344.1102.

2. Products:

N-(4-azido-4-phenylbutyl)benzenesulfonamide was prepared following

general procedure A the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 7:1) to afford the product **2a** (92% yield) as a light yellow liquid. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.88 – 7.81 (m, 2H), 7.61 – 7.55 (m, 1H), 7.53 – 7.48 (m, 2H), 7.39 – 7.30 (m, 3H), 7.25 – 7.21 (m, 2H), 4.60 (t, *J* = 6.2 Hz, 1H), 4.37 (dd, *J* = 7.9, 6.3 Hz, 1H), 2.97 (qd, *J* = 6.7, 3.3 Hz, 2H), 1.85 – 1.68 (m, 2H), 1.60 – 1.53 (m, 1H), 1.50 – 1.43 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 139.82, 139.15, 132.73, 129.18, 128.90, 128.43, 127.01, 126.80, 65.70, 42.74, 33.13, 26.36. HRMS (ESI) (*m*/*z*): [M+H-N₂]⁺ calcd. for C₁₆H₁₉N₂O₂S: 303.1162, found: 303.1161.

N-(4-azido-4-phenylbutyl)-4-methylbenzenesulfonamide was prepared following general procedure A and the reaction mixture was purified by flash column chromatography chromatography with petroleum ether and ethyl acetate (PE/EA = 7:1) to afford the product **2b** (95% yield) as a light yellow liquid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.78 – 7.69 (m, 2H), 7.38 – 7.26 (m, 5H), 7.25 – 7.19 (m, 2H), 4.78 (t, *J* = 6.2 Hz, 1H), 4.35 (dd, *J* = 7.9, 6.4 Hz, 1H), 2.93 (qd, *J* = 6.8, 1.9 Hz, 2H), 2.42 (s, 3H), 1.81 – 1.66 (m, 2H), 1.62 – 1.40 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 143.43, 139.13, 136.74, 129.69, 128.78, 128.30, 127.00, 126.73, 65.63, 42.60, 33.02, 26.22, 21.47. HRMS (ESI) (*m*/*z*): [M+H-N₂]⁺ calcd. for C₁₇H₂₁N₂O₂S: 317.1318, found: 317.1331.

N-(4-azido-4-phenylbutyl)-4-methoxybenzenesulfonamide was prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 5:1) to afford the product **2c** (85% yield) as a light yellow liquid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.81 – 7.74 (m, 2H), 7.39 – 7.28 (m, 3H), 7.25 – 7.19 (m, 2H), 6.99 – 6.92 (m, 2H), 4.75 (t, *J* = 6.2 Hz, 1H), 4.36 (dd, *J* = 7.8, 6.4 Hz, 1H), 3.86 (s, 3H), 2.92 (qd, *J* = 6.7, 1.6 Hz, 2H), 1.82 – 1.67 (m, 2H), 1.62 – 1.39 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 162.83, 139.12, 129.11, 128.78, 128.30, 126.73, 114.22, 65.63, 55.56, 42.57, 33.04, 26.19. HRMS (ESI) (*m*/*z*): [M+H-N₂]⁺ calcd. for C₁₇H₂₁N₂O₃S: 333.1268, found: 333.1265.

Cl 2d 2d N-(4-azido-4-phenylbutyl)-4-chlorobenzenesulfonamide was prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 7:1) to afford the product **2d** (84% yield) as a light yellow liquid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 – 7.71 (m, 2H), 7.51 – 7.43 (m, 2H), 7.41 – 7.29 (m, 3H), 7.25 – 7.20 (m, 2H), 4.81 (t, *J* =5.2 Hz, 1H), 4.38 (dd, *J* = 7.8, 6.3 Hz, 1H), 2.95 (q, *J* = 5.7 Hz, 2H), 1.83 – 1.68 (m, 2H), 1.63 – 1.40 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 139.17, 139.03, 138.33, 129.42, 128.85, 128.42, 128.40, 126.71, 65.61, 42.69, 33.06, 26.27. HRMS (ESI) (*m/z*): [M+H-N₂]⁺ calcd. for C₁₆H₁₈N₂O₂SCI: 337.0773, found: 337.0792.

Prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 7:1) to afford the product **2e** (95% yield) as a light yellow liquid. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 – 7.93 (m, 2H), 7.85 – 7.72 (m, 2H), 7.43 – 7.29 (m, 3H), 7.25 – 7.18 (m, 2H), 4.97 (t, *J* = 6.3 Hz, 1H), 4.38 (dd, *J* = 7.9, 6.2 Hz, 1H), 3.12 – 2.89 (m, 2H), 1.85 – 1.67 (m, 2H), 1.65 – 1.41 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 143.44, 139.00, 134.38 (q, *J* = 33.1 Hz), 128.86, 128.43, 127.47, 126.70, 126.31 (q, *J* = 3.7Hz), 123.26 (q, *J* = 272.9 Hz), 65.60, 42.76, 33.04, 26.32. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -63.09. HRMS (ESI) (*m*/*z*): [M+H-N₂]⁺ calcd. for C₁₇H₁₈N₂O₂SF₃: 371.1036, found: 371.1036.

prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 7:1) to afford the product **2f** (94% yield) as a light yellow liquid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.92 – 7.78 (m, 2H), 7.60 – 7.54 (m, 1H), 7.54 – 7.47 (m, 2H), 7.39 – 7.29 (m3H), 7.28 – 7.23 (m, 2H), 5.09 (t, *J* = 7.2 Hz, 1H), 4.47 (dd, *J* = 9.7, 3.3 Hz, 1H), 2.81 – 2.66 (m, 2H), 1.81 (dd, *J* = 14.9, 9.7 Hz, 1H), 1.51 (dd, *J* = 14.9, 3.4 Hz, 1H), 0.95 (s, 3H), 0.94 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 140.18, 139.82, 132.53, 129.07, 128.95, 128.39, 126.87, 126.66, 62.79, 52.30, 45.00, 33.92, 26.48, 25.23. HRMS (ESI) (*m/z*): [M+H-N₂]⁺ calcd. for C₁₈H₂₃N₂O₂S: 331.1475, found: 331.1485.

N-((1-(2-azido-2-phenylethyl)cyclopentyl)methyl)benzenesulfonamide was prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 7:1) to afford the product **2g** (94% yield) as a light yellow liquid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.92 – 7.82 (m, 2H), 7.61 – 7.56 (m, 1H), 7.55 – 7.49 (m, 2H), 7.40 – 7.29 (m, 3H), 7.28 – 7.22 (m, 2H), 5.20 – 5.04 (m, 1H), 4.44 (dd, J = 9.8, 2.9 Hz, 1H), 2.87 – 2.75 (m, 2H), 1.95 – 1.88 (m, 1H), 1.72 – 1.52 (m, 6H), 1.41 – 1.31 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 140.19, 139.74, 132.55, 129.09, 128.99, 128.42, 126.88, 126.61, 63.83, 49.07, 45.66, 43.97, 36.92, 35.81, 24.29, 24.15. HRMS (ESI) (*m/z*): [M+H-N₂]⁺ calcd. for C₂₀H₂₅N₂O₂S: 357.1632, found: 357.1614.

N-((1-(2-azido-2-phenylethyl)cyclohexyl)methyl)benzenesulfonamide was prepared following general procedure and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 7:1) to afford the product **2h** (88% yield) as a light yellow liquid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 – 7.84 (m, 2H), 7.61 – 7.49 (m, 3H), 7.41 – 7.29 (m, 3H), 7.27 (d, *J* = 1.7 Hz, 1H), 7.25 (q, *J* = 2.5, 2.0 Hz, 1H), 5.08 (dd, *J* = 9.3, 5.2 Hz, 1H), 4.50 (dd, *J* = 10.0, 2.7 Hz, 1H), 3.00 (dd, *J* = 12.8, 9.4 Hz, 1H), 2.75 (dd, *J* = 12.8, 5.2 Hz, 1H), 1.77 (dd, *J* = 15.3, 10.0 Hz, 1H), 1.57 (dd, *J* = 15.3, 2.6 Hz, 1H), 1.49 – 1.21 (m, 10H). ¹³C NMR (126 MHz, CDCl₃) δ 140.54, 140.01, 132.65, 129.23, 129.16, 128.55, 127.03, 126.71, 62.20, 48.80, 42.93, 36.12, 34.77, 33.68, 26.06, 21.33, 21.11. HRMS (ESI) (*m*/*z*): [M+H-N₂]⁺ calcd. for C₂₁H₂₇N₂O₂S:

371.1788, found: 371.1736.

N-(4-azido-4-(p-tolyl)butyl)benzenesulfonamide was prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 7:1) to afford the product **2i** (85% yield) as a light yellow liquid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 – 7.78 (m, 2H), 7.61 – 7.54 (m, 1H), 7.50 (ddt, *J* = 8.3, 6.8, 1.4 Hz, 2H), 7.20 – 7.07 (m, 4H), 4.79 (t, *J* = 6.2 Hz, 1H), 4.32 (dd, *J* = 7.8, 6.5 Hz, 1H), 2.95 (qd, *J* = 6.8, 1.5 Hz, 2H), 2.34 (s, 3H), 1.83 – 1.61 (m, 2H), 1.61 – 1.38 (m, 2H).¹³C NMR (126 MHz, CDCl₃) δ 139.76, 138.13, 136.00, 132.63, 129.47, 129.10, 126.94, 126.68, 65.44, 42.67, 32.95, 26.30, 21.09. HRMS (ESI) (*m*/*z*): [M+H-N₂]⁺ calcd. for C₁₇H₂₁N₂O₂S: 317.1319, found: 317.1331.

N-(4-azido-4-(4-(tert-butyl)phenyl)butyl)benzenesulfonamide was prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 7:1) to afford the product **2j** (93% yield) as a light yellow liquid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 – 7.81 (m, 2H), 7.60 – 7.54 (m, 1H), 7.53 – 7.48 (m, 2H), 7.40 – 7.33 (m, 2H), 7.18 – 7.12 (m, 2H), 4.80 (s, 1H), 4.33 (dd, *J* = 7.9, 6.3 Hz, 1H), 3.06 – 2.86 (m, 2H), 1.84 – 1.64 (m, 2H), 1.63 – 1.38 (m, 2H), 1.31 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 151.25, 139.77, 136.05, 132.63, 129.10, 126.95, 126.39, 125.67, 65.38, 42.69, 34.53, 32.99, 31.24, 26.32. HRMS (ESI) (*m/z*): [M+Na]⁺ calcd. for C₂₀H₂₆N₄O₂SNa: 409.1669, found: 409.1656.

N-(4-azido-4-(4-pentylphenyl)butyl)benzenesulfonamide was prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 7:1) to afford the product **2k** (89% yield) as a light yellow liquid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 – 7.81 (m, 2H), 7.61 – 7.53 (m, 1H), 7.53 – 7.46 (m, 2H), 7.14 (q, *J* = 8.3 Hz, 4H), 4.85 (t, *J* = 6.2 Hz, 1H), 4.32 (dd, *J* = 7.9, 6.4 Hz, 1H), 3.07 – 2.85 (m, 2H), 2.67 – 2.50 (m, 2H), 1.84 – 1.51 (m, 5H), 1.50 – 1.40 (m, 1H), 1.35 – 1.25 (m, 4H), 0.89 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 143.31, 139.92, 136.39, 132.78, 129.25, 128.93, 127.10, 126.79, 65.64, 42.83, 35.70, 33.13, 31.62, 31.15, 26.46, 22.63, 14.14. HRMS (ESI) (m/z): $[M+H-N_2]^+$ calcd. for C₂₁H₂₉N₂O₂S: 373.1945, found: 373.1950.

N-(4-([1,1'-biphenyl]-4-yl)-4-azidobutyl)benzenesulfonamide was

prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 5:1) to afford the product **2I** (89% yield) as a light yellow liquid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 – 7.81 (m, 2H), 7.60 – 7.52 (m, 5H), 7.51 – 7.41 (m, 4H), 7.39 – 7.32 (m, 1H), 7.32 – 7.26 (m, 2H), 4.89 (t, *J* = 6.1 Hz, 1H), 4.40 (dd, *J* = 7.7, 6.5 Hz, 1H), 2.96 (qd, *J* = 6.7, 1.9 Hz, 2H), 1.88 – 1.70 (m, 2H), 1.65 – 1.41 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 141.34, 140.51, 139.90, 138.24, 132.80, 129.26, 128.95, 127.64, 127.34, 127.17, 127.09, 65.51, 42.81, 33.18, 26.41. HRMS (ESI) (*m*/*z*): [M+H-N₂]⁺ calcd. for C₂₂H₂₃N₂O₂S: 379.1475, found: 379.1466.

N-(4-azido-4-(4-(trifluoromethoxy)phenyl)butyl)benzenesulfonamide was prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 7:1) to afford the product **2m** (87% yield) as a light yellow liquid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.89 – 7.81 (m, 2H), 7.61 – 7.55 (m, 1H), 7.54 – 7.47 (m, 2H), 7.30 – 7.25 (m, 2H), 7.23 – 7.16 (m, 2H), 4.89 (t, *J* = 6.2 Hz, 1H), 4.41 (dd, *J* = 7.9, 6.2 Hz, 1H), 2.97 (qd, *J* = 6.7, 2.8 Hz, 2H), 1.83 – 1.65 (m, 2H), 1.60 – 1.42 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 148.94, 139.73, 137.99, 132.71, 129.14, 128.18, 126.93, 121.24, 120.37 (q, *J* = 257.79Hz), 64.82, 42.56, 33.18, 26.16. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -57.83. HRMS (ESI) (*m/z*): [M+H-N₂]⁺ calcd. for C₁₇H₁₈N₂O₃SF₃: 387.0985, found: 387.0986.

N-(4-azido-4-(4-chlorophenyl)butyl)benzenesulfonamide was prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 7:1) to afford the product **2n** (91% yield) as a light yellow liquid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 – 7.80 (m, 2H), 7.61 – 7.53 (m, 1H), 7.54 – 7.47 (m, 2H), 7.34 – 7.29 (m, 2H), 7.20 – 7.13 (m, 2H), 5.02 (t, *J* = 6.2 Hz, 1H), 4.36 (dd, *J* = 7.8, 6.3 Hz, 1H), 2.94 (qd, *J* = 6.7, 2.4 Hz, 2H), 1.84 – 1.59 (m, 2H), 1.62 – 1.37 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 139.68, 137.69, 134.04, 132.68, 129.12, 128.98, 128.10, 126.89, 64.87, 42.53, 33.00, 26.10. HRMS (ESI) (*m/z*): [M+H-N₂]⁺ calcd. for C₁₆H₁₈N₂O₂SCI: 337.0773, found: 337.0754.

²⁰ N-(4-azido-4-(4-(trifluoromethyl)phenyl)butyl)benzenesulfonamide was prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 7:1) to afford the product **20** (81% yield) as a light yellow liquid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.89 – 7.80 (m, 2H), 7.65 – 7.54 (m, 3H), 7.54 – 7.47 (m, 2H), 7.36 (d, *J* = 8.2 Hz, 2H), 4.93 (t, *J* = 6.0 Hz, 1H), 4.47 (dd, *J* = 7.7, 6.3 Hz, 1H), 2.97 (qd, *J* = 6.6, 3.1 Hz, 2H), 1.84 – 1.70 (m, 2H), 1.63 – 1.40 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 143.31, 139.71, 132.73, 130.45 (q, *J* = 32.6Hz), 129.15, 127.08, 126.91, 125.82 (q, *J* = 3.7 Hz), 123.86 (q, *J* = 272.1 Hz), 64.99, 42.52, 33.15, 26.07. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -62.59. HRMS (ESI) (*m/z*): [M+H-N₂]⁺ calcd. for C₁₇H₁₈N₂O₂SF₃: 371.1036, found: 371.1036.

N-(4-azido-4-(m-tolyl)butyl)benzenesulfonamide was prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 7:1) to afford the product **2p** (95% yield) as a light yellow liquid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 – 7.76 (m, 2H), 7.62 – 7.44 (m, 3H), 7.23 (t, *J* = 7.6 Hz, 1H), 7.12 (d, *J* = 7.6 Hz, 1H), 7.07 – 6.98 (m, 2H), 4.85 (t, *J* = 6.2 Hz, 1H), 4.31 (dd, *J* = 7.9, 6.4 Hz, 1H), 2.95 (qd, *J* = 6.8, 1.5 Hz, 2H), 2.35 (s, 3H), 1.79 – 1.66 (m, 2H), 1.64 – 1.35 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 139.75, 139.03, 138.51, 132.63, 129.10, 128.66, 127.39, 126.93, 123.78, 65.68, 42.67, 33.02, 26.29, 21.40. HRMS (ESI) (*m/z*): [M+H-N₂]⁺ calcd. for C₁₇H₂₁N₂O₂S: 317.1319, found: 317.1331.

 24 N-(4-azido-4-(3-methoxyphenyl)butyl)benzenesulfonamide was prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 5:1) to afford the product **2q** (98% yield) as a light yellow liquid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 – 7.79 (m, 2H), 7.61 – 7.54 (m, 1H), 7.53 – 7.46 (m, 2H), 7.30 – 7.22 (m, 1H), 6.88 – 6.76 (m, 3H), 4.84 (t, *J* = 6.2 Hz, 1H), 4.33 (dd, *J* = 7.6, 6.5 Hz, 1H), 3.80 (s, 3H), 2.95 (qd, *J* = 6.8, 1.7 Hz, 2H), 1.81 – 1.63 (m, 2H), 1.62 – 1.38 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 160.01, 140.86, 139.89, 132.80, 130.00, 129.26, 127.08, 119.16, 113.78, 112.54, 65.72, 55.38, 42.80, 33.17, 26.39. HRMS (ESI) (*m/z*): [M+H-N₂]⁺ calcd. for C₁₇H₂₁N₂O₃S: 333.1268, found: 333.1302.

 2r N-(4-azido-4-(3-chlorophenyl)butyl)benzenesulfonamide was prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 7:1) to afford the product **2r** (91% yield) as a light yellow liquid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 – 7.82 (m, 2H), 7.62 – 7.55 (m, 1H), 7.51 (t, *J* = 7.5 Hz, 2H), 7.29 (dd, *J* = 3.8, 1.4 Hz, 2H), 7.22 (s, 1H), 7.17 – 7.08 (m, 1H), 4.91 (t, *J* = 6.2 Hz, 1H), 4.35 (dd, *J* = 7.6, 6.4 Hz, 1H), 2.96 (qd, *J* = 6.6, 2.2 Hz, 2H), 1.77 – 1.65 (m, 2H), 1.62 – 1.38 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 141.50, 139.86, 134.84, 132.87, 130.28, 129.29, 128.64, 127.08, 127.00, 125.07, 65.16, 42.72, 33.24, 26.28. HRMS (ESI) (*m*/*z*): [M+H-N₂]⁺ calcd. for C₁₆H₁₈N₂O₂SCI: 337.0773, found: 337.0792.

N-(4-azido-4-(o-tolyl)butyl)benzenesulfonamide was prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 7:1) to afford the product **2s** (89% yield) as a light yellow liquid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 – 7.80 (m, 2H), 7.62 – 7.53 (m, 1H), 7.53 – 7.46 (m, 2H), 7.23 (t, *J* = 7.6 Hz, 1H), 7.12 (d, *J* = 7.6 Hz, 1H), 7.05 – 6.99 (m, 2H), 4.85 (t, *J* = 6.2 Hz, 1H), 4.31 (dd, *J* = 7.9, 6.4 Hz, 1H), 2.95 (qd, *J* = 6.8, 1.5 Hz, 2H), 2.35 (s, 3H), 1.80 – 1.65 (m, 2H), 1.60 – 1.40 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 139.75, 139.03, 138.51, 132.63, 129.10, 128.66, 127.39, 126.93, 123.78, 65.68, 42.67, 33.02, 26.29, 21.40. HRMS (ESI) (*m/z*): [M+H-N₂]⁺ calcd. for C₁₇H₂₁N₂O₂S: 317.1319, found: 317.1331.

N-(4-azido-4-(2-fluorophenyl)butyl)benzenesulfonamide was prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 7:1) to afford the product **2t** (92% yield) as a light yellow liquid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 – 7.82 (m, 2H), 7.62 – 7.55 (m, 1H), 7.51 (t, *J* = 7.5 Hz, 2H), 7.29 (dd, *J* = 3.8, 1.4 Hz, 2H), 7.22 (s, 1H), 7.17 – 7.08 (m, 1H), 4.91 (t, J = 6.2 Hz, 1H), 4.35 (dd, J = 7.6, 6.4 Hz, 1H), 2.96 (qd, J = 6.6, 2.2 Hz, 2H), 1.75 – 1.65 (m, 2H), 1.62 – 1.38 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 160.01 (d, J = 246.8 Hz), 139.81, 132.73, 129.87 (d, J = 8.3 Hz), 129.18, 127.86 (d, J = 3.8 Hz), 127.01, 126.37 (d, J = 13.6 Hz), 124.68 (d, J = 3.6 Hz), 115.75 (d, J = 22.0 Hz), 58.83 (d, J = 2.2 Hz), 42.71, 32.14, 26.26. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -118.59.HRMS (ESI) (*m*/*z*): [M+H-N₂]⁺ calcd. for C₁₆H₁₈N₂O₂SF: 321.1068, found: 321.1074.

N-(4-azido-4-(naphthalen-1-yl)butyl)benzenesulfonamide was prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 7:1) to afford the product **2u** (87% yield) as a light yellow liquid. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.01 (d, *J* = 8.2 Hz, 1H), 7.91 – 7.76 (m, 4H), 7.60 – 7.38 (m, 7H), 5.11 (t, *J* = 6.9 Hz, 1H), 5.00 (t, *J* = 6.1 Hz, 1H), 3.11 – 2.84 (m, 2H), 1.91 (q, *J* = 7.4 Hz, 2H), 1.65 – 1.45 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 139.84, 134.74, 134.11, 132.76, 130.65, 129.22, 129.20, 129.04, 127.06, 126.70, 126.02, 125.38, 124.50, 122.98, 62.52, 42.86, 32.43, 26.69. HRMS (ESI) (*m/z*): [M+H-N₂]⁺ calcd. for C₂₀H₂₁N₂O₂S: 353.1319, found: 353.1346.

N-(4-azido-4-(naphthalen-2-yl)butyl)benzenesulfonamide was prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 7:1) to afford the product **2v** (92% yield) as a light yellow liquid. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.88 – 7.77 (m, 5H), 7.65 (s, 1H), 7.53 – 7.44 (m, 3H), 7.41 (t, *J* = 7.6 Hz, 2H), 7.32 (dd, *J* = 8.5, 1.5 Hz, 1H), 5.03 (t, *J* = 6.1 Hz, 1H), 4.50 (t, *J* = 7.1 Hz, 1H), 3.03 – 2.86 (m, 2H), 1.87 – 1.72 (m, 2H), 1.60 – 1.37 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 139.87, 136.59, 133.29, 133.22, 132.76, 129.22, 129.03, 128.12, 127.84, 127.04, 126.61, 126.48, 126.24, 124.28, 65.97, 42.79, 33.07, 26.39. HRMS (ESI) (*m*/*z*): [M+H-N₂]⁺ calcd. for C₂₀H₂₁N₂O₂S: 353.1319, found: 353.1346.

^{2w} N-(4-azido-4-(thiophen-2-yl)butyl)benzenesulfonamide was prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 7:1) to afford the product **2w** (80% yield) as a light yellow liquid. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.86 (d, *J* = 7.4 Hz, 2H), 7.57 (t, *J* = 7.3 Hz, 1H), 7.50 (t, *J* = 7.6 Hz, 2H), 7.30 – 7.23 (m, 1H), 6.96 (d, *J* = 4.3 Hz, 2H), 5.13 (t, *J* = 6.0 Hz, 1H), 4.60 (t, *J* = 7.2 Hz, 1H), 2.96 (q, *J* = 6.6 Hz, 2H), 1.87 – 1.76 (m, 2H), 1.65 – 1.45 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 142.11, 139.86, 132.84, 129.29, 127.11, 126.93, 125.87, 125.74, 60.93, 42.69, 33.60, 26.48. HRMS (ESI) (*m*/*z*): [M+H-N₂]⁺ calcd. for C₁₄H₁₇N₂O₂S₂: 309.0726, found: 309.0753.

N-(4-azidopentyl)benzenesulfonamide was prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 7:1) to afford the product **2x** (57% yield) as a light yellow liquid. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.94 – 7.85 (m, 2H), 7.63 – 7.56 (m, 1H), 7.56 – 7.50 (m, 2H), 5.08 (t, *J* = 5.9 Hz, 1H), 3.38 (h, *J* = 6.5 Hz, 1H), 2.97 (p, *J* = 6.4 Hz, 2H), 1.60 – 1.42 (m, 4H), 1.20 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 139.87, 132.75, 129.20, 127.04, 57.36, 42.86, 33.03, 26.20, 19.38. HRMS (ESI) (*m*/*z*): [M+Na]⁺ calcd. for C₁₁H₁₆N₄O₂SNa: 291.0886, found: 291.0911.

N-(4-azidohexyl)benzenesulfonamide was prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 7:1) to afford the product **2y** and **2y'** (74% yield) in the ratio higher than 10:1 as a light yellow liquid. ¹H NMR (400 MHz, Chloroform*d*) δ 7.88 (d, *J* = 7.4 Hz, 2H), 7.79 – 7.42 (m, 3H), 5.01 (t, *J* = 6.0 Hz, 0.89H, **2y**), 4.96 (t, *J* = 6.0 Hz, 0.08H, **2y'**) 3.24 – 3.05 (m, 0.08H, **2y'**), 3.18 – 3.08 (m, 0.92H, **2y**), 2.97 (q, *J* = 6.5 Hz, 2H), 1.71 – 1.34 (m, 6H), 1.21 (d, *J* = 6.5 Hz, 0.24H, **2y'**), 0.94 (t, *J* = 7.4 Hz, 2.76H, **2y**). ¹³C NMR (101 MHz, CDCl₃) δ 139.92, 132.81, 129.28, 127.11, 63.95, 57.80, 42.98, 35.65, 30.89, 29.78, 29.38, 27.42, 26.30, 23.11, 19.45, 10.50. HRMS (ESI) (*m*/*z*): [M+Na]⁺ calcd. for C₁₂H₁₈N₄O₂SNa: 305.1043, found: 305.1048.

general procedure A and the reaction mixture was purified by flash column chromatography with

petroleum ether and ethyl acetate (PE/EA = 7:1) to afford the single product **2z** (50% yield) as a light yellow liquid. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.97 – 7.84 (m, 2H), 7.63 – 7.57 (m, 1H), 7.57 – 7.51 (m, 2H), 4.83 (t, *J* = 6.1 Hz, 1H), 3.66 – 3.58 (m, 2H), 3.52 (p, *J* = 6.9 Hz, 1H), 3.01 (q, *J* = 6.3 Hz, 2H), 1.86 (q, *J* = 6.3 Hz, 2H), 1.75 – 1.47 (m, 5H). ¹³C NMR (126 MHz, CDCl₃) δ 139.97, 132.92, 129.35, 127.14, 59.49, 42.92, 41.42, 37.15, 31.39, 26.28. HRMS (ESI) (*m/z*): [M+Na]⁺ calcd. for C₁₂H₁₇N₄O₂SCINa: 339.0653, found: 339.0657.

N-(4-azidooctyl)benzenesulfonamide was prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 7:1) to afford the product **2aa** in the regioselectivity higher than 10:1 (70% yield) as a light yellow liquid. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.88 (d, *J* = 8.1 Hz, 2H), 7.62 – 7.56 (m, 1H), 7.53 (t, *J* = 7.7 Hz, 2H), 4.89 (t, *J* = 6.0 Hz, 1H), 3.23 – 3.12 (m, 1H), 2.97 (p, *J* = 7.9, 7.2 Hz, 2H), 1.76 – 1.28 (m, 10H), 0.90 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 140.01, 132.81, 129.29, 127.13, 62.67, 62.55, 43.13, 43.03, 36.54, 34.12, 33.91, 31.36, 29.52, 28.23, 26.35, 23.20, 22.57, 19.40, 14.04, 13.95. HRMS (ESI) (*m*/*z*): [M+Na]⁺ calcd. for C₁₄H₂₂N₄O₂SNa: 333.1356, found: 333.1361.

N-(4-azido-5-methylhexyl)benzenesulfonamide was prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 7:1) to afford the product **2ab** and **2ab'** (63% yield) in the ratio of 2:1 as a light yellow liquid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.89 (d, *J* = 7.5 Hz, 2H), 7.71 – 7.48 (m, 3H), 5.00 (t, *J* = 6.0 Hz, 0.64H, **2ab**), 4.94 (t, *J* = 6.0 Hz, 0.33H, **2ab'**), 3.04 – 2.99 (m, 0.63H, **2ab**), 3.00 – 2.93 (m, 2H), 1.85 – 1.25 (m, 6H), 1.20 (s, 2H, **2ab'**), 0.91 (t, *J* = 6.5 Hz, 4H, **2ab**). ¹³C NMR (101 MHz, CDCl₃) δ 139.97, 139.93, 132.81, 132.76, 129.28, 129.25, 127.12, 68.82, 61.53, 43.12, 43.03, 40.93, 32.64, 29.84, 28.52, 26.76, 25.96, 21.33, 19.34, 18.10. HRMS (ESI) (*m/z*): [M+Na]⁺ calcd. for C₁₃H₂₀N₄O₂SNa: 319.1199, found: 319.1203.

N-(4-azido-5-phenylpentyl)benzenesulfonamide and

N-(5-azido-5-phenylpentyl)benzenesulfonamide were afforded following general procedure A and

the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 7:1) to afford the product **2ac** and **2ac'** (75% yield) in the ratio of 1:1.1 as a light yellow liquid. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.90 – 7.82 (m, 2H), 7.61 – 7.55 (m, 1H), 7.54 – 7.49 (m, 2H), 7.39 – 7.34 (m, 1H), 7.34 – 7.23 (m, 4H), 7.19 – 7.14 (m, 1H), 4.778-4.58 (m, 1H), 4.34 (dd, *J* = 7.82, 6.50 Hz, 0.526H, **2ac'**), 3.52-3.41 (m, 0.474H, **2ac**), 2.94 (dq, *J* = 20.1, 6.6 Hz, 2H), 2.78 (h, *J* = 7.5 Hz, 0.955H, **2ac**), 1.79 – 1.21 (m, 5.052H). ¹³C NMR (126 MHz, CDCl₃) δ 140.03, 140.01, 139.56, 137.47, 132.84, 132.79, 129.37, 129.30, 129.27, 128.96, 128.75, 128.45, 127.14, 126.99, 126.94, 66.22, 63.71, 43.06, 42.94, 41.04, 35.72, 31.01, 29.37, 26.43, 23.32. HRMS (ESI) (*m*/*z*): [M+Na]⁺ calcd. for C₁₇H₂₀N₄O₂SNa: 367.1199, found: 367.1205

N-(4-phenyl-4-(4-phenyl-1H-1,2,3-triazol-1-yl)butyl)benzenesulfonamide

was prepared following procedure B according to Ref. S2 and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 3:1) to afford the product **4** (74% yield) as white solid. ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.75 (s, 1H), 7.85 (d, *J* = 7.6 Hz, 2H), 7.76 (d, *J* = 7.4 Hz, 2H), 7.68 – 7.53 (m, 4H), 7.47 – 7.32 (m, 8H), 5.45 (dd, *J* = 9.2, 6.8 Hz 1H), 2.81 (q, *J* = 6.5 Hz, 2H), 2.43 – 2.35 (m, 1H), 2.28 – 2.17 (m, 1H), 1.37 – 1.25 (m, 2H). ¹³C NMR (126 MHz, DMSO) δ 146.94, 140.96, 140.16, 132.78, 131.16, 129.65, 129.36, 129.25, 128.67, 128.37, 127.26, 126.84, 125.58, 120.74, 64.21, 42.41, 32.13, 26.56. HRMS (ESI) (*m/z*): [M+H]⁺ calcd. for C₂₄H₂₅N₄O₂S: 433.1693, found: 433.1699. Melting point: 176 °C – 177 °C

Mechanistic Studies

⁶ 2-(azidomethyl)-1-(phenylsulfonyl)pyrrolidine was prepared following general procedure A and the reaction mixture was purified by column chromatography with petroleum ether and ethyl acetate (PE/EA = 15:1) to afford the product **6** (37% yield) as a light yellow liquid. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.85 (d, *J* = 7.5 Hz, 2H), 7.63 (t, *J* = 7.3 Hz, 1H), 7.55 (t, *J* = 7.6 Hz, 2H), 3.73 (tt, *J* = 7.3, 3.6 Hz, 1H), 3.60 – 3.46 (m, 3H), 3.20 – 3.15 (m, 1H), 1.90 – 1.80 (m, 2H), 1.71 – 1.65 (m, 1H), 1.60 – 1.53 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 137.11, 133.09, 129.34, 127.66, 59.07, 55.32, 49.62, 29.44, 24.19. HRMS (ESI) (*m/z*): [M+Na]⁺ calcd. for C₁₁H₁₄N₄O₂SNa: 287.0730, found: 287.0728.

N-(7-azido-7-phenylhept-4-en-1-yl)benzenesulfonamide was prepared following general procedure A and the reaction mixture was purified by flash column chromatography with petroleum ether and ethyl acetate (PE/EA = 7:1) to afford the product **8** (82% yield, E/Z=4:1) as a light yellow liquid. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.91 – 7.83 (m, 2H), 7.58 (t, *J* = 7.3 Hz, 1H), 7.52 (t, *J* = 7.5 Hz, 2H), 7.39 – 7.33 (m, 2H), 7.34 – 7.25 (m, 3H), 5.44 – 5.27 (m, 2H), 4.71 – 4.62 (m, 1H), 4.48 – 4.40 (m, 1H), 2.91 (q, *J* = 6.6 Hz, 2H), 2.56 – 2.40 (m, 2H), 1.98 (q, *J* = 6.9 Hz, 2H), 1.55 – 1.37 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 140.14, 139.39, 132.85, 132.73, 129.23, 128.88, 128.85, 128.41, 128.35, 127.13, 127.11, 127.01, 126.99, 126.54, 66.13, 42.67, 39.59, 29.59, 29.12. HRMS (ESI) (*m*/*z*): [M+H-N₂]⁺ calcd. for C₁₉H₂₃N₂O₂S: 343.1475, found: 343.1490.

IV. References:

- 1. Wang, C.-Y.; Qin, Z.-Y.; Huang, Y.-L; Jin, R.-X.; Lan, Q.; Wang, X.-S. *iScience* 2019, **21**, 490.
- 2. Lu, M.-Z.; Wang, C.-Q.; Loh, T.-P. *Org. Lett.* 2015, **17**, 6110

¹H, ¹⁹F, and ¹³C NMR Spectra

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

7.788
7.788
7.788
7.787
7.787
7.787
7.787
7.787
7.757
7.757
7.757
7.757
7.757
7.757
7.757
7.757
7.757
7.757
7.757
7.757
7.757
7.757
7.757
7.758
7.757
7.757
7.758
7.757
7.758
7.757
7.757
7.757
7.758
7.757
7.757
7.757
7.757
7.757
7.757
7.757
7.757
7.757
7.757
7.757
7.757
7.757
7.757
7.757
7.757
7.757
7.758
7.757
7.757
7.758
7.758
7.758
7.758
7.758
7.758
7.757
7.758
7.757
7.758
7.757
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.758
7.

77.28 77.28 77.28 77.28 77.28 77.28 77.28 77.29 77.20 77.75

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

