Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

Supplementary information

Facile Access to 2,2-Diaryl 2H-Chromenes through a Palladium-Catalyzed Cascade

Reaction of ortho-Vinyl Bromobenzenes with N-Tosylhydrazones

Heng Zhang,^{a,b} Yinghua Yu,^{a,b} and Xueliang Huang*^{a,b}

^aKey Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Fujian College, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, P. R. China.

^bUniversity of Chinese Academy of Sciences, Beijing 100049, P. R. China <u>huangxl@fjirsm.ac.cn</u>

Table of Content

General information	. S2
Preparation of <i>ortho</i> -vinyl bromobenzenes	. S2
Optimization of reaction conditions for 2 <i>H</i> -chromene synthesis	. S6
General procedure for the synthesis of 2,2-disubstituted 2 <i>H</i> -Chromenes	. S7
Procedure for one-pot gram scale experiment	S23
Deuterium labeling experiments	S25
Structure conformation of the other isomer	S30
Transformations of the products	S31
Optimization of reaction conditions for 1,2-dihydroquinoline synthesis	S33
Crystal structure	S34
References	S39
NMR Spectra	S40

General information

Unless otherwise indicated, all glassware was oven dried by a heat gun before use and all reactions were performed under an atmosphere of Argon. All solvents were distilled from appropriate drying agents prior to use. All reagents were used as received from commercial suppliers unless otherwise stated. N-tosylhydrazones were prepared according to the procedures reported in the literature.^{1,2} Reaction progress was monitored by thin layer chromatography (TLC). Visualization was achieved by ultraviolet light (254 nm). Pressed KBr Disks for infra-red spectra were recorded using a Bruker-VERTEX 70 FT-IR spectrometer. Wavelengths (v) are reported in cm⁻¹. All ¹H NMR, ¹³C NMR spectra were recorded on Bruker AV-III 400 in CDCl₃. Chemical shifts were given in parts per million (ppm, δ), referenced to the peak of tetramethylsilane, defined at $\delta = 0.00$ (¹H NMR), or the solvent peak of CDCl₃, defined at $\delta = 77.0$ (¹³C NMR); the peak of DMSO-d₆, defined at $\delta = 2.50$ (¹H NMR), defined at $\delta = 40.0$ (¹³C NMR). Coupling constants were quoted in Hz (J). ¹H NMR Spectroscopy splitting patterns were designated as singlet (s), doublet (d), triplet (t), quartet (q), pentet (p), septet (se), octet (o). Splitting patterns that could not be interpreted or easily visualized were designated as multiplet (m) or broad (br). High resolution mass spectra were measured on Thermo Scientific LTQ Orbitrap XL or Waters Micromass GCT Premier.

Preparation of ortho-vinyl bromobenzenes

Ortho-vinyl bromobenzenes were prepared according to the known procedure.^{3,4,5} The data of new compounds are described below.

1-bromo-2-(1-(3-chlorophenyl)vinyl)benzene (1g)

Compound **1g** was obtained as a colorless oil; $R_f = 0.45$ (petroleum ether); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.57 (d, J = 8.0 Hz, 1H), 7.34-7.17 (m, 6H), 7.10 (d, J = 7.6 Hz, 1H), 5.81 (s, 1H), 5.29 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 147.8, 141.9, 141.5, 134.3, 133.0, 131.5, 129.5, 129.3, 127.7, 127.4, 126.6, 124.8, 123.2, 117.3; IR (KBr) v 3090, 3062, 1594, 1564, 1474, 1317, 1025 cm⁻¹; HRMS (EI): m/z Exact mass calcd for $C_{14}H_{10}BrCl[M]^+$: 291.9654, found: 291.9662.

5-bromo-6-(1-phenylvinyl)benzo[d][1,3]dioxole (1n)

Compound **1n** was obtained as a white solid; $R_f = 0.55$ (petroleum ether : dichloromethane = 20 : 1); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.28-7.23 (m, 5H), 7.04 (s, 1H), 6.78 (s, 1H), 5.99 (s, 2H), 5.80 (s, 1H), 5.23 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 148.6, 147.8, 147.2, 139.6, 135.7, 128.3, 127.7, 126.5, 116.2, 113.8, 112.9, 111.2, 101.8; IR (KBr) v 1497, 1472, 1223, 1038, 871, 784 cm⁻¹; HRMS (EI): m/z Exact mass calcd for $C_{15}H_{11}BrO_2 [M]^+$: 301.9942, found: 301.9937.

1-bromo-4,5-dimethoxy-2-(1-phenylvinyl)benzene (10)

Compound **10** was obtained as a white solid; $R_f = 0.51$ (petroleum ether : dichloromethane = 20 : 1); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.29-7.26 (m, 5H), 7.06

(s, 1H), 6.80 (s, 1H), 5.83 (s, 1H), 5.26 (s, 1H), 3.89 (s, 3H), 3.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.8, 148.6, 148.1, 139.6, 134.6, 128.3, 127.7, 126.5, 116.0, 115.5, 114.0, 113.3, 56.1, 56.0; IR (KBr) v 3072, 1592, 1500 1438, 1206, 780 cm⁻¹; HRMS (EI): m/z Exact mass calcd for C₁₆H₁₅BrO [M]⁺: 318.0255, found: 318.0261.

2-bromo-4-methoxy-1-(1-(4-(trifluoromethyl)phenyl)vinyl)benzene (1p)

Compound **1p** was obtained as a colorless oil; $R_f = 0.65$ (petroleum ether : dichloromethane = 50 : 1); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.54 (d, *J* = 8.0 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 7.22 (d, *J* = 8.4 Hz, 1H), 7.15 (d, *J* = 2.4 Hz, 1H), 6.90 (dd, *J*₁ = 8.4 Hz, *J*₂ = 2.4 Hz, 1H), 5.85 (s, 1H), 5.36 (s, 1H), 3.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.7, 147.6, 143.6, 134.0, 132.0, 129.5 (q, *J* = 32.8 Hz), 126.8, 125.2 (q, *J* = 3.75 Hz), 124.2 (q, *J* = 270 Hz), 123.5, 118.23, 118.18, 113.5, 55.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.39 (s); IR (KBr) v 1599, 1492, 1325, 1225, 1120 cm⁻¹; HRMS (EI): m/z Exact mass calcd for C₁₆H₁₂BrF₃O [M]⁺: 356.0024, found: 318.0018.

2-bromo-4-fluoro-1-(1-(4-(trifluoromethyl)phenyl)vinyl)benzene (1q)

Compound **1q** was obtained as a colorless oil; $R_f = 0.35$ (petroleum ether); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.55 (d, J = 8.4 Hz, 2H), 7.36-7.27 (m, 4H), 7.08 (td, $J_1 = 8.4$ Hz, $J_2 = 2.4$ Hz, 1H), 5.89 (s, 1H), 5.37 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 162.0 (d, J = 249.9 Hz), 147.1, 143.0, 138.0 (d, J = 3.6 Hz), 132.4 (d, J = 8.3 Hz), 129.8 (q, J = 32.2

Hz), 126.8, 125.4 (q, J = 3.7 Hz), 124.2 (q, J = 270.4 Hz), 123.4 (d, J = 9.5 Hz), 123.5, 120.4 (d, J = 24.3 Hz), 114.7 (d, J = 20.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -62.50 (s), -112.1-112.2 (m); IR (KBr) v 1675, 1592, 1328, 1325, 1067, 935, 855 cm⁻¹; HRMS (EI): m/z Exact mass calcd for C₁₅H₉F₄ [M]⁺: 343.9824, found: 343.9831.

Optimization of reaction conditions for 2*H***-chromene synthesis**^a

12.0	Ph Br + OH Sc	[Pd]/L ase (3.0 equiv) Ivent (2 mL), hea	→ () at	Ph Ph +			Դի Դի
Γα , <u>U</u> .	$Ph_2P \stackrel{()}{\cap} PPh_2$ n = 2, dppe n = 3, dppp n = 4, dppp	R		L1 R = 4-Me L2 R = 4-OMe L3 R = 4-CF ₃ L4 R = 2-OMe L5 R = 3.5-diN	e Ne	744	
n = 4, dppb		~				[%] ^b	
Entry	[Pd]/L	T/°C	Solvent	Base	1a	3aa 4	aa
1	2.5 mol% [Pd(allyl)Cl] ₂ /7.5 mol% dpj	bb 110	THF	K ₂ CO ₃	16	51(46) ^c	3
2	2.5 mol% [Pd(allyl)Cl] ₂ /7.5 mol% dpj	be 110	THF	K ₂ CO ₃	21	25	1
3	2.5 mol% [Pd(allyl)Cl] ₂ /7.5 mol% dp	op 110	THF	K ₂ CO ₃	43	15	<1
4	2.5 mol% [Pd(allyl)Cl] ₂ /15 mol% PPh	ı ₃ 110	THF	K ₂ CO ₃	34	29	<1
5	2.5 mol% [Pd(allyl)Cl] ₂ /15 mol% L1	110	THF	K ₂ CO ₃	32	35	<1
6	2.5 mol% [Pd(allyl)Cl] ₂ /15 mol% L2	110	THF	K ₂ CO ₃	23	38	<1
7	2.5 mol% [Pd(allyl)Cl] ₂ /15 mol% L3	110	THF	K ₂ CO ₃	39	27	<1
8	2.5 mol% [Pd(allyl)Cl] ₂ /15 mol% L4	110	THF	K ₂ CO ₃	79	4	<1
9	2.5 mol% [Pd(allyl)Cl] ₂ /15 mol% L5	110	THF	K ₂ CO ₃	71	32	<1
10	2.5 mol% [Pd(allyl)Cl] ₂ /7.5 mol% dp	bb 100	THF	K ₂ CO ₃	27	50	3
11	2.5 mol% [Pd(allyl)Cl] ₂ /7.5 mol% dpp	b 100	dioxane	K ₂ CO ₃	13	36	<1
12	2.5 mol% [Pd(allyl)Cl] ₂ /7.5 mol% dp	b 100	toluene	K ₂ CO ₃	79	8	<1
13	2.5 mol% [Pd(allyl)Cl] ₂ /7.5 mol% dpp	b 100	2-MeTHF	K ₂ CO ₃	35	52	3
14 ^d	2.5 mol% [Pd(allyl)Cl] ₂ /7.5 mol% dp	b 100	2-MeTHF	K ₂ CO ₃	11	43	3
15	5 mol% [Pd(allyl)Cl] ₂ /15 mol% dppb	100	2-MeTHF	K ₂ CO ₃	0	87(79) ^{c,e}	8
16	5 mol% [Pd(allyl)Cl] ₂ /15 mol% dppb	100	2-MeTHF	Na ₂ CO ₃	62	6	<1
17	5 mol% [Pd(allyl)Cl] ₂ /15 mol% dppb	100	2-MeTHF	^t BuOLi	0	0	0
18	5 mol% [Pd(allyl)Cl] ₂ /15 mol% dppb	100	2-MeTHF	CsF	16	36	<1
19	5 mol% [Pd(allyl)Cl] ₂ /15 mol% dppb	100	2-MeTHF	K ₃ PO ₄	0	68	<1
20	10 mol% Pd(OAc) ₂ /15 mol% dppb	100	2-MeTHF	K ₂ CO ₃	0	59	2
21	10 mol% Pd(MeCN) ₂ Cl ₂ /15 mol% dp	pb 100	2-MeTHF	K ₂ CO ₃	0	57	2
22	5 mol% Pd ₂ dba ₃ ·CHCl ₃ /15 mol% dp	pb 100	2-MeTHF	K ₂ CO ₃	61	21	<1
23	5 mol% [Pd(cinnamyl)Cl] ₂ /15 mol% c	l ppb 100	2-MeTHF	K ₂ CO ₃	0	79(78) ^{c,e}	2
24 ^f	5 mol% [Pd(allyl)Cl] ₂ /15 mol% dppb	100	2-MeTHF	K ₂ CO ₃	0	19 ^c	<1
25	15 mol% dppb	100	2-MeTHF	K ₂ CO ₃		0	0
26	5 mol% [Pd(allyl)Cl] ₂	100	2-MeTHF	K ₂ CO ₃		0	0
27	5 moi% [Pd(allyl)Cl] ₂ /15 mol% dppb	100	2-MeTHF			0	0

^{*a*} The reaction was carried out for 20 h. ^{*b*} Yields were determined by ¹H NMR using *N*,*N*-dimethylpyridin-4-amine as an internal standard. ^{*c*} yield of isolated product. ^{*d*} TBAB (0.02 mmol) was added. ^{*e*} The reaction was complete in 6 h. ^{*f*} Replaced bromine with iodine.

General procedure for the synthesis of 2,2-disubstituted 2H-Chromenes

An oven-dried Schlenk tube under argon atmosphere was charged with *ortho*-vinyl bromobenzenes **1** (0.2 mmol, 1.0 equiv), *N*-tosylhydrazones **2** (0.4 mmol, 2.0 equiv), $[Pd(allyl)Cl]_2$ or $[Pd(cinnamyl)Cl]_2$ (5.0 mol% or 10.0 mol%), dppb (15 mol% or 30 mol%), K₂CO₃ (0.60 mmol, 3.0 equiv), and 2-MeTHF (2 mL). The mixture was stirred at 100 °C and the progress of the reaction was monitored by TLC. Upon completion, the resulting mixture was cooled to room temperature and filtered through Celite with EtOAc as the eluent. The solvents were evaporated under reduced pressure and the residue was purified by column chromatography on silica gel to afford the products.

2,2-diphenyl-2H-chromene (3aa)

Compound **3aa** was obtained as a white solid, 45.0 mg, in 79% yield; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.42 (d, *J* = 7.8 Hz, 4H), 7.30 (t, *J* = 7.2 Hz, 4H), 7.25-7.21 (m, 2H), 6.98 (d, *J* = 7.2 Hz, 1H), 6.91 (d, *J* = 8.0 Hz, 1H), 6.82 (t, *J* = 7.8 Hz, 1H), 6.59 (d, *J* = 10.0 Hz, 1H), 6.15 (d, *J* = 10.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 152.4, 144.9, 129.5, 128.8, 128.1, 127.5, 127.0, 126.5, 123.3, 121.1, 121.0, 116.5, 82.5. Spectroscopic data were in accordance with literature values.⁶

6-methyl-2,2-diphenyl-2*H*-chromene (3ab)

Compound **3ab** was obtained as a yellow solid, 39.0 mg, in 65% yield; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.43-7.41 (m, 4H), 7.30 (t, J = 7.2 Hz, 4H), 7.25-7.21 (m, 2H), 6.91 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.6$ Hz, 1H), 6.82-6.79 (m, 2H), 6.56 (d, J = 9.6 Hz, 1H), 6.14

(d, J = 10.0 Hz, 1H), 2.20 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.3, 145.0, 130.3, 130.0, 128.9, 128.1, 127.4, 127.0, 123.5, 120.8, 116.2, 82.4, 20.5 (the peak of the quaternary carbon does not appear). Spectroscopic data were in accordance with literature values.⁷

6-methoxy-2,2-diphenyl-2*H*-chromene (3ac)

Compound **3ac** was obtained as a white solid, 46.0 mg, in 73% yield; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.42 (d, J = 7.2 Hz, 4H), 7.30 (t, J = 7.6 Hz, 4H), 7.25-7.22 (m, 2H), 6.85 (d, J = 8.8 Hz, 1H), 6.66 (dd, J_1 = 8.8 Hz, J_2 = 2.8 Hz, 1H), 6.58-6.55 (m, 2H), 6.20 (d, J = 9.6 Hz, 1H), 3.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 153.9, 146.4, 144.8, 129.9, 128.1, 127.4, 127.0, 123.5, 121.7, 117.1, 114.7, 111.5, 82.3, 55.6. Spectroscopic data were in accordance with literature values.⁶

6-chloro-2,2-diphenyl-2*H*-chromene (3ad) and 2-benzhydryl-5-chlorobenzofuran (4ad)

The mixture of **3ad** and **4ad** (97/3) was obtained as a yellow solid, 40.9 mg, in 64% yield; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.41-7.38 (m, 4H), 7.32 (t, *J* = 7.2 Hz, 4H), 7.28-7.25 (m, 2H), 7.05 (dd, *J*₁ = 8.4 Hz, *J*₂ = 2.4 Hz, 1H), 6.98 (d, *J* = 2.4 Hz, 1H), 6.84 (d, *J* = 8.4 Hz, 1H), 6.55 (d, *J* = 9.6 Hz, 1H), 6.21 (d, *J* = 10.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 151.0, 144.3, 130.2, 129.1, 128.2, 127.7, 126.9, 126.1, 125.9, 122.8, 122.41, 117.8, 82.8. Spectroscopic data were in accordance with literature values.⁶

6-fluoro-2,2-diphenyl-2*H*-chromene (3ae)

Compound **3ae** was obtained as a light yellow solid, 33.0 mg, in 55% yield; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.40 (d, J = 7.2 Hz, 4H), 7.31 (t, J = 7.2 Hz, 4H), 7.27-7.23 (m, 2H), 6.86-6.76 (m, 2H), 6.71 (dd, $J_1 = 8.4$ Hz, $J_2 = 2.8$ Hz, 1H), 6.55 (d, J = 10.0 Hz, 1H), 6.22 (d, J = 10.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 157.3 (d, J = 236.8 Hz), 148.3 (d, J = 2.1 Hz), 144.4, 130.4, 128.1, 127.6, 127.0, 122.8 (d, J = 2.1 Hz), 122.0 (d, J = 8.4 Hz), 117.4 (d, J = 8.1 Hz), 115.6 (d, J = 23.2 Hz), 112.6 (d, J = 23.7 Hz), 82.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -123.0. Spectroscopic data were in accordance with literature values.⁸

methyl 2,2-diphenyl-2H-chromene-6-carboxylate (3af)

Compound **3af** was obtained as a white solid, 32.5 mg, in 48% yield; $R_f = 0.62$ (petroleum ether : ethyl acetate = 5 : 1) ; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.83 (dd, $J_1 = 8.8 \text{ Hz}, J_2 = 2.0 \text{ Hz}, 1\text{H}$), 7.72 (d, J = 2.0 Hz, 1H), 7.41-7.39 (m, 4H), 7.34-7.31 (m, 4H), 7.28-7.25 (m, 2H), 6.93 (d, J = 8.4 Hz, 1H), 6.64 (d, J = 10.0 Hz, 1H), 6.20 (d, J = 10.0 Hz, 1H), 3.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 156.5, 144.3, 131.4, 129.2, 128.3, 128.2, 127.7, 126.9, 123.1, 122.7, 120.5, 116.4, 83.5, 51.9; IR (KBr) v 1706, 1494, 1365, 1300, 986, 774 cm⁻¹; HRMS-(ESI) (m/z): [M+H]⁺ calcd for C₂₃H₁₉O₃, 343.13287; found 343.13297.

tert-butyl((2,2-diphenyl-2*H*-chromen-6-yl)oxy)dimethylsilane (3ag)

The mixture of **3ag** and **4ag** (95/5) was obtained as a white solid, 42.0 mg, in 51% yield;; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.27 (d, *J* = 7.6 Hz, 4H), 7.15 (t, *J* = 7.6 Hz, 4H), 7.11-7.07 (m, 2H), 6.63 (d, *J* = 8.8 Hz, 1H), 6.44 (dd, *J*₁ = 8.4 Hz, *J*₂ = 2.8 Hz, 1H), 6.38 (d, *J* = 9.6 Hz, 1H), 6.35 (d, *J* = 2.8 Hz, 1H), 6.02 (d, *J* = 10.0 Hz, 1H), 0.81 (s, 9H), 0.00 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 149.5, 146.8, 144.9, 129.5, 128.0, 127.4, 127.0, 123.5, 121.6, 120.6, 117.5, 117.0, 82.3, 25.7, 18.1, -4.5. Spectroscopic data were in accordance with literature values.⁹

7-methyl-2,2-diphenyl-2*H*-chromene (3ah) and 2-benzhydryl-6-methylbenzofuran (4ah)

The mixture of **3ah** and **4ah** (96/4) was obtained as a light yellow solid, 35.0 mg, in 58% yield; $R_f = 0.64$ (petroleum ether : ethyl acetate = 100 : 1); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.42 (d, J = 7.2 Hz, 4H), 7.30 (t, J = 7.2 Hz, 4H), 7.25-7.20 (m, 2H), 6.87 (d, J = 7.8 Hz, 1H), 6.74 (s, 1H), 6.63 (d, J = 7.8 Hz, 1H), 6.57 (d, J = 9.6 Hz, 1H), 6.07 (d, J = 10.0 Hz, 1H), 2.24 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 152.3, 145.1, 139.9, 128.1, 127.6, 127.4, 127.0, 126.3, 123.2, 121.9, 118.4, 117.0, 82.5, 21.5; IR (KBr) v 1488, 1441, 1229, 985, 755, 703 cm⁻¹; HRMS-(ESI) (m/z): [M+H]⁺ calcd for C₂₂H₁₉O, 299.14304; found 299.14343.

7-methoxy-2,2-diphenyl-2*H*-chromene (3ai) and 2-benzhydryl-6-methoxybenzofuran (4ai)

The mixture of **3ai** and **4ai** (90/10) was obtained as a white solid, 31.0 mg, in 50% yield; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.43-7.41 (m, 4H), 7.33-7.29 (m, 4H), 7.26-7.21 (m, 2H), 6.90 (d, J = 8.4 Hz, 1H), 6.55 (d, J = 10.0 Hz, 1H), 6.50 (d, J = 2.4 Hz, 1H), 6.39 (dd, $J_1 = 8.0$ Hz, $J_2 = 2.4$ Hz, 1H), 6.01 (d, J = 10.0 Hz, 1H), 3.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.9, 153.7, 145.0, 128.1, 127.4, 127.2, 127.0, 125.9, 123.0, 114.4, 107.1, 102.1, 82.8, 55.3. Spectroscopic data were in accordance with literature values.¹⁰

7-chloro-2,2-diphenyl-2*H*-chromene (3aj) and 2-benzhydryl-6-chlorobenzofuran (4aj)

The mixture of **3aj** and **4aj** (92/8) was obtained as a yellow solid, 32.0 mg, in 50% yield; $R_f = 0.66$ (petroleum ether : ethyl acetate = 100 : 1); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.39 (d, J = 7.6 Hz, 4H), 7.31 (t, J = 7.2 Hz, 4H), 7.25 (t, J = 7.2 Hz, 2H), 6.92-6.89 (m, 2H), 6.80 (dd, $J_1 = 8.0$ Hz, $J_2 = 2.0$ Hz, 1H), 6.56 (d, J = 10.0 Hz, 1H), 6.14 (d, J = 10.0Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 153.1, 144.4, 134.3, 128.9, 128.8, 127.7, 127.2, 126.9, 122.5, 121.4, 119.6, 116.9, 83.0; IR (KBr) v 1597, 1559, 1484, 1048, 988, 694 cm⁻¹; HRMS (EI): m/z Exact mass calcd for C₂₁H₁₅ClO [M]⁺: 318.0811, found: 318.0810.

8-methyl-2,2-diphenyl-2*H*-chromene (3ak) and 2-benzhydryl-7-methylbenzofuran (4ak)

The mixture of **3ak** and **4ak** (94/6) was obtained as a light yellow oil, 34.0 mg, in 57% yield; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.44 (d, *J* = 7.6 Hz, 4H), 7.29 (t, *J* = 7.6 Hz, 4H), 7.22 (t, *J* = 6.8 Hz, 2H), 6.96 (d, *J* = 7.6 Hz, 1H), 6.84 (d, *J* = 7.2 Hz, 1H), 6.72 (t, *J* = 7.6 Hz, 1H), 6.59 (d, *J* = 10.0 Hz, 1H), 6.11 (d, *J* = 9.6 Hz, 1H), 2.28 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.4, 145.4, 130.9, 128.3, 128.0, 127.3, 126.8, 125.3, 124.2, 123.8, 120.60, 120.55, 82.4, 15.8. Spectroscopic data were in accordance with literature values.⁶

5-methoxy-2,2-diphenyl-2H-chromene (3al)

Compound **3al** was obtained as a white solid, 31.0 mg, in 50% yield; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.47-7.45 (m, 4H), 7.32-7.28 (m, 4H), 7.25-7.22 (m, 2H), 7.77-7.78 (m, 2H), 6.65-6.62 (m, 1H), 6.59 (d, *J* = 10.0 Hz, 1H), 6.23 (d, *J* = 10.0 Hz, 1H), 3.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.3, 144.7, 141.6, 129.4, 128.0, 127.4, 127.0, 123.4, 122.1, 120.9, 118.8, 112.9, 82.5, 56.3. Spectroscopic data were in accordance with literature values.¹¹

3,3-diphenyl-3*H*-benzo[*f*]chromene and 2-benzhydrylnaphtho[2,1-*b*]furan (3am) and 2-benzhydrylnaphtho[2,1-*b*]furan (4am)

The mixture of **3am** and **4am** (1/2) was obtained as a yellow solid, 40.0 mg, in 60% yield. Spectroscopic data were in accordance with literature values.¹²

(3aS,3bR,11bS,13aS)-13a-methyl-8,8-diphenyl-3,3a,3b,4,5,8,11b,12,13,13a-

decahydrocyclopenta[5,6]naphtho[1,2-g]chromen-1(2*H*)-one (3an) and (3aS,3bR,10bS,12aS)-8-benzhydryl-12a-methyl-2,3,3a,3b,4,5,10b,11,12,12a-

decahydro-1*H*-cyclopenta[7,8]phenanthro[2,3-*b*]furan-1-one (4an)

The mixture of **3an** and **4an** (96/4) was obtained as a white solid, 64.0 mg, in 70% yield; $R_f = 0.42$ (petroleum ether : ethyl acetate = 30 : 1); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.41 (d, J = 7.6 Hz, 4H), 7.30 (d, J = 6.8 Hz, 4H), 7.25-7.21 (m, 2H), 6.90 (s, 1H), 6.65 (s, 1H), 6.56 (d, J = 10.0 Hz, 1H), 6.08 (d, J = 10.0 Hz, 1H), 2.81 (dd, $J_1 = 8.4$ Hz, $J_2 = 3.6$ Hz, 2H), 2.47 (dd, $J_1 = 19.6$ Hz, $J_2 = 8.8$ Hz, 1H), 2.34-2.31 (m, 1H), 2.16-1.91 (m, 5H), 1.63-1.34 (m, 6H), 0.87 (t, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ¹³C NMR (101 MHz, CDCl₃) δ 150.3, 145.2, 145.1, 138.2, 132.4, 128.0, 127.9, 127.4, 127.3, 127.0, 126.9, 123.4, 123.3, 118.7, 116.2, 82.4, 50.3, 47.9, 43.8, 38.2, 35.8, 31.4, 29.5, 26.4, 25.8, 21.5, 13.8; IR (KBr) v 2928, 1739, 1494, 1225, 699 cm⁻¹; HRMS-(ESI) (m/z): [M+H]⁺ calcd for C₃₃H₃₃O₂, 461.24751; found 461.24780.

methyl 2-(1,3-dioxoisoindolin-2-yl)-3-(2,2-diphenyl-2*H*-chromen-6-yl)propanoate (3ao) and methyl 3-(2-benzhydrylbenzofuran-5-yl)-2-(isoindolin-2-yl)propanoate (4ao)

The mixture of **3ao** and **4ao** (96/4) was obtained as a white solid, 64.0 mg, in 62% yield; $R_f = 0.43$ (petroleum ether : dichloromethane = 1 : 1); ¹H NMR (400 MHz, DMSO, TMS) δ 7.75-7.73 (m, 2H), 7.67-7.65 (m, 2H), 7.34 (d, *J* = 7.2 Hz, 4H), 7.28-7.20 (m, 6H), 6.91 (d, *J* = 8.4 Hz, 1H), 6.80 (s, 1H), 6.73 (d, *J* = 8.4 Hz, 1H), 6.46 (d, *J* = 10.0 Hz, 1H), 6.09 (d, *J* = 10.0 Hz, 1H), 5.11-5.08 (m, 1H), 3.75 (s, 3H), 3.49-3.38 (m, 2H); ¹³C NMR (100 MHz, DMSO) δ 169.4, 167.5, 151.3, 144.7, 134.0, 131.5, 129.8, 129.2, 128.9, 128.0, 127.41, 127.35, 126.9, 126.8, 123.4, 123.2, 121.0, 116.5, 82.5, 53.1, 52.8, 33.8; IR (KBr) v 3648, 1724, 1390, 1243, 719 cm⁻¹; HRMS-(ESI) (m/z): [M+H]⁺ calcd for C₂₅H₂₂O₃, 516.18055; found 516.18054.

2-phenyl-2-(p-tolyl)-2H-chromene (3ba)

Compound **3ba** was obtained as a white solid, 40.0 mg, in 68% yield; $R_f = 0.62$ (petroleum ether : ethyl acetate = 100 : 1); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.42 (d, *J* = 7.8 Hz, 2H), 7.29 (t, *J* = 8.0 Hz, 4H), 7.24-7.19 (m, 1H), 7.12-7.07 (m, 3H), 6.97 (d, *J* = 6.4 Hz, 1H), 6.90 (d, *J* = 8.0 Hz, 1H), 6.80 (t, *J* = 7.2 Hz, 1H), 6.57 (d, *J* = 9.6 Hz, 1H), 6.13 (d, *J* = 9.6 Hz, 1H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 152.5, 145.1, 142.0, 137.2, 129.4, 128.9, 128.8, 128.1, 127.4, 127.0, 126.9, 126.5, 123.2, 121.1, 121.0, 116.4, 82.4, 21.0; IR (KBr) 2360, 1579, 1484, 1240, 757 cm⁻¹; HRMS-(ESI) (m/z): [M+H]⁺ calcd for C₂₂H₁₉O, 299.14304; found 299.14343.

2-(4-chlorophenyl)-2-phenyl-2*H*-chromene (3ca) and 2-((4chlorophenyl)(phenyl)methyl)benzofuran (4ca)

The mixture of **3ca** and **4ca** (98/2) was obtained as a white solid, 46.0 mg, in 72% yield; $R_f = 0.65$ (petroleum ether : ethyl acetate = 100 : 1) ; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.41-7.24 (m, 9H), 7.12 (td, $J_1 = 7.6$ Hz, $J_2 = 1.6$ Hz, 1H), 7.00 (td, $J_1 = 7.6$ Hz, $J_2 = 1.2$ Hz, 1H), 6.90 (d, J = 8.0 Hz, 1H), 6.84 (td, $J_1 = 7.6$ Hz, $J_2 = 0.8$ Hz, 1H), 6.62 (d, J = 9.6Hz, 1H), 6.10 (d, J = 10.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 152.2, 144.5, 143.4, 133.4, 129.7, 128.5, 128.31, 128.26, 128.2, 127.6, 126.9, 126.6, 123.7, 121.4, 121.0, 116.5, 82.1; IR (KBr) v 1597, 1487, 1239, 993, 757 cm⁻¹; HRMS-(ESI) (m/z): [M+H]⁺ calcd for C₂₁H₁₆ClO, 319.08842; found 319.08865.

C Ph OMe

2-(4-methoxyphenyl)-2-phenyl-2*H*-chromene (3da)

Compound **3da** was obtained as a white solid, 46.0 mg, in 74% yield; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.43-7.41 (m, 2H), 7.34-7.28 (m, 4H), 7.25-7.21 (m, 1H), 7.09 (td, $J_1 = 8.0$ Hz, $J_2 = 1.2$ Hz, 1H), 6.98 (dd, $J_1 = 7.8$ Hz, $J_2 = 1.2$ Hz, 1H), 6.89 (d, J = 8.4 Hz, 1H), 6.81-6.79 (m 3H), 6.57 (d, J = 10.0 Hz, 1H), 6.11 (d, J = 9.6 Hz, 1H), 3.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.8, 152.5, 145.1, 137.0, 129.5, 129.0, 128.4, 128.0, 127.3, 126.8, 126.5, 123.1, 121.1, 121.0, 116.4, 113.4, 82.3, 55.2. Spectroscopic data were in accordance with literature values.¹¹

2-(4-fluorophenyl)-2-phenyl-2*H*-chromene (3ea) and 2-((4-

fluorophenyl)(phenyl)methyl)benzofuran (4ea)

The mixture of **3ea** and **4ea** (95/5) was obtained as a light yellow solid, 43.0 mg, in 71% yield; $R_f = 0.65$ (petroleum ether : ethyl acetate = 100 : 1); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.41-7.36 (m, 4H), 7.30 (td, $J_1 = 6.8$ Hz, $J_2 = 1.2$ Hz, 1H), 7.25-7.22 (m, 1H), 7.10 (t, J = 7.8 Hz, 1H), 6.99-6.95 (m, 3H), 6.89 (dd, $J_1 = 7.6$ Hz, $J_2 = 1.6$ Hz, 1H), 6.82 (t, J = 7.2 Hz, 1H), 6.59 (d, J = 10.0 Hz, 1H), 6.09 (d, J = 9.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 162.0 (d, J = 245 Hz), 152.3, 144.7, 140.66 (d, J = 3.0 Hz), 129.6, 128.9 (d, J = 8.2 Hz), 128.6, 128.2, 127.5, 126.8, 126.6, 123.5, 121.3, 116.4, 115.0, 114.9 (d, J = 21.3 Hz), 82.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -114.77 - -114.84 (m); IR (KBr) v 1599, 1507, 1233, 1218, 757, 702 cm⁻¹; HRMS-(ESI) (m/z): [M+H]⁺ calcd for C₂₁H₁₆FO, 303.11797; found 303.11823.

2-phenyl-2-(4-(trifluoromethyl)phenyl)-2*H*-chromene (3fa) and 2-(phenyl(4-(trifluoromethyl)phenyl)methyl)benzofuran (4fa)

The mixture of **3fa** and **4fa** (92/8) was obtained as a light yellow oil, 49 mg, in 70% yield; $R_f = 0.54$ (petroleum ether : ethyl acetate = 100 : 1); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.59-7.56 (m, 4H), 7.41 (d, J = 7.6 Hz, 2H), 7.34-7.28 (m, 3H), 7.13 (t, J = 7.6 Hz, 1H), 7.01 (d, J = 7.2 Hz, 1H), 6.92 (d, J = 8.0 Hz, 1H), 6.85 (t, J = 7.6 Hz, 1H), 6.64 (d, J =9.6 Hz, 1H), 6.13 (d, J = 9.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 152.2, 148.8, 144.2, 129.8, 129.6 (q, J = 32.4 Hz), 128.3, 128.0, 127.8, 127.3, 126.9, 126.7, 125.1 (q, J = 3.8Hz), 124.1 (q, J = 270.5 Hz), 124.0, 121.5, 120.9, 116.5, 82.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.5 (s); IR (KBr) v 1512, 1318, 1240, 1185, 759 cm⁻¹; HRMS-(ESI) (m/z): [M+H]⁺ calcd for C₂₂H₁₆F₃O, 353.11478; found 353.11496.

2-(3-chlorophenyl)-2-phenyl-2*H*-chromene (3ga) and 2-((3chlorophenyl)(phenyl)methyl)benzofuran (4ga)

The mixture of **3ga** and **4ga** (90/10) was obtained as a yellow oil, 47.0 mg, in 73% yield; $R_f = 0.65$ (petroleum ether : ethyl acetate = 100 : 1); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.45 (s, 1H), 7.40 (d, J = 7.2 Hz, 2H), 7.32-7.21 (m, 6H), 7.14-7.09 (m, 1H), 6.99 (dd, J_1 = 7.2 Hz, $J_2 = 1.2$ Hz, 1H), 6.91 (d, J = 8.0 Hz, 1H), 6.83 (t, J = 7.2 Hz, 1H), 6.61 (d, J =10.0 Hz, 1H), 6.09 (d, J = 9.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 152.2, 147.0, 144.3, 134.1, 129.7, 129.4, 128.2, 128.1, 127.7, 127.6, 127.2, 126.9, 126.7, 125.2, 123.8, 121.4, 120.9, 116.5, 82.0; IR (KBr) v 1480, 1233, 991, 781, 697 cm⁻¹; HRMS-(ESI) (m/z): [M+H]⁺ calcd for C₂₁H₁₆ClO, 319.08842; found 319.08862.

2-phenyl-2-(*o*-tolyl)-2*H*-chromene (3ha) and 2-(phenyl(*o*-tolyl)methyl)benzofuran (4ha)

The mixture of **3ha** and **4ha** (75/25) was obtained as a colorless oil, 41.0 mg, in 69% yield; $R_f = 0.61$ (petroleum ether : ethyl acetate = 100 : 1); ¹H NMR of **3ga** (400 MHz, CDCl₃, TMS) δ 7.45-7.06 (m, 10H), 7.00-7.95 (m, 1H), 6.88 (d, *J* = 8.0 Hz, 1H), 6.81 (t, *J* = 7.2 Hz, 1H), 6.58 (d, *J* = 10.0 Hz, 1H), 6.01 (d, *J* = 10.0 Hz, 1H), 2.20 (s, 3H); ¹³C

NMR of **3ga** and **4ga** (100 MHz, CDCl₃) δ 159.9, 155.1, 152.7, 145.1, 141.5, 140.3, 139.2, 137.6, 136.4, 132.4, 130.6, 129.4, 129.1, 129.0, 128.7, 128.52, 128.45, 128.3, 128.2, 128.0, 127.1, 127.0, 129.9, 126.53, 126.48, 126.1, 125.0, 123.7, 123.0, 122.6, 121.2, 121.1, 120.6, 116.2, 111.1, 106.0, 83.5, 47.9, 21.5, 19.6; IR (KBr) v 1597, 1487, 1455, 1243, 752, 704 cm⁻¹; HRMS-(ESI) (m/z): [M+H]⁺ calcd for C₂₂H₁₉O, 299.14304; found 199.14313.

2-(2-methoxyphenyl)-2-phenyl-2*H*-chromene (3ia) and 2-((2methoxyphenyl)(phenyl)methyl)benzofuran (4ia)

Compound **3ia** was obtained as a colorless oil, 34.0 mg, in 54% yield; $R_f = 0.36$ (petroleum ether : ethyl acetate = 100 : 1); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.74 (dd, $J_1 = 7.6$ Hz, $J_2 = 1.2$ Hz, 1H), 7.37 (d, J = 7.6 Hz, 2H), 7.28-7.19 (m, 4H), 7.09 (t, J = 7.6 Hz, 1H), 7.00-6.96 (m, 2H), 6.89 (d, J = 8.0 Hz, 1H), 6.85 (d, J = 8.0 Hz, 1H), 6.81 (t, J = 7.2 Hz, 1H), 6.54 (d, J = 10.0 Hz, 1H), 6.46 (d, J = 10.0 Hz, 1H), 3.50 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.6, 152.4, 144.5, 132.6, 129.2, 128.9, 127.8, 127.6, 127.4, 127.3, 126.9, 126.4, 122.7, 121.02, 121.00, 120.6, 116.2, 112.3, 82.1, 55.4; IR (KBr) v 1487, 1450, 1228, 983, 754 cm⁻¹; HRMS-(ESI) (m/z): [M+H]⁺ calcd for C₂₂H₁₉O₂, 315.13796; 315.13766. Compound **4ia** was obtained as a light yellow oil, 10 mg, in 16% yield; $R_f = 0.37$ (petroleum ether : ethyl acetate = 100 : 1); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.45-7.43 (m, 1H), 7.40 (d, J = 8.0 Hz, 1H), 7.32-7.15 (m, 8H), 7.03 (d, J = 6.4 Hz, 1H), 6.89 (t, J = 7.2 Hz, 2H), 6.21 (s, 1H), 6.02 (s, 1H), 3.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (m/z).

CDCl₃) δ 160.2, 156.8, 155.1, 140.9, 129.6, 129.5, 128.9, 128.6, 128.3, 128.2, 126.7, 123.5, 122.5, 120.5, 111.1, 110.7, 105.4, 55.6, 44.0 (one aryl carbon overlapped); IR (KBr) v 1492, 1495, 1245, 1028, 757 cm⁻¹; HRMS (EI): m/z Exact mass calcd for $C_{22}H_{18}O_2$ [M]⁺: 314.1307, found: 314.1306.

2-(naphthalen-2-yl)-2-phenyl-2*H*-chromene (3ja)

Compound **3ja** was obtained as a white solid, 42.0 mg, in 63% yield; $R_f = 0.66$ (petroleum ether : ethyl acetate = 100 : 1); ¹H NMR (400 MHz, CDCl₃, TMS) δ^1 H NMR (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.80-7.75 (m, 3H), 7.51-7.42 (m, 5H), 7.31 (t, J = 8.0 Hz, 2H), 7.26-7.23 (m, 1H), 7.10 (t, J = 7.6 Hz, 1H), 6.99 (d, J = 7.2 Hz, 1H), 6.94 (d, J = 8.0 Hz, 1H), 6.81 (t, J = 7.2 Hz, 1H), 6.65 (d, J = 10.0 Hz, 1H), 6.22 (d, J = 9.6 Hz, 1H).; ¹³C NMR (100 MHz, CDCl₃) δ 152.5, 144.8, 142.0, 132.8, 132.7, 129.6, 128.7, 128.3, 128.2, 128.0. 127.5, 127.0, 126.6, 126.2, 126.1, 126.0, 125.3, 123.6, 121.2, 121.1, 116.5, 82.7 (one aryl carbon overlapped); IR (KBr) v 1602, 1484, 1238, 749, 697 cm⁻¹; HRMS-(ESI) (m/z): [M+H]⁺ calcd for C₂₅H₁₉O, 335.14304; found 335.14301.

2-ethoxy-5-(2-phenyl-2*H*-chromen-2-yl)pyridine (3ka) and 5-(benzofuran-2yl(phenyl)methyl)-2-ethoxypyridine (4ka) The mixture of **3ka** and **4ka** (87/13) was obtained as a colorless solid, 45.0 mg, in 68% yield; $R_f = 0.65$ (petroleum ether : ethyl acetate = 3 : 1); ¹H NMR (400 MHz, CDCl₃, TMS) δ 8.17 (d, J = 2.4 Hz, 1H), 7.60 (dd, $J_1 = 8.8$ Hz, $J_2 = 2.4$ Hz, 1H), 7.42 (d, J = 7.2 Hz, 2H), 7.32 (t, J = 7.6 Hz, 2H), 7.27-7.22 (m, 2H), 7.10 (td, $J_1 = 8.0$ Hz, $J_2 = 1.6$ Hz, 1H), 6.88 (d, J = 8.0 Hz, 1H), 6.83 (t, J = 7.2 Hz, 1H), 6.65 (d, J = 10.4 Hz, 1H), 6.61 (d, J = 9.6 Hz, 1H), , 6.08 (d, J = 9.6 Hz, 1H), 4.31 (q, J = 7.2 Hz, 2H), 1.35 (t, J = 7.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.2, 152.2, 145.8, 144.4, 138.0, 132.9, 129.7, 128.2, 128.1, 127.6, 126.7, 126.6, 123.9, 121.4, 121.0, 116.5, 110.6, 81.1, 61.7, 14.6; IR (KBr) v 1607, 1489, 1290, 1237, 757 cm⁻¹; HRMS-(ESI) (m/z): [M+H]⁺ calcd for C₂₂H₂₀NO₂, 330.14886; found 330.14899.

2-methyl-2-phenyl-2*H*-chromene (3la)

Compound **3la** was obtained as a colorless oil, 11.8 mg, in 27% yield; ¹H NMR (400 MHz, CDCl₃, TMS) δ^{1} H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 7.6 Hz, 2H), 7.31 (t, J = 7.6 Hz, 2H), 7.23-7.20 (m, 1H), 7.10 (td, $J_{1} = 8.0$ Hz, $J_{2} = 1.2$ Hz, 1H), 6.95 (dd, $J_{1} = 7.6$ Hz, $J_{2} = 1.2$ Hz, 1H), 6.88 (d, J = 8.0 Hz, 1H), 6.81 (td, $J_{1} = 7.6$ Hz, $J_{2} = 0.8$ Hz, 1H), 6.43 (d, J = 10.0 Hz, 1H), 5.91 (d, J = 9.6 Hz, 1H), 1.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 152.8, 145.8, 129.6, 129.3, 128.2, 127.2, 126.5, 125.1, 122.7, 121.1, 120.9, 116.3, 78.6, 29.3. Spectroscopic data were in accordance with literature values.¹²

2-(benzo[*d*][1,3]dioxol-5-yl)-2-phenyl-2*H*-chromene (3na) and 5-(benzofuran-2yl(phenyl)methyl)benzo[*d*][1,3]dioxole (4na)

The mixture of **3na** and **4na** (95/5) was obtained as a colorless oil, 44.0 mg, in 67% yield; $R_f = 0.34$ (petroleum ether : dichloromethane = 20 : 1); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.42 (d, J = 7.6 Hz, 2H), 7.31 (t, J = 7.6 Hz, 2H), 7.25-7.20 (m, 1H), 7.10 (td, $J_1 = 8.0$ Hz, $J_2 = 1.2$ Hz, 1H), 6.99 (dd, $J_1 = 7.2$ Hz, $J_2 = 1.2$ Hz, 1H), 6.91-6.87 (m, 3H), 6.82 (t, J = 7.8 Hz, 1H), 6.72 (d, J = 8.0 Hz, 1H), 6.58 (d, J = 9.6 Hz, 1H), 6.09 (d, J = 10.0 Hz, 1H), 5.89 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 152.4, 147.5, 146.9, 145.0, 138.9, 129.5, 128.8, 128.1, 127.4, 126.8, 126.5, 123.3, 121.2, 121.0, 120.8, 116.5, 108.1, 107.6, 101.1, 82.4; IR (KBr) v 1487, 1240, 1113, 1036, 752 cm⁻¹; HRMS-(ESI) (m/z): [M+H]⁺ calcd for C₂₂H₁₇O₃, 329.11722; found 329.11749.

OMe OMe

2-(3,4-dimethoxyphenyl)-2-phenyl-2*H*-chromene (30a)

Compound **30a** was obtained as a colorless oil, 44.0 mg, in 64% yield; $R_f = 0.28$ (petroleum ether : dichloromethane = 20 : 1); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.43 (d, *J* = 8.0 Hz, 2H), 7.31 (t, *J* = 7.2 Hz, 2H), 7.25 (d, *J* = 7.2 Hz, 1H), 7.12-7.08 (m, 1H), 7.00-6.98 (m, 2H), 6.92-6.89 (m, 2H), 6.82 (t, *J* = 7.8 Hz, 2H), 6.77 (d, *J* = 8.4 Hz, 1H), 6.59 (d, *J* = 10.0 Hz, 1H), 6.14-6.11 (m, 1H), 3.83 (d, *J* = 8.0 Hz, 3H), 3.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 152.4, 148.6, 148.4, 144.9, 137.3, 129.5, 129.0, 128.0, 127.4, 126.9, 126.5, 123.2, 121.15, 121.10, 119.7, 116.4, 110.6, 110.3, 82.5, 55.77, 55.75; IR (KBr) v 1512, 1260, 1238, 1138, 1026, 759 cm⁻¹; HRMS-(ESI) (m/z): [M+H]⁺ calcd for C₂₃H₂₁O₃, 345.14852; found 345.14868.

2-(4-methoxyphenyl)-2-(4-(trifluoromethyl)phenyl)-2*H*-chromene (3pa) and 2-((4-methoxyphenyl)(4-(trifluoromethyl)phenyl)methyl)benzofuran (4pa)

The mixture of **3pa** and **4pa** (93/7) was obtained as a colorless oil, 46.0 mg, in 61% yield; $R_f = 0.55$ (petroleum ether : ethyl acetate = 10 : 1); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.63-7.54 (m, 4H), 7.31 (d, J = 8.4 Hz, 2H), 7.12 (t, J = 7.6 Hz, 1H), 7.00 (d, J = 7.2 Hz, 1H), 6.90 (d, J = 8.0 Hz, 1H), 6.86-6.83 (m, 3H), 6.62 (d, J = 9.6 Hz, 1H), 6.09 (d, J =9.6 Hz, 1H), 3.76 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.1, 152.2, 149.1, 136.2, 130.0, 129.5 (q, J = 32.3 Hz), 128.4, 128.1, 127.1, 126.7, 125.1 (q, J = 3.8 Hz), 122.6 (q, J = 270.4 Hz), 121.4, 120.9, 120.0, 116.5, 113.6, 82.0, 55.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.44; IR (KBr) v 1587, 1325, 1170, 1068, 828 cm⁻¹; HRMS-(ESI) (m/z): [M+H]⁺ calcd for C₂₃H₁₈F₃O₂, 383.12534; found 383.12579.

2-(4-fluorophenyl)-2-(4-(trifluoromethyl)phenyl)-2*H*-chromene (3qa) and 2-((4-fluorophenyl)(4-(trifluoromethyl)phenyl)methyl)benzofuran (4qa)

The mixture of **3qa** and **4qa** (86/14) was obtained as a yellow oil, 48.0 mg, in 65% yield; $R_f = 0.43$ (petroleum ether : dichloromethane = 50 : 1); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.59-7.53 (m, 4H), 7.39-7.35 (m, 2H), 7.13 (td, $J_1 = 8.0$ Hz, $J_2 = 1.2$ Hz, 1H), 7.02-6.97 (m, 3H), 6.90 (d, J = 8.0 Hz, 1H), 6.858 (td, $J_1 = 7.6$ Hz, $J_2 = 0.8$ Hz, 1H), 6.65 (d, J = 9.6Hz, 1H), 6.08 (d, J = 10.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 162.2 (d, J = 245.8Hz), 152.0, 148.6, 139.9 (d, J = 3.1 Hz), 129.9, 129.7 (q, J = 32.3 Hz), 128.9 (d, J = 8.2Hz), 127.7, 127.2, 126.8, 125.2 (q, J = 3.7 Hz), 124.0 (q, J = 270.6 Hz), 124.3, 121.7, 120.9, 116.5, 115.1 (d, J = 21.4 Hz), 81.7; IR (KBr) v 1509, 1327, 1230, 1168, 1125, 1070, 839 cm⁻¹; HRMS-(ESI) (m/z): [M+H]⁺ calcd for C₂₂H₁₅F₄O, 371.10535; found 371.10590.

Unsuccessful substrates

Procedure for one-pot gram scale experiment

A 150 mL oven-dried Schlenk bottle under argon atmosphere charged with salicylaldehyde (10 mmol, 1.22 g), 4-methylbenzenesulfonohydrazide (10 mmol, 1.86 g) and 2-MeTHF (30 mL) was stirred at room temperature for 2 h. Then 1-bromo-2-(1-phenylvinyl)benzene **1a** (5 mmol, 1.29 g), $[Pd(allyl)Cl]_2$ (90 mg, 5 mol%), dppb (320 mg, 15 mol%), K₂CO₃ (15 mmol, 2.07 g, 3.0 equiv), and 2-MeTHF (20 mL) were added sequentially to the resulting mixture. The bottle was heated in an oil bath at 100 °C for 20 h. The resulting mixture was cooled to room temperature and filtered through Celite with EtOAc as the eluent. The solvents were evaporated under reduced pressure and the

residue was purified by column chromatography on silica gel using petroleum ether: dichloromethane (200: 1) as eluent to afford **3aa**, 0.91 g, in 64% yield.

Deuterium labeling experiments

Preparation of 1-bromo-2-(1-phenylvinyl-2,2-d**2**)**benzene** (d_2 **-1a**)¹³

Step 1: To a flask with a magnetic stir bar was added **S1** (1060 mg, 3.0 mmol, 1.0 equiv), D_2O (4 mL), and NaOH (60 mg, 1.50 mmol, 0.5 equiv). The reaction mixture was stirred under argon atmosphere, and after 24 h, CH₂Cl₂ (10 mL) was added to the solution and organic layer was collected and dried with MgSO₄. Then added hexanes (20 mL) to the resulting solution and stored at fridge for 24 h to afford colorless crystals **S2** 900 mg used directly for the next step.

Step 2: An oven dried flask charged with **S2** (1.5 mmol, 534 mg, 1.0 equiv) and THF (5 mL) was cooled to 0 °C. Then 2.6M n-BuLi (1.8 mmol, 0.7 mL, 1.2 equiv) was added dropwise and the resulting yellow suspension was stirred for 60 minutes. To this suspension, a solution of (2-bromophenyl)(phenyl)methanone **S3** (1.5 mmol, 390 mg, 1.0 equiv.) was added in one portion and the resulting mixture was warmed to room temperature and further stirred at room temperature for 2 h. Water and EA were added to the reaction mixture, separated and the aqueous phase was extracted with EA (3 x 20 mL). The combined organic phases were washed with brine, dried over Na₂SO₄ and the solvent removed under reduced pressure. The reaction mixture was purified by column chromatography using hexanes as eluent to obtain the product *d*₂-1a as a colorless oil, 296 mg, 74% (two steps), 86%D; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.58 (d, *J* = 8.0

Hz, 1H), 7.35-7.25 (m, 7H), 7.21-7.16 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 148.7, 142.6, 139.5, 132.9, 131.6, 129.0, 128.3, 127.7, 127.2, 126.5, 123.3, 112.0-115.2 (m, 1C). **Deuterium labeling experiment 1**

An oven-dried Schlenk tube under argon atmosphere was charged with 1-bromo-2-(1phenylvinyl-2,2-*d*2)benzene (*d*₂-1a) (0.2 mmol, 1.0 equiv), *N*-tosylhydrazones 2a (0.4 mmol, 2.0 equiv), [Pd(allyl)Cl]₂ (3.6 mg, 5 mol%), dppb (12.8 mg, 15 mol%), K₂CO₃ (0.6 mmol, 82 mg, 3.0 equiv) and 2-MeTHF (2 mL) was stirred at 100 °C for 20 h . After work-up and purification, the product was obtained, 38 mg, 67%; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.42 (d, *J* = 7.2 Hz, 4H), 7.32-7.28 (m, 4H), 7.25-7.21 (m 2H), 7.10 (td, *J*₁ = 7.6 Hz, *J*₂ = 1.6 Hz, 1H), 6.98 (dd, *J*₁ = 7.6 Hz, *J*₂ = 1.6 Hz, 1H), 6.98 (dd, *J*₁ = 7.6 Hz, *J*₂ = 1.0 Hz, 0.38 H).; ¹³C NMR (100 MHz, CDCl₃) δ 152.5, 144.9, 129.5, 128.8, 128.1, 127.4, 127.0, 126.5, 123.2(d, 1C), 121.1, 121.0 (d, 1C), 116.5, 82.51 (d, 1C).

S27

Deuterium labeling experiment 2

An oven-dried Schlenk tube under argon atmosphere was charged with 1-bromo-2-(1-phenylvinyl)benzene (**1a**) (0.2 mmol, 1.0 equiv), *N*-tosylhydrazones **2a** (0.4 mmol, 2.0 equiv), [Pd(allyl)Cl]₂ (3.6 mg, 5 mol%), dppb (12.8 mg, 15 mol%), K₂CO₃ (0.6 mmol, 82 mg, 3.0 equiv), D₂O (32 mg, 8.0 equiv) and 2-MeTHF (2 mL) was stirred at 100 °C for 20 h . After work-up and purification, the product was obtained, 24 mg, 42%; ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 7.56 Hz, **3**.66H), 7.31 (t, *J* = 7.6 Hz, 4H), 7.26-7.22 (m, 1H), 7.11 (td, *J*₁ = 8.0 Hz, *J*₂ = 1.2 Hz, 1H), 6.99 (dd, *J*₁ = 7.6 Hz, *J*₂ = 1.2 Hz, 1H), 6.91 (d, *J* = 8.0 Hz, 1H), 6.82 (t, *J* = 7.6 Hz, 1H), 6.61-6.59 (m, 1H), 6.15 (d, *J* = 10.0 Hz, **0.79H**); ¹³C NMR (101 MHz, CDCl₃) δ 152.5, 144.9, 129.5, 128.8, 128.0 (d, 1C), 127.5, 127.0, 126.6, 123.2 (d, 1C), 121.2, 121.0, 116.5, 82.5.

Structure conformation of the other isomer

The mixture of **3am** and **4am** was synthesized first. Then to the mixture (0.7 mmol, 234 mg) in THF (14 mL) was added NBS (1.4 mmol, 247 mg) and the result solution was stirred at room temperature for 6 h.. Diluted with EA (50 mL) and washed with brine (30 mL). The solvent was removed under reduced pressure and the residual mass was purified by silica gel column chromatography using PE/DCM=100 as eluent to afford the pure product **4am'** (91 mg) as major product as a yellow solid; $R_f = 0.61$ (petroleum ether : ethyl acetate = 100 : 1); ¹H NMR (400 MHz, CDCl₃, TMS) δ 8.32-8.30 (m, 1H), 8.00-7.98 (m, 1H), 7.93 (s, 1H), 7.56-7.53 (m, 2H), 7.35 (t, *J* = 7.6 Hz, 4H), 7.29 (d, *J* = 7.2 Hz, 2H), 7.25 (d, *J* = 7.6 Hz, 4H), 6.73 (s, 1H), 5.66 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) 159.7, 151.6, 140.9, 128.8, 128.7, 128.4, 128.0, 127.8, 127.1, 126.9, 125.6, 123.8, 123.6, 118.2, 116.7, 104.7, 51.4; IR (KBr) v 1493, 1448, 1351, 1010, 765, 701 cm⁻¹; HRMS (EI): m/z Exact mass calcd for C₂₅H₁₇BrO [M]⁺: 412.0463, found: 412.0461. The structure of **4am'** was further established by X-ray diffraction.

Transformations of the products

b)

3,6-dibromo-2,2-diphenylchroman-4-ol (5)¹⁵

To an oven-dried tube charged with **3aa** (0.2 mmol, 57 mg), acetone (2 mL) and H₂O (400 uL) was added NBS (0.6 mmol, 106 mg). The mixture was stirred at room temperature for 16 hours. Then the reaction mixture was diluted with EA (50 mL) and washed with brine (30 mL). The solvent was removed under reduced pressure and the residual mass was purified to afford the product **5** (72 mg, 87%) as a white solid; $R_f = 0.35$ (petroleum ether : ethyl acetate = 10 : 1); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.74 (d, *J* = 7.6 Hz, 2H), 7.47 (d, *J* = 2.0 Hz, 1H), 7.43-7.40 (m, 3H), 7.35 (t, *J* = 7.6 Hz, 2H), 7.28-7.19 (m, 4H), 7.09 (d, *J* = 8.8 Hz, 1H), 5.34 (d, *J* = 4.8 Hz, 1H), 5.05 (t, *J* = 4.0 Hz, 1H), 1.84 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 151.1, 142.1, 140.6, 133.2, 132.6, 128.6, 128.3, 128.2, 127.8, 126.9, 125.9, 124.0, 119.4, 114.0, 83.3, 69.8, 57.0; IR (KBr) v 1739, 1475, 1235, 983, 754, 699 cm⁻¹; EI-MS m/z (%): 458, 460 (M⁺, M⁺+2); HRMS-(ESI) (m/z): [M+H]⁺ calcd for C₂₁H₁₇Br₂O₂, 458.95898; found 440.9478 (- H₂O). c)

2,2-diphenyl-3-(p-tolylthio)chroman-4-ol (6)

In an ice-bath, to an oven-dried tube charged with methylbenzenethiol (53 mg, 0.4 mmol) and DCM (2 mL) was added NCS (0.4 mmol, 50 mg) in DCM (1 mL) slowly at 0 °C and the resulting yellow solution was stirred at this temperature for 30 minutes, followed by

the addition of **3aa** (0.2 mmol, 57 mg). The resulting mixture was stirred at room temperature for 2 h. The reaction mixture was diluted with EA (50 mL) and washed with brine (30 mL). The solvent was removed under reduced pressure and the residual mass was purified by silica gel column chromatography using PE/EA=50 as eluent to afford the pure product **6** (67 mg, 79%) as a white solid; $R_f = 0.42$ (petroleum ether : ethyl acetate = 10 : 1); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.73 (d, *J* = 7.6 Hz, 2H), 7.37-7.31 (m, 5H), 7.26-7.15 (m, 5H), 7.09 (d, *J* = 8.0 Hz, 1H), 7.00-6.92 (m, 5H), 4.87 (t, *J* = 6.8 Hz, 1H), 4.23 (d, *J* = 7.2 Hz, 1H), 2.43 (d, *J* = 6.8 Hz, 1H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 152.5, 142.6, 141.7, 137.6, 132.5, 131.6, 129.7, 129.6, 129.2, 128.3, 128.0, 127.7, 127.6, 127.4, 126.8, 123.7, 121.5, 117.4, 85.0, 68.8, 62.3, 21.0; IR (KBr) v 1587, 1489, 1457, 1230, 754, 694 cm⁻¹; EI-MS m/z (%): 424 (M⁺); HRMS-(ESI) (m/z): [M+Na]⁺ C₂₈H₂₄NaO₂S, 447.1389; found 447.1382.

Optimization of reaction conditions for 1,2-dihydroquinoline synthesis^a

	Ph Br + NNHTs E NHBn S	[Pd] <u>Base (3.0</u> olvent (2	/L equiv) mL), heat	Bn Ph Ph	
	1a , 0.2 mmol 2p , 0.4 mmol			Зар	
	Ph ₂ P ⁺ nPPh ₂ R n = 1, dppm n = 2, dppe n = 3, dppp n = 4, dppb n = 5, dpppe	F	R	L1 R = 4-Me L2 R = 4-OMe L3 R = 4-CF ₃ L4 R = 2-OMe L5 R = 3,5-diMe L6 R = 2-Me	
Entry	[Pd]/L	T/°C	Solvent	Base	3ap [%] ^b
1	5 mol% [Pd(allyl)Cl] ₂ /15 mol% dppb	100	2-MeTHF	K ₂ CO ₃	0
2	2.5 mol% [Pd(allyl)Cl] ₂ /15 mol% PPh ₃	90	THF	K ₂ CO ₃	20
3	2.5 mol% [Pd(allyl)Cl] ₂ /15 mol% PPh₃	90	2-MeTHF	K ₂ CO ₃	18
4	2.5 mol% [Pd(allyl)Cl] ₂ /15 mol% PPh ₃	90	dioxane	K ₂ CO ₃	12
5	2.5 mol% [Pd(allyl)Cl] ₂ /15 mol% PPh ₃	90	toluene	K ₂ CO ₃	trace
6	2.5 mol% [Pd(allyl)Cl] ₂ /15 mol% PPh ₃	100	dioxane	K ₂ CO ₃	24
7	2.5 mol% [Pd(allyl)Cl] ₂ /15 mol% L1	100	dioxane	K ₂ CO ₃	21
8	2.5 mol% [Pd(allyl)Cl] ₂ /15 mol% L2	100	dioxane	K ₂ CO ₃	20
9	2.5 mol% [Pd(allyl)Cl] ₂ /15 mol% L3	100	dioxane	K ₂ CO ₃	26
10	2.5 mol% [Pd(allyl)Cl] ₂ /15 mol% L4	100	dioxane	K ₂ CO ₃	0
11	2.5 mol% [Pd(allyl)Cl] ₂ /15 mol% L5	100	dioxane	K ₂ CO ₃	22
12	2.5 mol% [Pd(allyl)Cl] ₂ /15 mol% L6	100	dioxane	K ₂ CO ₃	trace
13	2.5 mol% [Pd(allyl)Cl] ₂ /7.5 mol% dppm	100	dioxane	K ₂ CO ₃	trace
14	2.5 mol% [Pd(allyl)Cl] ₂ /7.5 mol% dppe	100	dioxane	K ₂ CO ₃	trace
15	2.5 mol% [Pd(allyl)Cl] ₂ /7.5mol% dppp	100	dioxane	K ₂ CO ₃	13
16	2.5 mol% [Pd(allyl)Cl] ₂ /7.5 mol% dppb	100	dioxane	K ₂ CO ₃	15
17	2.5 mol% [Pd(allyl)Cl] ₂ /7.5 mol% dpppe	100	dioxane	K ₂ CO ₃	8
18	2.5 mol% [Pd(allyl)Cl] ₂ /7.5 mol% DPEphos	100	dioxane	K ₂ CO ₃	23
19	2.5 mol% [Pd(allyl)Cl] ₂ /7.5mol% Xantphos	100	dioxane	K ₂ CO ₃	18
20	2.5 mol% [Pd(allyl)Cl] ₂ /7.5 mol% BINAP	100	dioxane	K ₂ CO ₃	17
21	2.5 mol% [Pd(allyl)Cl] ₂ /7.5 mol% Johnphos	100	dioxane	K ₂ CO ₃	0
22	5 mol% Pd(OAc) ₂ /15 mol% PPh₃	100	dioxane	K ₂ CO ₃	19
23	5 mol% Pd(MeCN) $_2$ Cl $_2$ /15 mol% PPh $_3$	100	dioxane	K ₂ CO ₃	28
24	2.5 mol% Pd ₂ dba ₃ ·CHCl ₃ /15 mol% PPh ₃	100	dioxane	K ₂ CO ₃	22
25	5 mol% Pd(PPh ₃) ₂ Cl ₂	100	dioxane	K ₂ CO ₃	28 (25) ^c
26	5 mol% Pd(PPh ₃) ₄	100	dioxane	K ₂ CO ₃	23
27	5 mol% Pd(PPh ₃) ₂ Cl ₂	80	dioxane	K ₂ CO ₃	6
28	5 mol% Pd(PPh ₃) ₂ Cl ₂	120	dioxane	K ₂ CO ₃	17

^{*a*}The reaction was carried out for 10 h. ^{*b*}Yields were determined by ¹H NMR using *N*,*N*-dimethylpyridin-4-amine as an internal standard. ^{*c*}yield of isolated product.

1-benzyl-2,2-diphenyl-1,2-dihydroquinoline (**3ap**): $R_f = 0.55$ (petroleum ether : ethyl acetate = 100 : 1); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.43 (d, *J* = 7.2 Hz, 4H), 7.26 (t, *J* = 7.6 Hz, 4H), 7.17 (t, *J* = 7.2 Hz, 2H), 7.04-6.92 (m, 5H), 6.85-6.83 (m, 2H), 6.58 (t, *J*

= 7.2 Hz, 1H), 6.44 (d, J = 9.6 Hz, 1H), 6.35 (d, J = 8.0 Hz, 1H), 5.81 (d, J = 9.6 Hz, 1H), 4.61 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 145.0, 143.1, 137.8, 130.1, 129.4, 128.6, 128.1, 127.7, 127.1, 127.0, 125.9, 122.7, 120.2, 116.6, 111.1, 72.0, 50.9 (one aryl carbon overlapped); IR (KBr) v 1636, 1395, 1286, 1122, 782 cm⁻¹; HRMS-(ESI) (m/z): [M+H]⁺ calcd for C₂₈H₂₄N, 374.19033; found 374.19073.

Crystal structure

Procedure for preparation of the crystals: The product (20 mg) was dissolved in DCM and filtered through a pad of filter paper. The filtrate was then transferred into several test-tubes by different volumes. Then to these solutions was added hexane in dropwise. These samples were allowed to be evaporated slowly at room temperature, which would eventually give crystals on the surface of the tubes.

Crystal data of product 3ac (CCDC 1975385)

,Ph `Ph MeO 3ac

Bond precision:	C-C = 0.0025 A	Wavelength=0.71073				
Cell:	a=11.536(2)	b=8.2902(17)	c=18.320(4)			
Temperature:	alpha=90 153 K	beta=108.28(3)	gamma=90			
	Calculated	Reporte	d			
Volume	1663.6(6)	1663.7(6)			
Space group	P 21/n	P2(1)/n				
Hall group	-P 2yn	?				
Moiety formula	C22 H18 O2	?				
Sum formula	C22 H18 O2	C22 H18	02			
Mr	314.36	314.36				
Dx,g cm-3	1.255	1.255				
Z	4	4				
Mu (mm-1)	0.079	0.079				
F000	664.0	664.0				
F000'	664.30					
h,k,lmax	13,9,21	13,9,21				
Nref	2923	2895				
Tmin, Tmax	0.981,0.992					
Tmin'	0.977					
Correction meth	od= Not given					
Data completene	ss= 0.990	Theta(max) = 25.000				
R(reflections) =	0.0449(2214)	wR2(reflections)= 0.1329(2895)			
S = 1.121	= 1.121 Npar= 218					

Crystal data of product 4am' (CCDC 1975387)

Ph 4am'

Bond precision: C-C = 0.0033 A Wavelength=0.71073 Cell: a=16.940(3) b=10.721(2) c=10.610(2) alpha=90 beta=101.81(3) gamma=90 Temperature: 153 K Calculated Reported Volume 1886.1(6) 1886.1(6) Space group P 21/c P2(1)/c Hall group -P 2ybc ? Moiety formula C25 H17 Br O ? Sum formula C25 H17 Br O C25 H17 Br O Mr 413.29 413.30 Dx,g cm-3 1.456 1.455 4 4 Z 2.191 Mu (mm-1) 2.191 F000 840.0 840.0 F000' 839.16 h,k,lmax 21,13,13 21,13,13 Nref 4316 4305 Tmin, Tmax 0.547,0.604 Tmin' 0.536 Correction method= Not given Data completeness= 0.997 Theta(max) = 27.480R(reflections) = 0.0361(2699)wR2(reflections) = 0.0952(4305) S = 0.933Npar= 244
Crystal data of product 5 (CCDC 1978345)

Br C Ph 5 OH			
Bond precision:	C-C = 0.0069 A	Wavelength=0.71073	
Cell: Temperature:	a=20.474(5) alpha=90 293 K	b=20.474(5) beta=90	c=9.720(3) gamma=90
Volume Space group Hall group Moiety formula Sum formula Mr Dx,g cm-3 Z Mu (mm-1) F000 F000' h,k,lmax Nref Tmin,Tmax Tmin'	Calculated 4075(2) P 4/n -P 4a 4(C21 H16 Br2 O2), C84 H64 Br8 O9 1856.55 1.513 2 3.990 1840.0 1836.27 26,26,12 4651 0.257,0.550 0.238	Reported 4074(2) P 4/n -P 4a O ? C21 H16.50 464.66 1.515 8 3.991 1844.0 26,26,12 4639 0.656,1.00	0 Br2 O2.25
Correction method= # Reported T Limits: Tmin=0.656 Tmax=1.000 AbsCorr = MULTI-SCAN			
Data completeness= 0.997		Theta(max) = 27.399	
R(reflections) = 0.0651(3525) wR2(reflections) = 0.2140(4639)			
S = 1.080 Npar= 232			

Crystal data of product 6 (CCDC 1978346)

6 OH

Bond precision: C-C = 0.0031 A Wavelength=0.71073 Cell: a=9.990(4) b=10.558(4) c=21.868(9) alpha=78.978(12) beta=77.06(1) gamma=85.471(13) Temperature: 293 K Calculated Reported Volume 2204.9(15)2205.0(16) Space group P -1 P -1 -P 1 -P 1 Hall group Moiety formula C28 H24 O2 S ? Sum formula C28 H24 O2 S C28 H24 O2 S 424.53 424.53 Mr 1.279 Dx,g cm-3 1.279 Z 4 4 0.169 Mu (mm-1) 0.169 F000 896.0 896.0 F000' 896.85 12,13,28 h,k,lmax 12,13,28 10051 Nref 10135 Tmin, Tmax 0.962,0.970 0.924,1.000 Tmin' 0.962 Correction method= # Reported T Limits: Tmin=0.924 Tmax=1.000 AbsCorr = MULTI-SCAN Data completeness= 0.992 Theta(max) = 27.504 R(reflections) = 0.0559(8456)wR2(reflections) = 0.1295(10051) S = 1.118Npar= 561

References

- 1. Y. Xia, Y. Xia, Y. Zhang and J. Wang, Org. Biomol. Chem., 2014, 12, 9333.
- 2. R. Fu and Z. Li, Org. Lett., 2018, 20, 2342.
- T.-J. Hu, G. Zhang, Y.-H. Chen, C.-g. Feng and G.-Q. Lin, J. Am. Chem. Soc., 2016, 138, 2897.
- T.-J. Hu, M.-Y. Li, Q. Zhao, C.-G. Feng and G.-Q. Lin, *Angew. Chem.*, *Int. Ed.*, 2018, 57, 5871.
- 5. D. Wei, T.-J. Hu, C.-G. Feng and G.-Q. Lin, Chin. J. Chem., 2018, 36, 743.
- 6. A. Ghatak, S. Khan and S. Bhar, Adv. Synth. Catal., 2016, 358, 435.
- 7. J. Li, C. Tan, J. Gong and Z. Yang, Org. Lett., 2014, 16, 5370.
- Y. Teral, G. Roubaud, C. Aubert, R. Faure and M. Campredon, *Aust. J. Chem.*, 2005, 58, 517.
- 9. A. Mukhopadhyay, V. K. Maka and J. N. Moorthy, J. Chem. Sci., 2018, 130.
- 10. H. Lee and C. S. Yi, Eur. J. Org. Chem., 2015, 1899.
- 11. T. Zhang, X. Huang and L. Wu, Eur. J. Org. Chem., 2012, 3507.
- 12. K. Guo and Y. Chen, J. Mater. Chem., 2010, 20, 4193.
- H. Zhang, K. Wang, B. Wang, H. Yi, F. Hu, C. Li, Y. Zhang and J. Wang, *Angew. Chem.*, *Int. Ed.*, **2014**, *53*, 13234.
- 14. Z. Zhao, L. Racicot and G. K. Murphy, Angew. Chem., Int. Ed., 2017, 56, 16620.
- M. Kumar, K. Singh, A. H. Ngwane, F. Hamzabegovic, G. Abate, B. Baker, I. Wiid,
 D. F. Hoft, P. Ruminski and K. Chibale, *Bioorg. Med. Chem.*, 2018, 26, 833.

NMR Spectra

000**.0**---

-1.518

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 f1 (ppm)

S54

-2.435 -2.278 -1.490

000.0----

:0 ò

--1.457

--1.499

000.0---

3ga/4ga = 90/10 0.96 6.22 6.22 1.01 1.01 1.02 1.02 1.00-4.0 3.5 f1 (ppm) 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 (122,185 (122,185 (123,682 (123,582) (123,589 (123,589 (122,589) (122,589 (122,589) (82.032 77.318 77.000 76.683 3ga/4ga = 90/10 alinenininterinitelainen andanainin state in the list of the list tu (direth) 80 70 f1 (ppm) 160 150 140 130 120 110 100 90 60 50 40 30 20 10 ò

-1.531

S84

