Divergent synthesis of oxindole derivatives via controllable reaction

of isatin-derived para-quinone methides with sulfur ylides

Yong You,*^a Bao-Xue Quan,^b Zhen-Hua Wang,^a Jian-Qiang Zhao,^a and Wei-Cheng Yuan*^{a,b}

^aInstitute for Advanced Study, Chengdu University, Chengdu 610106, China ^bChengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China

youyong@cdu.edu.cn, yuanwc@cioc.ac.cn

Supporting Information

Table of Contents

1. General informations	S1
2. General procedure for the synthesis of isatin-derived <i>p</i> -QMs 1	.S1
3. General procedure for the synthesis of spirocyclopropyl oxindoles 3	.S1
4. Procedure for the synthesis of spirocyclopropyl oxindole 5	.S6
5. Procedure for the synthesis of 3-hydroxy oxindole 6	S6
6. Procedure for the synthesis of oxindole 7	.S7
7. Procedure for the synthesis of oxindole 8	.S7
8. General procedure for the synthesis of β , β -disubstituted 3-ylideneoxindoles 9	.S7
9. Control experiments	S11
10. X-ray crystal data for compound 3a and 9a	S12
11. The copies of ¹ H NMR and ¹³ C NMR spectra for compounds 1i , 3 , 5 , 6 , 7 , 8 , 9 and 10	S15

1. General Information

Reagents were purchased from commercial sources and were used as received unless mentioned otherwise. Reactions were monitored by TLC. ¹H NMR (300 MHz) and ¹³C NMR (75 MHz) spectra were recorded in CDCl₃. ¹H NMR chemical shifts are reported in ppm relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard (CDCl₃ at 7.26 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, br s = broad singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR chemical shifts are reported in ppm from tetramethylsilane (TMS) with the solvent resonance as the internal standard (CDCl₃ at 77.16 ppm). HRMS was recorded on Bruker Q TOF. Melting points were recorded on a B üchi Melting Point B-545.

2. General procedure for the synthesis of isatin-derived *p*-QMs 1

Isatin-derived *p*-QMs **1** were prepared according to the reference¹, isatins (10 mmol) and substituted phenols (10 mmol) were dissolved in toluene (20 mL). Piperidine (20 mmol) was added slowly over 1 h to the mixture at the reflux temperature. Then the mixture continued to reflux for 3 h. After cooling just below the boiling point of toluene, acetic anhydride (20 mmol) was added in one portion, and then the solution was stirred for another 15 min. After cooling to room temperature, the mixture was diluted by EtOAc (30 mL), washed with water (20 mL) and brine (20 mL) sequentially. After that, the resulting product was dried over Na₂SO₄, filtered, concentrated by rotary evaporators. The residues were purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 15/1) to afford the *p*-QMs **1** as red to reddish black solid.

ⁱPr ⁱPr ⁱPr ⁱPr Me **3-(3,5-diisopropyl-4-oxocyclohexa-2,5-dien-1-ylidene)-1-methylindolin-2-one** (**1i**): reddish black solid, 3% yield, mp 136.5–138.3 °C. ¹H NMR (300 MHz, CDCl₃) δ 9.07 (d, *J* = 1.5 Hz, 1H), 7.81 (d, *J* = 2.6 Hz, 1H), 7.73 (d, *J* = 7.8 Hz, 1H), 7.33 (t, *J* = 7.7 Hz, 1H), 7.05 (t, *J* = 7.7 Hz, 1H), 6.80 (d, *J* = 7.8 Hz, 1H), 3.28–3.12 (m, 5H), 1.21 (t, *J* = 6.6 Hz, 12H); ¹³C NMR (75 MHz, CDCl₃) δ 185.7, 168.1, 150.3, 149.0, 145.1, 137.8, 131.5, 129.3, 128.5, 127.8, 126.4, 122.7,

116.5, 108.8, 27.5, 27.4, 26.0, 22.3, 22.2; HRMS (ESI-TOF) calcd. for $C_{21}H_{23}NNaO_2 [M + Na]^+$ 344.1621; found: 344.1613.

3. General procedure for the synthesis of spirocyclopropyl oxindoles 3

In an ordinary vial equipped with a magnetic stirring bar, the sulfur ylides 2 (0.12 mmol, 1.2 equiv) were added to a solution of isatin-derived *p*-QMs 1 (0.10 mmol, 1.0 equiv) in ethyl acetate (1.0 mL) at 25 °C. And then, the mixture was stirred at the same temperature for specified time. After completion of the reaction, as indicated by TLC, the ethyl acetate was evaporated under vacuum at 30 °C and the residue was purified by flash chromatography on silica gel (petroleum

ether/ethyl acetate = $15/1 \sim 10/1$) to afford the spirocyclopropyl oxindoles **3**.

3a: off-white solid; 42.5 mg, 91% yield; 16:1 dr; mp 188.9–190.5 °C (decomposition); ¹H NMR (300 MHz, CDCl₃) δ 7.92–7.80 (m, 2H), 7.58–7.48 (m, 3H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.35–7.27 (m, 2H), 7.08 (t, *J* = 7.7 Hz, 1H), 6.90 (d, *J* = 7.8 Hz, 1H), 4.38 (s, 1H), 3.31 (s, 3H), 1.30 (s, 9H), 1.14 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 192.6, 185.4, 172.0, 151.0, 150.8, 144.4, 137.0, 136.1, 134.1, 133.4, 129.0, 128.6, 128.5, 125.8, 122.9,

122.5, 108.8, 47.5, 45.4, 42.8, 36.0, 35.8, 29.6, 29.3, 27.1; HRMS (ESI-TOF) calcd. for $C_{31}H_{33}NNaO_3$ [M + Na]⁺ 490.2353; found: 490.2346.

3b: off-white solid; 48.0 mg, 97% yield; 15:1 dr; mp 160.2–161.9 °C (decomposition); ¹H NMR (300 MHz, CDCl₃) δ 7.55–7.46 (m, 2H), 7.46-7.40 (m, 1H), 7.39–7.32 (m, 2H), 7.32–7.27 (m, 1H), 7.24 (d, *J* = 2.9 Hz, 1H), 7.14–7.04 (m, 2H), 6.90 (d, *J* = 7.8 Hz, 1H), 4.35 (s, 1H), 3.79 (s, 3H), 3.31 (s, 3H), 1.29 (s, 9H), 1.13 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 192.4, 185.4, 172.0, 160.0, 151.0, 150.8, 144.4, 138.2, 136.2, 133.5,

130.0, 128.6, 125.8, 122.8, 122.4, 121.2, 121.1, 112.3, 108.8, 55.5, 47.4, 45.6, 42.8, 36.0, 35.8, 29.5, 29.3, 27.1; HRMS (ESI-TOF) calcd. for $C_{32}H_{35}NNaO_4$ [M + Na]⁺ 520.2458; found: 520.2450.

3c: off-white solid; 47.1 mg, 98% yield; 20:1 dr; mp 166.5–168.0 °C (decomposition); ¹H NMR (300 MHz, CDCl₃) δ 7.67 (d, J = 7.5 Hz, 1H), 7.61 (s, 1H), 7.54 (d, J = 2.9 Hz, 1H), 7.50 (d, J = 7.7 Hz, 1H), 7.41–7.27 (m, 3H), 7.22 (d, J = 2.8 Hz, 1H), 7.12–7.02 (m, 1H), 6.90 (d, J = 7.8 Hz, 1H), 4.34 (s, 1H), 3.31 (s, 3H), 2.35 (s, 3H), 1.31 (s, 9H), 1.11 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 192.6, 185.4, 172.0, 151.0, 150.8, 144.4, 138.8,

136.9, 136.2, 134.9, 133.6, 129.2, 128.9, 128.6, 125.9, 125.7, 122.9, 122.4, 108.8, 47.3, 45.5, 42.8, 35.9, 35.8, 29.6, 29.3, 27.1, 21.4; HRMS (ESI-TOF) calcd. for $C_{32}H_{35}NNaO_3$ [M + Na]⁺ 504.2509; found: 504.2490.

3d: off-white solid; 47.7 mg, 96% yield; 18:1 dr; mp 190.2–193.5 °C (decomposition); ¹H NMR (300 MHz, CDCl₃) δ 7.84 (d, *J* = 8.9 Hz, 2H), 7.55–7.46 (m, 2H), 7.35–7.26 (m, 2H), 7.06 (t, *J* = 7.7 Hz, 1H), 6.89 (d, *J* = 8.9 Hz, 3H), 4.34 (s, 1H), 3.84 (s, 3H), 3.30 (s, 3H), 1.29 (s, 9H), 1.14 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 190.8, 185.4, 172.1, 164.3, 150.8, 150.5, 144.4, 136.3, 133.9, 131.0, 130.0, 128.5,

125.7, 123.0, 122.4, 114.1, 108.8, 55.7, 47.4, 45.4, 42.7, 35.9, 35.8, 29.6, 29.3, 27.1; HRMS (ESI-TOF) calcd. for $C_{32}H_{35}NNaO_4 [M + Na]^+$ 520.2458; found: 520.2455.

3e: off-white solid; 48.3 mg, 99% yield; 19:1 dr; mp 149.4–151.1 °C (decomposition); ¹H NMR (300 MHz, CDCl₃) δ 7.76 (d, J = 8.3 Hz, 2H), 7.56–7.47 (m, 2H), 7.35–7.27 (m, 2H), 7.22 (d, J = 7.9 Hz, 2H), 7.07 (t, J = 7.7 Hz, 1H), 6.89 (d, J = 7.8 Hz, 1H), 4.36 (s, 1H), 3.30 (s, 3H), 2.38 (s, 3H), 1.30 (s, 9H), 1.14 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 192.1, 185.4, 172.1, 150.9, 150.7, 145.2, 144.4, 136.2, 134.6,

133.6, 129.7, 128.7, 128.5, 125.8, 123.0, 122.4, 108.8, 47.5, 45.5, 42.8, 36.0, 35.8, 29.6, 29.3, 27.1, 21.8; HRMS (ESI-TOF) calcd. for $C_{32}H_{35}NNaO_3$ [M + Na]⁺ 504.2509; found: 504.2489.

3f: off-white solid; 39.9 mg, 82% yield; 16:1 dr; mp 152.5–154.3 °C (decomposition); ¹H NMR (300 MHz, CDCl₃) δ 7.96–7.83 (m, 2H), 7.54–7.45 (m, 2H), 7.35–7.27 (m, 2H), 7.15–7.03 (m, 3H), 6.91 (d, *J* = 7.8 Hz, 1H), 4.33 (s, 1H), 3.31 (s, 3H), 1.29 (s, 9H), 1.14 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 191.0, 185.3, 172.0, 166.4 (d, *J* = 255.4 Hz, 1C), 151.1, 150.9, 144.4, 135.9, 133.2, 131.3 (d, *J* = 9.5 Hz, 1C), 128.7,

125.7, 122.7, 122.5, 122.2 (d, J = 20.3 Hz, 1C), 116.2 (d, J = 22.5 Hz, 1C), 108.9, 47.4, 45.3, 42.7, 36.0, 35.8, 29.6, 29.3, 27.1; HRMS (ESI-TOF) calcd. for C₃₁H₃₂FNNaO₃ [M + Na]⁺ 508.2258; found: 508.2271.

3g: off-white solid; 46.0 mg, 92% yield; 16:1 dr; mp 136.5–138.3 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.84–7.76 (m, 2H), 7.53–7.45 (m, 2H), 7.41 (d, *J* = 8.7 Hz, 2H), 7.34–7.28 (m, 2H), 7.08 (t, *J* = 7.7 Hz, 1H), 6.91 (d, *J* = 7.8 Hz, 1H), 4.33 (s, 1H), 3.31 (s, 3H), 1.29 (s, 9H), 1.15 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 191.5, 185.3, 171.9, 151.0, 150.9, 144.4, 140.8, 135.9, 135.3, 133.1, 129.9, 129.4, 128.7, 125.7, 122.7, 122.5, 108.9, 47.5,

45.2, 42.7, 36.0, 35.8, 29.6, 29.3, 27.1; HRMS (ESI-TOF) calcd. for $C_{31}H_{32}CINNaO_3 [M + Na]^+$ 524.1963; found: 524.1953.

3h: off-white solid; 47.8 mg, 82% yield; 16:1 dr; mp 147.6–149.4 °C (decomposition); ¹H NMR (300 MHz, CDCl₃) δ 7.72 (d, *J* = 8.7 Hz, 2H), 7.61–7.56 (m, 2H), 7.52–7.45 (m, 2H), 7.36–7.28 (m, 2H), 7.11–7.04 (m, 1H), 6.91 (d, *J* = 7.6 Hz, 1H), 4.32 (s, 1H), 3.31 (s, 3H), 1.29 (s, 9H), 1.15 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 191.7, 185.3, 171.9, 151.1, 151.0, 144.4, 135.9, 135.7, 133.1, 132.36, 130.0, 129.6, 128.7, 125.7, 122.6,

122.5, 109.0, 47.5, 45.2, 42.7, 35.8, 30.4, 29.6, 29.4, 27.1; HRMS (ESI-TOF) calcd. for $C_{31}H_{32}BrNNaO_3$ [M + Na]⁺ 568.1458; found: 568.1439.

3i: off-white solid; 34.4 mg, 70% yield; 14:1 dr; mp 164.1–165.7 °C (decomposition); ¹H NMR (300 MHz, CDCl₃) δ 7.95 (d, J = 8.5 Hz, 2H), 7.75 (d, J = 8.5 Hz, 2H), 7.53 (d, J = 7.7 Hz, 1H), 7.48 (d, J = 2.9 Hz, 1H), 7.37–7.29 (m, 2H), 7.09 (t, J = 7.7 Hz, 1H), 6.92 (d, J = 7.8 Hz, 1H), 4.34 (s, 1H), 3.32 (s, 3H), 1.28 (s, 9H), 1.15 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 191.7, 185.2, 171.7, 151.3, 144.4, 139.8,

135.5, 132.8, 132.5, 128.9, 128.8, 125.6, 122.6, 122.4, 117.7, 117.3, 109.1, 47.6, 45.2, 42.7, 36.0, 35.8, 29.5, 29.3, 27.2; HRMS (ESI-TOF) calcd. for $C_{32}H_{32}N_2NaO_3$ [M + Na]⁺ 515.2305; found: 515.2299.

3j: off-white solid; 48.9 mg, 95% yield; 19:1 dr; mp 164.8–166.5 °C (decomposition); ¹H NMR (300 MHz, CDCl₃) δ 8.31 (d, J = 1.8 Hz, 1H), 7.96 (dd, J = 8.7, 1.8 Hz, 1H), 7.86 (t, J = 7.7 Hz, 3H), 7.65–7.50 (m, 4H), 7.36–7.27 (m, 2H), 7.09 (t, J = 7.7 Hz, 1H), 6.91 (d, J = 7.6 Hz, 1H), 4.51 (s, 1H), 3.33 (s, 3H), 1.35 (s, 9H), 1.08 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 192.4, 185.4, 172.1, 151.0, 150.8, 144.4, 136.2, 136.0, 134.2,

133.6, 132.5, 131.0, 129.8, 129.2, 128.9, 128.6, 127.9, 127.2, 125.9, 123.6, 122.9, 122.5, 108.9, 47.4, 45.5, 42.9, 35.9, 35.8, 29.6, 29.3, 27.1; HRMS (ESI-TOF) calcd. for C₃₅H₃₅NNaO₃ [M +

Na]⁺ 540.2509; found: 540.2497.

3k: off-white solid; 39.7 mg, 87% yield; >20:1 dr; mp 166.0–167.9 °C (decomposition); ¹H NMR (300 MHz, CDCl₃) δ 7.84 (d, J = 7.8 Hz, 1H), 7.69 (d, J = 2.8 Hz, 1H), 7.61 (d, J = 1.5 Hz, 1H), 7.47 (d, J = 2.8 Hz, 1H), 7.34–7.26 (m, 2H), 7.09 (t, J = 7.7 Hz, 1H), 6.88 (d, J = 7.8 Hz, 1H), 6.55 (dd, J = 3.6, 1.7 Hz, 1H), 4.38 (s, 1H), 3.28 (s, 3H), 1.27 (s, 9H), 1.22 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 185.6, 181.2, 172.0, 152.9, 150.7, 150.4,

147.6, 144.4, 136.3, 132.8, 128.6, 126.4, 122.8, 122.6, 118.9, 113.0, 108.7, 48.0, 44.6, 42.7, 36.1, 35.7, 29.5, 29.4, 27.1; HRMS (ESI-TOF) calcd. for $C_{29}H_{31}NNaO_4 [M + Na]^+$ 480.2145; found: 480.2137.

31: off-white solid; 42.7 mg, 91% yield; >20:1 dr; mp 148.5–150.2 °C (decomposition); ¹H NMR (300 MHz, CDCl₃) δ 7.75–7.64 (m, 3H), 7.52 (d, J = 2.9 Hz, 1H), 7.47 (d, J = 2.9 Hz, 1H), 7.31 (td, J = 7.8, 1.2 Hz, 1H), 7.14–7.05 (m, 2H), 6.89 (d, J = 7.8 Hz, 1H), 4.33 (s, 1H), 3.29 (s, 3H), 1.28 (s, 9H), 1.19 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 185.5, 185.2, 172.0, 150.7, 150.6, 144.5, 144.4, 136.1, 135.5, 133.5, 133.1, 128.6, 126.1, 122.8,

122.6, 108.8, 47.8, 45.6, 42.7, 36.0, 35.7, 29.5, 29.4, 27.1; HRMS (ESI-TOF) calcd. for $C_{29}H_{31}NNaO_{3}S [M + Na]^{+} 496.1917$; found: 496.1910.

3m: off-white solid; 30.9 mg, 69% yield; >20:1 dr; mp 168.8–170.5 °C (decomposition); ¹H NMR (300 MHz, CDCl₃) δ 7.70 (d, J = 7.7 Hz, 1H), 7.38 (s, 2H), 7.31 (td, J = 7.7, 1.1 Hz, 1H), 7.10 (td, J = 7.7, 1.1 Hz, 1H), 6.89 (d, J = 7.8 Hz, 1H), 3.98 (s, 1H), 3.27 (s, 3H), 1.25 (s, 9H), 1.22 (s, 9H), 1.11 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 208.9, 185.4, 172.0, 150.7, 150.6, 144.3, 136.3, 133.1, 128.6, 126.4, 123.0, 122.5, 108.7, 47.7, 45.5, 44.5, 42.6,

36.0, 35.7, 29.5, 29.5, 27.0, 26.1; HRMS (ESI-TOF) calcd. for $C_{29}H_{37}NNaO_3 [M + Na]^+ 470.2666$; found: 470.2667.

3n: off-white solid; 29.6 mg, 68% yield; >20:1 dr; mp 164.3–165.7 °C (decomposition); ¹H NMR (300 MHz, CDCl₃) δ 7.80 (d, J = 7.8 Hz, 1H), 7.62 (d, J = 2.9 Hz, 1H), 7.39–7.27 (m, 2H), 7.10 (t, J = 7.5 Hz, 1H), 6.89 (d, J = 7.7 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 3.60 (s, 1H), 3.27 (s, 3H), 1.31–1.24 (m, 12H), 1.24 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 185.6, 171.9, 167.3, 150.8, 150.3, 144.6, 136.4, 132.6, 128.6, 126.1, 122.8, 122.5, 108.7,

61.9, 46.4, 42.3, 40.9, 36.1, 35.7, 29.5, 27.0, 14.3; HRMS (ESI-TOF) calcd. for $C_{27}H_{33}NNaO_4$ [M + Na]⁺ 458.2302; found: 458.2300.

30: off-white solid; 51.8 mg, 99% yield; >20:1 dr; mp 202.1–203.8 °C (decomposition); ¹H NMR (300 MHz, CDCl₃) δ 7.92–7.79 (m, 2H), 7.62–7.49 (m, 3H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.33–7.26 (m, 2H), 7.12–7.01 (m, 1H), 6.92 (d, *J* = 7.8 Hz, 1H), 4.38 (s, 1H), 3.86 (q, *J* = 7.2 Hz, 2H), 1.35–1.23 (m, 12H), 1.13 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 192.7, 185.4, 171.6, 151.0, 150.8, 143.5, 137.0, 136.2, 134.1, 133.4, 129.0, 128.5, 126.0,

123.0, 122.2, 108.9, 47.5, 45.4, 42.8, 36.0, 35.8, 35.7, 29.6, 29.3, 12.9; HRMS (ESI-TOF) calcd. for $C_{32}H_{35}NNaO_3$ [M + Na]⁺ 504.2509; found: 504.2505.

3p: off-white solid; 42.9 mg, 88% yield; 12:1 dr; mp 163.4–165.2 ℃ (decomposition); ¹H NMR (300 MHz, CDCl₃) δ 7.88 (d, J = 7.5 Hz, 2H), 7.62–7.55 (m, 2H), 7.53 (d, J = 7.6 Hz, 1H), 7.44 (t, J = 7.8 Hz, 2H), 7.37–7.27 (m, 6H), 7.18 (d, J = 7.6 Hz, 1H), 7.04 (t, J = 7.4 Hz, 1H), 6.84 (d, J = 7.7 Hz, 1H), 5.08 (d, J = 15.7 Hz, 1H), 4.95 (d, J = 15.5 Hz, 1H), 4.47 (s, 1H), 1.32 (s, 9H), 1.14 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 192.6, 185.3,

172.3, 151.2, 150.9, 143.5, 136.9, 136.0, 135.7, 134.2, 133.3, 129.0, 128.8, 128.5, 128.4, 128.0, 127.4, 125.8, 122.9, 122.5, 109.6, 47.6, 45.6, 44.6, 43.0, 36.0, 35.8, 29.6, 29.3; HRMS (ESI-TOF) calcd. for $C_{37}H_{38}NO_3$ [M + H]⁺ 544.2846; found: 544.2841.

3q: off-white solid; 27.1 mg, 60% yield; 15:1 dr; mp 190.7–192.3 ℃ (decomposition); ¹H NMR (300 MHz, CDCl₃) δ 8.87 (s, 1H), 7.94–7.82 (m, 2H), 7.62–7.54 (m, 1H), 7.54–7.39 (m, 4H), 7.30 (d, *J* = 2.8 Hz, 1H), 7.26–7.20 (m, 1H), 7.11–7.01 (m, 1H), 6.95 (d, *J* = 7.7 Hz, 1H), 4.38 (s, 1H), 1.29 (s, 9H), 1.14 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 192.5, 185.3, 174.2, 151.1, 151.0, 141.5, 136.9, 135.8, 134.2, 133.3, 129.0,

128.6, 128.5, 126.1, 123.3, 122.6, 110.6, 47.9, 45.4, 43.0, 36.0, 35.8, 29.6, 29.3; HRMS (ESI-TOF) calcd. for $C_{30}H_{32}NO_3$ [M + H]⁺ 454.2377; found: 454.2365.

3r: off-white solid; 47.5 mg, 93% yield; 9:1 dr; mp 159.1–160.7 °C (decomposition); ¹H NMR (300 MHz, CDCl₃) δ 8.01 (d, J = 8.3 Hz, 1H), 7.89–7.81 (m, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.44 (t, J = 7.7 Hz, 3H), 7.33 (d, J = 7.7 Hz, 1H), 7.26–7.20 (m, 2H), 7.20–7.13 (m, 1H), 4.40 (s, 1H), 4.05 (s, 3H), 1.29 (s, 9H), 1.12 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 191.9, 185.0, 170.4, 151.7, 151.3, 151.2, 140.1, 136.6, 134.8, 134.4, 132.8, 129.1,

129.0, 128.6, 125.0, 124.6, 122.0, 115.4, 54.3, 47.8, 45.7, 44.0, 36.0, 35.8, 29.6, 29.3; HRMS (ESI-TOF) calcd. for $C_{32}H_{33}NNaO_5 [M + Na]^+ 534.2251$; found: 534.2252.

3s: off-white solid; 32.5 mg, 68% yield; 15:1 dr; mp 176.9–178.6 °C (decomposition); ¹H NMR (300 MHz, CDCl₃) δ 7.91–7.51 (m, 2H), 7.62–7.53 (m, 1H), 7.49 (d, *J* = 2.8 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.35 (s, 2H), 7.11 (d, *J* = 8.0 Hz, 1H), 6.78 (d, *J* = 7.9 Hz, 1H), 4.38 (s, 1H), 3.29 (s, 3H), 2.36 (s, 3H), 1.29 (s, 9H), 1.15 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 192.8, 185.4, 171.9, 150.8, 150.6, 142.1, 137.0, 136.2, 134.1,

133.7, 131.9, 129.0, 128.9, 128.5, 126.7, 122.9, 108.5, 47.7, 45.5, 42.7, 36.0, 35.8, 29.6, 29.3, 27.1, 21.5; HRMS (ESI-TOF) calcd. for $C_{32}H_{35}NNaO_3$ [M + Na]⁺ 504.2509; found: 504.2515.

3t: off-white solid; 26.4 mg, 54% yield; >20:1 dr; mp 173.1–174.7 ℃ (decomposition); ¹H NMR (300 MHz, CDCl₃) δ 7.92–7.83 (m, 2H), 7.63–7.55 (m, 1H), 7.52–7.42 (m, 3H), 7.38 (dd, J = 9.4, 2.5 Hz, 1H), 7.21 (d, J = 2.9 Hz, 1H), 7.07–6.99 (m, 1H), 6.81 (dd, J = 8.6, 4.4 Hz, 1H), 4.41 (s, 1H), 3.30 (s, 3H), 1.29 (s, 9H), 1.14 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 192.6, 185.3, 171.8, 158.9 (d, J = 238.3 Hz, 1C), 151.4, 151.3, 140.5,

137.0, 135.7, 134.2, 132.5, 129.1, 128.6, 124.4 (d, J = 9.0 Hz, 1C), 114.9 (d, J = 23.2 Hz, 1C), 114.3 (d, J = 27.8 Hz, 1C), 109.0 (d, J = 8.2 Hz, 1C), 47.7, 45.3, 43.0, 36.0, 35.8, 29.6, 29.3, 27.2; HRMS (ESI-TOF) calcd. for C₃₁H₃₂FNNaO₃ [M + Na]⁺ 508.2258; found: 508.2253.

3u: off-white solid; 46.8 mg, 86% yield; 20:1 dr; mp 180.0–181.7 \mathbb{C} (decomposition); ¹H NMR (300 MHz, CDCl₃) δ 7.89–7.81 (m, 2H), 7.62–7.54 (m, 1H), 7.49–7.38 (m, 4H), 7.24–7.17 (m, 2H), 7.04 (d, J = 1.9 Hz, 1H), 4.38 (s, 1H), 3.29 (s, 3H), 1.29 (s, 9H), 1.12 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 192.6, 185.2, 171.9, 151.3, 151.2, 145.7, 136.8, 135.6, 134.3, 132.7, 129.0, 128.5, 127.0, 125.2, 122.4, 121.8, 112.3, 47.3,

45.3, 43.0, 36.0, 35.8, 29.5, 29.3, 27.2; HRMS (ESI-TOF) calcd. for $C_{31}H_{32}BrNNaO_3 [M + Na]^+$ 568.1458; found: 568.1456.

3v: pale yellow solid; 10.5 mg, 24% yield; 15:1 dr; mp 137.4–139.2 ℃ (decomposition); ¹H NMR (300 MHz, CDCl₃) δ 7.91–7.81 (m, 2H), 7.62-7.53 (m, 2H), 7.49 (d, *J* = 2.9 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.35–7.27 (m, 2H), 7.08 (t, *J* = 7.7 Hz, 1H), 6.90 (d, *J* = 7.9 Hz, 1H), 4.44 (s, 1H), 3.31 (s, 3H), 3.10 (p, *J* = 6.8 Hz, 1H), 2.99 (p, *J* = 6.8 Hz, 1H), 1.17 (d, *J* = 6.9 Hz, 3H), 1.12 (d, *J* = 6.9 Hz, 3H), 0.96 (d, *J* = 1.8 Hz, 3H), 0.94

(d, J = 1.7 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 192.6, 184.1, 172.0, 149.2, 144.5, 137.0, 136.2, 134.2, 133.4, 129.0, 128.7, 128.6, 126.0, 122.8, 122.5, 108.8, 47.8, 45.6, 42.7, 27.4, 27.3, 27.1, 22.2, 22.1, 22.0, 21.9; HRMS (ESI-TOF) calcd. for C₂₉H₂₉NNaO₃ [M + Na]⁺ 462.2040; found: 462.2030.

4. Procedure for the synthesis of spirocyclopropyl oxindole 5

In ordinary equipped with magnetic stirring an vial а bar, the (cyanomethyl)dimethylsulfonium bromide 4 (0.3 mmol, 3.0 equiv) were added to a solution of isatin-derived p-QMs 1 (0.10 mmol, 1.0 equiv) and K₂CO₃ (0.3 mmol, 3.0 equiv) in CH₂Cl₂ (1.0 mL) at 25 °C. And then, the mixture was stirred at the same temperature for 14 h. Then, the CH₂Cl₂ was evaporated under vacuum at 30 °C and the residues was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = $15/1 \sim 10/1$) to afford the spirocyclopropyl oxindole 5.

5: white solid; 18.2 mg, 47% yield; >20:1 dr; mp 130.1–131.5 \mathbb{C} (decomposition); ¹H NMR (300 MHz, CDCl₃) δ 7.54 (d, J = 7.6 Hz, 1H), 7.41 (t, J = 7.9 Hz, 1H), 7.28 (d, J = 2.9 Hz, 1H), 7.18 (t, J = 7.6 Hz, 1H), 6.99–6.93 (m, 2H), 3.39 (s, 1H), 3.28 (s, 3H), 1.27–1.23 (m, 18H); ¹³C NMR (75 MHz, CDCl₃) δ 185.1, 170.6, 153.0, 151.6, 144.6, 133.4, 131.2, 129.6, 123.9, 123.0, 121.5, 114.4, 109.4, 39.0, 36.2, 35.8, 30.4, 29.4, 29.3, 27.2, 26.7; HRMS

(ESI-TOF) calcd. for $C_{25}H_{28}N_2NaO_2 [M + Na]^+ 411.2043$; found: 411.2038.

5. Procedure for the synthesis of 3-hydroxy oxindole 6

To a solution of **3a** (0.1 mmol, 1.0 equiv) in acetone (2.0 mL) were added *p*-toluenesulfonic acid (TsOH) (0.1 mmol, 1.0 equiv) and H₂O (0.1 mmol, 1.0 equiv) at 25 °C. And then, the mixture was stirred at the same temperature for 2 h. Then H₂O (5 mL) was added and extracted with DCM (5 mL×3). The combined organic layers were washed with brine (10 mL), dried over Na₂SO₄, filtered, and concentrated. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = $8/1 \sim 5/1$) to afford the 3-hydroxy oxindole **6**.

3-(1-(3,5-di*tert***-butyl-4-hydroxyphenyl)-2-oxo-2-phenylethyl)-3-hydroxy-1-methylindolin-2-one (6):** white solid; 30.6 mg, 63% yield; >20:1 dr; mp 157.3–159.1 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.94 (d, J = 7.6 Hz, 2H), 7.48 (t, J = 7.4 Hz, 1H), 7.37 (t, J = 7.6 Hz, 2H), 7.32–7.26 (m, 1H), 7.20 (t, J = 7.7 Hz, 1H), 6.97 (t, J = 7.6 Hz, 1H), 6.83 (s, 2H), 6.56 (d, J = 7.8 Hz, 1H), 5.09 (s, 1H), 4.97 (s, 1H), 4.84 (s, 1H), 2.96 (s, 3H), 1.26 (s, 18H); ¹³C NMR

(75 MHz, CDCl₃) δ 200.7, 176.5, 153.6, 143.6, 137.1, 135.7, 133.3, 129.6, 129.0, 128.6, 128.4, 127.3, 126.8, 123.0, 122.6, 107.8, 79.8, 58.3, 34.3, 30.3, 26.0; HRMS (ESI-TOF) calcd. for $C_{31}H_{35}NNaO_4$ [M + Na]⁺ 508.2458; found: 508.2477.

6. Procedure for the synthesis of oxindole 7

A mixture of **3a** (0.1 mmol) and 10% Pd/C (4.7 mg, 10% w/w) in MeOH (2 mL) was stirred vigorously under an atmosphere of hydrogen at 25 °C for 2 h. Then, the mixture was filtered through a Celite plug and the filter cake was washed by CH_2Cl_2 (10 mL). Next, it was concentrated in vacuum and the residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 5/1) to furnish oxindole **7**.

3-(1-(3,5-di-*tert***-butyl-4-hydroxyphenyl)-2-oxo-2-phenylethyl)-1-methylind olin-2-one (7):** white solid; 41.2 mg, 88% yield; 3:2 dr; mp 155.0–156.6 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.87–7.71 (m, 2H), 7.46–7.36 (m, 1H), 7.35–7.27 (m, 2H), 7.26–7.20 (m, 1H), 6.97 (s, 2H), 6.90–6.76 (m, 2H), 6.26 (d, *J* = 7.4 Hz, 1H), 5.49 (d, *J* = 5.3 Hz, 1H), 5.20 (s, 1H), 3.81 (d, *J* = 5.3 Hz, 1H), 3.23 (s, 3H), 1.36 (s, 18H); ¹³C NMR (75 MHz, CDCl₃) δ 198.7, 176.8, 153.4, 145.1,

136.7, 136.4, 134.7, 132.7, 129.0, 128.4, 127.8, 127.0, 126.3, 124.8, 121.5, 108.0, 55.0, 49.4, 34.6, 30.4, 26.4; HRMS (ESI-TOF) calcd. for $C_{31}H_{35}NNaO_3$ [M + Na]⁺ 492.2509; found: 492.2514.

7. Procedure for the synthesis of oxindole 8

In an oven-dried ordinary vial equipped with a magnetic stirring bar, the thiophenol (0.2 mmol, 2.0 equiv) were added to a solution of compound **3a** (0.10 mmol, 1.0 equiv) and $\text{Zn}(\text{OTf})_2$ (0.01 mmol, 0.1 equiv) in CH₂Cl₂ (1.0 mL) at 25 °C under Ar atmosphere. And then, the mixture was stirred at the same temperature for 2 h. Then, the CH₂Cl₂ was evaporated under vacuum and the residues was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 15/1) to afford the oxindole **8**.

3-(1-(3,5-di-*tert***-butyl-4-hydroxyphenyl)-2-oxo-2-phenylethyl)-1-methyl-3-**(**phenylthio**)**indolin-2-one (8):** white solid; 35.9 mg, 62% yield; >20:1 dr; mp 189.2–190.9 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.55–8.42 (m, 1H), 8.12–7.94 (m, 2H), 7.56–7.45 (m, 1H), 7.44–7.32 (m, 2H), 7.21–7.07 (m, 5H), 7.06–6.96 (m, 2H), 6.83 (s, 2H), 6.32–6.18 (m, 1H), 5.54 (s, 1H), 4.96 (s, 1H), 2.59 (s, 3H), 1.18 (s, 18H); ¹³C NMR (75 MHz, CDCl₃) δ 196.9, 175.1, 153.4,

143.5, 137.5, 136.8, 135.5, 133.0, 130.1, 129.4, 129.2, 129.1, 128.6, 128.5, 128.2, 126.8, 125.4, 123.4, 122.6, 107.1, 63.0, 57.9, 34.2, 30.3, 25.8; HRMS (ESI-TOF) calcd. for $C_{37}H_{39}NNaO_3S$ [M + Na]⁺ 600.2543; found: 600.2529.

8. General procedure for the synthesis of β , β -disubstituted 3-ylideneoxindoles 9

In an ordinary vial equipped with a magnetic stirring bar, the sulfur ylides 2 (0.15 mmol, 1.5 equiv) were added to a solution of isatin-derived *p*-QMs 1 (0.10 mmol, 1.0 equiv) in methanol (1.0 mL) at 25 °C. And then, the mixture was stirred at the same temperature for specified time. After completion of the reaction, as indicated by TLC, the methanol was evaporated under vacuum at 40 °C and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = $8/1 \sim 5/1$) to afford the β , β -disubstituted 3-ylideneoxindoles 9.

(Z)-3-(1-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-oxo-2-phenylethylidene)-1methylindolin-2-one (9a): yellow solid; 45.8 mg, 98% yield; mp 265.6–267.9 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.11–8.00 (m, 2H), 7.58–7.49 (m, 1H), 7.49–7.40 (m, 4H), 7.30–7.23 (m, 2H), 6.89–6.77 (m, 2H), 5.52 (s, 1H), 3.16 (s, 3H), 1.41 (s, 18H); ¹³C NMR (75 MHz, CDCl₃) δ 196.7, 166.9, 155.8, 150.9,

144.8, 136.6, 136.1, 133.2, 129.9, 129.1, 128.8, 125.9, 124.7, 124.5, 123.0, 121.7, 121.2, 108.4, 34.7, 30.3, 26.0; HRMS (ESI-TOF) calcd. for $C_{31}H_{34}NO_3$ [M + H]⁺ 468.2533; found: 468.2526.

(Z)-1-benzyl-3-(1-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-oxo-2-phenylethyli dene)indolin-2-one (9b): yellow solid; 53.2 mg, 98% yield; mp 155.8–157.7 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.18–8.03 (m, 2H), 7.59–7.52 (m, 1H), 7.48 (d, *J* = 7.0 Hz, 4H), 7.31–7.25 (m, 6H), 7.15 (td, *J* = 7.8, 1.2 Hz, 1H), 6.81 (td, *J* = 7.7, 1.1 Hz, 1H), 6.72 (d, *J* = 7.9 Hz, 1H), 5.53 (s, 1H), 4.88 (brs, 2H), 1.42 (s, 18H); ¹³C NMR (75 MHz, CDCl₃) δ 196.7, 166.9, 155.8, 151.2, 143.9,

136.6, 136.1, 136.0, 133.3, 129.8, 129.2, 128.8, 128.7, 127.7, 127.6, 125.9, 124.6, 124.5, 123.1, 121.7, 121.3, 109.4, 43.7, 34.7, 30.4; HRMS (ESI-TOF) calcd. for $C_{37}H_{38}NO_3 [M + H]^+$ 544.2846; found: 544.2859.

(Z)-3-(1-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-oxo-2-phenylethylidene)indo lin-2-one (9c): yellow solid; 43.0 mg, 95% yield; mp 158.4–160.1 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.83 (s, 1H), 8.12–7.98 (m, 2H), 7.58–7.49 (m, 1H), 7.49– 7.39 (m, 4H), 7.20 (d, *J* = 7.8 Hz, 1H), 7.14 (td, *J* = 7.7, 1.0 Hz, 1H), 6.78 (td, *J* = 7.7, 0.9 Hz, 1H), 6.62 (d, *J* = 7.8 Hz, 1H), 5.52 (s, 1H), 1.40 (s, 18H); ¹³C NMR (75 MHz, CDCl₃) δ 196.8, 168.8, 155.8, 150.9, 142.5, 136.6, 136.2,

133.2, 129.9, 129.2, 128.7, 125.9, 125.3, 124.6, 123.2, 121.7, 121.5, 110.5, 34.7, 30.3; HRMS (ESI-TOF) calcd. for $C_{30}H_{31}NNaO_3$ [M + Na]⁺ 476.2196; found: 476.2207.

(Z)-3-(1-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-oxo-2-phenylethylidene)-1,5 -dimethylindolin-2-one (9d): yellow solid; 46.6 mg, 97% yield; mp 247.5– 249.3 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.05 (d, *J* = 7.1 Hz, 2H), 7.57–7.37 (m, 5H), 7.17 (s, 1H), 7.08 (d, *J* = 7.8 Hz, 1H), 6.70 (d, *J* = 7.9 Hz, 1H), 5.52 (s, 1H), 3.13 (s, 3H), 2.21 (s, 3H), 1.41 (s, 18H); ¹³C NMR (75 MHz, CDCl₃) δ 196.8, 167.0, 155.8, 150.5, 142.6, 136.5, 136.2, 133.2, 130.9, 130.3, 129.1,

128.8, 126.1, 124.8, 124.5, 123.9, 121.1, 108.1, 34.7, 30.3, 26.1, 21.2; HRMS (ESI-TOF) calcd. for $C_{32}H_{35}NNaO_3 [M + Na]^+$ 504.2509; found: 504.2512.

(Z)-6-bromo-3-(1-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-oxo-2-phenylethyl idene)-1-methylindolin-2-one (9e): yellow solid; 53.5 mg, 98% yield; mp 249.2–251.1 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.12–7.95 (m, 2H), 7.57–7.50 (m, 1H), 7.49–7.40 (m, 4H), 7.15–7.08 (m, 1H), 7.01–6.91 (d, *J* = 7.6 Hz, 2H), 5.55 (s, 1H), 3.14 (s, 3H), 1.40 (s, 18H); ¹³C NMR (75 MHz, CDCl₃) δ 196.4,

166.7, 156.0, 151.8, 145.8, 136.8, 135.9, 133.4, 129.1, 128.8, 125.9, 124.5, 124.3, 124.0, 123.7, 123.6, 120.1, 111.8, 34.7, 30.3, 26.2; HRMS (ESI-TOF) calcd. for $C_{31}H_{32}BrNNaO_3 [M + Na]^+$ 568.1458; found: 568.1482.

(*Z*)-3-(1-(4-hydroxy-3,5-diisopropylphenyl)-2-oxo-2-phenylethylidene)-1-methylindolin-2-one (9f): yellow solid; 28.9 mg, 66% yield; mp 129.1– 130.7 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.15–7.94 (m, 2H), 7.55–7.46 (m, 1H), 7.46–7.37 (m, 2H), 7.35 (s, 2H), 7.25 (d, *J* = 7.8 Hz, 2H), 6.88–6.73 (m, 2H), 5.26 (s, 1H), 3.30–2.96 (m, 5H), 1.22 (d, *J* = 6.9 Hz, 12H); ¹³C NMR (75 MHz, CDCl₃) δ 196.6, 166.9, 152.0, 150.8, 144.8, 135.9, 134.7,

133.2, 130.0, 129.2, 128.8, 125.5, 124.9, 124.5, 123.2, 121.7, 121.3, 108.3, 27.4, 26.0, 22.8; HRMS (ESI-TOF) calcd. for $C_{29}H_{29}NNaO_3$ [M + Na]⁺ 462.2040; found: 462.2024.

(*Z*)-3-(1-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-(3-methoxyphenyl)-2oxoethylidene)-1-methylindolin-2-one (9g): yellow solid; 48.0 mg, 97% yield; mp 249.6–251.3 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.68–7.54 (m, 2H), 7.46 (s, 2H), 7.38–7.28 (m, 1H), 7.25 (d, *J* = 7.6 Hz, 2H), 7.11– 7.03 (m, 1H), 6.89–6.74 (m, 2H), 5.51 (s, 1H), 3.84 (s, 3H), 3.16 (s, 3H), 1.41 (s, 18H); ¹³C NMR (75 MHz, CDCl₃) δ 196.4, 166.9, 160.0, 155.8,

150.9, 144.8, 137.4, 136.6, 129.9, 129.8, 125.9, 124.8, 124.6, 123.1, 122.2, 121.7, 121.2, 120.3, 112.5, 108.4, 55.5, 34.7, 30.4, 26.0; HRMS (ESI-TOF) calcd. for $C_{32}H_{36}NO_4$ [M + H]⁺ 498.2639; found: 498.2647.

(**Z**)-**3**-(**1**-(**3**,**5**-di-*tert*-butyl-**4**-hydroxyphenyl)-**2**-oxo-**2**-(m-tolyl)ethylide ne)-**1**-methylindolin-**2**-one (**9**h): yellow solid; 45.5 mg, 95% yield; mp 289.1–290.5 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.90 (s, 1H), 7.87–7.78 (m, 1H), 7.46 (s, 2H), 7.39–7.29 (m, 2H), 7.29–7.19 (m, 2H), 6.91–6.75 (m, 2H), 5.50 (s, 1H), 3.16 (s, 3H), 2.38 (s, 3H), 1.41 (s, 18H); ¹³C NMR (75 MHz, CDCl₃) δ 196.8, 166.9, 155.7, 151.2, 144.8, 138.5, 136.6, 136.1,

134.1, 129.9, 129.6, 128.6, 126.6, 125.9, 124.7, 123.1, 121.7, 121.3, 108.3, 34.7, 30.4, 26.0, 21.5; HRMS (ESI-TOF) calcd. for $C_{32}H_{36}NO_3$ [M + H]⁺ 482.2690; found: 482.2698.

(*Z*)-3-(1-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-(4-methoxyphenyl)-2-oxo ethylidene)-1-methylindolin-2-one (9i): yellow solid; 46.0 mg, 93% yield; mp 241.8–243.6 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.01 (d, *J* = 7.5 Hz, 2H), 7.45 (s, 2H), 7.29–7.18 (m, 2H), 6.92 (d, *J* = 7.3 Hz, 2H), 6.87–6.72 (m, 2H), 5.49 (s, 1H), 3.83 (s, 3H), 3.15 (s, 3H), 1.40 (s, 18H); ¹³C NMR (75 MHz, CDCl₃) δ 195.4, 166.9, 163.7, 155.8, 151.3, 144.7, 136.6, 131.4, 129.8, 129.3, 125.9, 124.9, 124.4, 123.0, 121.6, 121.3, 114.1, 108.3, 55.6, 34.7,

30.4, 26.0; HRMS (ESI-TOF) calcd. for $C_{32}H_{35}NNaO_4$ [M + Na]⁺ 520.2458; found: 520.2475.

(*Z*)-3-(1-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-oxo-2-(p-tolyl)ethylidene)-1-methylindolin-2-one (9j): yellow solid; 44.0 mg, 92% yield; mp 291.8– 293.0 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.96 (d, *J* = 8.2 Hz, 2H), 7.47 (s, 2H), 7.33–7.18 (m, 4H), 6.92–6.74 (m, 2H), 5.50 (s, 1H), 3.16 (s, 3H), 2.38 (s, 3H), 1.41 (s, 18H); ¹³C NMR (75 MHz, CDCl₃) δ 196.3, 166.9, 155.8, 151.2, 144.8, 144.0, 136.6, 133.7, 129.8, 129.5, 129.2, 125.9, 124.7, 124.5, 123.0, 121.6, 121.3, 108.3, 34.7, 30.4, 26.0, 21.9; HRMS (ESI-TOF) calcd.

for $C_{32}H_{35}NNaO_3 [M + Na]^+$ 504.2509; found: 504.2511.

(Z)-3-(1-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-(4-fluorophenyl)-2-oxoethy lidene)-1-methylindolin-2-one (9k): yellow solid; 41.7 mg, 86% yield; mp 298.7–300.2 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.07 (dd, J = 8.7, 5.6 Hz, 2H), 7.45 (s, 2H), 7.32–7.22 (m, 2H), 7.11 (t, J = 8.6 Hz, 2H), 6.92–6.74 (m, 2H), 5.53 (s, 1H), 3.16 (s, 3H), 1.41 (s, 18H); ¹³C NMR (75 MHz, CDCl₃) δ 195.2, 167.5, 165.5 (d, J = 205.4 Hz, 1C), 155.9, 150.4, 144.8, 136.7, 132.7 (d, J = 2.2 Hz, 1C), 131.7 (d, J = 9.0 Hz, 1C), 130.0, 125.9, 124.8, 124.4, 123.1,

121.8, 121.1, 116.0 (d, J = 22.5 Hz, 1C), 108.4, 34.7, 30.3, 26.0; HRMS (ESI-TOF) calcd. for $C_{31}H_{32}FNNaO_3 [M + Na]^+$ 508.2258; found: 508.2269.

(Z)-3-(2-(4-chlorophenyl)-1-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-oxoeth ylidene)-1-methylindolin-2-one (9l): yellow solid; 44.2 mg, 88% yield; mp 281.9–283.5 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.98 (d, J = 8.6 Hz, 2H), 7.50–7.35 (m, 4H), 7.32–7.22 (m, 2H), 6.84 (q, J = 7.8 Hz, 2H), 5.54 (s, 1H), 3.16 (s, 3H), 1.41 (s, 18H); ¹³C NMR (75 MHz, CDCl₃) δ 195.5, 166.9, 156.0, 150.2, 144.9, 139.6, 136.8, 134.6, 130.4, 130.1, 129.2, 125.9, 124.9, 124.3, 123.1, 121.8, 121.1, 108.5, 34.7, 30.4, 26.0; HRMS (ESI-TOF) calcd. for

 $C_{31}H_{32}CINNaO_3 [M + Na]^+ 524.1963$; found: 524.1986.

(*Z*)-3-(2-(4-bromophenyl)-1-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-oxoethy lidene)-1-methylindolin-2-one (9m): yellow solid; 55.0 mg, 99% yield; mp 275.3–276.7 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.90 (d, *J* = 8.2 Hz, 2H), 7.57 (d, *J* = 8.2 Hz, 2H), 7.44 (s, 2H), 7.33–7.21 (m, 2H), 6.84 (q, *J* = 7.8 Hz, 2H), 5.54 (s, 1H), 3.16 (s, 3H), 1.41 (s, 18H); ¹³C NMR (75 MHz, CDCl₃) δ 195.7, 166.9, 156.0, 150.1, 144.8, 136.8, 135.0, 132.2, 130.5, 130.1, 128.4, 125.9, 124.9, 124.2, 123.1, 121.8, 121.0, 108.5, 34.7, 30.4, 26.1; HRMS (ESI-TOF)

calcd. for $C_{31}H_{32}BrNNaO_3 [M + Na]^+$ 568.1458; found: 568.1464.

(Z)-4-(2-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-(1-methyl-2-oxoindolin-3-y lidene)acetyl)benzonitrile (9n): yellow solid; 46.0 mg, 94% yield; mp 195.3–197.1 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.11 (d, J = 8.3 Hz, 2H), 7.73 (d, J = 8.3 Hz, 2H), 7.44 (s, 2H), 7.30 (d, J = 7.7 Hz, 2H), 6.93–6.77 (m, 2H), 5.57 (s, 1H), 3.15 (s, 3H), 1.41 (s, 18H); ¹³C NMR (75 MHz, CDCl₃) δ 195.3, 167.0, 156.2, 149.2, 145.0, 139.2, 137.0, 132.7, 130.4, 129.3, 126.0, 125.4,

123.6, 123.1, 122.0, 120.8, 118.3, 116.2, 108.6, 34.7, 30.3, 26.1; HRMS (ESI-TOF) calcd. for $C_{32}H_{32}N_2NaO_3$ [M + Na]⁺ 515.2305; found: 515.2321.

(*Z*)-3-(1-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-(naphthalen-2-yl)-2-oxo ethylidene)-1-methylindolin-2-one (90): yellow solid; 45.4 mg, 88% yield; mp 284.6–285.9 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.51 (s, 1H), 8.18 (d, *J* = 8.5 Hz, 1H), 7.98–7.77 (m, 3H), 7.61–7.43 (m, 4H), 7.38–7.23 (m, 2H), 6.94–6.75 (m, 2H), 5.51 (s, 1H), 3.15 (s, 3H), 1.41 (s, 18H); ¹³C NMR (75 MHz, CDCl₃) δ 196.7, 166.9, 155.8, 151.1, 144.9, 136.7, 135.9, 133.7, 132.8, 131.2, 130.0, 129.8, 128.8, 128.4, 127.9, 126.6, 126.0, 124.8,

124.7, 124.5, 123.1, 121.7, 121.3, 108.4, 34.7, 30.4, 26.0; HRMS (ESI-TOF) calcd. for $C_{35}H_{35}NNaO_3$ [M + Na]⁺ 540.2509; found: 540.2511.

(Z)-3-(1-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-(furan-2-yl)-2-oxoethyliden e)-1-methylindolin-2-one (9p): yellow solid; 43.3 mg, 95% yield; mp 278.4– 279.9 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.61–7.54 (m, 1H), 7.42 (s, 2H), 7.30–7.21 (m, 1H), 7.20–7.11 (m, 2H), 6.86–6.75 (m, 2H), 6.51 (dd, J = 3.6, 1.7 Hz, 1H), 5.51 (s, 1H), 3.17 (s, 3H), 1.41 (s, 18H); ¹³C NMR (75 MHz, CDCl₃) δ 184.7, 166.9, 155.8, 152.5, 148.9, 146.8, 144.8, 136.6, 130.1, 125.9,

125.4, 124.5, 123.2, 121.7, 121.2, 118.3, 112.5, 108.4, 34.7, 30.4, 26.0; HRMS (ESI-TOF) calcd. for $C_{29}H_{31}NNaO_4 \ [M + Na]^+ 480.2145$; found: 480.2152.

(Z)-3-(1-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-oxo-2-(thiophen-2-yl)ethyl idene)-1-methylindolin-2-one (9q): yellow solid; 43.0 mg, 94% yield; mp 306.5–308.1 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.65 (dd, J = 11.9, 4.3 Hz, 2H), 7.46 (s, 2H), 7.32–7.23 (m, 1H), 7.20 (d, J = 7.6 Hz, 1H), 7.07 (t, J = 4.3 Hz, 1H), 6.88–6.74 (m, 2H), 5.52 (s, 1H), 3.17 (s, 3H), 1.42 (s, 18H); ¹³C NMR (75 MHz, CDCl₃) δ 189.0, 166.7, 155.8, 149.9, 144.8, 143.7, 136.7,

133.9, 133.3, 130.1, 128.2, 125.9, 124.8, 124.7, 123.2, 121.7, 121.2, 108.4, 34.7, 30.4, 26.0; HRMS (ESI-TOF) calcd. for $C_{29}H_{31}NNaO_3S$ [M + Na]⁺ 496.1917; found: 496.1918.

9. Control experiments

In an ordinary vial equipped with a magnetic stirring bar, the sulfur ylides **2h** (0.12 mmol, 1.2 equiv) were added to a solution of isatin-derived *p*-QMs **1a** (0.10 mmol, 1.0 equiv) in ethyl acetate (1.0 mL) at 25 °C. And the mixture was stirred at the same temperature for 15 h. Then, the reaction mixture was filtered and the cake was washed with cold ethyl acetate (2 mL) to give the zwitterionic intermediate **10** as white solid. Next, suspending intermediate 9 in fresh ethyl acetate (0.5 mL) at 25 °C continued to stir for 144 h. Then, the ethyl acetate was evaporated under vacuum at 30 °C and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = $15/1 \sim 10/1$) to afford the spirocyclopropyl oxindole **3h**.

4-(3-(2-(4-bromophenyl)-1-(dimethylsulfonio)-2-oxoethyl)-1-methy 1-2-oxoindolin-3-yl)-2,6-di*tert*-butylphenolate (10): white solid; 46.8 mg, 77% yield; mp 170.2–171.5 °C (decomposition); ¹H NMR (300 MHz, CDCl₃) δ 7.27 (d, J = 4.2 Hz, 2H), 7.21–7.09 (m, 2H), 7.04 (d, J = 8.6 Hz, 2H), 6.97 (t, J = 7.5 Hz, 1H), 6.61 (d, J = 7.9 Hz, 2H), 6.49 (d, J = 7.8 Hz, 1H), 5.17 (s, 1H), 3.07 (s, 3H), 3.04 (s, 3H), 2.76

(s, 3H), 1.36 (s, 18H); ¹³C NMR (75 MHz, CDCl₃) δ 184.8, 179.0, 153.2, 142.7, 142.5, 135.8, 135.4, 132.2, 129.9, 128.6, 127.7, 125.0, 124.8, 122.2, 121.2, 108.4, 75.1, 59.4, 34.7, 30.4, 27.2, 26.9, 26.2; HRMS (ESI-TOF) calcd. for C₃₃H₃₈BrNO₃S [M + H]⁺ 608.1829; found: 608.1834.

Without SMe₂: In an ordinary vial equipped with a magnetic stirring bar, the compound **3a** (0.05 mmol) were suspended in methanol (0.5 mL) at 25 °C. And the mixture was stirred at the same temperature for 22 h. Monitored by ¹H-NMR showed that the transformation was every slow and only 4 percent of **3a** was converted into **9a**.

With SMe₂: In an ordinary vial equipped with a magnetic stirring bar, SMe₂ (0.1 mmol, 2.0 equiv) was added to a solution of compound **3a** (0.05 mmol, 1.0 equiv) in methanol (0.5 mL) at 25 °C. And the mixture was stirred at the same temperature for 22 h. Monitored by ¹H-NMR showed that 91 percent of **3a** was transformed into **9a**.

$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	tBu tBu Me
Identification code	3 a
Empirical formula	$C_{31}H_{33}NO_3$
Formula weight	467.58
Temperature/K	290(2)
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	10.00370(10)
b/Å	20.2706(2)
c/Å	13.21220(10)
α/°	90
β/°	92.2310(10)
γ/°	90
Volume/Å ³	2677.15(4)
Z	4
$\rho_{calc}g/cm^3$	1.160
μ/mm^{-1}	0.582
F(000)	1000.0

10. X-ray crystal data for compound 3a and 9a

Crystal size/mm ³	0.290 × 0.270 × 0.230
Radiation	$CuK\alpha (\lambda = 1.54184)$
2\Overlap range for data collection/°	7.992 to 142.428
Index ranges	$-8 \le h \le 12, -19 \le k \le 24, -15 \le l \le 16$
Reflections collected	10760
Independent reflections	5046 [$R_{int} = 0.0209, R_{sigma} = 0.0243$]
Data/restraints/parameters	5046/7/324
Goodness-of-fit on F ²	1.053
Final R indexes [I>=2σ (I)]	$R_1 = 0.0585, wR_2 = 0.1632$
Final R indexes [all data]	$R_1 = 0.0633, wR_2 = 0.1690$
Largest diff. peak/hole / e Å ⁻³	0.62/-0.37
	Ι
AAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	HO ^t Bu O N Me
Identification code	9a
Empirical formula	C ₃₁ H ₃₃ NO ₃
Formula weight	467.58
Temperature/K	100(2)
Wavelength/Å	1.54178
Crystal system	Triclinic
Space group	P-1
a/Å	9.4791(2)
b/Å	9.7988(2)
c/Å	15.5180(4)
α/°	83.6440(10)
β/°	83.3400(10)
γ/°	62.8550(10)
Volume/Å ³	1271.23(5)
Z	2
Density (calculated)/Mg/cm ³	1.222
μ/mm^{-1}	0.613
F(000)	500.0

Crystal size/mm ³	$0.360 \times 0.290 \times 0.260$
2\Theta range for data collection/°	2.87 to 72.33
Index ranges	-11<=h<=10, -12<=k<=12, -19<=l<=19
Reflections collected	22434
Independent reflections	4956 [R(int) = 0.0279]
Completeness to theta = 72.33°	98.5 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.86 and 0.76
Refinement method	Full-matrix least-squares on F ²
Data/restraints/parameters	4956/0/325
Goodness-of-fit on F ²	1.044
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0389, wR_2 = 0.0931$
Final R indexes [all data]	$R_1 = 0.0403, wR_2 = 0.0940$
Largest diff. peak/hole / e Å ⁻³	0.284/-0.211

11. The copies of ¹H NMR and ¹³C NMR spectra for compounds 1i, 3, 5, 6, 7, 8, 9 and 10

S16

S25

S42

¹H NMR and ¹³C NMR spectra of **9**q

