Divergent synthesis of oxindole derivatives via controllable reactionof isatin-derived para-quinone methides with sulfur ylidesYong You, ${ }^{\text {a }}$ Bao-Xue Quan, ${ }^{\text {b }}$ Zhen-Hua Wang, ${ }^{\text {a }}$ Jian-Qiang Zhao, ${ }^{\text {a }}$ and Wei-Cheng Yuan*a, ${ }^{\text {b }}$
${ }^{a}$ Institute for Advanced Study, Chengdu University, Chengdu 610106, China
${ }^{b}$ Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
youyong@cdu.edu.cn, yuanwc@cioc.ac.cn
Supporting Information
Table of Contents

1. General informations S1
2. General procedure for the synthesis of isatin-derived $p-\mathrm{QMs} \mathbf{1}$ S1
3. General procedure for the synthesis of spirocyclopropyl oxindoles $\mathbf{3}$ S1
4. Procedure for the synthesis of spirocyclopropyl oxindole 5 S6
5. Procedure for the synthesis of 3-hydroxy oxindole 6. S6
6. Procedure for the synthesis of oxindole 7 S7
7. Procedure for the synthesis of oxindole 8 S7
8. General procedure for the synthesis of β, β-disubstituted 3 -ylideneoxindoles 9 S7
9. Control experiments S11
10. X-ray crystal data for compound $\mathbf{3 a}$ and $\mathbf{9 a}$ S12
11. The copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for compounds $\mathbf{1 i}, \mathbf{3}, \mathbf{5}, \mathbf{6}, \mathbf{7}, \mathbf{8}, 9$ and 10 S15

1. General Information

Reagents were purchased from commercial sources and were used as received unless mentioned otherwise. Reactions were monitored by TLC. ${ }^{1} \mathrm{H}$ NMR (300 MHz) and ${ }^{13} \mathrm{C}$ NMR (75 MHz) spectra were recorded in $\mathrm{CDCl}_{3} .{ }^{1} \mathrm{H}$ NMR chemical shifts are reported in ppm relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard (CDCl_{3} at 7.26 ppm). Data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{br} \mathrm{s}=$ broad singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet $)$, coupling constants (Hz) and integration. ${ }^{13} \mathrm{C}$ NMR chemical shifts are reported in ppm from tetramethylsilane (TMS) with the solvent resonance as the internal standard (CDCl_{3} at 77.16 ppm$)$. HRMS was recorded on Bruker Q TOF. Melting points were recorded on a Büchi Melting Point B-545.

2. General procedure for the synthesis of isatin-derived \boldsymbol{p}-QMs 1

$+$

Isatin-derived p-QMs $\mathbf{1}$ were prepared according to the reference ${ }^{1}$, isatins (10 mmol) and substituted phenols (10 mmol) were dissolved in toluene (20 mL). Piperidine (20 mmol) was added slowly over 1 h to the mixture at the reflux temperature. Then the mixture continued to reflux for 3 h . After cooling just below the boiling point of toluene, acetic anhydride (20 mmol) was added in one portion, and then the solution was stirred for another 15 min . After cooling to room temperature, the mixture was diluted by EtOAc (30 mL), washed with water (20 mL) and brine (20 mL) sequentially. After that, the resulting product was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated by rotary evaporators. The residues were purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=15 / 1$) to afford the p-QMs $\mathbf{1}$ as red to reddish black solid.

3-(3,5-diisopropyl-4-oxocyclohexa-2,5-dien-1-ylidene)-1-methylindolin-2-one (ii): reddish black solid, 3% yield, $\mathrm{mp} 136.5-138.3^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 9.07(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.33(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.28-3.12(\mathrm{~m}, 5 \mathrm{H}), 1.21(\mathrm{t}, J=6.6 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 185.7, 168.1, 150.3, 149.0, 145.1, 137.8, 131.5, 129.3, 128.5, 127.8, 126.4, 122.7, 116.5, 108.8, 27.5, 27.4, 26.0, 22.3, 22.2; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$ 344.1621; found: 344.1613.

3. General procedure for the synthesis of spirocyclopropyl oxindoles 3

In an ordinary vial equipped with a magnetic stirring bar, the sulfur ylides $\mathbf{2}(0.12 \mathrm{mmol}, 1.2$ equiv) were added to a solution of isatin-derived p - $\mathrm{QMs} \mathbf{1}(0.10 \mathrm{mmol}, 1.0$ equiv) in ethyl acetate $(1.0 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$. And then, the mixture was stirred at the same temperature for specified time. After completion of the reaction, as indicated by TLC, the ethyl acetate was evaporated under vacuum at $30{ }^{\circ} \mathrm{C}$ and the residue was purified by flash chromatography on silica gel (petroleum
ether/ethyl acetate $=15 / 1 \sim 10 / 1)$ to afford the spirocyclopropyl oxindoles 3.

3a: off-white solid; $42.5 \mathrm{mg}, 91 \%$ yield; $16: 1 \mathrm{dr} ; \mathrm{mp} 188.9-190.5^{\circ} \mathrm{C}$ (decomposition); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.58-$ 7.48 (m, 3H), $7.43(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~s}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H})$, 1.14 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.6,185.4,172.0,151.0$, $150.8,144.4,137.0,136.1,134.1,133.4,129.0,128.6,128.5,125.8,122.9$, $122.5,108.8,47.5,45.4,42.8,36.0,35.8,29.6,29.3,27.1$; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 490.2353$; found: 490.2346 .

3b: off-white solid; 48.0 mg , 97% yield; $15: 1 \mathrm{dr} ; \mathrm{mp} 160.2-161.9^{\circ} \mathrm{C}$ (decomposition); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55-7.46(\mathrm{~m}, 2 \mathrm{H})$, 7.46-7.40 (m, 1H), 7.39-7.32 (m, 2H), 7.32-7.27 (m, 1H), $7.24(\mathrm{~d}, J=2.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.14-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}$, $3 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}), 1.13(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.4,185.4,172.0,160.0,151.0,150.8,144.4,138.2,136.2,133.5$, $130.0,128.6,125.8,122.8,122.4,121.2,121.1,112.3,108.8,55.5,47.4,45.6,42.8,36.0,35.8$, 29.5, 29.3, 27.1; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 520.2458$; found: 520.2450 .

3c: off-white solid; $47.1 \mathrm{mg}, 98 \%$ yield; $20: 1 \mathrm{dr} ; \mathrm{mp} 166.5-168.0^{\circ} \mathrm{C}$ (decomposition); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.61(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.27$ $(\mathrm{m}, 3 \mathrm{H}), 7.22(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.34(\mathrm{~s}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}), 1.11(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.6,185.4,172.0,151.0,150.8,144.4,138.8$, $136.9,136.2,134.9,133.6,129.2,128.9,128.6,125.9,125.7,122.9,122.4,108.8,47.3,45.5,42.8$, $35.9,35.8,29.6,29.3,27.1,21.4$; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 504.2509$; found: 504.2490.

3d: off-white solid; $47.7 \mathrm{mg}, 96 \%$ yield; $18: 1 \mathrm{dr}$; mp 190.2-193.5 ${ }^{\circ} \mathrm{C}$ (decomposition); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.55-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, 6.89 (d, $J=8.9 \mathrm{~Hz}, 3 \mathrm{H}), 4.34(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 1.29$ ($\mathrm{s}, 9 \mathrm{H}$), $1.14(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.8,185.4$, $172.1,164.3,150.8,150.5,144.4,136.3,133.9,131.0,130.0,128.5$, 125.7, 123.0, 122.4, 114.1, 108.8, 55.7, 47.4, 45.4, 42.7, 35.9, 35.8, 29.6, 29.3, 27.1; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 520.2458$; found: 520.2455 .

3e: off-white solid; $48.3 \mathrm{mg}, 99 \%$ yield; $19: 1 \mathrm{dr}$; mp $149.4-151.1^{\circ} \mathrm{C}$ (decomposition); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, 2H), 7.56-7.47 (m, 2H), 7.35-7.27 (m, 2H), 7.22 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, 7.07 (t, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~s}, 1 \mathrm{H}), 3.30(\mathrm{~s}$, $3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}), 1.14(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) $\delta 192.1,185.4,172.1,150.9,150.7,145.2,144.4,136.2,134.6$, 133.6, 129.7, 128.7, 128.5, 125.8, 123.0, 122.4, 108.8, 47.5, 45.5, 42.8, 36.0, 35.8, 29.6, 29.3, 27.1, 21.8; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 504.2509$; found: 504.2489.

3f: off-white solid; $39.9 \mathrm{mg}, 82 \%$ yield; $16: 1 \mathrm{dr}$; mp $152.5-154.3^{\circ} \mathrm{C}$ (decomposition); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96-7.83(\mathrm{~m}, 2 \mathrm{H})$, 7.54-7.45 (m, 2H), 7.35-7.27 (m, 2H), 7.15-7.03 (m, 3H), 6.91 (d, $J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~s}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}), 1.14(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.0,185.3,172.0,166.4(\mathrm{~d}, J=255.4 \mathrm{~Hz}$, 1C), $151.1,150.9,144.4,135.9,133.2,131.3$ (d, $J=9.5 \mathrm{~Hz}, 1 \mathrm{C}), 128.7$, 125.7, 122.7, 122.5, 122.2 (d, $J=20.3 \mathrm{~Hz}, 1 \mathrm{C}), 116.2$ (d, $J=22.5 \mathrm{~Hz}, 1 \mathrm{C}), 108.9,47.4,45.3,42.7$, 36.0, 35.8, 29.6, 29.3, 27.1; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{FNNaO}_{3}\left[\mathrm{M}+\mathrm{Na}^{+} 508.2258\right.$; found: 508.2271.

3g: off-white solid; 46.0 mg , 92% yield; $16: 1 \mathrm{dr}$; mp $136.5-138.3^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84-7.76$ (m, 2H), 7.53-7.45 (m, 2H), 7.41 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~s}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.5,185.3,171.9,151.0,150.9,144.4,140.8$, $135.9,135.3,133.1,129.9,129.4,128.7,125.7,122.7,122.5,108.9,47.5$, 45.2, 42.7, 36.0, 35.8, 29.6, 29.3, 27.1; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{ClNNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$ 524.1963; found: 524.1953.

3h: off-white solid; $47.8 \mathrm{mg}, 82 \%$ yield; $16: 1 \mathrm{dr} ; \mathrm{mp} 147.6-149.4^{\circ} \mathrm{C}$ (decomposition); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $87.72(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.61-7.56 (m, 2H), 7.52-7.45 (m, 2H), 7.36-7.28 (m, 2H), 7.11-7.04 (m, $1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}), 1.15$ $(\mathrm{s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.7,185.3,171.9,151.1,151.0$, $144.4,135.9,135.7,133.1,132.36,130.0,129.6,128.7,125.7,122.6$, $122.5,109.0,47.5,45.2,42.7,35.8,30.4,29.6,29.4,27.1$; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{BrNNaO}_{3}\left[\mathrm{M}+\mathrm{Na}^{+} 568.1458\right.$; found: 568.1439.

3i: off-white solid; $34.4 \mathrm{mg}, 70 \%$ yield; $14: 1 \mathrm{dr}$; mp $164.1-165.7^{\circ} \mathrm{C}$ (decomposition); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, 2 H), 7.75 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.53 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.48 (d, $J=2.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.7,185.2,171.7,151.3,144.4,139.8$, 135.5, 132.8, 132.5, 128.9, 128.8, 125.6, 122.6, 122.4, 117.7, 117.3, 109.1, 47.6, 45.2, 42.7, 36.0, 35.8, 29.5, 29.3, 27.2; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 515.2305$; found: 515.2299.

3j: off-white solid; $48.9 \mathrm{mg}, 95 \%$ yield; $19: 1 \mathrm{dr} ; \mathrm{mp} 164.8-166.5^{\circ} \mathrm{C}$ (decomposition); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.31(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.96 (dd, $J=8.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.65-7.50(\mathrm{~m}, 4 \mathrm{H})$, $7.36-7.27$ (m, 2H), 7.09 (t, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.91$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.51$ $(\mathrm{s}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) $\delta 192.4,185.4,172.1,151.0,150.8,144.4,136.2,136.0,134.2$, $133.6,132.5,131.0,129.8,129.2,128.9,128.6,127.9,127.2,125.9,123.6,122.9,122.5,108.9$, 47.4, 45.5, 42.9, 35.9, 35.8, 29.6, 29.3, 27.1; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{35} \mathrm{H}_{35} \mathrm{NNaO}_{3}[\mathrm{M}+$

3k: off-white solid; $39.7 \mathrm{mg}, 87 \%$ yield; $>20: 1 \mathrm{dr} ; \mathrm{mp} 166.0-167.9^{\circ} \mathrm{C}$ (decomposition); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.69(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.34-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.55$ (dd, $J=3.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~s}, 1 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 9 \mathrm{H}), 1.22(\mathrm{~s}$, 9H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 185.6,181.2,172.0,152.9,150.7,150.4$, 147.6, 144.4, 136.3, 132.8, 128.6, 126.4, 122.8, 122.6, 118.9, 113.0, 108.7, 48.0, 44.6, 42.7, 36.1, 35.7, 29.5, 29.4, 27.1; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 480.2145$; found: 480.2137 .

31: off-white solid; $42.7 \mathrm{mg}, 91 \%$ yield; $>20: 1 \mathrm{dr} ; \mathrm{mp} 148.5-150.2{ }^{\circ} \mathrm{C}$ (decomposition); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75-7.64(\mathrm{~m}, 3 \mathrm{H}), 7.52(\mathrm{~d}$, $J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{td}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.14-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~s}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 1.28$ (s, 9H), $1.19(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 185.5,185.2,172.0$, $150.7,150.6,144.5,144.4,136.1,135.5,133.5,133.1,128.6,126.1,122.8$, 122.6, 108.8, 47.8, 45.6, 42.7, 36.0, 35.7, 29.5, 29.4, 27.1; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{NNaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 496.1917$; found: 496.1910 .

3m: off-white solid; 30.9 mg , 69% yield; $>20: 1 \mathrm{dr} ; \mathrm{mp} 168.8-170.5^{\circ} \mathrm{C}$
 (decomposition); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.38 (s, 2H), 7.31 (td, $J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{td}, J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.89(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H})$, $1.11(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 208.9,185.4,172.0,150.7,150.6$, 144.3, 136.3, 133.1, 128.6, 126.4, 123.0, 122.5, 108.7, 47.7, 45.5, 44.5, 42.6, $36.0,35.7,29.5,29.5,27.0,26.1$; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 470.2666$; found: 470.2667 .

3n: off-white solid; 29.6 mg , 68% yield; $>20: 1 \mathrm{dr} ; \mathrm{mp} 164.3-165.7{ }^{\circ} \mathrm{C}$ (decomposition); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.62(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{~s}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 1.31-$ $1.24(\mathrm{~m}, 12 \mathrm{H}), 1.24(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 185.6, 171.9, $167.3,150.8,150.3,144.6,136.4,132.6,128.6,126.1,122.8,122.5,108.7$, $61.9,46.4,42.3,40.9,36.1,35.7,29.5,27.0,14.3$; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{NNaO}_{4}[\mathrm{M}$ $+\mathrm{Na}]^{+} 458.2302$; found: 458.2300 .

3o: off-white solid; $51.8 \mathrm{mg}, 99 \%$ yield; $>20: 1 \mathrm{dr}$; mp 202.1-203.8 ${ }^{\circ} \mathrm{C}$ (decomposition); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.62-$ $7.49(\mathrm{~m}, 3 \mathrm{H}), 7.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.01(\mathrm{~m}$, $1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.35-$ $1.23(\mathrm{~m}, 12 \mathrm{H}), 1.13(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.7,185.4$, 171.6, 151.0, 150.8, 143.5, 137.0, 136.2, 134.1, 133.4, 129.0, 128.5, 126.0, 123.0, 122.2, 108.9, 47.5, 45.4, 42.8, 36.0, 35.8, 35.7, 29.6, 29.3, 12.9; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 504.2509$; found: 504.2505.

3p: off-white solid; $42.9 \mathrm{mg}, 88 \%$ yield; $12: 1 \mathrm{dr} ; \mathrm{mp} 163.4-165.2{ }^{\circ} \mathrm{C}$ (decomposition); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.62-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-$ $7.27(\mathrm{~m}, 6 \mathrm{H}), 7.18(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~s}$, $1 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}), 1.14(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.6,185.3$, $172.3,151.2,150.9,143.5,136.9,136.0,135.7,134.2,133.3,129.0,128.8,128.5,128.4,128.0$, $127.4,125.8,122.9,122.5,109.6,47.6,45.6,44.6,43.0,36.0,35.8,29.6,29.3$; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{37} \mathrm{H}_{38} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 544.2846$; found: 544.2841.

3q: off-white solid; $27.1 \mathrm{mg}, 60 \%$ yield; $15: 1 \mathrm{dr} ; \mathrm{mp} 190.7-192.3^{\circ} \mathrm{C}$ (decomposition); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.87(\mathrm{~s}, 1 \mathrm{H}), 7.94-7.82$ $(\mathrm{m}, 2 \mathrm{H}), 7.62-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.30(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.26-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~s}$, $1 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}), 1.14(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.5$, $185.3,174.2,151.1,151.0,141.5,136.9,135.8,134.2,133.3,129.0$, 128.6, 128.5, 126.1, 123.3, 122.6, 110.6, 47.9, 45.4, 43.0, 36.0, 35.8, 29.6, 29.3; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 454.2377$; found: 454.2365.

3r: off-white solid; $47.5 \mathrm{mg}, 93 \%$ yield; $9: 1 \mathrm{dr} ; \mathrm{mp} 159.1-160.7{ }^{\circ} \mathrm{C}$ (decomposition); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.89-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.33$ $(\mathrm{d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{~s}, 1 \mathrm{H})$, $4.05(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}), 1.12(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.9$, 185.0, 170.4, 151.7, 151.3, 151.2, 140.1, 136.6, 134.8, 134.4, 132.8, 129.1, 129.0, 128.6, 125.0, 124.6, 122.0, 115.4, 54.3, 47.8, 45.7, 44.0, 36.0, 35.8, 29.6, 29.3; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{NNaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+} 534.2251$; found: 534.2252.

3s: off-white solid; $32.5 \mathrm{mg}, 68 \%$ yield; $15: 1 \mathrm{dr} ; \mathrm{mp} 176.9-178.6^{\circ} \mathrm{C}$ (decomposition); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.62-$ $7.53(\mathrm{~m}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~s}$, $2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~s}, 1 \mathrm{H}), 3.29$ ($\mathrm{s}, 3 \mathrm{H}$), $2.36(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 192.8,185.4,171.9,150.8,150.6,142.1,137.0,136.2,134.1$, 133.7, 131.9, 129.0, 128.9, 128.5, 126.7, 122.9, 108.5, 47.7, 45.5, 42.7, 36.0, 35.8, 29.6, 29.3, 27.1, 21.5; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 504.2509$; found: 504.2515.

3t: off-white solid; $26.4 \mathrm{mg}, 54 \%$ yield; $>20: 1 \mathrm{dr} ; \mathrm{mp} 173.1-174.7^{\circ} \mathrm{C}$ (decomposition); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.63-$ $7.55(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{dd}, J=9.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J$ $=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=8.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~s}$, $1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}), 1.14(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 192.6, 185.3, 171.8, 158.9 (d, $J=238.3 \mathrm{~Hz}, 1 \mathrm{C}$), 151.4, 151.3, 140.5, $137.0,135.7,134.2,132.5,129.1,128.6,124.4(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{C}), 114.9(\mathrm{~d}, J=23.2 \mathrm{~Hz}, 1 \mathrm{C})$, 114.3 (d, $J=27.8 \mathrm{~Hz}, 1 \mathrm{C}), 109.0(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{C}), 47.7,45.3,43.0,36.0,35.8,29.6,29.3,27.2$; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{FNNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 508.2258$; found: 508.2253.

3u: off-white solid; $46.8 \mathrm{mg}, 86 \%$ yield; $20: 1 \mathrm{dr} ; \mathrm{mp} 180.0-181.7^{\circ} \mathrm{C}$ (decomposition); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89-7.81(\mathrm{~m}, 2 \mathrm{H})$, $7.62-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=$ $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~s}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}), 1.12(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.6,185.2,171.9,151.3,151.2,145.7,136.8$, $135.6,134.3,132.7,129.0,128.5,127.0,125.2,122.4,121.8,112.3,47.3$, 45.3, 43.0, 36.0, 35.8, 29.5, 29.3, 27.2; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{BrNNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$ 568.1458; found: 568.1456.

3v: pale yellow solid; $10.5 \mathrm{mg}, 24 \%$ yield; $15: 1 \mathrm{dr} ; \mathrm{mp} 137.4-139.2{ }^{\circ} \mathrm{C}$ (decomposition); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91-7.81(\mathrm{~m}, 2 \mathrm{H})$, $7.62-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-$ $7.27(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~s}$, $1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{p}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{p}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.17$ $(\mathrm{d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.94$ $(\mathrm{d}, J=1.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 192.6,184.1,172.0,149.2,144.5,137.0,136.2$, $134.2,133.4,129.0,128.7,128.6,126.0,122.8,122.5,108.8,47.8,45.6,42.7,27.4,27.3,27.1$, 22.2, 22.1, 22.0, 21.9; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 462.2040$; found: 462.2030 .

4. Procedure for the synthesis of spirocyclopropyl oxindole 5

In an ordinary vial equipped with a magnetic stirring bar, the (cyanomethyl)dimethylsulfonium bromide $\mathbf{4}(0.3 \mathrm{mmol}, 3.0$ equiv) were added to a solution of isatin-derived p-QMs $\mathbf{1}\left(0.10 \mathrm{mmol}, 1.0\right.$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}\left(0.3 \mathrm{mmol}, 3.0\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0$ mL) at $25{ }^{\circ} \mathrm{C}$. And then, the mixture was stirred at the same temperature for 14 h . Then, the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was evaporated under vacuum at $30{ }^{\circ} \mathrm{C}$ and the residues was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=15 / 1 \sim 10 / 1$) to afford the spirocyclopropyl oxindole 5.

5: white solid; $18.2 \mathrm{mg}, 47 \%$ yield; $>20: 1 \mathrm{dr} ; \mathrm{mp} 130.1-131.5{ }^{\circ} \mathrm{C}$ (decomposition); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.41 $(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.93$ $(\mathrm{m}, 2 \mathrm{H}), 3.39(\mathrm{~s}, 1 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 1.27-1.23(\mathrm{~m}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 185.1,170.6,153.0,151.6,144.6,133.4,131.2,129.6,123.9,123.0$, 121.5, 114.4, 109.4, 39.0, 36.2, 35.8, 30.4, 29.4, 29.3, 27.2, 26.7; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 411.2043$; found: 411.2038.

5. Procedure for the synthesis of 3-hydroxy oxindole 6

To a solution of $\mathbf{3 a}$ ($0.1 \mathrm{mmol}, 1.0$ equiv) in acetone (2.0 mL) were added p-toluenesulfonic acid $(\mathrm{TsOH})\left(0.1 \mathrm{mmol}, 1.0\right.$ equiv) and $\mathrm{H}_{2} \mathrm{O}\left(0.1 \mathrm{mmol}, 1.0\right.$ equiv) at $25^{\circ} \mathrm{C}$. And then, the mixture was stirred at the same temperature for 2 h . Then $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added and extracted with DCM $(5 \mathrm{~mL} \times 3)$. The combined organic layers were washed with brine $(10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=8 / 1 \sim 5 / 1$) to afford the 3-hydroxy oxindole 6 .

3-(1-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-oxo-2-phenylethyl)-3-hydroxy-1-methylindolin-2-one (6): white solid; $30.6 \mathrm{mg}, 63 \%$ yield; $>20: 1 \mathrm{dr}$; mp $157.3-159.1{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.48$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 2 \mathrm{H}), 6.56(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.09(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR
$\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.7,176.5,153.6,143.6,137.1,135.7,133.3,129.6,129.0,128.6,128.4$, 127.3, 126.8, 123.0, 122.6, 107.8, 79.8, 58.3, 34.3, 30.3, 26.0; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 508.2458$; found: 508.2477.

6. Procedure for the synthesis of oxindole 7

A mixture of 3a(0.1 mmol) and $10 \% \mathrm{Pd} / \mathrm{C}(4.7 \mathrm{mg}, 10 \% \mathrm{w} / \mathrm{w})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ was stirred vigorously under an atmosphere of hydrogen at $25^{\circ} \mathrm{C}$ for 2 h . Then, the mixture was filtered through a Celite plug and the filter cake was washed by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. Next, it was concentrated in vacuum and the residue was purified by flash column chromatography on silica gel $($ petroleum ether/ethyl acetate $=5 / 1)$ to furnish oxindole 7 .

3-(1-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-oxo-2-phenylethyl)-1-methylind olin-2-one (7): white solid; $41.2 \mathrm{mg}, 88 \%$ yield; $3: 2 \mathrm{dr}$; $\mathrm{mp} 155.0-156.6{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.27$ $(\mathrm{m}, 2 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 2 \mathrm{H}), 6.90-6.76(\mathrm{~m}, 2 \mathrm{H}), 6.26(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~s}$, 3H), $1.36(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.7,176.8,153.4,145.1$, 136.7, 136.4, 134.7, 132.7, 129.0, 128.4, 127.8, 127.0, 126.3, 124.8, 121.5, 108.0, 55.0, 49.4, 34.6, 30.4, 26.4; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 492.2509$; found: 492.2514 .

7. Procedure for the synthesis of oxindole 8

In an oven-dried ordinary vial equipped with a magnetic stirring bar, the thiophenol (0.2 mmol, 2.0 equiv) were added to a solution of compound $\mathbf{3 a}\left(0.10 \mathrm{mmol}, 1.0\right.$ equiv) and $\mathrm{Zn}(\mathrm{OTf})_{2}$ ($0.01 \mathrm{mmol}, 0.1$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ at $25{ }^{\circ} \mathrm{C}$ under Ar atmosphere. And then, the mixture was stirred at the same temperature for 2 h . Then, the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was evaporated under vacuum and the residues was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=$ $15 / 1)$ to afford the oxindole 8.

3-(1-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-oxo-2-phenylethyl)-1-methyl-3-(phenylthio)indolin-2-one (8): white solid; $35.9 \mathrm{mg}, 62 \%$ yield; $>20: 1 \mathrm{dr}$; mp 189.2-190.9 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.55-8.42(\mathrm{~m}, 1 \mathrm{H}), 8.12-$ $7.94(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.07(\mathrm{~m}, 5 \mathrm{H})$, 7.06-6.96(m, 2H), $6.83(\mathrm{~s}, 2 \mathrm{H}), 6.32-6.18(\mathrm{~m}, 1 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H})$, $2.59(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.9,175.1,153.4$, $143.5,137.5,136.8,135.5,133.0,130.1,129.4,129.2,129.1,128.6,128.5,128.2,126.8,125.4$, 123.4, 122.6, 107.1, 63.0, 57.9, 34.2, 30.3, 25.8; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{37} \mathrm{H}_{39} \mathrm{NNaO}_{3} \mathrm{~S}$ [M $+\mathrm{Na}]^{+} 600.2543$; found: 600.2529 .
8. General procedure for the synthesis of $\boldsymbol{\beta}, \boldsymbol{\beta}$-disubstituted 3 -ylideneoxindoles 9

In an ordinary vial equipped with a magnetic stirring bar, the sulfur ylides $2(0.15 \mathrm{mmol}, 1.5$ equiv) were added to a solution of isatin-derived $p-\mathrm{QMs} 1(0.10 \mathrm{mmol}, 1.0$ equiv) in methanol (1.0 mL) at $25{ }^{\circ} \mathrm{C}$. And then, the mixture was stirred at the same temperature for specified time. After completion of the reaction, as indicated by TLC, the methanol was evaporated under vacuum at 40 ${ }^{\circ} \mathrm{C}$ and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=8 / 1 \sim 5 / 1$) to afford the β, β-disubstituted 3-ylideneoxindoles 9 .

(Z)-3-(1-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-oxo-2-phenylethylidene)-1-methylindolin-2-one (9a): yellow solid; $45.8 \mathrm{mg}, 98 \%$ yield; mp 265.6-267.9 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.49(\mathrm{~m}, 1 \mathrm{H})$, 7.49-7.40 (m, 4H), 7.30-7.23 (m, 2H), 6.89-6.77 (m, 2H), 5.52 (s, 1H), $3.16(\mathrm{~s}$, $3 \mathrm{H}), 1.41(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 196.7, 166.9, 155.8, 150.9, $144.8,136.6,136.1,133.2,129.9,129.1,128.8,125.9,124.7,124.5,123.0,121.7,121.2,108.4$, 34.7, 30.3, 26.0; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 468.2533$; found: 468.2526.

(Z)-1-benzyl-3-(1-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-oxo-2-phenylethyli dene)indolin-2-one (9b): yellow solid; $53.2 \mathrm{mg}, 98 \%$ yield; mp 155.8-157.7 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18-8.03(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.48$ (d, $J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 6 \mathrm{H}), 7.15(\mathrm{td}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81$ (td, $J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{brs}, 2 \mathrm{H}), 1.42$ (s, 18H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.7,166.9,155.8,151.2,143.9$, $136.6,136.1,136.0,133.3,129.8,129.2,128.8,128.7,127.7,127.6,125.9,124.6,124.5,123.1$, 121.7, 121.3, 109.4, 43.7, 34.7, 30.4; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{37} \mathrm{H}_{38} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 544.2846$; found: 544.2859.

(Z)-3-(1-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-oxo-2-phenylethylidene)indo lin-2-one (9c): yellow solid; 43.0 mg , 95% yield; mp $158.4-160.1^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.83(\mathrm{~s}, 1 \mathrm{H}), 8.12-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.49-$ $7.39(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{td}, J=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{td}, J$ $=7.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.8,168.8,155.8,150.9,142.5,136.6,136.2$, 133.2, 129.9, 129.2, 128.7, 125.9, 125.3, 124.6, 123.2, 121.7, 121.5, 110.5, 34.7, 30.3; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 476.2196$; found: 476.2207.

(Z)-3-(1-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-oxo-2-phenylethylidene)-1,5 -dimethylindolin-2-one (9d): yellow solid; $46.6 \mathrm{mg}, 97 \%$ yield; mp 247.5$249.3{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.37$ (m, 5H), $7.17(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.52$ $(\mathrm{s}, 1 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $196.8,167.0,155.8,150.5,142.6,136.5,136.2,133.2,130.9,130.3,129.1$, 128.8, 126.1, 124.8, 124.5, 123.9, 121.1, 108.1, 34.7, 30.3, 26.1, 21.2; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 504.2509$; found: 504.2512.

(Z)-6-bromo-3-(1-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-oxo-2-phenylethyl idene)-1-methylindolin-2-one (9e): yellow solid; $53.5 \mathrm{mg}, 98 \%$ yield; mp $249.2-251.1{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.50$ (m, 1H), 7.49-7.40 (m, 4H), 7.15-7.08 (m, 1H), 7.01-6.91 (d, J=7.6 Hz, 2H), $5.55(\mathrm{~s}, 1 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 18 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.4$,
$166.7,156.0,151.8,145.8,136.8,135.9,133.4,129.1,128.8,125.9,124.5,124.3,124.0,123.7$, $123.6,120.1,111.8,34.7,30.3,26.2$; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{BrNNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$ 568.1458; found: 568.1482.

(Z)-3-(1-(4-hydroxy-3,5-diisopropylphenyl)-2-oxo-2-phenylethylidene)-1-methylindolin-2-one (9f): yellow solid; $28.9 \mathrm{mg}, 66 \%$ yield; mp 129.1$130.7{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}) $\delta 8.15-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.46(\mathrm{~m}$, $1 \mathrm{H}), 7.46-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~s}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.88-6.73$ $(\mathrm{m}, 2 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 3.30-2.96(\mathrm{~m}, 5 \mathrm{H}), 1.22(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.6,166.9,152.0,150.8,144.8,135.9,134.7$, $133.2,130.0,129.2,128.8,125.5,124.9,124.5,123.2,121.7,121.3,108.3,27.4,26.0,22.8$; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 462.2040$; found: 462.2024.

(Z)-3-(1-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(3-methoxyphenyl)-2-oxoethylidene)-1-methylindolin-2-one (9g): yellow solid; $48.0 \mathrm{mg}, 97 \%$ yield; mp 249.6-251.3 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68-7.54(\mathrm{~m}$, 2H), 7.46 (s, 2H), 7.38-7.28 (m, 1H), 7.25 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.11$7.03(\mathrm{~m}, 1 \mathrm{H}), 6.89-6.74(\mathrm{~m}, 2 \mathrm{H}), 5.51(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H})$, $1.41(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.4,166.9,160.0,155.8$, $150.9,144.8,137.4,136.6,129.9,129.8,125.9,124.8,124.6,123.1,122.2,121.7,121.2,120.3$, $112.5,108.4,55.5,34.7,30.4,26.0$; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 498.2639$; found: 498.2647 .

(Z)-3-(1-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-oxo-2-(m-tolyl)ethylide ne)-1-methylindolin-2-one (9h): yellow solid; $45.5 \mathrm{mg}, 95 \%$ yield; mp $289.1-290.5{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.87-7.78(\mathrm{~m}$, $1 \mathrm{H}), 7.46(\mathrm{~s}, 2 \mathrm{H}), 7.39-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.75(\mathrm{~m}$, $2 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.8,166.9,155.7,151.2,144.8,138.5,136.6,136.1$, 134.1, 129.9, 129.6, 128.6, 126.6, 125.9, 124.7, 123.1, 121.7, 121.3, 108.3, 34.7, 30.4, 26.0, 21.5; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 482.2690$; found: 482.2698 .

(Z)-3-(1-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(4-methoxyphenyl)-2-oxo ethylidene)-1-methylindolin-2-one (9i): yellow solid; $46.0 \mathrm{mg}, 93 \%$ yield; mp 241.8-243.6 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.45 (s, 2H), 7.29-7.18 (m, 2H), 6.92 (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.87-6.72(\mathrm{~m}, 2 \mathrm{H})$, $5.49(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 195.4,166.9,163.7,155.8,151.3,144.7,136.6,131.4,129.8$, $129.3,125.9,124.9,124.4,123.0,121.6,121.3,114.1,108.3,55.6,34.7$, 30.4, 26.0; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 520.2458$; found: 520.2475.

(Z)-3-(1-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-oxo-2-(p-tolyl)ethylidene)-1-methylindolin-2-one (9j): yellow solid; 44.0 mg , 92% yield; $\mathrm{mp} 291.8-$ $293.0{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~s}$, 2H), 7.33-7.18 (m, 4H), 6.92-6.74 (m, 2H), $5.50(\mathrm{~s}, 1 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 2.38$ (s, 3H), 1.41 (s, 18H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.3,166.9,155.8$, $151.2,144.8,144.0,136.6,133.7,129.8,129.5,129.2,125.9,124.7,124.5$, 123.0, 121.6, 121.3, 108.3, 34.7, 30.4, 26.0, 21.9; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 504.2509$; found: 504.2511.

(Z)-3-(1-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(4-fluorophenyl)-2-oxoethy lidene)-1-methylindolin-2-one (9k): yellow solid; $41.7 \mathrm{mg}, 86 \%$ yield; mp 298.7-300.2 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07(\mathrm{dd}, J=8.7,5.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.45(\mathrm{~s}, 2 \mathrm{H}), 7.32-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.92-6.74(\mathrm{~m}, 2 \mathrm{H})$, $5.53(\mathrm{~s}, 1 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 18 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.2$, 167.5, 165.5 (d, $J=205.4 \mathrm{~Hz}, 1 \mathrm{C}$), 155.9, 150.4, 144.8, 136.7, 132.7 ($\mathrm{d}, J=$ $2.2 \mathrm{~Hz}, 1 \mathrm{C}$), 131.7 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{C}$), 130.0, 125.9, 124.8, 124.4, 123.1, $121.8,121.1,116.0(\mathrm{~d}, J=22.5 \mathrm{~Hz}, 1 \mathrm{C}), 108.4,34.7,30.3,26.0$; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{FNNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 508.2258$; found: 508.2269.

(Z)-3-(2-(4-chlorophenyl)-1-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-oxoeth ylidene)-1-methylindolin-2-one (91): yellow solid; $44.2 \mathrm{mg}, 88 \%$ yield; mp 281.9-283.5 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.50-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{q}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H})$, $3.16(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.5,166.9,156.0$, $150.2,144.9,139.6,136.8,134.6,130.4,130.1,129.2,125.9,124.9,124.3$, 123.1, 121.8, 121.1, 108.5, 34.7, 30.4, 26.0; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{ClNNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 524.1963$; found: 524.1986.

(Z)-3-(2-(4-bromophenyl)-1-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-oxoethy lidene)-1-methylindolin-2-one (9m): yellow solid; $55.0 \mathrm{mg}, 99 \%$ yield; mp $275.3-276.7{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.57$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~s}, 2 \mathrm{H}), 7.33-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{q}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $5.54(\mathrm{~s}, 1 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 18 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.7$, $166.9,156.0,150.1,144.8,136.8,135.0,132.2,130.5,130.1,128.4,125.9$, 124.9, 124.2, 123.1, 121.8, 121.0, 108.5, 34.7, 30.4, 26.1; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{BrNNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 568.1458$; found: 568.1464.

(Z)-4-(2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(1-methyl-2-oxoindolin-3-y lidene)acetyl)benzonitrile (9n): yellow solid; $46.0 \mathrm{mg}, 94 \%$ yield; mp $195.3-197.1^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.73 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~s}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.93-6.77(\mathrm{~m}, 2 \mathrm{H})$, $5.57(\mathrm{~s}, 1 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.3$, $167.0,156.2,149.2,145.0,139.2,137.0,132.7,130.4,129.3,126.0,125.4$, 123.6, 123.1, 122.0, 120.8, 118.3, 116.2, 108.6, 34.7, 30.3, 26.1; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 515.2305$; found: 515.2321.

(Z)-3-(1-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(naphthalen-2-yl)-2-oxo ethylidene)-1-methylindolin-2-one (90): yellow solid; $45.4 \mathrm{mg}, 88 \%$ yield; mp 284.6-285.9 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.51(\mathrm{~s}, 1 \mathrm{H})$, $8.18(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.98-7.77(\mathrm{~m}, 3 \mathrm{H}), 7.61-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.23$ $(\mathrm{m}, 2 \mathrm{H}), 6.94-6.75(\mathrm{~m}, 2 \mathrm{H}), 5.51(\mathrm{~s}, 1 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.7,166.9,155.8,151.1,144.9,136.7,135.9$, 133.7, 132.8, 131.2, 130.0, 129.8, 128.8, 128.4, 127.9, 126.6, 126.0, 124.8, 124.7, 124.5, 123.1, 121.7, 121.3, 108.4, 34.7, 30.4, 26.0; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{35} \mathrm{H}_{35} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 540.2509$; found: 540.2511.

(Z)-3-(1-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(furan-2-yl)-2-oxoethyliden e)-1-methylindolin-2-one (9p): yellow solid; 43.3 mg , 95% yield; $\mathrm{mp} 278.4-$ $279.9{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 2 \mathrm{H})$, $7.30-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.86-6.75(\mathrm{~m}, 2 \mathrm{H}), 6.51(\mathrm{dd}, J=3.6$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{~s}, 1 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 184.7,166.9,155.8,152.5,148.9,146.8,144.8,136.6,130.1,125.9$, 125.4, 124.5, 123.2, 121.7, 121.2, 118.3, 112.5, 108.4, 34.7, 30.4, 26.0; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 480.2145$; found: 480.2152 .

(Z)-3-(1-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-oxo-2-(thiophen-2-yl)ethyl idene)-1-methylindolin-2-one (9q): yellow solid; $43.0 \mathrm{mg}, 94 \%$ yield; mp $306.5-308.1{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{dd}, J=11.9,4.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.46(\mathrm{~s}, 2 \mathrm{H}), 7.32-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{t}, J=$ $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.74(\mathrm{~m}, 2 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.0,166.7,155.8,149.9,144.8,143.7,136.7$, $133.9,133.3,130.1,128.2,125.9,124.8,124.7,123.2,121.7,121.2,108.4,34.7,30.4,26.0$; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{NNaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$496.1917; found: 496.1918.

9. Control experiments

In an ordinary vial equipped with a magnetic stirring bar, the sulfur ylides $\mathbf{2 h}(0.12 \mathrm{mmol}, 1.2$ equiv) were added to a solution of isatin-derived $p-Q M s \mathbf{1 a}(0.10 \mathrm{mmol}, 1.0$ equiv) in ethyl acetate $(1.0 \mathrm{~mL})$ at $25{ }^{\circ} \mathrm{C}$. And the mixture was stirred at the same temperature for 15 h . Then, the reaction mixture was filtered and the cake was washed with cold ethyl acetate (2 mL) to give the zwitterionic intermediate $\mathbf{1 0}$ as white solid. Next, suspending intermediate 9 in fresh ethyl acetate $(0.5 \mathrm{~mL})$ at $25{ }^{\circ} \mathrm{C}$ continued to stir for 144 h . Then, the ethyl acetate was evaporated under vacuum at $30{ }^{\circ} \mathrm{C}$ and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=15 / 1 \sim 10 / 1$) to afford the spirocyclopropyl oxindole $\mathbf{3 h}$.

4-(3-(2-(4-bromophenyl)-1-(dimethylsulfonio)-2-oxoethyl)-1-methy 1-2-oxoindolin-3-yl)-2,6-di-tert-butylphenolate (10): white solid; $46.8 \mathrm{mg}, 77 \%$ yield; $\mathrm{mp} 170.2-171.5{ }^{\circ} \mathrm{C}$ (decomposition); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.21-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.04$ $(\mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, 6.49 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H}), 2.76$ $(\mathrm{s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 184.8,179.0,153.2,142.7,142.5,135.8$, $135.4,132.2,129.9,128.6,127.7,125.0,124.8,122.2,121.2,108.4,75.1,59.4,34.7,30.4,27.2$, 26.9, 26.2; HRMS (ESI-TOF) calcd. for $\mathrm{C}_{33} \mathrm{H}_{38} \mathrm{BrNO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$608.1829; found: 608.1834.

Without $\mathbf{S M e}_{2}$: In an ordinary vial equipped with a magnetic stirring bar, the compound 3a $(0.05 \mathrm{mmol})$ were suspended in methanol $(0.5 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$. And the mixture was stirred at the same temperature for 22 h . Monitored by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ showed that the transformation was every slow and only 4 percent of $\mathbf{3 a}$ was converted into $\mathbf{9 a}$.

With $\mathbf{S M e}_{2}$: In an ordinary vial equipped with a magnetic stirring bar, $\mathrm{SMe}_{2}(0.1 \mathrm{mmol}, 2.0$ equiv) was added to a solution of compound $\mathbf{3 a}(0.05 \mathrm{mmol}, 1.0$ equiv) in methanol $(0.5 \mathrm{~mL})$ at 25 ${ }^{\circ} \mathrm{C}$. And the mixture was stirred at the same temperature for 22 h . Monitored by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ showed that 91 percent of $\mathbf{3 a}$ was transformed into $\mathbf{9 a}$.

10. X-ray crystal data for compound 3a and 9a

Identification code	3a
Empirical formula	$\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{NO}_{3}$
Formula weight	467.58
Temperature/K	290(2)
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{n}$
a/Å	10.00370(10)
b/Å	20.2706(2)
c/Å	13.21220(10)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	92.2310(10)
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	2677.15(4)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.160
μ / mm^{-1}	0.582
$\mathrm{F}(000)$	1000.0
S12	

Crystal size $/ \mathrm{mm}^{3}$	$0.290 \times 0.270 \times 0.230$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ}$	7.992 to 142.428
Index ranges	$-8 \leq h \leq 12,-19 \leq k \leq 24,-15 \leq 1 \leq 16$
Reflections collected	10760
Independent reflections	$5046\left[\mathrm{R}_{\text {int }}=0.0209, \mathrm{R}_{\text {sigma }}=0.0243\right]$
Data/restraints/parameters	5046/7/324
Goodness-of-fit on F^{2}	1.053
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0585, \mathrm{wR}_{2}=0.1632$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0633, \mathrm{wR}_{2}=0.1690$
Largest diff. peak/hole / e \AA^{-3}	0.62/-0.37
Identification code	9a
Empirical formula	$\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{NO}_{3}$
Formula weight	467.58
Temperature/K	100(2)
Wavelength/Å	1.54178
Crystal system	Triclinic
Space group	P-1
a/Å	9.4791(2)
b/Å	9.7988(2)
c/Å	15.5180(4)
$\alpha /{ }^{\circ}$	83.6440(10)
$\beta /{ }^{\circ}$	83.3400 (10)
γ^{\prime}	62.8550(10)
Volume/ ${ }^{\text {a }}$	1271.23(5)
Z	2
Density (calculated)/ $\mathrm{Mg} / \mathrm{cm}^{3}$	1.222
μ / mm^{-1}	0.613
$\mathrm{F}(000)$	500.0

${\text { Crystal size } / \mathrm{mm}^{3}}$	$0.360 \times 0.290 \times 0.260$
2Θ range for data collection $/{ }^{\circ}$	2.87 to 72.33
Index ranges	$-11<=\mathrm{h}<=10,-12<=\mathrm{k}<=12,-19<=1<=19$
Reflections collected	22434
Independent reflections	$4956[\mathrm{R}(\mathrm{int})=0.0279]$
Completeness to theta $=72.33^{\circ}$	98.5%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.86 and 0.76
Refinement method	Full-matrix least-squares on F^{2}
Data/restraints/parameters	$4956 / 0 / 325$
Goodness-of-fit on F^{2}	1.044
Final R indexes [l>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0389, \mathrm{wR}_{2}=0.0931$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0403, \mathrm{wR}_{2}=0.0940$
Largest diff. peak/hole $/ \mathrm{e} \AA \AA^{-3}$	$0.284 /-0.211$

11. The copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for compounds $1 \mathrm{i}, 3,5,6,7,8,9$ and 10

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 a}$

$\begin{aligned} & \frac{\pi}{6} \\ & \frac{\pi}{1} \end{aligned}$			$\begin{aligned} & \text { हू } \\ & \text { 会 } \\ & \text { है } \end{aligned}$		$\begin{aligned} & \text { No } \\ & \frac{\tilde{\omega}}{2} \\ & \frac{\pi}{1} \end{aligned}$			

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3} \mathbf{b}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 c}$

$\stackrel{\text { 敛 }}{1}$

管

[^0]${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 d}$

衷

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3} \mathbf{e}$

	莶 $\stackrel{y}{6}$			$\begin{aligned} & \text { \% } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 f}$

算
$\stackrel{8}{\overline{2}}$
管需

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 g}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 h}$

	䓂

- Dhen

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 i}$

亨
$\stackrel{\frac{5}{2}}{i}$

$\frac{\stackrel{\pi}{4}}{\frac{1}{1}}$		$\stackrel{\text { N }}{\stackrel{N}{\mathrm{C}}}$			$\begin{aligned} & \bar{n} \\ & \text { on } \\ & \bar{\prime} \end{aligned}$				

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 j}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 k}$

$\stackrel{\circ}{0}$
$\underset{i}{i}$
i
त

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 31

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 m}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 n}$

${ }^{1}$ H NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 o}$

 N

$\begin{aligned} & \text { m } \\ & \text { ה్ర } \\ & \text { I } \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{\sim}{6} \\ & \stackrel{1}{+} \\ & \stackrel{1}{1} \end{aligned}$			$\begin{aligned} & 0 \\ & \text { O} \\ & \text { O } \\ & \frac{0}{1} \end{aligned}$		

${ }^{1}$ H NMR and ${ }^{13}$ C NMR spectra of $\mathbf{3 p}$

${ }^{1}$ H NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 q}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3} \mathbf{r}$

$\frac{\frac{\bar{\infty}}{\frac{1}{\alpha}}}{\frac{\overline{1}}{1}}$	\%-\%	$\begin{gathered} \text { ल̈ } \\ \text { n } \end{gathered}$	

		1		1	15	1					0			1				1		
200	190	180	170	160	150	140	130	120	110	$f 1 \quad \begin{gathered} 100 \\ (\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 s}$

[^1]${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 t}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 v}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 5

					筞	蓇	$\begin{aligned} & \text { Eis } \\ & \text { Kin } \\ & \text { Ein } \end{aligned}$	

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 6

1	1	1	1	1	1	1	1	1	1	1	10
210	200	190	180	170	160	150	140	130	120	110	
$f 1$	100										

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 7

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{8}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{9 a}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{9 b}$

${ }^{1}$ H NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 9 c

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 9 d
$\frac{3}{n}$
$\stackrel{n}{n}$
1

[^2]${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 9 e
(

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $9 \mathbf{f}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{9 g}$

	1			1																
200	190	180	170	160	150	140	130	120	110	$\text { f1 }{ }_{(\mathrm{ppm})}^{100}$	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{9 h}$

$\begin{aligned} & \text { K̈ } \\ & 0 \\ & \text { on } \\ & \hline \end{aligned}$	प्大 － -1	$\begin{aligned} & \text { 旁登 } \\ & \frac{n}{n} \\ & \frac{n}{1} \end{aligned}$		

${ }^{1}$ H NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 9 i

	$\begin{gathered} \stackrel{m}{\bar{\sigma}} \\ \stackrel{N}{6} \end{gathered}$	舜

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{9 j}$

䓂

-1963341

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $9 \mathbf{k}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 91

N
$\stackrel{n}{n}$
ín會

$\begin{aligned} & \text { તু } \\ & \text { 太ু } \end{aligned}$	$\begin{aligned} & \frac{\pi}{\pi} \\ & \frac{0}{\text { I}} \end{aligned}$	 			

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 9 m

$\frac{8}{6}$	क O - I	 		

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{9 n}$
教
त्त
n
1
1
$\frac{\stackrel{n}{n}}{\text { in }}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{9 0}$

$\begin{aligned} & \text { O్ర } \\ & \text { © } \\ & \text { ৷ } \end{aligned}$	융 O 1	$\begin{aligned} & \underset{\sim}{\infty} \\ & \stackrel{n}{=} \\ & \stackrel{n}{\bar{n}} \end{aligned}$	 \square		

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{9 p}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{9 q}$

$\stackrel{\infty}{\sqrt{n}}$

-188.9700
-166.6969
-155.8405
$\int^{144.8123}$
-143.7402
${ }_{\text {d }}^{1366605}$
$\int_{\text {- }}^{133.9344}$
133.2632
${ }^{130.1096}$
${ }^{128.1949}$
- 125.9332
-124.8409
2. 124.6860
123.2102
-121.6825
121.2121

으N

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 0}$

$\stackrel{\text { N }}{\frac{\sim}{4}}$ ©

[^0]:

[^1]:

[^2]:

