Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

Supporting Information for An electrochemically controlled supramolecular zip tie based on host-guest chemistry of CB[8]

lago Neira,^a Olaya Domarco,^a Jose L. Barriada,^a Paola Franchi,^b Marco Lucarini,^b Marcos D. García*^a and Carlos Peinador*^a

^aDepartamento de Química and Centro de Investigaciones, Científicas Avanzadas (CICA), Universidade da Coruña, Facultad de Ciencias, E-15071 A Coruña, Spain.

^bDepartment of Chemistry "G. Ciamician" – Alma Mater Studiorum-University of Bologna, Via San Giacomo 11, Bologna, Italy

General	3
Synthetic procedures:	3
Synthesis and characterization of 2-((4-(bromomethyl)benzyl)oxy)naphthalene (4)	3
Synthesis and characterization of 1-(4-((naphthalen-2-yloxy)methyl)benzyl)-[4,4'-bipyridin]- 1-ium bromide (5·Br)	4
Synthesis and characterization of ((oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(4-methylbenzenesulfonate) (6).	4
Synthesis and characterization of 1-bromo-2-(2-(2-(2-bromoethoxy)ethoxy)ethoxy)ethane (7)	5
Synthesis and characterization of 1-methyl-[4,4'-bipyridin]-1-ium hexafluorophosphate (8)	5
Synthesis and characterization of 1-(2-(2-(2-(2-bromoethoxy)ethoxy)ethoxy)ethyl)-1'-(4-((naphthalen-2-yloxy)methyl)benzyl)-[4,4'-bipyridine]-1,1'-diium hexafluorophosphate (9-2PF ₆).	6
Synthesis and characterization of 1-methyl-1'-(2-(2-(2-(1'-(4-((naphthalen-2-yloxy)methyl)benzyl)-[4,4'-bipyridin]-1,1'-diium-1-yl)ethoxy)ethoxy)ethoxy)ethyl)-[4,4'-bipyridine]-1,1'-diium hexafluorophosphate (1·4PF ₆)	7
Synthesis and characterization of 3,6,9,12,15-pentaoxaheptadecane-1,17-diyl bis(4-methylbenzenesulfonate) (10)	8
Synthesis and characterization of 1,17-dibromo-3,6,9,12,15-pentaoxaheptadecane (11)	8
Synthesis and characterization of 1-(17-bromo-3,6,9,12,15-pentaoxaheptadecyl)-1'-(4-((naphthalen-2-yloxy)methyl)benzyl)-[4,4'-bipyridine]-1,1'-diium hexafluorophosphate $(12\cdot2PF_6)$.	9
Synthesis and characterization of 1-methyl-1'-(17-(1'-(4-((naphthalen-2-yloxy)methyl)benzyl)-[4,4'-bipyridin]-1,1'-diium-1-yl)-3,6,9,12,15-pentaoxaheptadecyl)-[4,4'-bipyridine]-1,1'-diium (2-4PF ₆)	10
Synthesis and characterization of 3,6,9,12,15,18,21-heptaoxatricosane-1,23-diyl bis(4-methylbenzenesulfonate) (13)	11
Synthesis and characterization of 1,23-dibromo-3,6,9,12,15,18,21-heptaoxatricosane (14)	11
Synthesis and characterization of 1-(23-bromo-3,6,9,12,15,18,21-heptaoxatricosyl)-1'-(4- $((naphthalen-2-yloxy)methyl)benzyl)-[4,4'-bipyridine]-1,1'-diium hexafluorophosphate (15-2PF6).$	12
Synthesis and characterization of 1-methyl-1'-(23-(1'-(4-((naphthalen-2-yloxy)methyl)benzyl)-[4,4'-bipyridin]-1,1'-diium-1-yl)-3,6,9,12,15,18,21-heptaoxatricosyl)-[4,4'-bipyridine]-1,1'-diium hexafluorophosphate ($\mathbf{3\cdot4PF_6}$). 13	
Synthesis and characterization of 1⊂CB[8]	14
Synthesis and characterization of 2 ⊂CB[8]	15
Synthesis and characterization of 3 ⊂CB[8]	16
NMR spectra	30

General

The chemicals used in this work were purchased from commercial suppliers and used without further purification. Compound **8**·PF₆ was prepared using a modified procedure. The purity of the CB[8] was assessed as previously reported by Kaifer *et al.* Milli-Q water was purified with a Millipore Gradient A10 apparatus. Merck 60 F254 foils were used for thin layer chromatography, and Merck 60 (230-400 mesh) silica gel was used for flash chromatography. NMR spectra were recorder on a Bruker Advance 400 or 500 MHz for ¹H, and 100 or 125 MHz for ¹³C, equipped each other with a dual cryoprobe. The solvent for NMR experiments was deuterium oxide (D₂O), methanol (CD₃OD) and acetonitrile (CD₃CN). Mass spectrometry experiments were carried out in a LCQ-q-TOF Applied Biosystems QSTAR Elite spectrometer for low and high resolution ESI. UV/Vis spectra were recorded on a Jasco V-650 spectrometer. Microwave-assisted reactions were carried out in an Anton Paar Monowave 300 reactor operating at 2455 MHz in a sealed reaction vial using microwave power between 0-850 W. The samples were irradiated with the microwave power necessary for reaching the temperature of 150 °C heating with a "as fast as possible" protocol. The reaction mixture temperature was monitored via built-in IR sensor.

EPR measurements. Compounds $\mathbf{1}^{4+}$ - $\mathbf{3}^{4+}$ were added to a water/CH₃CN (3/2, v/v) solution saturated with Na₂S₂O₄. The samples under nitrogen were immediately sealed in a capillary EPR tube. The EPR spectra were recorded on a Bruker ESP300 spectrometer equipped with an NMR gaussmeter for field calibration and Bruker ER033M field-frequency lock. The instrument settings were as follows: microwave power 0.79 mW, modulation amplitude 1.0 - 0.2 G, modulation frequency 100 kHz, scan time 180 s, 2 K data points.

Synthetic procedures:

Synthesis and characterization of 2-((4-(bromomethyl)benzyl)oxy)naphthalene (4).

To a solution of 2-hydroxynaphthalene (1.4 g, 9.8 mmol) and K_2CO_3 (6.8 g, 50 mmol) in 60 mL of acetone α,α' -dibromo-p-xylene (2.0 g, 7.6 mmol) was added. The mixture was left under stirring at room temperature for 18 hours. After stirring for 20 hours at room temperature, the resulting mixture was filtered off and purified by column chromatography (SiO₂, EtOAc:Hex 1:7) to give **4** as a

¹ J. M. Weber, M. T. Rawls, V. J. MacKenzie, B. R. Limoges, C. M. Elliott, *J. Am. Chem. Soc.* 2007, **129**, 313.

² S. Yi and A. E. Kaifer, *J. Org. Chem.* 2011, **76**, 10275.

white solid (0.6 g, 23%). ^{1}H NMR (500 MHz, CDCl₃) δ : 7.77 (m, 2H), 7.72 (d, J = 8.7 Hz, 1H) 7.43 (m, 5H), 7.32 (t, J = 7.48 Hz, 1H), 7.21 (m, 2H), 5.17 (s, 2H), 4.51 (s, 2H) ppm. ^{13}C NMR (125 MHz, CDCl₃) δ : 156.73 (C), 137.69 (C), 137.40 (C), 134.60 (C), 129.67 (CH), 129.48 (C), 129.26 (CH), 128.05 (CH), 127.81 (CH), 126.94 (CH), 126.57 (CH), 123.93 (CH), 119.17 (CH), 107.30 (CH), 69.69 (CH₂), 33.30 (CH₂) ppm. HRMS-ESI (m/z): calcd. [M]⁺: 247.1117, found 247.1115.

Synthesis and characterization of 1-(4-((naphthalen-2-yloxy)methyl)benzyl)-[4,4'-bipyridin]-1-ium bromide (5·Br).

To a solution of **4** (470 mg, 1.40 mmol) in 50 mL of CH₃CN, 4,4'-bipyridine was added (560 mg, 3.60 mmol) and the mixture was left under reflux. After for 4 hours the mixture was cooled down to reach room temperature and 200 mL of Et₂O was added. The precipitate formed was filtered off and washed with 25 mL of toluene to give **5**·Br (480 mg, 70%) as a yellow solid. ^{1}H *NMR* (500 *MHz*, $CD_{3}OD)$ δ : 9.18 (d, J = 7.0 Hz, 2H), 8.83 (d, J = 6.3 Hz, 2H), 8.52 (d, J = 7.0 Hz, 2H), 7.97 (d, J = 8.3 Hz, 2H), 7.77 (d, J = 8.9 Hz, 2H), 7.72 (d, J = 7.3 Hz, 1H), 7.66 (d, J = 8.1 Hz, 2H), 7.60 (d, J = 8.3 Hz, 2H), 7.41 (ddd, J = 8.1, 6.8, 1.3 Hz, 1H), 7.36 – 7.27 (m, 2H), 7.20 (dd, J = 9.0, 2.6 Hz, 1H), 5.92 (s, 2H), 5.27 (s, 2H) ppm. ^{13}C *NMR* (125 *MHz*, $CD_{3}OD)$ δ : 156.4 (C), 154.22 (C), 150.41 (CH), 145.10 (CH), 142.12 (C), 139.63 (C), 134.63 (C), 132.59 (C), 129.10 (CH), 128.99 (CH), 128.35 (CH), 127.19 (CH), 126.42 (CH), 126.01 (CH), 125.98 (CH), 123.42 (CH), 122.14 (CH), 118.36 (CH), 106.97 (CH), 68.74 (CH₂), 63.73 (CH₂) ppm. *HRMS-ESI* (m/z): calcd: [$C_{28}H_{23}N_2O$]*: 403.1804, found 403.1807.

Finally, **5**·Br was dissolved in 100 mL of MeOH and KPF₆ was added until no more precipitation was observed. The MeOH was removed under reduced pressure to leave a yellow crude. The crude was suspended into 100 mL of H₂O and the yellow powder was filtered off to afford **5**·PF₆ (540 mg, 98%). 1 H NMR (400 MHz, CD₃CN) δ : 8.82 (d, J = 6.3 Hz, 4H), 8.29 (d, J = 7.0 Hz, 2H), 7.80 (d, J = 9.3 Hz, 2H), 7.78 – 7.73 (m, 3H), 7.61 (d, J = 8.3 Hz, 2H), 7.49 (d, J = 8.3 Hz, 2H), 7.46 – 7.42 (m, 1H), 7.38 – 7.30 (m, 2H), 7.20 (dd, J = 9.0, 2.6 Hz, 1H), 5.74 (s, 2H), 5.24 (s, 2H) ppm. 13 C NMR (100 MHz, CD₃CN) δ : 157.07 (C), 155.24 (C), 151.76 (CH), 145.53 (CH), 141.72 (C), 139.93 (C), 135.17 (C), 133.13 (C), 130.10 (CH), 129.95 (CH), 129.27 (CH), 128.16 (CH), 127.26 (CH), 127.18 (CH), 126.89 (CH), 124.49 (CH), 122.44 (CH), 119.33 (CH), 107.94 (CH), 69.61 (CH₂), 64.44 (CH₂). HRMS-ESI (m/z): calcd. [C₂₈H₂₃N₂O][†]: 403.1804, found 403.1807.

Synthesis and characterization of ((oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(4-methylbenzenesulfonate) (6).

A solution of 2,2'-((oxybis(ethane-2,1-diyl))bis(oxy))bis(ethan-1-ol) (5.0 g, 25,7 mmol) and 4-methylbenzenesulfonyl chloride (14.7 g, 77.2 mmol) in 100 mL of THF was stirred for 15 minutes at 0°C in an ice bath. Then, a solution of KOH (10.1 g, 180.2 mmol) in 25 mL of H_2O was added dropwise for 1 hour. After the complete addition, the solution was left 2 h under stirring at room temperature. Consecutively, a mixture of 150 mL H_2O/Et_2O (1:3) was added and the organic phase was separated from the aqueous phase. The aqueous phase was extracted again with Et_2O (3 × 75 mL). The product-containing organic fractions were combined and washed with 200 mL of a saturate solution of NH_4CI and 200 mL of H_2O . Finally, the organic phase was dried with $MgSO_4$ and the solvent was removed under reduced pressure to afford **6** as a yellow oil (12.4 g, 96%). 1H *NMR* (500 *MHz*, *CDCl₃*) δ : 7.79 (d, J = 8.4 Hz, 4H), 7.34 (d, J = 8.5 Hz, 4H), 4.15 (t, J = 5.4, 4.5 Hz, 4H), 3.67 (t, J = 5.4, 4.5 Hz, 4H), 3.56 (m, 8H), 2.44 (s, 3H) ppm. ^{13}C *NMR* (125 *MHz*, *CDCl₃*) δ : 144.96 (C), 132.91 (C), 129.97 (CH), 128.12 (CH), 70.89 (CH₂), 70.70 (CH₂), 69.39 (CH₂), 68.84 (CH₂), 21.79 (CH₃) ppm. *HRMS-ESI* (*m/z*): calcd. $[C_{22}H_{30}O_9S_2 + Na^+]^+$: 525.1223, found 525.1202.

Synthesis and characterization of 1-bromo-2-(2-(2-(2-bromoethoxy)ethoxy)ethoxy)ethane (7).

A solution of **6** (10.0 g, 19.8 mmol) and LiBr (6.9 g, 79.5 mmol) in 100 mL of acetone was left under reflux for 18 hours. Then, the solvent was removed under reduced pressure and the crude was dissolved in 200 mL of a mixture of H_2O/Et_2O (1:1). The organic phase was separated from the aqueous phase and this one was extracted again with Et_2O (3 × 75 mL). The product-containing organic fractions were combined, dried with MgSO₄ and the solvent was removed under reduced pressure to afford **7** as a yellow oil (6.1 g, 95%). ¹H NMR (500 MHz, CDCl₃) δ : 3.79 (t, J = 6.3 Hz, 4H), 3.65 (d, J = 1.1 Hz, 8H), 3.45 (t, J = 6.3 Hz, 4H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ : 71.1 (CH₂), 70.64 (CH₂), 70.53 (CH₂), 30.36 (CH₂) ppm. HRMS-ESI (m/z): calcd. $[C_8H_{17}Br_2O_3]^+$: 318.9538, found 318.9536.

Synthesis and characterization of 1-methyl-[4,4'-bipyridin]-1-ium hexafluorophosphate (8).

A solution of 1-(2,4-dinitrophenyl)-[4,4'-bipyridin]-1-ium³ (3.2 g, 9 mmol) and methanamine (1.7 mL, 19.8 mmol) in a mixture 100 mL EtOH and 30 mL of H_2O was stirring at room temperature for 3 hours. Then, the solvent was removed under reduced pressure and the crude was dissolved in 200 mL of a mixture of $H_2O/EtOAc$ (1:1). The organic phase was separated from the aqueous phase and this one was extracted again with EtOAc (3 × 75 mL). The product-containing organic fractions were

5

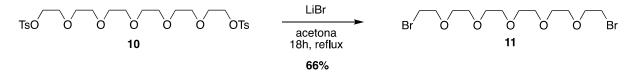
³ D. Bongard, M. Möller, S. Nagaraja Rao, D. Corr, and L. Walder, *Helv. Chim. Acta*, **2005**, *88*, 3200-3209.

combined and KPF₆ was added until no more precipitation was observed. The solid was filtered off and washed with 50 mL of H₂O to leave **8**·PF₆ (1.64 g, 58%) as a brown solid. ¹*H NMR* (500 MHz, CD_3CN) δ : 8.85 (d, J = 5.8 Hz, 2H), 8.71 (d, J = 7.7 Hz, 2H), 8.29 (d, J = 6.4 Hz, 2H), 7.79 (d, J = 6.2 Hz, 2H), 4.33 (s, 3H) ppm. ¹³*C NMR* (125 MHz, CD_3CN) δ : 155.14 (C), 152.48 (CH), 147.10 (CH), 142.50 (C), 126.68 (CH), 123.10 (CH), 49.23 (CH₃) ppm. *HRMS-ESI* (m/z): calcd. [C₁₁H₁₁N₂]⁺: 171.0916, found 171.0917.

Synthesis and characterization of 1-(2-(2-(2-bromoethoxy)ethoxy)ethoxy)ethoxy)ethyl)-1'-(4-((naphthalen-2-yloxy)methyl)benzyl)-[4,4'-bipyridine]-1,1'-diium hexafluorophosphate (9·2PF₆).

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

A solution of 5·PF₆ (0.48 g, 0.88 mmol) and 7 (1.60 g, 4.44 mmol) in 50 mL of CH₃CN was left under reflux for 48 hours. Then, the solvent was removed under reduced pressure to leave a solid residue, which was subjected to flash chromatography (SiO₂, CH₃CN/NaCl (0.6 M)/MeOH 4/1/1). The productcontaining fractions were combined and the solvents evaporated. The residue was suspended in EtOH and filtered off to remove NaCl. The EtOH was removed under reduced pressure to afford 9.2Cl as a yellow oil. The yellow oil was dissolved in the minimal amount of H₂O and KPF₆ was added until no more precipitation was observed. The solid was filtered off and washed with 50 mL of H₂O to leave $9.2PF_6$ (155 mg, 19%) as an orange oil. ¹H NMR (400 MHz, CD₃CN) δ : 8.94 (d, J = 6.9 Hz, 2H), 8.90 (d, J = 7.0 Hz, 2H), 8.32 (dd, J = 9.0, 7.0 Hz, 4H), 7.75 (d, J = 9.4 Hz, 2H), 7.71 (dd, J = 8.3, 1.1 Hz, 1H), 7.59 (d, J = 8.5 Hz, 2H), 7.50 (d, J = 8.3 Hz, 2H), 7.40 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.33 – 7.27 (m, 2H), 7.17 (dd, J = 9.0, 2.6 Hz, 1H), 5.79 (s, 2H), 5.21 (s, 2H), 4.76 - 4.69 (m, 2H), 3.97 - 3.91 (m, 2H), 3.69 (dd, J = 6.1, 5.3 Hz, 2H), 3.60 - 3.56 (m, 2H), 3.56 - 3.51 (m, 2H), 3.51 - 3.46 (m, 4H), 3.43 (dd, J = 6.1, 5.3 Hz, 2H), 3.60 - 3.56 (m, 2H), 3.56 - 3.51 (m, 2H), 3.51 - 3.46 (m, 4H), 3.43 (dd, J = 6.1, 5.3 Hz, 2H), 3.60 - 3.56 (m, 2H), 3.56 - 3.51 (m, 2H), 3.51 - 3.46 (m, 4H), 3.43 (dd, J = 6.1, 5.3 Hz, 2H), 3.60 - 3.56 (m, 2H), 3.56 - 3.51 (m, 2H), 3.51 - 3.46 (m, 4H), 3.43 (dd, J = 6.1, 5.3 Hz, 2H), 3.60 - 3.56 (m, 2H), 3.56 - 3.51 (m, 2H), 3.51 - 3.46 (m, 4H), 3.43 (dd, J = 6.1, 5.3 Hz, 2H), 3.51 - 3.46 (m, 4H), 3.43 (dd, J = 6.1, 5.3 Hz, 2H), 3.51 - 3.46 (m, 4H), 3.43 (dd, J = 6.1, 5.1) (m, 2H), 3.51 - 3.46 (m, 4H), 3.43 (dd, J = 6.1, 5.1) (m, 2H), 3.51 - 3.46 (m, 4H), 3.43 (dd, J = 6.1, 5.1) (m, 2H), 3.51 - 3.46 (m, 4H), 3.43 (dd, J = 6.1, 5.1) (m, 2H), 3.51 - 3.46 (m, 4H), 3.43 (dd, J = 6.1, 5.1) (m, 2H), 3.51 - 3.46 (m, 4H), 3.43 (dd, J = 6.1, 5.1) (m, 2H), 3.51 - 3.46 (m, 4H), 3.43 (dd, J = 6.1, 5.1) (m, 2H), 3.51 - 3.46 (m, 4H), 3.43 (dd, J = 6.1, 5.1) (m, 2H), 3.51 - 3.46 (m, 4H), 3.43 (dd, J = 6.1, 5.1) (m, 2H), 3.51 - 3.46 (m, 4H), 3.43 (dd, J = 6.1, 5.1) (m, 2H), 3.51 - 3.46 (m, 4H), 3.43 (dd, J = 6.1, 5.1) (m, 2H), 3.51 - 3.46 (m, 4H), 3.43 (dd, J = 6.1, 5.1) (m, 2H), 3.51 - 3.46 (m, 4H), 3.43 (dd, J = 6.1, 5.1) (m, 2H), 3.51 - 3.46 (m, 4H), 3.43 (dd, J = 6.1, 5.1) (m, 2H), 3.51 (m, 2H),= 6.1, 5.2 Hz, 2H) ppm. ¹³C NMR (100 MHz, CD₃CN) δ : 157.02 (C), 150.99 (C), 150.53 (C), 146.83 (CH), 146.13 (CH), 140.04 (C), 135.12 (C), 132.80 (C), 130.12 (CH), 130.07 (CH), 129.61 (C), 129.28 (CH), 128.13 (CH), 128.05 (CH), 127.32 (CH), 127.16 (CH), 127.16 (CH), 124.46 (CH), 119.32 (CH), 107.89 (CH), 71.25 (CH₂), 70.88 (CH₂), 70.54 (CH₂), 70.53 (CH₂), 70.49 (CH₂), 69.56 (CH₂), 69.11 (CH₂), 65.02 (CH₂), 62.23 (CH₂), 32.23 (CH₂) ppm. HRMS-ESI (m/z): calcd. [C₃₆H₃₉BrN₂O₄F₆P]⁺: 787.1729, found 787.1749; calcd. $[C_{36}H_{39}BrN_2O_4]^{+2}$: 321.1041 , found 321.1050.


Synthesis and characterization of 1-methyl-1'-(2-(2-(2-(1-(4-((naphthalen-2-yloxy)methyl)benzyl)-(4,4'-bipyridin]-1,1'-diium-1-yl)ethoxy)ethoxy)ethoxy)ethyl)-[4,4'-bipyridine]-1,1'-diium-hexafluorophosphate (1·4PF₆).

A mixture of 9·2PF₆ (155 mg, 0.16 mmol) and 8·PF₆ (525 mg, 1.6 mmol) in 7 mL of CH₃CN was heated up to 110 °C for 6 hours using microwave-assisted heating. Then, the solvent was removed under reduced pressure to leave a solid residue, which was subjected to flash chromatography (SiO₂) using two different eluent phases: CH₃CN/NaCl (0.6 M)/MeOH 4/1/1) to remove impurities and CH_3CN/KPF_6 (0.6 M)/MeOH 4/1/1) to elute the compound. The product-containing fractions were combined and the solvents evaporated. The obtained residue was then suspended in 100 mL H_2O and filtered off to remove excess KPF₆ and dissolved in CH₃CN. Finally, the CH₃CN was removed under reduced pressure to leave 1·4PF₆ as a brown oil (51 mg, 23%). ¹H NMR (500 MHz, CD₃CN) δ: 9.01 (d, J = 6.9 Hz, 2H), 8.91 (d, J = 5.7 Hz, 4H), 8.85 (d, J = 6.8 Hz, 2H), 8.41 - 8.34 (m, 8H), 7.81 (d, J = 8.8 Hz, 2Hz)2H), 7.76 (d, J = 8.9 Hz, 1H), 7.64 (d, J = 8.2 Hz, 2H), 7.57 - 7.52 (m, 2H), 7.46 (ddd, J = 8.2, 6.7, 1.2 Hz, 1H), 7.39 - 7.32 (m, 2H), 7.21 (dd, J = 9.0, 2.6 Hz, 1H), 5.84 (s, 2H), 5.26 (s, 2H), 4.76 (t, J = 4.9, 4.5 Hz, 4H), 4.40 (s, 3H), 3.95 (t, J = 4.6 Hz, 4H), 3.64 – 3.55 (m, 4H), 3.55 – 3.48 (m, 4H) ppm. ¹³C NMR (125) MHz, CD_3CN) δ : 157.45 (C), 151.42 (C), 151.15 (C), 151.11 (C), 150.58 (C), 147.49 (CH), 147.15 (CH), 147.15 (CH), 146.61 (CH), 140.47 (C), 135.56 (C), 133.26 (C), 130.54 (CH), 130.51 (CH), 130.06 (C), 129.73 (CH), 128.57 (CH), 128.49 (CH), 127.81 (CH), 127.79 (CH), 127.72 (CH), 127.68 (CH), 127.60 (CH), 124.91 (CH), 119.73 (CH), 108.32 (CH), 71.28 (CH₂), 70.85 (CH₂), 70.00 (CH₂), 69.55 (CH₂), 65.46 (CH_2) , 62.67 (CH_2) , 49.59 (CH_3) ppm. HRMS-ESI (m/z): calcd. $[C_{47}H_{50}N_4O_4F_{18}P_3]^+$: 1169.2752, found 1169.2710; calcd. $[C_{47}H_{50}N_4O_4F_{12}P_2]^{+2}$: 512.1552, found 512.1531.

Synthesis and characterization of 3,6,9,12,15-pentaoxaheptadecane-1,17-diyl bis(4-methylbenzenesulfonate) (10).

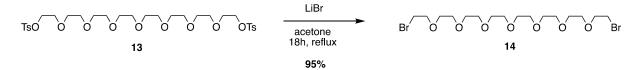
A solution of 3,6,9,12,15-pentaoxaheptadecane-1,17-diol (2.0 g, 7.1 mmol) and 4-methylbenzenesulfonyl chloride (4.0 g, 21.3 mmol) in 50 mL of THF was stirred for 15 minutes at 0 °C in an ice bath. Then, a solution of KOH (2.8 g, 49.7 mmol) in 25 mL of H_2O was added dropwise for 1 hour. After the complete addition, the solution was left 2 h under stirring at room temperature. Consecutively, a mixture of 150 mL H_2O/Et_2O (1:3) was added and the organic phase was separated from the aqueous phase. The aqueous phase was extracted again with Et_2O (3 × 75 mL). The product-containing organic fractions were combined and washed with 200 mL of a saturate solution of NH_4CI and 200 mL of H_2O . Finally, the organic phase was dried with $MgSO_4$ and the solvent was removed under reduced pressure to afford 10 (3.9 g, 94%) as a yellow oil. 1H NMR (500 MHz, $CDCI_3$) δ : 7.78 (d, J = 8.4 Hz, 4H), 7.33 (d, J = 8.5 Hz, 4H), 4.18 – 4.09 (m, 4H), 3.70 – 3.64 (m, 4H), 3.61 (q, J = 1.3 Hz, 8H), 3.57 (s, 8H), 2.44 (s, 6H) ppm. ^{13}C NMR (125 MHz, $CDCI_3$) δ : 144.86 (C), 132.83 (C), 129.85 (CH), 127.99 (CH), 70.71 (CH₂), 70.58 (CH₂), 70.52 (CH₂), 70.47 (CH₂), 69.29 (CH₂), 68.65 (CH₂), 21.69 (CH₃). HRMS-ESI (m/z): calcd. $[C_{26}H_{39}O_{11}S_2]^+$: 591.1928, found 591.1966.

Synthesis and characterization of 1,17-dibromo-3,6,9,12,15-pentaoxaheptadecane (11).

A solution of **10** (3.9 g, 6.7 mmol) and LiBr (2.3 g, 26.7 mmol) in 60 mL of acetone was left under reflux for 18 hours. Then, the solvent was removed under reduced pressure and the crude was dissolved in 200 mL of a mixture of H_2O/Et_2O (1:1). The organic phase was separated from the aqueous phase and this one was extracted again with Et_2O (3 × 75 mL). The product-containing organic fractions were combined, dried with MgSO₄ and the solvent was removed under reduced pressure to afford **11** (1.8 g, 66%) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ : 3.83 (t, J = 6.3 Hz, 4H), 3.72 – 3.65 (m, 16H), 3.49 (t, J = 6.3 Hz, 4H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ : 71.19 (CH₂), 70.66 (CH₂), 70.58 (CH₂), 70.57 (CH₂), 70.52 (CH₂), 30.38 (CH₂) ppm. HRMS-ESI (m/z): calcd. [C₁₂H₂₅O₅Br₂]⁺: 407.0063, found 407.0083.

Synthesis and characterization of 1-(17-bromo-3,6,9,12,15-pentaoxaheptadecyl)-1'-(4-((naphthalen-2-yloxy)methyl)benzyl)-[4,4'-bipyridine]-1,1'-diium hexafluorophosphate ($12\cdot2PF_6$).

A solution of 5·PF₆ (250 mg, 0.47 mmol) and 11 (950 mg, 2.34 mmol) in 25 mL of CH₃CN was left under reflux for 48 hours. Then, the solvent was removed under reduced pressure to leave a solid residue, which was subjected to flash chromatography (SiO₂, CH₃CN/NaCl (0.6 M)/MeOH 4/1/1). The product-containing fractions were combined and the solvents evaporated. The residue was suspended in EtOH and filtered off to remove NaCl. The EtOH was removed under reduced pressure to afford 12·2Cl as a yellow oil. The yellow oil was dissolved in the minimal amount of H₂O and KPF₆ was added until no more precipitation was observed. The solid was filtered off and washed with 50 mL of H₂O to leave **12**·2PF₆ (163 mg, 34%) as an orange oil. ¹H NMR (500 MHz, CD₃CN) δ : 8.99 (d, J = 7.0 Hz, 2H), 8.97 (d, J = 7.0 Hz, 2H), 8.42 (d, J = 7.0 Hz, 2H), 8.40 (d, J = 6.9 Hz, 2H), 7.80 (d, J = 8.7 Hz, 2H), 7.76 (dd, J = 8.3, 1.1 Hz, 1H), 7.64 (d, J = 8.3 Hz, 2H), 7.55 (d, J = 8.3 Hz, 2H), 7.45 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.40 - 7.31 (m, 2H), 7.21 (dd, J = 9.0, 2.6 Hz, 1H), 5.83 (s, 2H), 5.25 (s, 2H), 4.77 (t, J = 9.0, 2.6 Hz, 1H), 5.83 (s, 2H), 5.85 (s, 2H 4.7 Hz, 2H), 3.98 (t, J = 4.9 Hz, 2H), 3.70 - 3.64 (m, 2H), 3.64 - 3.59 (m, 2H), 3.55 - 3.46 (m, 14H), 3.46 - 3.59 (m, 2H)-3.41 (m, 2H). ¹³C NMR (125 MHz, CD₃CN) δ : 156.04 (C), 150.05 (C), 149.43 (C), 145.95 (CH), 145.18 (CH), 139.05 (C), 134.16 (C), 131.94 (C), 129.17 (CH), 129.14 (CH), 128.64 (C), 128.35 (CH), 127.20 (CH), 127.15 (CH), 126.41 (CH), 126.31 (CH), 126.23 (CH), 123.53 (CH), 118.39 (CH), 106.85 (CH), 70.22 (CH₂), 69.80 (CH₂), 69.69 (CH₂), 69.68 (CH₂), 69.62 (CH₂), 69.61 (CH₂), 69.51 (CH₂), 69.50 (CH₂), 69.47 (CH₂), 68.55 (CH₂), 68.16 (CH₂), 64.03 (CH₂), 61.21 (CH₂), 31.20 (CH₂). HRMS-ESI (m/z): calcd. [C₄₀H₄₇N₂O₆F₆PBr]⁺: 875.2253, found 875.2252.


Synthesis and characterization of 1-methyl-1'-(17-(1'-(4-((naphthalen-2-yloxy)methyl)benzyl)-[4,4'-bipyridin]-1,1'-diium-1-yl)-3,6,9,12,15-pentaoxaheptadecyl)-[4,4'-bipyridine]-1,1'-diium (2·4PF₆).

A mixture of $12 \cdot 2PF_6$ (163 mg, 0.16 mmol) and $8 \cdot PF_6$ (505 mg, 1.6 mmol) in 7 mL of CH₃CN was heated up to 110 °C for 6 hours using microwave-assisted heating. Then, the solvent was removed under reduced pressure to leave a solid residue, which was subjected to flash chromatography (SiO₂) using two different eluent phases: CH₃CN/NaCl (0.6 M)/MeOH 4/1/1) to remove impurities and CH₃CN/KPF₆ (0.6 M)/MeOH 4/1/1) to elute the compound. The product-containing fractions were combined and the solvents evaporated. The obtained residue was then suspended in 100 mL H₂O and filtered off to remove excess KPF₆ and dissolved in CH₃CN. Finally, the CH₃CN was removed under reduced pressure to leave **2**·4PF₆ as a brown oil (74 mg, 33%). ¹H NMR (500 MHz, CD₃CN) δ: 8.99 (d, J = 6.8 Hz, 2H), 8.95 - 8.89 (m, 4H), 8.84 (d, J = 6.9 Hz, 2H), 8.42 - 8.34 (m, 8H), 7.80 (d, J = 8.4 Hz, 2H), 7.76 (d, J = 8.2 Hz, 1H), 7.64 (d, J = 8.1 Hz, 2H), 7.55 (d, J = 8.3 Hz, 2H), 7.48 - 7.43 (m, 1H), 7.38 - 7.32(m, 2H), 7.21 (dd, J = 8.9, 2.6 Hz, 1H), 5.84 (s, 2H), 5.25 (s, 2H), 4.74 (q, J = 5.0 Hz, 4H), 4.39 (s, 3H),3.94 (q, J = 4.6 Hz, 4H), 3.61 – 3.45 (m, 16H). ¹³C NMR (125 MHz, CD_3CN) δ : 156.29 (C), 150.29 (C), 149.85 (C), 149.84 (C), 149.41 (C), 146.29 (CH), 146.03 (CH), 146.03 (CH), 145.42 (CH), 139.30 (C), 134.38 (C), 132.10 (C), 129.38 (CH), 129.35 (CH), 128.88 (C), 128.55 (CH), 127.40 (CH), 127.33 (CH), 126.63 (CH), 126.61 (CH), 126.54 (CH), 126.52 (CH), 126.44 (CH), 123.75 (CH), 118.57 (CH), 107.14 (CH₂), 70.10 (CH₂), 69.91 (CH₂), 69.87 (CH₂), 69.62 (CH₂), 68.83 (CH₂), 68.37 (CH₂), 64.29 (CH₂), 61.45 (CH_2) , 48.43 (CH_3) . HRMS-ESI (m/z): calcd. $[C_{51}H_{58}N_4O_6F_{18}P_3]^+$: 1257.3276, found 1257.3273; calcd. $[C_{51}H_{58}N_4O_6F_{12}P_2]^{+2} : 556.1814, \ found \ 556.1813; \ calcd. \ [C_{51}H_{58}N_4O_6F_6P]^{+3} : 322.4660, \ found \ 322.4662.$

Synthesis and characterization of 3,6,9,12,15,18,21-heptaoxatricosane-1,23-diyl bis(4-methylbenzenesulfonate) (13).

A solution of 3,6,9,12,15,18,21-heptaoxatricosane-1,23-diol (1.0 g, 2.7 mmol) and 4-methylbenzenesulfonyl chloride (1.5 g, 8.1 mmol) in 50 mL of THF was stirred for 15 minutes at 0°C in an ice bath. Then, a solution of KOH (1.1 g, 18.9 mmol) in 25 mL of H₂O was added dropwise for 1 hour. After the complete addition, the solution was left 2 h under stirring at room temperature. Consecutively, a mixture of 150 mL H₂O/CH₂Cl₂ (1:3) was added and the organic phase was separated from the aqueous phase. The aqueous phase was extracted again with CH₂Cl₂ (3 × 50 mL). The product-containing organic fractions were combined and washed with 200 mL of a saturate solution of NH₄Cl and 200 mL of H₂O. Finally, the organic phase was dried with MgSO₄ and the solvent was removed under reduced pressure to afford **13** as a yellow oil (1.3 g, 72%). ¹H NMR (500 MHz, CDCl₃) δ : 7.79 (d, J = 8.3 Hz, 4H), 7.34 (d, J = 8.0 Hz, 4H), 4.21 – 4.12 (m, 4H), 3.71 – 3.65 (m, 4H), 3.66 – 3.60 (m, 16H), 3.58 (s, 8H), 2.44 (s, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ : 144.79 (C), 132.98 (C), 129.82 (CH), 127.98 (CH), 70.73 (CH₂), 70.58 (CH₂), 70.54 (CH₂), 70.49 (CH₂), 69.24 (CH₂), 68.67 (CH₂), 21.64 (CH₃) ppm. HRMS-ESI (m/z): calcd. [C₃₀H₄₇O₁₃S₂]*: 679.2452, found 679.2462.

Synthesis and characterization of 1,23-dibromo-3,6,9,12,15,18,21-heptaoxatricosane (14).

A solution of **13** (1.30 g, 1.9 mmol) and LiBr (0.67 g, 7.6 mmol) in 50 mL of acetone was left under reflux for 18 hours. Then, the solvent was removed under reduced pressure and the crude was dissolved in 100 mL of a mixture of H_2O/CH_2Cl_2 (1:1). The organic phase was separated from the aqueous phase and this one was extracted again with CH_2Cl_2 (3 × 50 mL). The product-containing organic fractions were combined, dried with MgSO₄ and the solvent was removed under reduced pressure to afford **14** (0.92 g, 95%) as a yellow oil. ¹*H NMR* (500 MHz, CDCl₃) δ : 3.83 (t, J = 6.3 Hz, 4H), 3.69 – 3.65 (m, 24H), 3.49 (t, J = 6.3 Hz, 4H) ppm. ¹³*C NMR* (125 MHz, CDCl₃) δ : 71.21 (CH₂), 70.65 (CH₂), 70.58 (CH₂), 70.53 (CH₂), 30.32 (CH₂) ppm. *HRMS-ESI* (m/z): calcd. [C₁₆H₃₃O₇Br₂]⁺: 495.0587, found 495.0600.

Synthesis and characterization of 1-(23-bromo-3,6,9,12,15,18,21-heptaoxatricosyl)-1'-(4-((naphthalen-2-yloxy)methyl)benzyl)-[4,4'-bipyridine]-1,1'-diium hexafluorophosphate $(15\cdot2PF_6)$.

A solution of 5·PF₆ (331 mg, 0.60 mmol) and 14 (1500 mg, 1.95 mmol) in 20 mL of CH₃CN was left under reflux for 48 hours. Then, the solvent was removed under reduced pressure to leave a solid residue, which was subjected to flash chromatography (SiO₂, CH₃CN/NaCl (0.6 M)/MeOH 4/1/1). The product-containing fractions were combined and the solvents evaporated. The residue was suspended in EtOH and filtered off to remove NaCl. The EtOH was removed under reduced pressure to afford 15·2Cl as a yellow oil. The yellow oil was dissolved in the minimal amount of H₂O and KPF₆ was added until no more precipitation was observed. The solid was filtered off and washed with 50 mL of H₂O to leave **15**·2PF₆ (80 mg, 7%) as an orange oil. ¹H NMR (500 MHz, CD₃CN) δ : 9.00 (d, J = 7.0 Hz, 2H), 8.95 (d, J = 7.0 Hz, 2H), 8.41 (t, J = 6.9 Hz, 2H), 7.81 (d, J = 9.0 Hz, 2H), 7.76 (dd, J = 8.3, 1.1 Hz, 1H), 7.64 (d, J = 8.3 Hz, 2H), 7.55 (d, J = 8.3 Hz, 2H), 7.46 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.39 – 7.33 (m, 2H), 7.22 (dd, J = 9.0, 2.6 Hz, 1H), 5.84 (s, 2H), 5.26 (s, 2H), 4.78 (t, J = 4.8 Hz, 2H), 3.97 (t, J = 4.5 Hz, 2H), 3.74 (t, J = 6.2, 5.2 Hz, 2H), 3.64 – 3.62 (m, 2H), 3.60 – 3.48 (m, 24H) ppm. ¹³C NMR (125 MHz, $CD_3CN)$ δ : 159.21 (C), 153.17 (C), 152.75 (C), 149.03 (CH), 148.38 (CH), 142.25 (C), 137.33 (C), 135.06 (C), 132.30 (CH), 132.28 (CH), 131.83 (C), 131.49 (CH), 130.34 (CH), 130.30 (CH), 129.61 (CH), 129.45 (CH), 129.36 (CH), 126.67 (CH), 121.51 (CH), 110.09 (CH), 73.39 (CH₂), 72.97 (CH₂), 72.60 (CH₂), 72.53 (CH₂), 72.51 (CH₂), 72.50 (CH₂), 72.48 (CH₂), 72.41 (CH₂), 72.37 (CH₂), 72.35 (CH₂), 72.33 (CH₂), 71.75 (CH₂), 71.34 (CH₂), 67.23 (CH₂), 64.30 (CH₂), 34.22 (CH₂) ppm. HRMS-ESI (m/z): calcd. $[C_{44}H_{55}N_2O_8F_6PBr]^+: 963.2778, found 963.2787; calcd. \ [C_{44}H_{55}N_2O_8Br]^{+2}: 409.1565, found 409.1571.$

Synthesis and characterization of 1-methyl-1'-(23-(1'-(4-((naphthalen-2-yloxy)methyl)benzyl)-[4,4'-bipyridin]-1,1'-diium-1-yl)-3,6,9,12,15,18,21-heptaoxatricosyl)-[4,4'-bipyridine]-1,1'-diium hexafluorophosphate (3·4PF₆).

A mixture of $15 \cdot 2PF_6$ (115 mg, 0.10 mmol) and $8 \cdot PF_6$ (329 mg, 1.0 mmol) in 5 mL of CH₃CN was heated up to 110 °C for 6 hours using microwave-assisted heating. Then, the solvent was removed under reduced pressure to leave a solid residue, which was subjected to flash chromatography (SiO₂) using two different eluent phases: CH₃CN/NaCl (0.6 M)/MeOH 4/1/1) to remove impurities and CH₃CN/KPF₆ (0.6 M)/MeOH 4/1/1) to elute the compound. The product-containing fractions were combined and the solvents evaporated. The obtained residue was then suspended in 100 mL H_2O and filtered off to remove excess KPF₆ and dissolved in CH₃CN. Finally, the CH₃CN was removed under reduced pressure to leave 3·4PF₆ as a brown oil (42 mg, 27%). ¹H NMR (500 MHz, CD₃CN) δ : 9.00 (d, J = 7.0 Hz, 2H), 8.93 (t, J = 6.8 Hz, 4H), 8.84 (d, J = 6.9 Hz, 2H), 8.42 - 8.36 (m, 8H), 7.80 (dd, J = 8.4, 1.2 Hz, 2H), 7.75 (dd, J = 8.3, 1.0 Hz, 1H), 7.64 (d, J = 8.3 Hz, 2H), 7.55 (d, J = 8.3 Hz, 2H), 7.46 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.40 - 7.32 (m, 2H), 7.21 (dd, J = 9.0, 2.6 Hz, 1H), 5.84 (s, 2H), 5.25 (s, 2H), 4.79 - 1.004.72 (m, 4H), 4.39 (s, 3H), 3.95 (q, J = 4.9 Hz, 4H), 3.63 - 3.56 (m, 4H), 3.53 - 3.44 (m, 20H) ppm. ^{13}C NMR (125 MHz, CD_3CN) δ : 156.19 (C), 150.20 (C), 149.72 (C), 149.70 (C), 149.31 (C), 146.23 (CH), 146.04 (CH), 146.01 (CH), 145.37 (CH), 139.19 (C), 134.30 (C), 132.12 (C), 129.32 (CH), 129.30 (CH), 128.79 (C), 128.51 (CH), 127.35 (CH), 127.30 (CH), 126.56 (CH), 126.50 (CH), 126.46 (CH), 126.44 (CH), 126.40 (CH), 123.70 (CH), 118.53 (CH), 106.97 (CH), 69.99 (CH₂), 69.75 (CH₂), 69.73 (CH₂), 69.56 (CH₂),

68.71 (CH₂), 68.34 (CH₂), 64.18 (CH₂), 61.35 (CH₂), 48.36 (CH₃) ppm. *HRMS-ESI* (m/z): calcd. [C₅₅H₆₆N₄O₈F₁₂P₂]⁺²: 600.2076, found 600.2094; calcd. [C₅₅H₆₆N₄O₈F₆P]⁺³: 351.8168, found 351.8172.

Synthesis and characterization of 1⊂CB[8]

CB8
$$D_2O/CD_3CN$$

$$0$$

$$1.4PF_6$$

A solution of $1.4PF_6$ (6.5 mg, 0.005 mmol) in 2.5 mL of a mixture of H_2O/CH_3CN (3/2 v/v) was prepared and 1 equivalent of CB[8] was added. The mixture of the reaction was stirred for 10 minutes. A portion of 0.6 mL was taken from the resulting mixture and the solvent was evaporated under reduced pressure to leave the crude product. The solid was dissolved in D₂O/CD₃CN (3/2 v/v) (0.6 mL, 2 mM with respect to $1.4PF_6$). ¹H NMR (500 MHz, D_2O/CD_3CN (3/2)): δ 9.46 (d, J = 6.3 Hz, 2H), 9.35 (d, J = 6.3 Hz, 2H), 9.06 (d, J = 6.4 Hz, 2H), 9.01 (t, J = 6.6 Hz, 4H), 8.94 (d, J = 6.3 Hz, 2H), 8.86 (d, J = 6.3 Hz, 2H), 8.83 - 8.77 (m, 8H), 8.18 (dd, J = 9.0, 4.2 Hz, 2H), 8.11 (d, J = 8.3 Hz, 1H), 7.90 (m, 4H), 7.82 (t, J = 7.6 Hz, 1H), 7.73 (t, J = 7.5 Hz, 1H), 7.68 (s, 1H), 7.58 (dd, J = 9.0, 2.5 Hz, 1H), 6.21(s, 2H), 6.01 (dd, J = 25.3, 15.2 Hz, 16H), 5.70 (s, 16H), 5.58 (s, 1H), 4.45 (t, J = 14.9 Hz, 16H), 3.93 (s, 2H), 6.01 (dd, J = 25.3, 15.2 Hz, 16H), 5.70 (s, 16H), 5.58 (s, 1H), 4.45 (t, J = 14.9 Hz, 16H), 3.93 (s, 2H), 6.01 (dd, J = 25.3, 15.2 Hz, 16H), 5.70 (s, 16H), 5.58 (s, 1H), 4.45 (t, J = 14.9 Hz, 16H), 3.93 (s, 2H), 6.01 (dd, J = 25.3, 15.2 Hz, 16H), 5.70 (s, 16H), 5.70 (s, 16H), 5.70 (s, 16H), 6.01 (dd, J = 14.9 Hz, 16H), 6.91 (s, 16H), 6.93H), 3.36 (bs, 4H), 2.54 (bs, 2H), 2.47 – 2.36 (bs, 2H), 2.19 – 2.14 (bs, 2H), 2.11 (bs, 2H) ppm. ^{13}C NMR (125 MHz, CD₃CN): δ 155.77 (C), 149.85 (C), 148.91 (C), 147.55 (C), 147.13 (CH), 146.92 (CH), 146.16 (CH), 145.97 (CH), 145.88 (CH), 145.46 (C), 137.76 (C), 134.99 (C), 132.29 (C), 130.41 (CH), 129.30 (CH), 129.27 (C), 128.50 (C), 127.80 (CH), 127.26 (CH), 127.16 (CH), 126.68 (CH), 126.46 (CH), 126.34 (CH), 125.98 (CH), 125.81 (CH), 123.82 (CH), 107.06 (CH), 102.04 (CH), 72.84 (CH₂), 71.25 (CH), 69.43 (CH₂), 69.30 (CH₂), 69.21 (CH₂), 68.64 (CH₂), 66.92 (CH₂), 66.64 (CH₂), 64.14 (CH₂), 61.11 (CH₂), 53.53 (CH₂), 47.80 (CH₃).

The solid was dissolved in CD₃CN (0.6 mL, 2 mM with respect to $\mathbf{1} \cdot 4\text{PF}_6$). 1H *NMR* (500 *MHz*, *CD*₃*CN*) δ : 9.01 (d, J = 7.0 Hz, 2H), 8.92 (d, J = 7.0 Hz, 2H), 8.90 – 8.86 (m, 4H), 8.70 (d, J = 7.0 Hz, 2H), 8.67 (d, J = 7.1 Hz, 2H), 8.62 (d, J = 7.2 Hz, 2H), 8.58 (d, J = 7.2 Hz, 2H), 7.84 (d, J = 8.9 Hz, 2H), 7.79 (d, J = 8.3 Hz, 1H), 7.59 (s, 4H), 7.48 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.42 – 7.35 (m, 2H), 7.25 (dd, J = 9.0, 2.5 Hz, 1H), 5.84 (s, 2H), 5.77 (dd, J = 25.2, 14.9 Hz, 16H), 5.29 (s, 16H), 5.25 (s, 2H), 4.45 – 4.55 (s, 2H), 4.40 (s, 3H), 4.08 (dd, J = 15.0, 10.7 Hz, 16H), 3.11 – 2.91 (m, 2H), 1.75 (s, 4H) ppm. ^{13}C *NMR* (125 *MHz*, CD_3CN) δ : 156.36 (C), 155.64 (C), 155.57 (C), 148.46 (C), 148.26 (C), 147.05 (C), 146.76 (CH), 146.71 (CH), 145.91 (CH), 145.87 (CH), 138.95 (C), 134.41 (C), 132.39 (C), 129.74 (CH), 129.40 (CH), 128.89 (C), 128.57 (C), 128.20 (CH), 127.47 (CH), 127.23 (CH), 126.54 (CH), 126.54 (CH), 126.52 (CH), 126.09 (CH), 125.83 (CH), 123.84 (CH), 118.65 (CH), 107.16 (CH), 72.19 (CH₂), 71.31 (CH), 70.14 (CH₂), 70.11 (CH₂), 68.93 (CH₂), 67.26 (CH₂), 67.21 (CH₂), 63.82 (CH₂), 63.82 (CH₂), 60.98 (CH₂), 60.85 (CH₂), 53.08

(CH₂), 53.03 (CH₂), 47.93 (CH₃) ppm. HRMS-ESI (m/z): calcd. $[C_{95}H_{98}N_{36}O_{20}F_{12}P_2]^{+2}$: 1176.3515, found 1176.3417; calcd. $[C_{95}H_{98}N_{36}O_{20}F_6P]^{+3}$: 735.9127, found 735.9092.

Synthesis and characterization of 2⊂CB[8]

A solution of 2·4PF₆ (7.0 mg, 0.005 mmol) in 2.5 mL of a mixture of H₂O/CH₃CN (3/2 v/v) was prepared and 1 equivalent of CB[8] was added. The mixture of the reaction was stirred for 10 minutes. A portion of 0.6 mL was taken from the resulting mixture and the solvent was evaporated under reduced pressure to leave the crude product. The solid was dissolved in CD₃CN (0.6 mL, 2 mM with respect to $2.4PF_6$). ¹H NMR (500 MHz, CD₃CN): δ 8.99 (d, J = 6.5 Hz, 2H), 8.82 (m, 8H), 8.74 (d, J =6.7 Hz, 2H), 8.57 (d, J = 6.5 Hz, 2H), 8.53 (d, J = 6.3 Hz, 2H), 7.83 (d, J = 8.3 Hz, 2H), 7.78 (d, J = 8.2 Hz, 1H), 7.58 (s, 5H), 7.47 (t, J = 7.5 Hz, 1H), 7.41 – 7.34 (m, 2H), 7.24 (d, J = 9.0 Hz, 1H), 5.81 (d, J = 6.4Hz, 2H), 5.76 (d, J = 15.0 Hz, 16H), 5.28 (d, J = 3.0 Hz, 2H), 5.25 (s, 16H), 4.72 (s, 3H), 4.67 (m, 2H), 4.38 (m, 2H), 4.02 (d, J = 15.0 Hz, 16H), 3.68 (m, 2H), 3.41 (m, 2H), 3.27 (m, 2H), 3.15 (m, 2H), 2.93(m, 2H), 2.90 (m, 2H), 2.66 (m, 2H), 2.63 (m, 2H), 2.36 (m, 2H), 2.29 (overlap) ppm. ¹³C NMR (125 MHz, CD₃CN): δ 156.63 (C), 148.01 (CH), 147.27 (CH), 147.14 (CH), 146.39 (CH), 133.15 (CH), 131.58 (CH), 130.56 (CH), 129.87 (CH), 129.40 (CH), 128.87 (CH), 128.30 (CH), 127.70 (CH), 127.24 (CH), 125.00 (CH), 119.78 (CH), 108.34 (CH), 72.46 (CH), 72.20 (CH₂), 71.62 (CH₂), 71.29 (CH₂), 70.89 (CH₂), 70.49 (CH₂), 70.10 (CH₂), 69.32 (CH₂), 65.04 (CH₂), 64.24 (CH₂), 63.62 (CH₂), 55.22 (CH₂), 49.66 (CH₃). HRMS-ESI (m/z): calcd. $[C_{99}H_{106}N_{36}O_{22}F_{12}P_2]^{+2}$: 1220.3777, found 1220.3758; calcd. $[C_{99}H_{106}N_{36}O_{22}F_6P]^{+3}$: 765.2635, found 765.2657.

Synthesis and characterization of **3**⊂CB[8]

A solution of 3·4PF₆ (7.5 mg, 0.005 mmol) in 2.5 mL of a mixture of H₂O/CH₃CN (3/2 v/v) was prepared and 1 equivalent of CB[8] was added. The mixture of the reaction was stirred for 10 minutes. A portion of 0.6 mL was taken from the resulting mixture and the solvent was evaporated under reduced pressure to leave the crude product. The solid was dissolved in CD₃CN (0.6 mL, 2 mM with respect to $3.4PF_6$). H NMR (500 MHz, CD₃CN): δ 9.03 (d, J = 6.4 Hz, 2H), 8.98 (d, J = 6.4 Hz, 2H), 8.89 (d, J = 6.5 Hz, 2H), 8.86 (d, J = 6.5 Hz, 2H), 8.71 (d, J = 6.3 Hz, 2H), 8.59 (m, 2H), 8.48 (d, J = 6.3 Hz, 2H), 8.44 (m, 2H), 7.83 (d, J = 8.4 Hz, 2H), 7.78 (d, J = 8.3 Hz, 1H), 7.58 (s, 4H), 7.48 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.40 - 7.36 (m, 1H), 7.35 (d, J = 2.5 Hz, 1H), 7.23 (dd, J = 8.9, 2.6 Hz, 1H), 5.83 (s, 2H), 5.76(d, J = 14.9 Hz, 16H), 5.24 (s, 16H), 4.74 (m, 2H), 4.63 (m, 2H), 4.37 (s, 3H), 4.01 (d, J = 15.0 Hz, 16H),3.78 (m, 2H), 3.52 (m, 2H), 3.45 (m, 2H), 3.29 (m, 2H), 3.23 (m, 2H), 3.13 (m, 2H), 3.09 (m, 2H), 2.92 (m, 4H), 2.82 (m, 6H), 2.74 (m, 2H), 2.55 (m, 2H). ¹³C NMR (125 MHz, CD₃CN): δ 156.09 (C), 155.25 (C), 149.14 (C), 148.70 (C), 148.53 (C), 148.24 (CH), 146.76 (CH), 146.25 (CH), 145.99 (CH), 145.17 (CH), 138.67 (CH), 134.17 (CH), 132.39 (CH), 129.40 (CH), 129.16 (CH), 128.64 (CH), 128.06 (CH), 127.40 (CH), 127.25 (CH), 126.72 (CH), 126.33 (CH), 123.62 (CH), 71.96 (CH), 69.92 (CH₂), 69.53 (CH₂), 69.32 (CH₂), 69.25 (CH₂), 69.15 (CH₂), 69.10 (CH₂), 68.96 (CH₂), 68.71 (CH₂), 68.69 (CH₂), 68.41 (CH₂), 68.18 (CH₂), 68.00 (CH₂), 66.26 (CH₂), 63.59 (CH₂), 61.83 (CH₂), 61.16 (CH₂), 54.15 (CH₂), 52.24 (CH₂), 47.82 (CH₃) ppm. *HRMS-ESI* (m/z): calcd. [C₁₀₃H₁₁₄N₃₆O₂₄F₁₂P₂]⁺²: 1264.4039, found 1264.4003; calcd. $[C_{103}H_{114}N_{36}O_{24}F_6P]^{+3}$: 794.6144, found 794.6138.



Figure S1 UV-VIS Titration data of $1\cdot4$ PF₆ with increasing amounts of CB[8] in H₂O/CH₃CN (3/2 v/v).

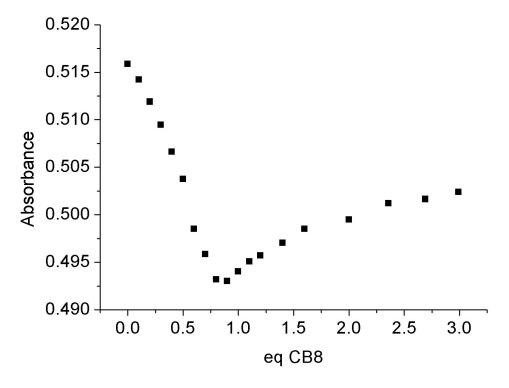


Figure S2 UV-VIS Representation of titration $1\cdot 4PF_6$ and CB[8] at λ_{obs} = 261 nm in H₂O/CH₃CN (3/2 v/v).

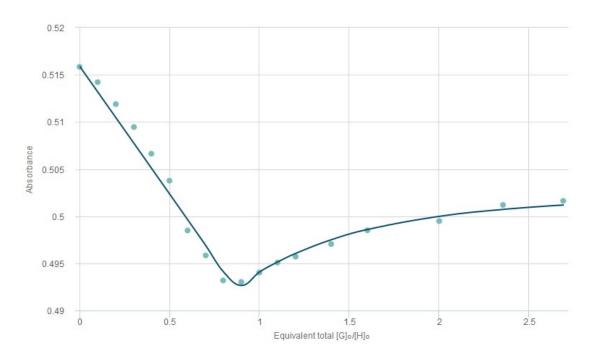
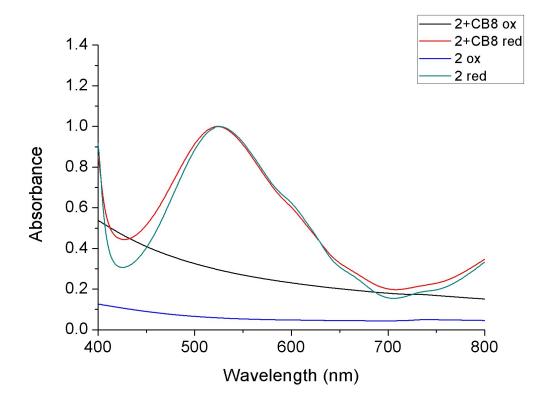
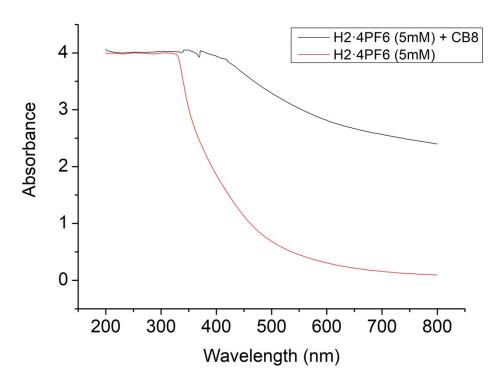



Figure S3 Fitting of titration of 1.4 PF₆ and CB[8] at λ_{obs} = 261 nm using supramolecular.org in H₂O/CH₃CN (3/2 v/v).

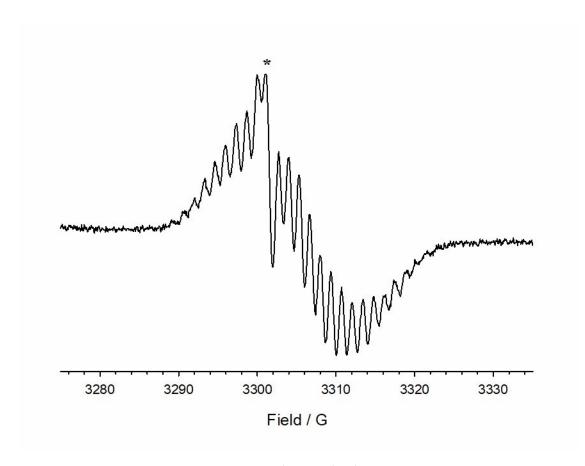
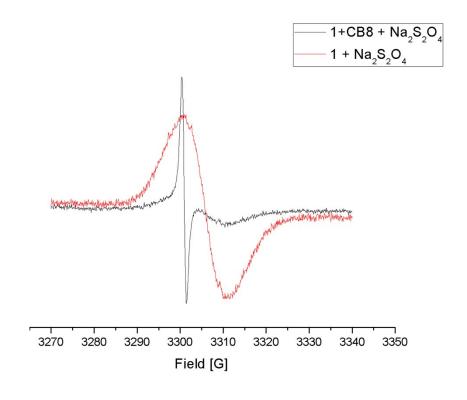
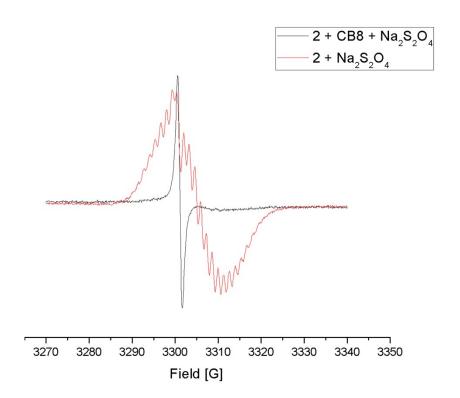

x1: Guest	1: Guest x2:Host x3: H/G		
concentration / M	concentration / M	equivalent total	
0.000014	0	0	0.51585
0.000014	0.0000014	0.1	0.51422
0.000014	0.0000028	0.2	0.51189
0.000014	0.0000042	0.3	0.50946
0.000014	0.0000056	0.4	0.50663
0.000014	0.000007	0.5	0.50377
0.000014	0.000084	0.6	0.49849
0.000014	0.0000098	0.7	0.49584
0.000014	0.0000112	0.8	0.49319
0.000014	0.0000126	0.9	0.49303
0.000014	0.000014	1	0.49403
0.000014	0.0000154	1.1	0.49509
0.000014	0.0000168	1.2	0.49571
0.000014	0.0000196	1.4	0.49705
0.000014	0.0000224	1.6	0.49851
0.000014	0.000028	2	0.49949
0.000014	3.30103E-05	2.4	0.5012
0.000014	3.76667E-05	2.7	0.50163

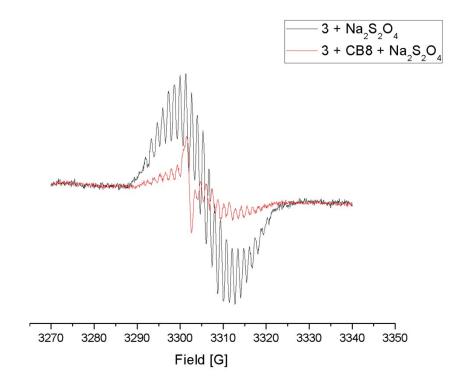
K ₁₁	K ₂₁	K ₁₁ error K ₂₁ error (%) (%)		SSR	Datapoints fitted	Params fitted
197160.507	- 35726.9294	10.5280012	- 0.14815273	1.5125E-05	18	4

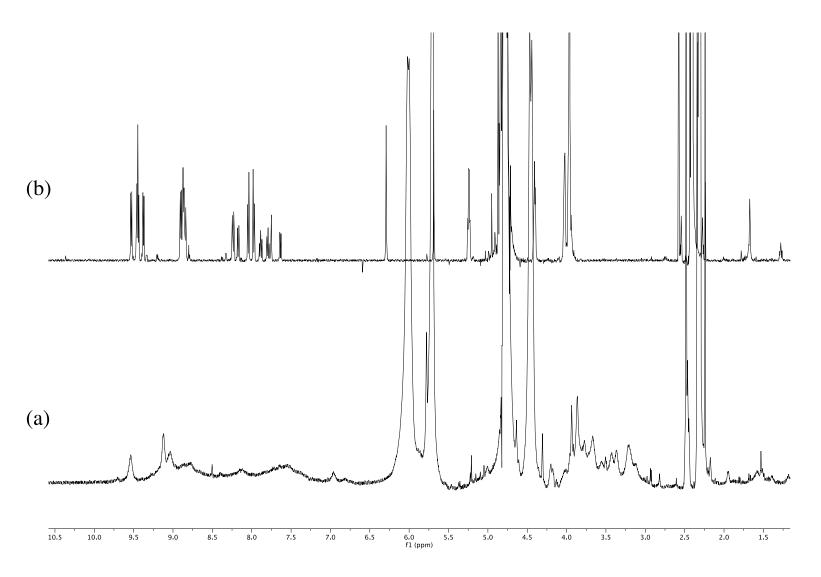
H coeffs	HG coeffs	H2G coeffs	Raw coeffs 1	Raw coeffs 2	Raw coeffs 3
36846.4286	35955.7143	37620.1208	36846.4286	35955.7143	37620.1208

Figure S4 UV-visible spectrum of $2\cdot4PF_6$ and $2\subset CB[8]$ in H_2O/CH_3CN (3/2 v/v) before and after addition of an excess of $Na_2S_2O_4$ under N_2 atmosphere.

Figure S5 UV-visible spectrum of $2\cdot4PF_6$ and $2\subset CB[8]$ (5mM) in H_2O/CH_3CN (3/2 v/v) showing the increasing of the absorbance because of the charge-transfer band.


Figure S6 Room temperature EPR spectrum of a H_2O/CH_3CN (3/2, v/v) solution containing compound 3^{4+} and $Na_2S_2O_4$. The asterisk indicates the signal due to $SO_2^{\bullet-}$ radical anion.


Figure S7 EPR spectroscopy of $\mathbf{1} \cdot 4PF_6$ and $\mathbf{1} \subset CB[8]$ after addition of an excess of $Na_2S_2O_4$ under N_2 atmosphere.

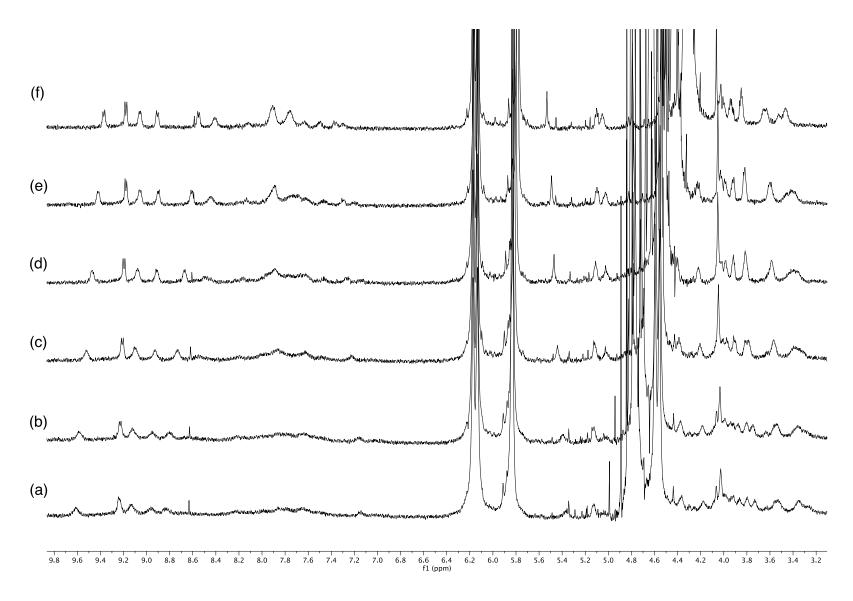

Figure S8 EPR spectroscopy of $2\cdot 4PF_6$ and $2\subset CB[8]$ after addition of an excess of $Na_2S_2O_4$ under N_2 atmosphere.

Figure S9 EPR spectroscopy of $2 \cdot 4PF_6$ and $2 \subset CB[8]$ after addition of an excess of $Na_2S_2O_4$ under N_2 atmosphere.

Figure S10 Partial ¹H NMR (500 MHz, D₂O/CD₃CN (3:2)) spectrum of: (a) 2 mM solution of **3**·4PF₆ (b) 2 mM solution of **3** ⊂CB[8].

Figure S11. Partial ¹H VT-NMR (400 MHz, D₂O) spectra of a 2 mM solution of **3**⊂CB[8] (a) 298 K; (b) 303 K; (c) 313 K; (d) 323 K; (e) 333 K; (f) 343 K.

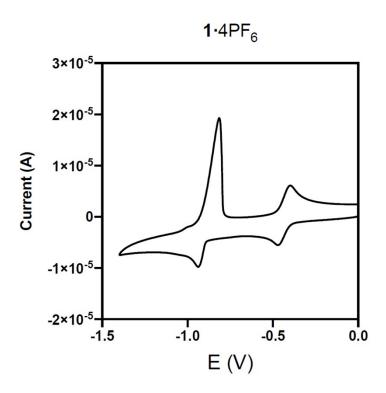


Figure S12 Cyclic voltammetric response on a glassy carbon electrode of 1.0 mM 1.4PF₆ in H₂O/CH₃CN (3:2, v/v). Supporting electrolyte: 0.1 M KCl. Scan rate: 50 mV/s.

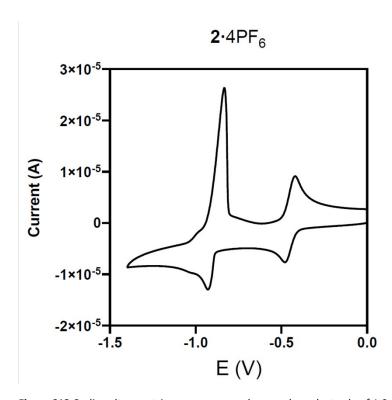


Figure S13 Cyclic voltammetric response on a glassy carbon electrode of 1.0 mM 2·4PF₆ in H₂O/CH₃CN (3:2, v/v). Supporting electrolyte: 0.1 M KCl. Scan rate: 50 mV/s.

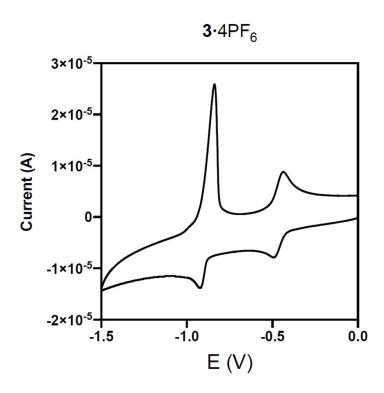


Figure S14 Cyclic voltammetric response on a glassy carbon electrode of 1.0 mM 3·4PF₆ in H₂O/CH₃CN (3:2, v/v). Supporting electrolyte: 0.1 M KCl. Scan rate: 50 mV/s.

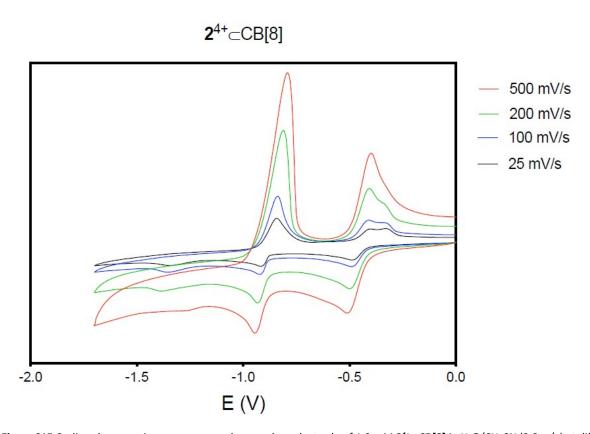


Figure S15 Cyclic voltammetric response on a glassy carbon electrode of 1.0 mM 2⁴⁺ CB[8] in H₂O/CH₃CN (3:2, v/v) at different scan rate. Supporting electrolyte: 0.1 M KCl.

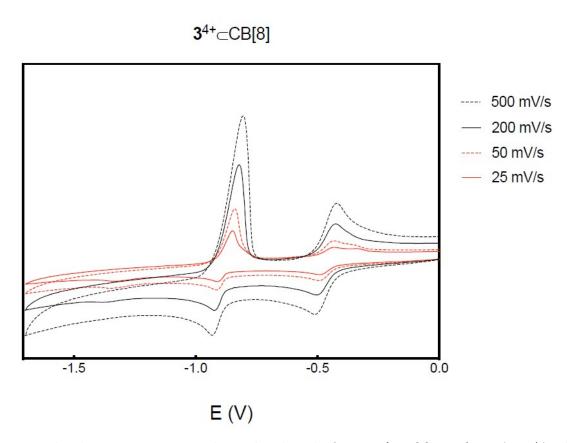


Figure S16 Cyclic voltammetric response on a glassy carbon electrode of 1.0 mM 3⁴⁺⊂CB[8] in H₂O/CH₃CN (3:2, v/v) at different scan rate. Supporting electrolyte: 0.1 M KCl.

NMR spectra

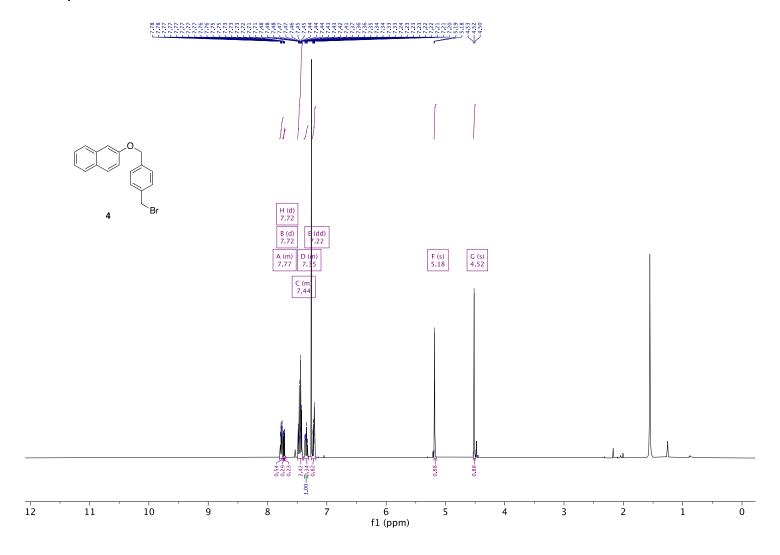


Figure S17 ¹H NMR (500 MHz, CDCl₃) spectrum of 4.

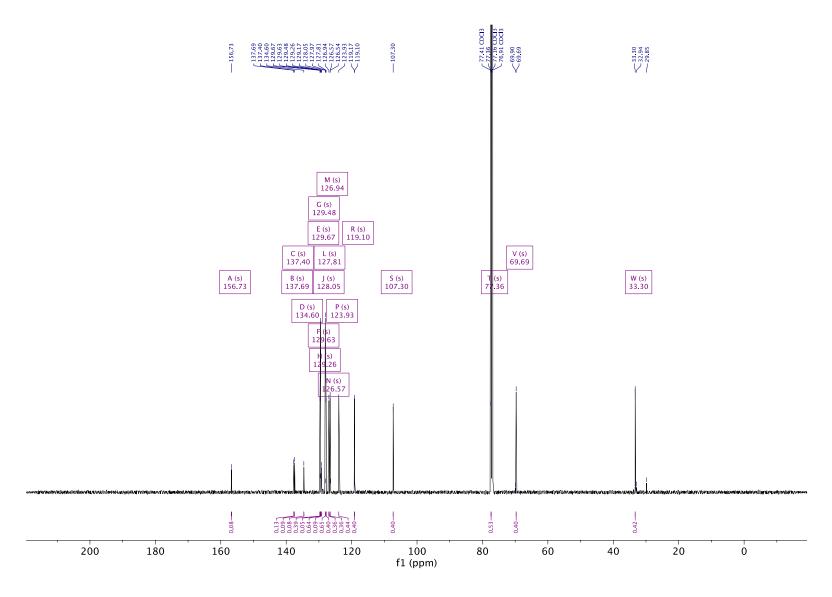


Figure \$18 ¹³C NMR (125 MHz, CDCl₃) spectrum of 4.

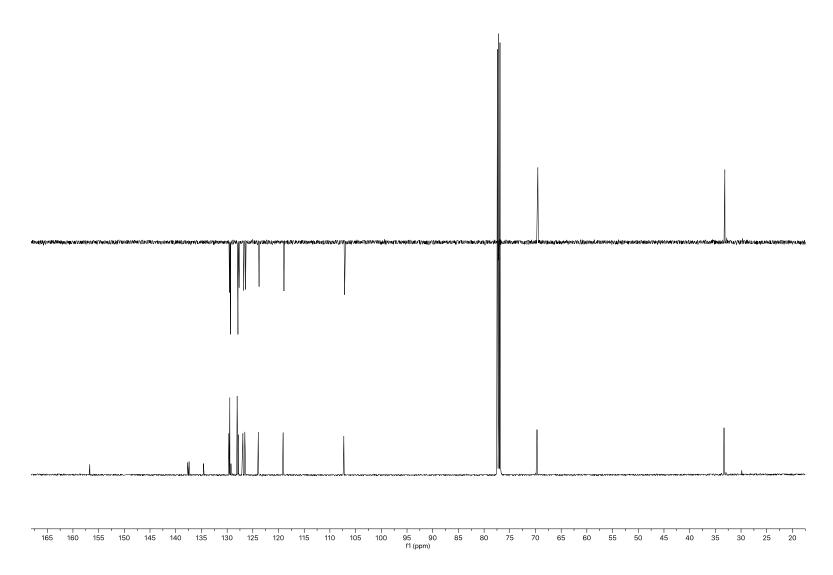


Figure S19 ¹³C and DEPT NMR (125 MHz, CDCl₃) spectrum of 4.

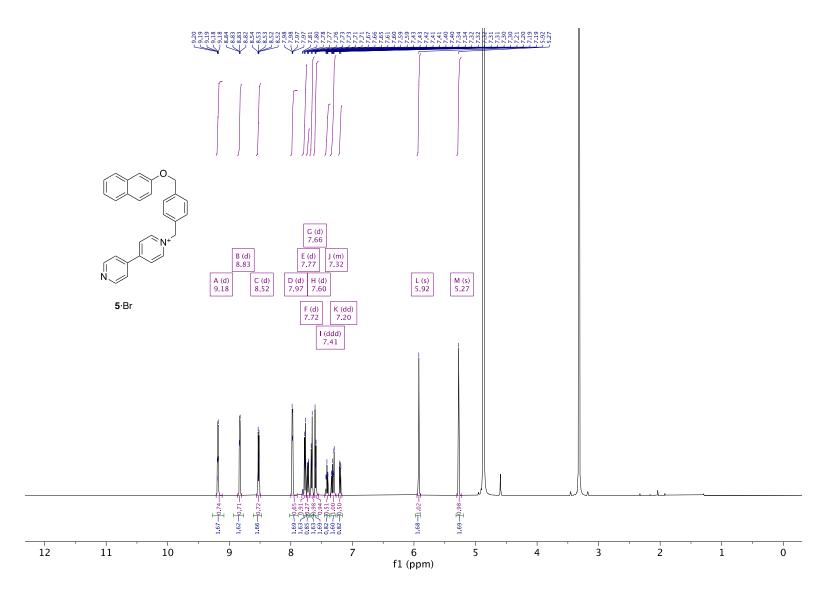


Figure S20 ¹H NMR (500 MHz, D₂O) spectrum of 5·Br.

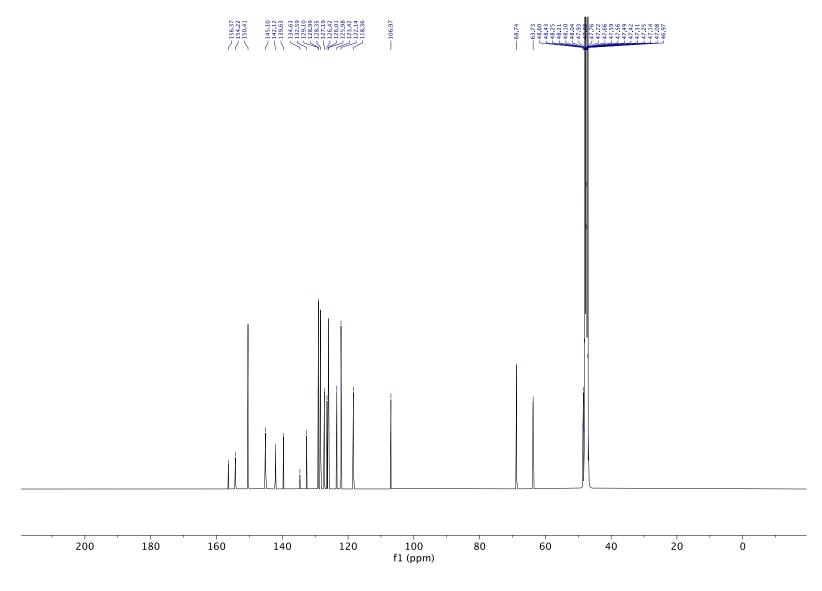


Figure S21 13 C NMR (125 MHz, D_2O) spectrum of **5**·Br.

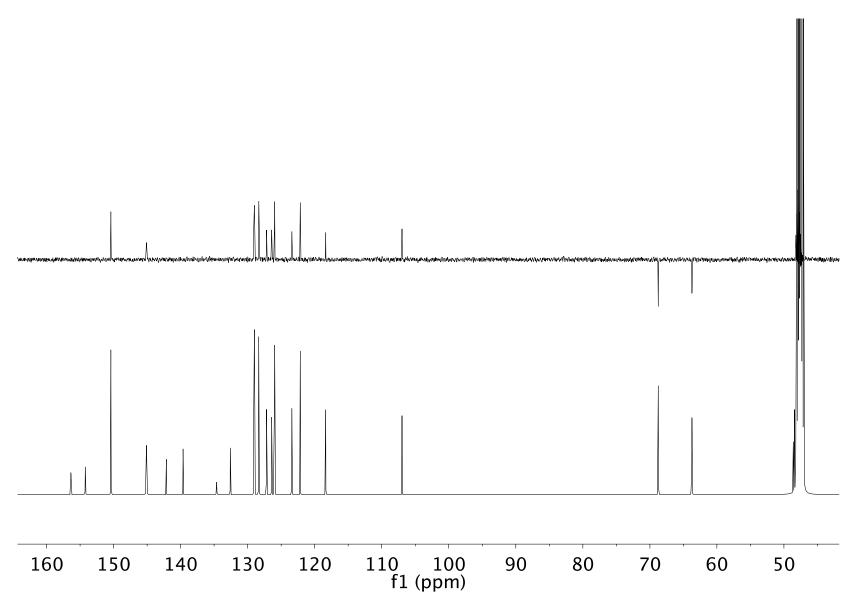


Figure S22 13 C and DEPT NMR (125 MHz, D₂O) spectrum of 5·Br.

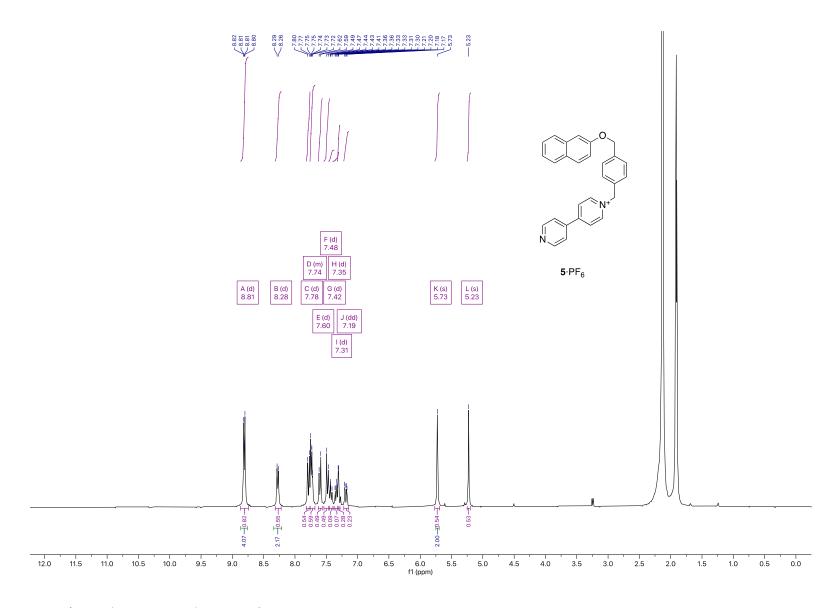


Figure S23 ¹H NMR (400 MHz, CD₃CN) spectrum of 5·PF₆.

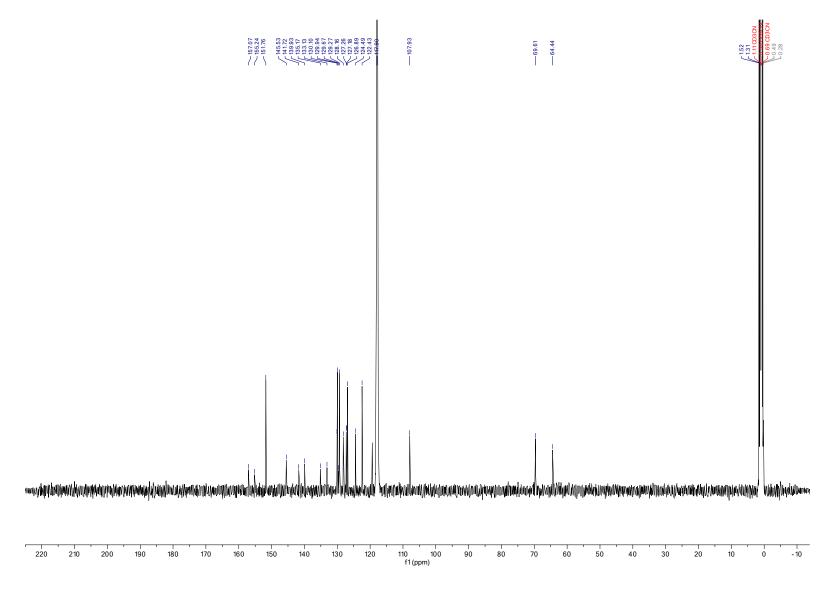


Figure S24 ¹³C NMR (400 MHz, CD₃CN) spectrum of 5⋅PF₆.

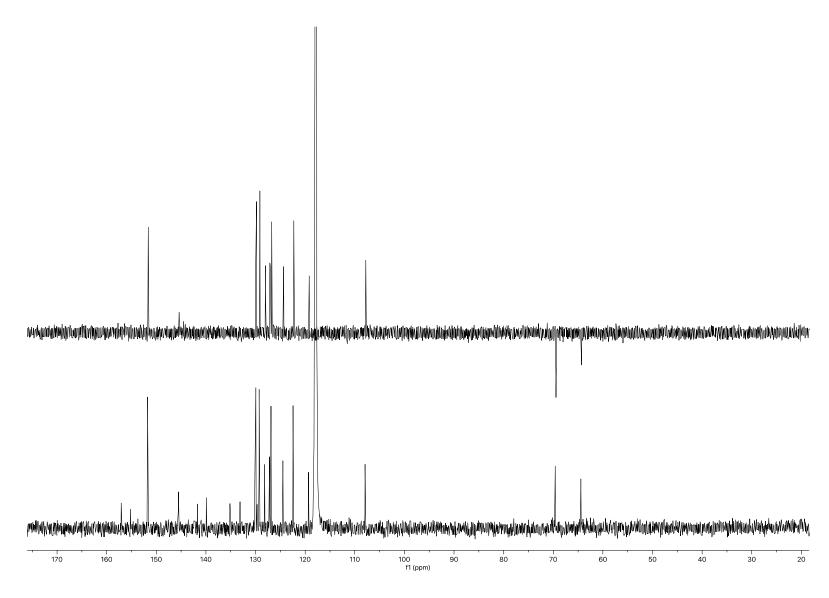


Figure S25 ¹³C and DEPT NMR (400 MHz, CD₃CN) spectrum of 5·PF₆.

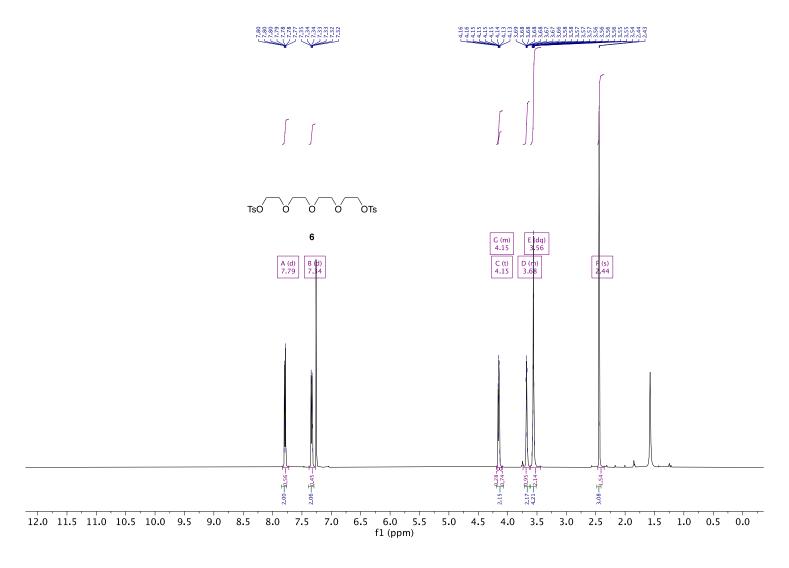


Figure S26 ¹H NMR (500 MHz, CDCl₃) spectrum of 6.

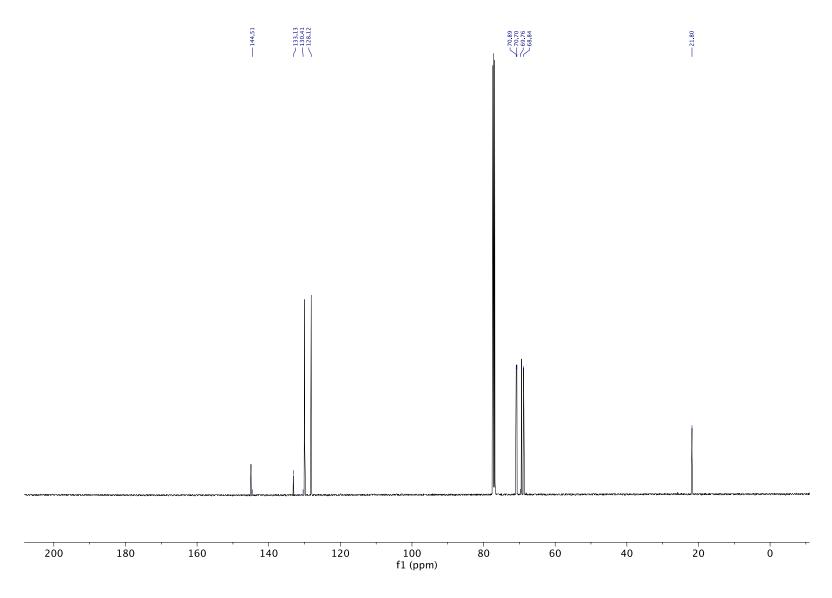


Figure S27 ¹³C (125 MHz, CDCl₃) spectrum of 6.

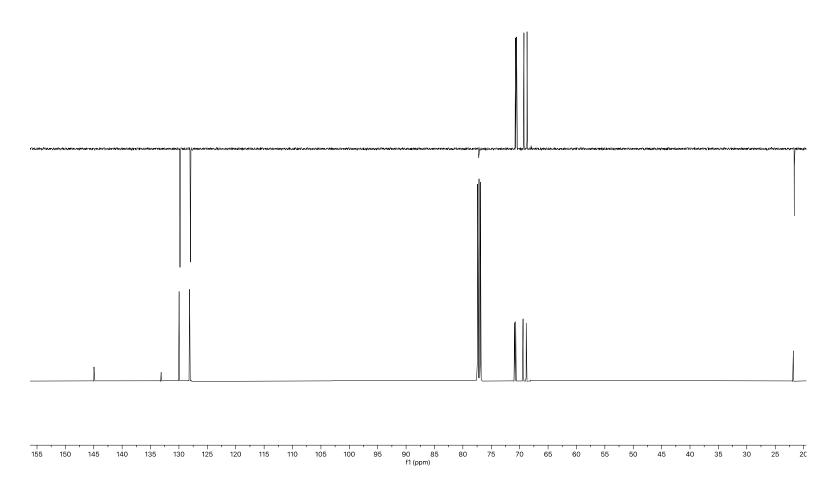


Figure S28 ¹³C and DEPT NMR (125 MHz, CDCl₃) spectrum of 6.

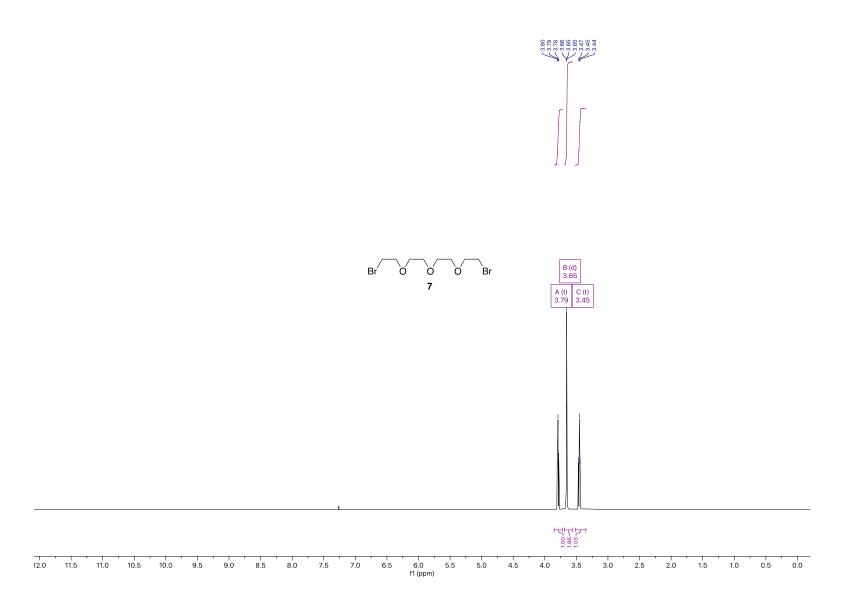


Figure S29 ¹H NMR (500 MHz, CDCl₃) spectrum of **7**.

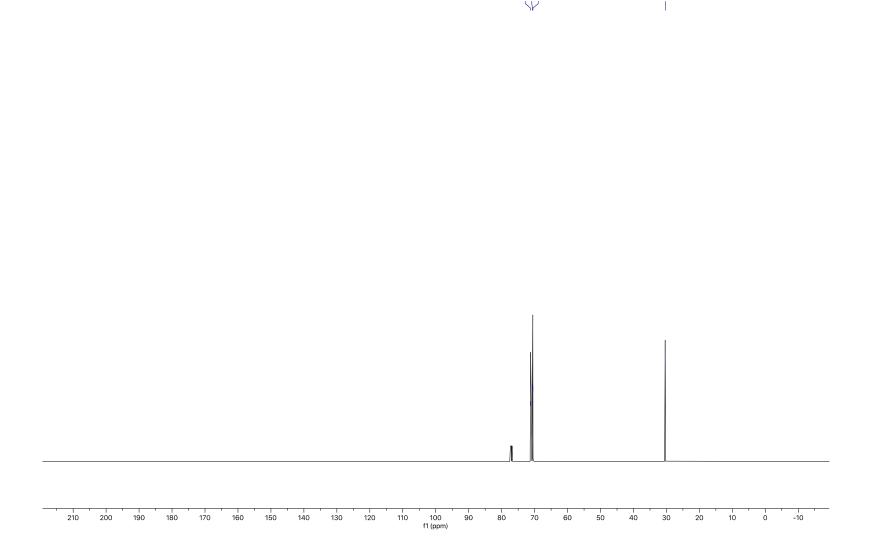


Figure S30 ¹³C NMR (125 MHz, CDCl₃) spectrum of 7.

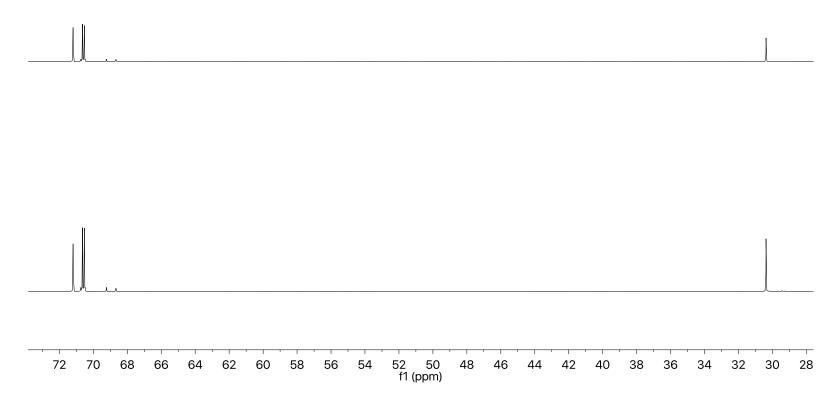


Figure S31 ¹³C and DEPT NMR (125 MHz, CDCl₃) spectrum of 7.

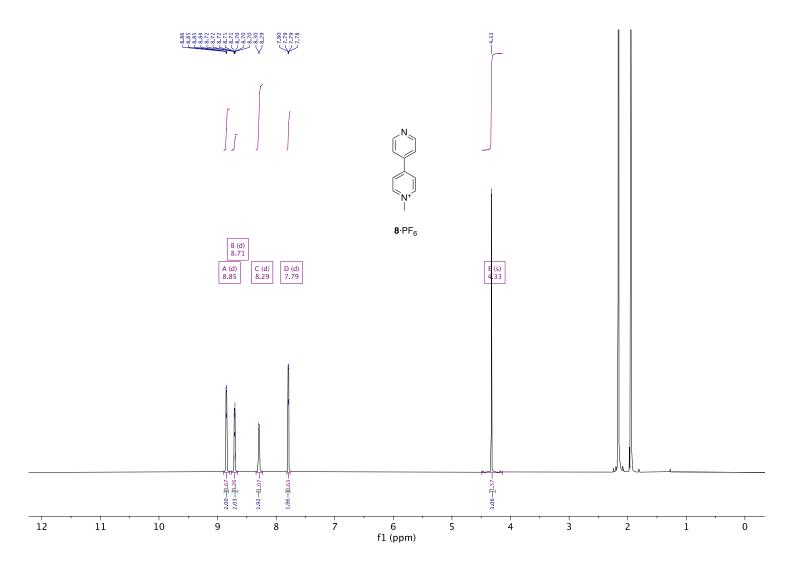


Figure S32 ¹H NMR (500 MHz, CD₃CN) spectrum of 8·PF₆.

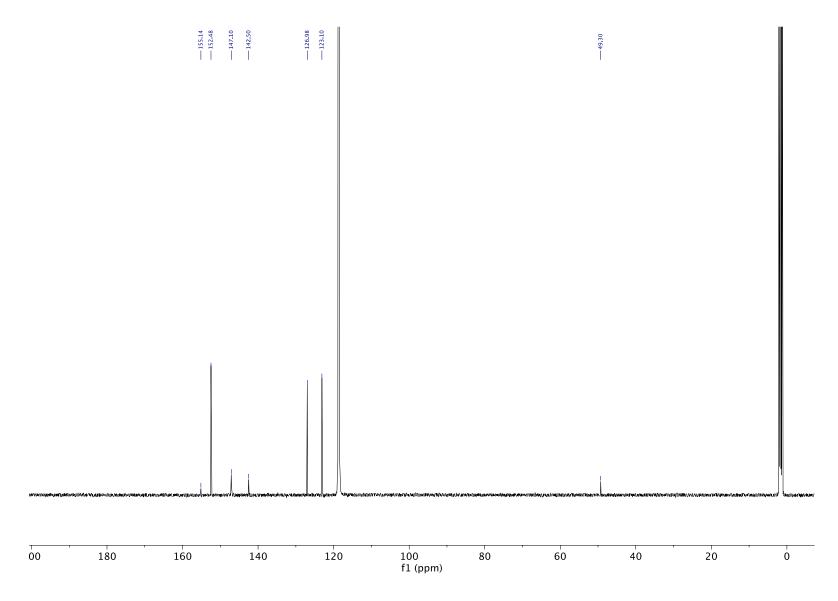


Figure S33 ¹³C NMR (125 MHz, CD₃CN) spectrum of 8⋅PF₆.

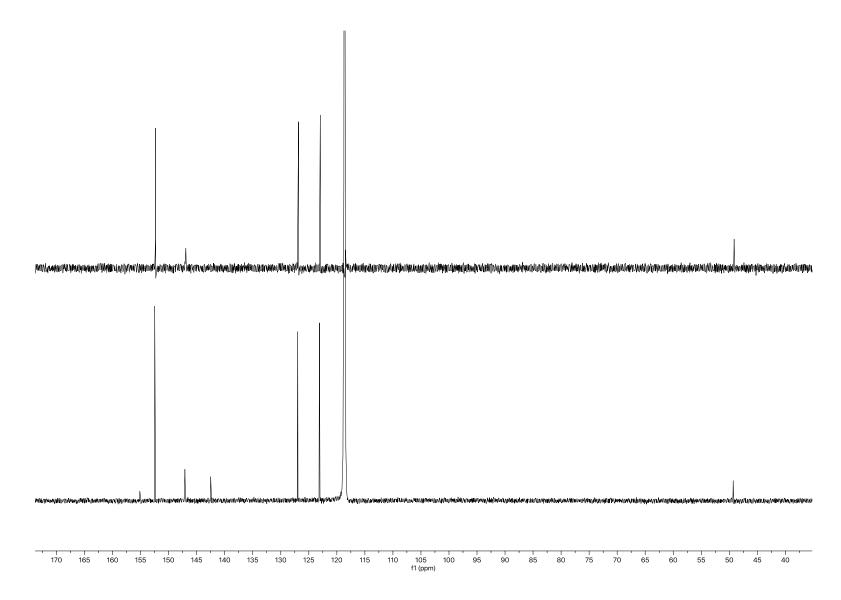


Figure S34 ¹³C and DEPT NMR (125 MHz, CD₃CN) spectrum of 8·PF₆.

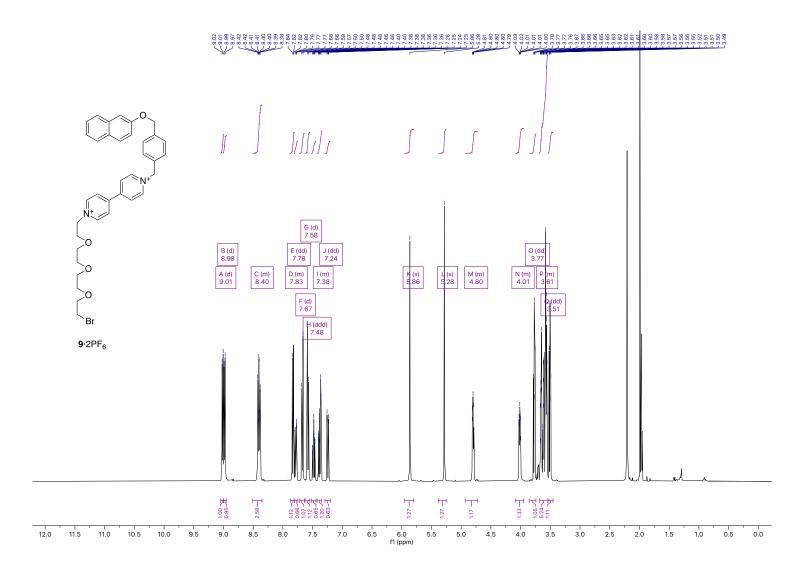


Figure S35 ¹H NMR (500 MHz, CD₃CN) spectrum of 9·2PF₆.

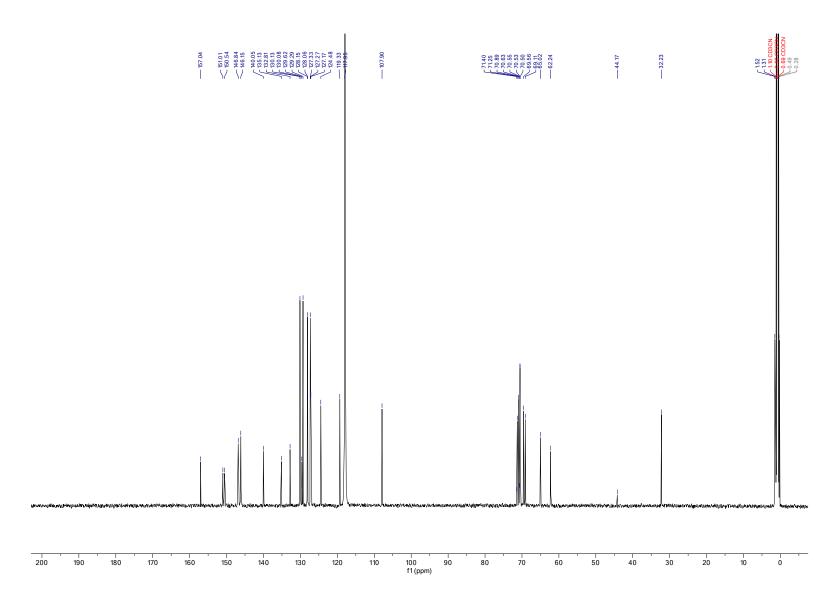


Figure S36 ¹³C NMR (125 MHz, CD₃CN) spectrum of 9·2PF₆

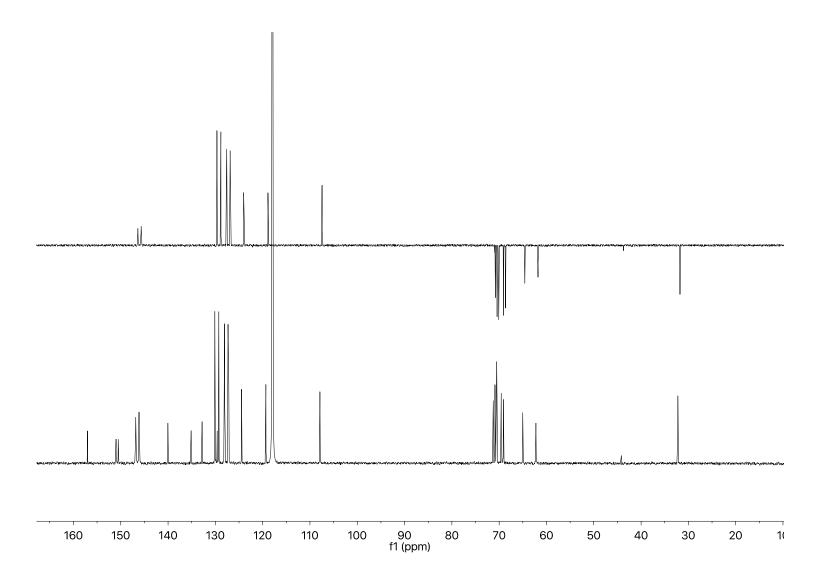


Figure S37 ¹³C NMR and DEPT (125 MHz, CD₃CN) spectrum of 9·2PF₆

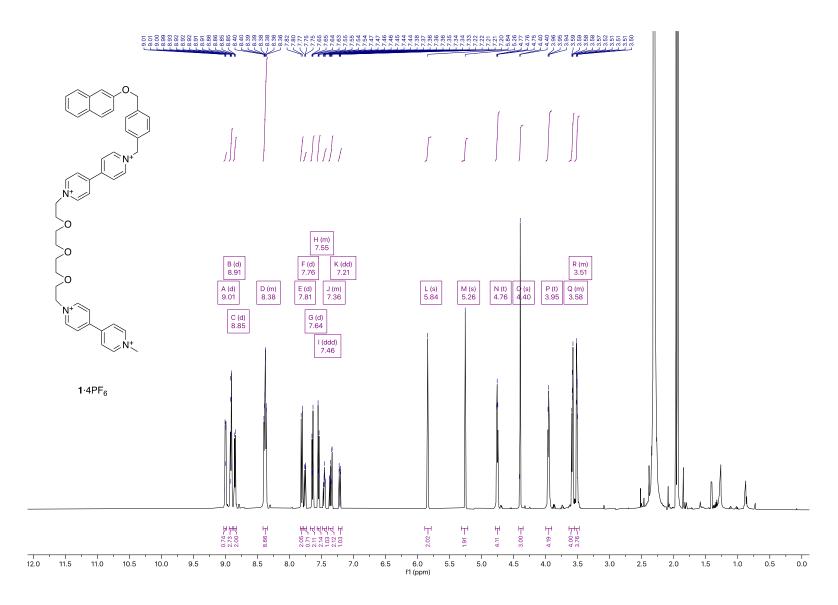


Figure S38 ¹H NMR (500 MHz, CD₃CN) spectrum of 1·4PF₆.

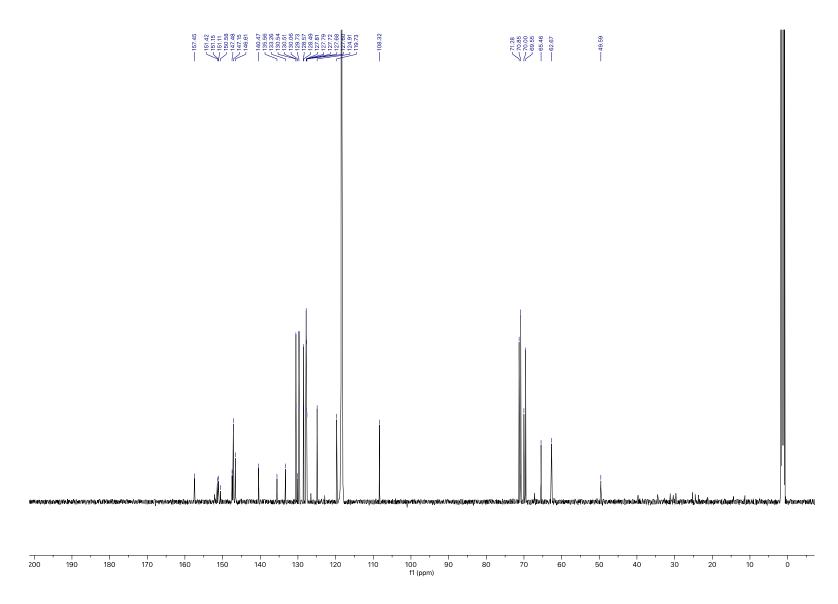


Figure S39 ¹³C NMR (125 MHz, CD₃CN) spectrum of 1·4PF₆.

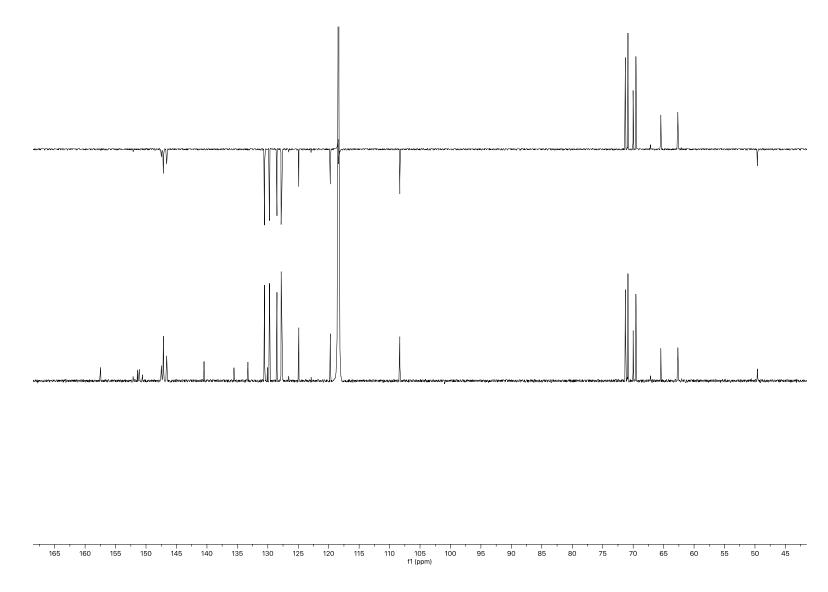


Figure S40 ¹³C NMR and DEPT (125 MHz, CD₃CN) spectrum of 1·4PF₆.

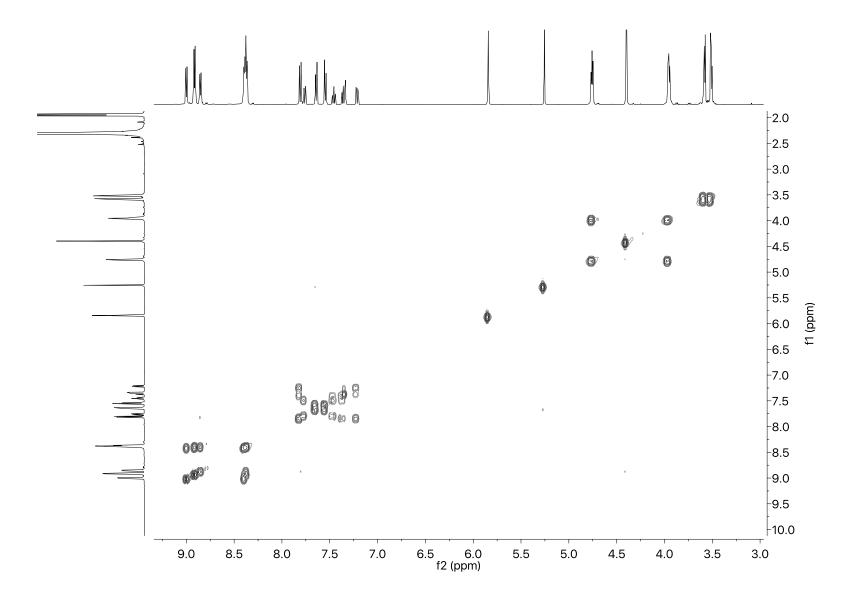


Figure S41 COSY (500 MHz, CD₃CN) spectrum of 1·4PF₆.

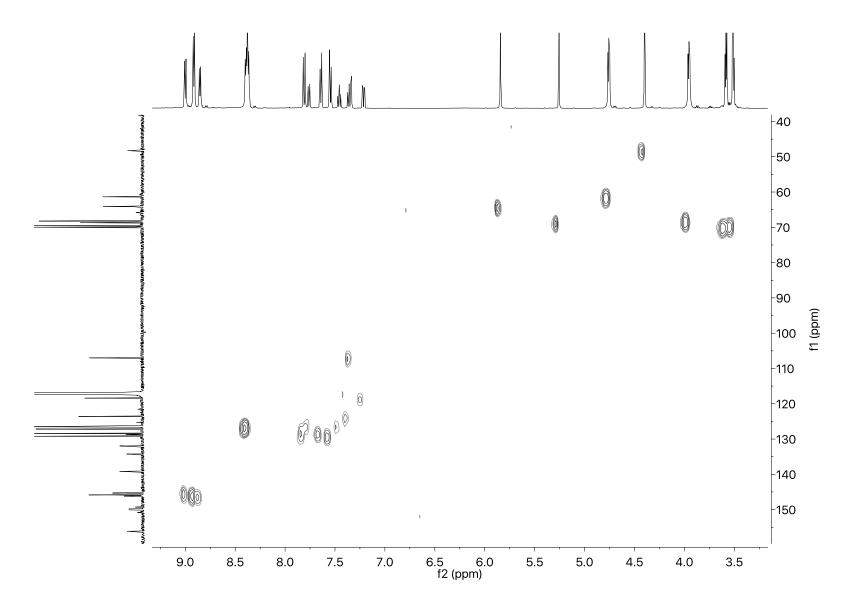


Figure S42 HSQC (500 MHz, CD₃CN) spectrum of 1·4PF₆.

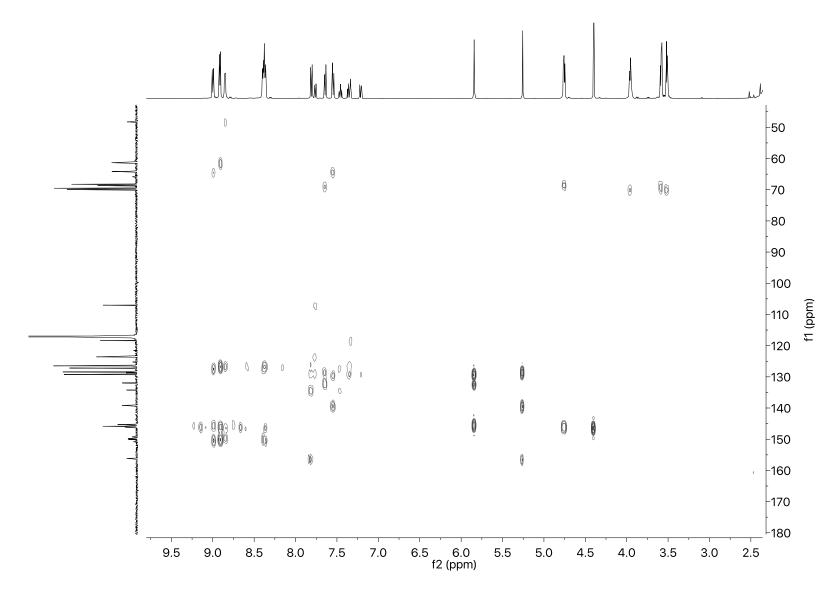


Figure S43 HMBC (500 MHz, CD₃CN) spectrum of 1·4PF₆.

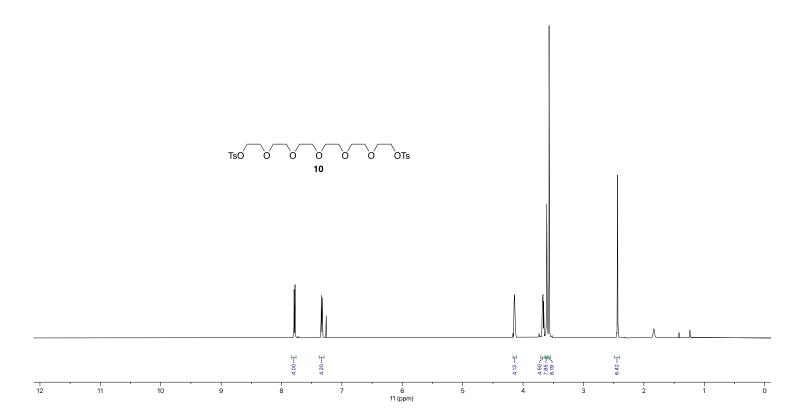


Figure S44 ¹H NMR (500 MHz, CDCl₃) spectrum of 10.

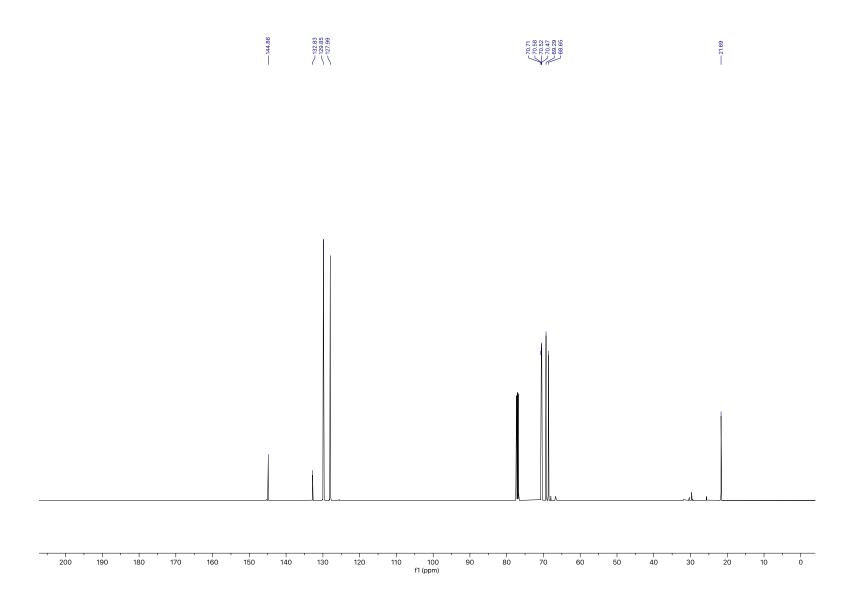


Figure S45 ¹³C NMR (125 MHz, CDCl₃) spectrum of 10.

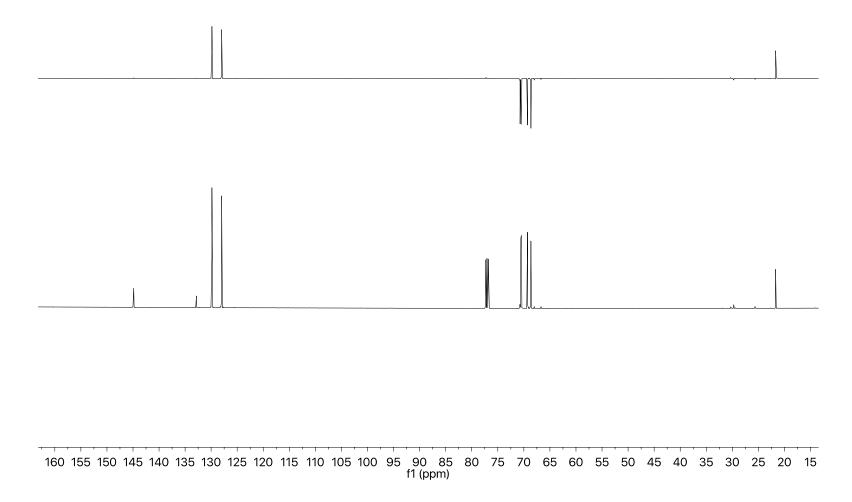


Figure S46 ¹³C NMR and DEPT (125 MHz, CDCl₃) spectrum of 10.

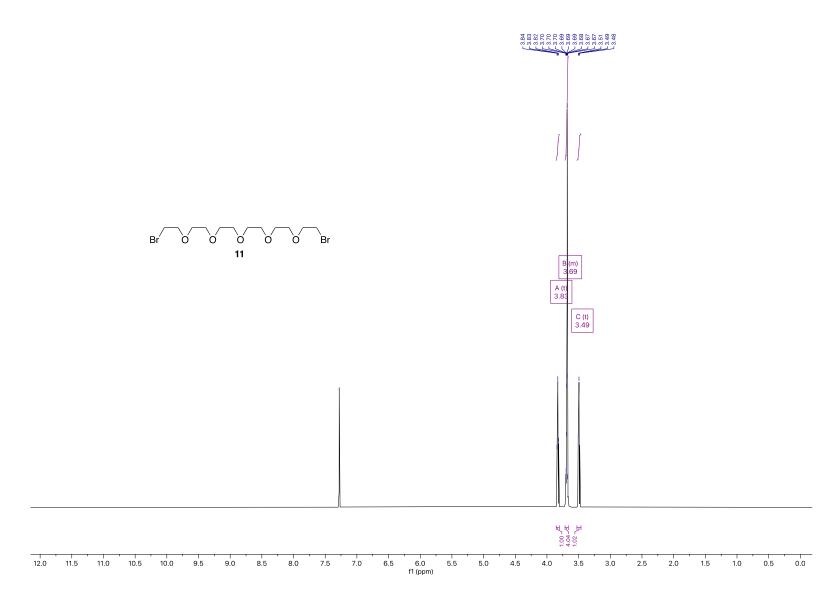


Figure S47 ¹H NMR (500 MHz, CDCl₃) spectrum of 11.

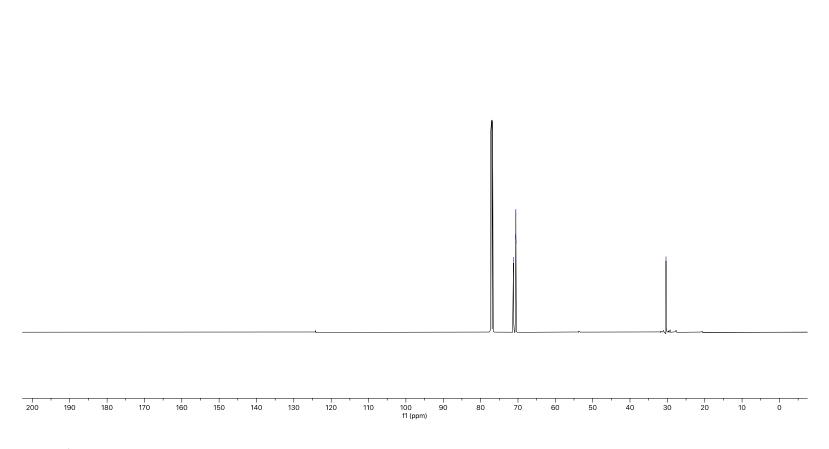


Figure S48 ¹³C NMR (125 MHz, CDCl₃) spectrum of **11**.

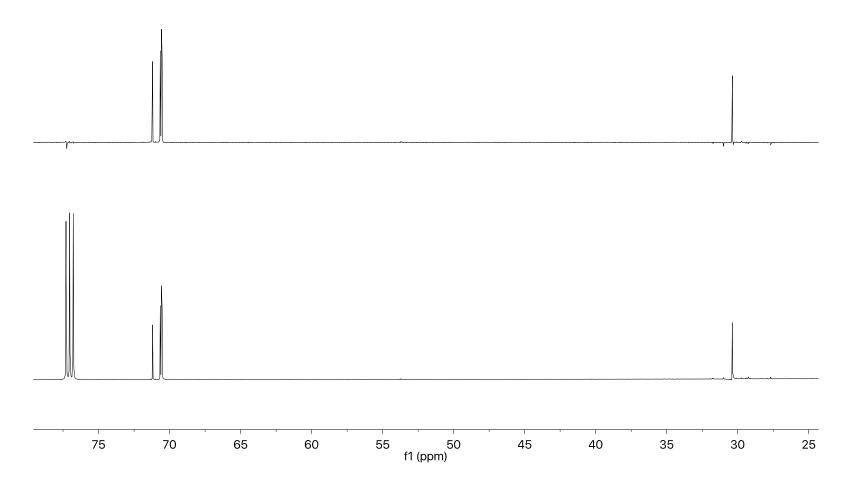


Figure S49 ¹³C NMR and DEPT (125 MHz, CDCl₃) spectrum of 11.

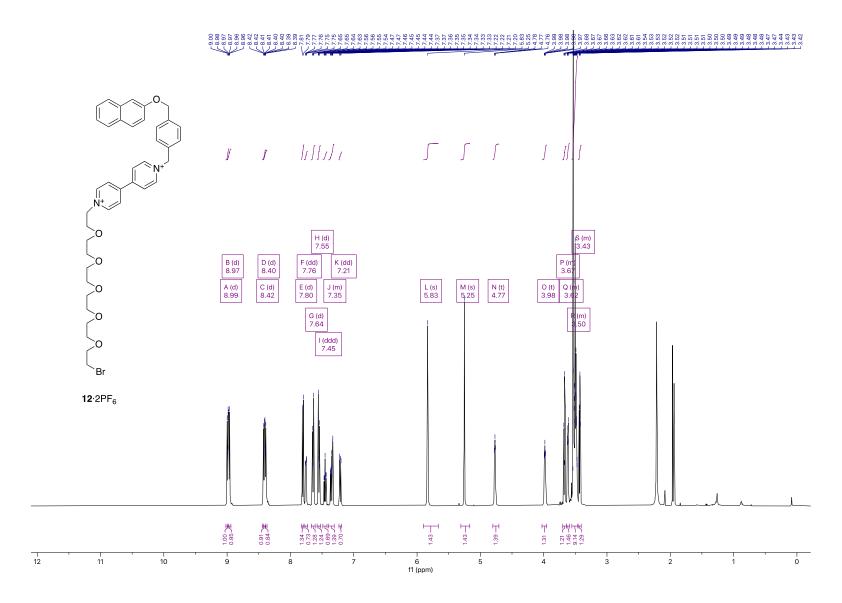


Figure S50 ¹H NMR (500 MHz, CD₃CN) spectrum of 12·2PF₆.

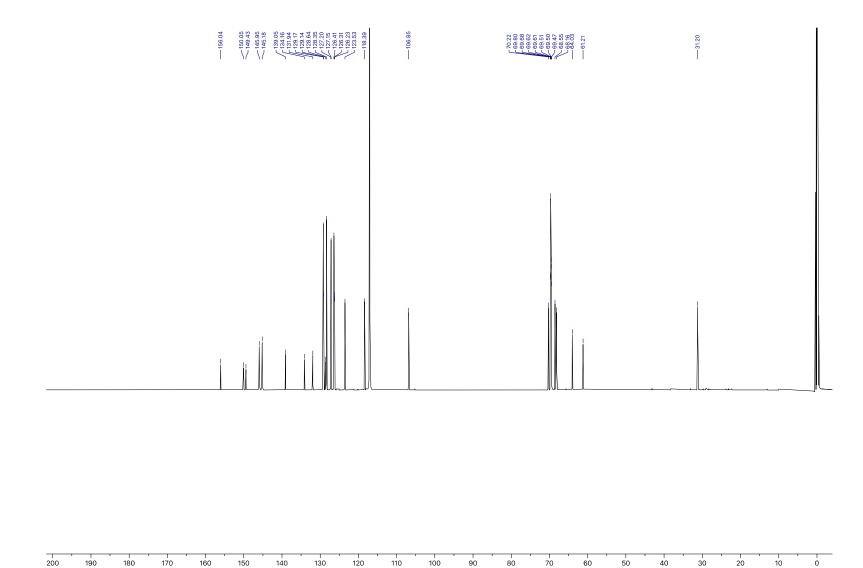
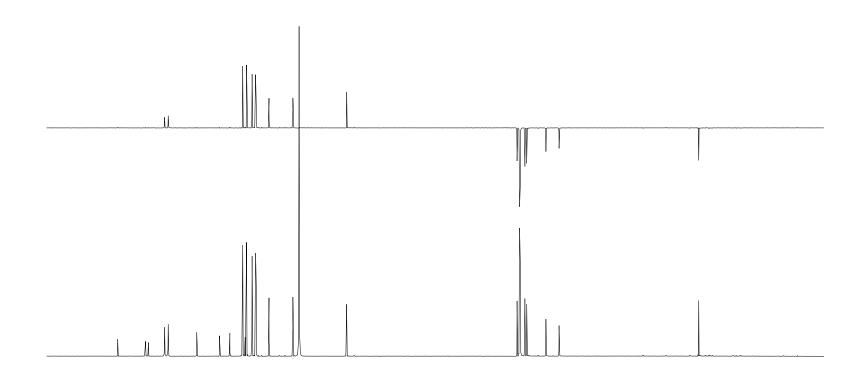



Figure S51 ¹³C NMR (125 MHz, CD₃CN) spectrum of 12·2PF₆.

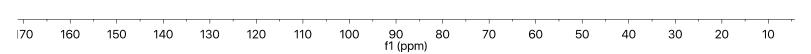


Figure S52 ¹³C NMR and DEPT (125 MHz, CD₃CN) spectrum of 12·2PF₆.

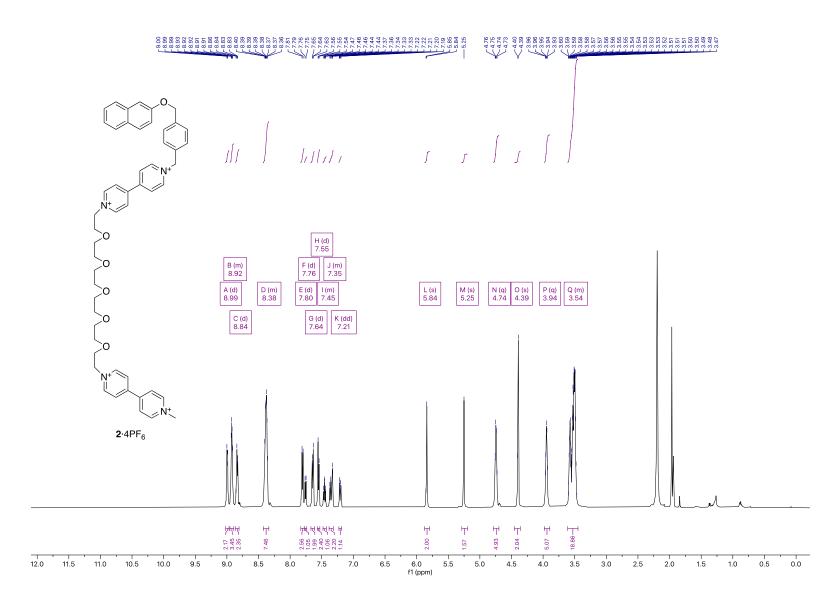


Figure S53 ¹H NMR (500 MHz, CD₃CN) spectrum of 2·4PF₆.

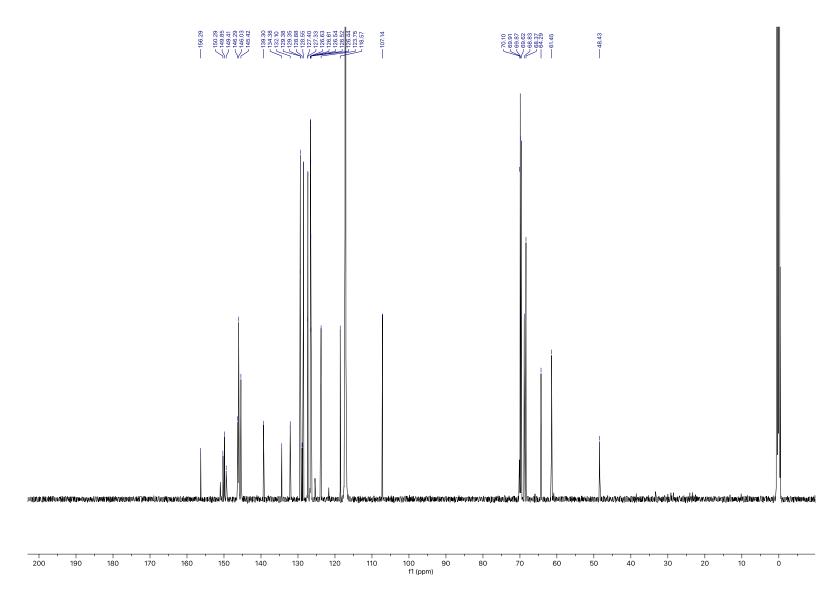


Figure S54 ¹³C NMR (125 MHz, CD₃CN) spectrum of 2·4PF₆.

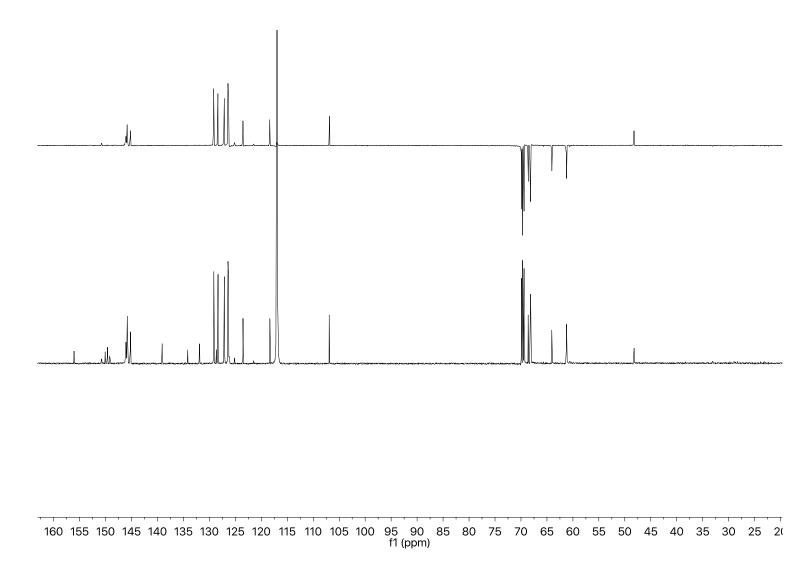


Figure S55 ¹³C NMR and DEPT (125 MHz, CD₃CN) spectrum of **2**·4PF₆.

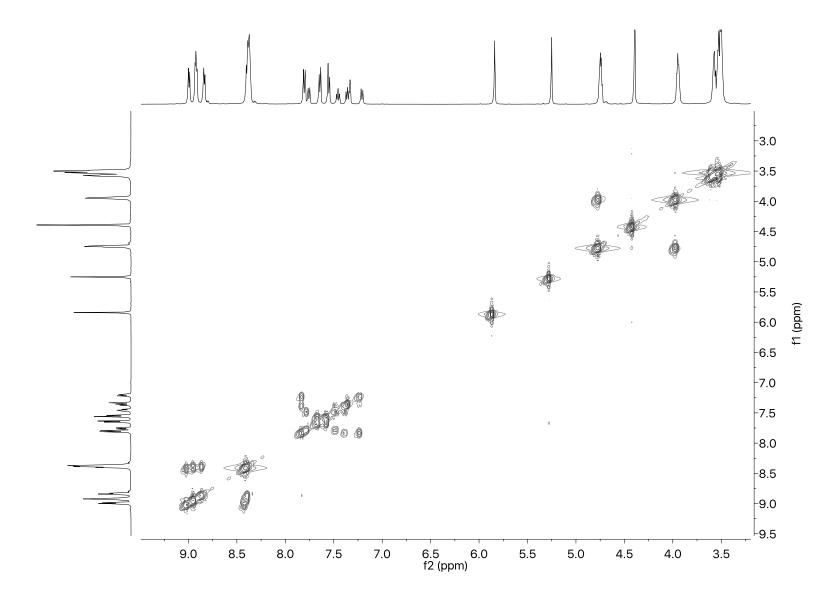


Figure S56 COSY (500 MHz, CD₃CN) spectrum of 2·4PF₆.

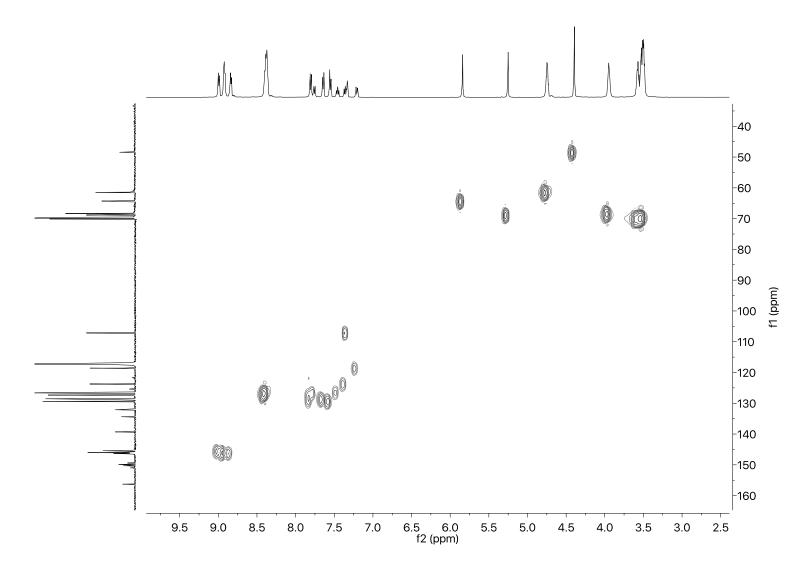


Figure \$57 HSQC (500 MHz, CD₃CN) spectrum of 2·4PF₆.



Figure S58 HMBC (500 MHz, CD₃CN) spectrum of 2·4PF₆.

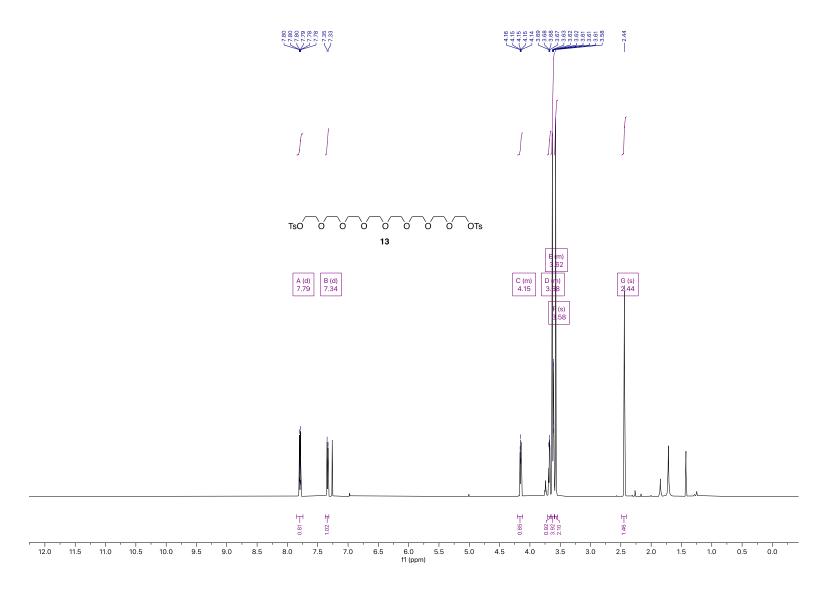


Figure S59 ¹H NMR (500 MHz, CDCl₃) spectrum of **13**.

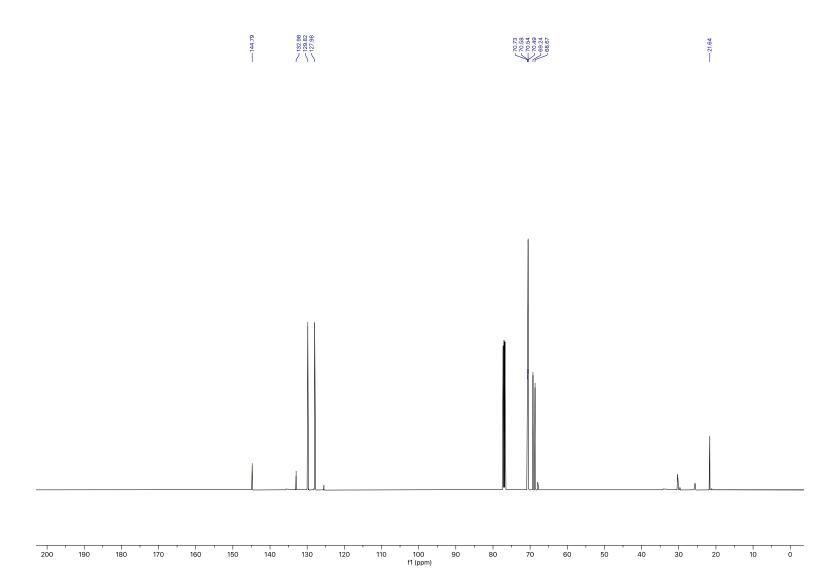


Figure S60 ¹³C NMR (125 MHz, CDCl₃) spectrum of 13.

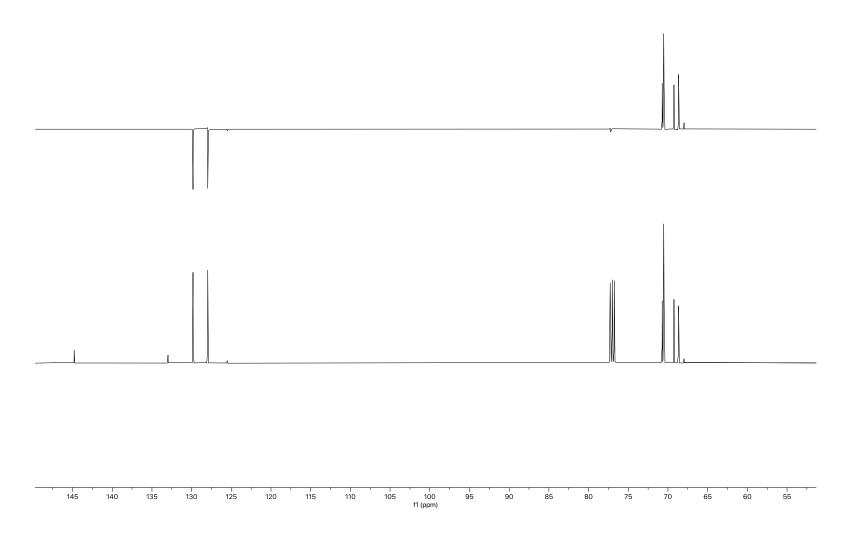


Figure S61 ¹³C and DEPT NMR (125 MHz, CDCl₃) spectrum of 13.

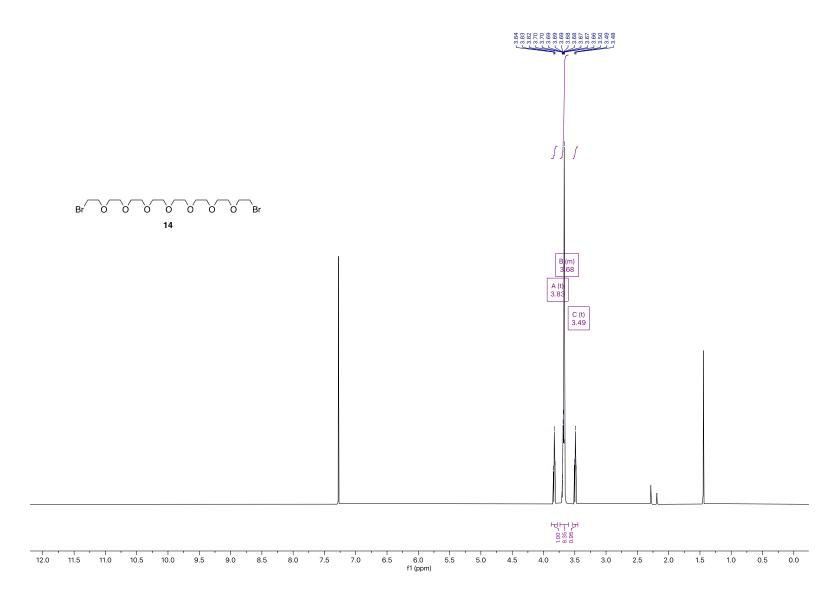


Figure S62 ¹H NMR (500 MHz, CDCl₃) spectrum of **14**.

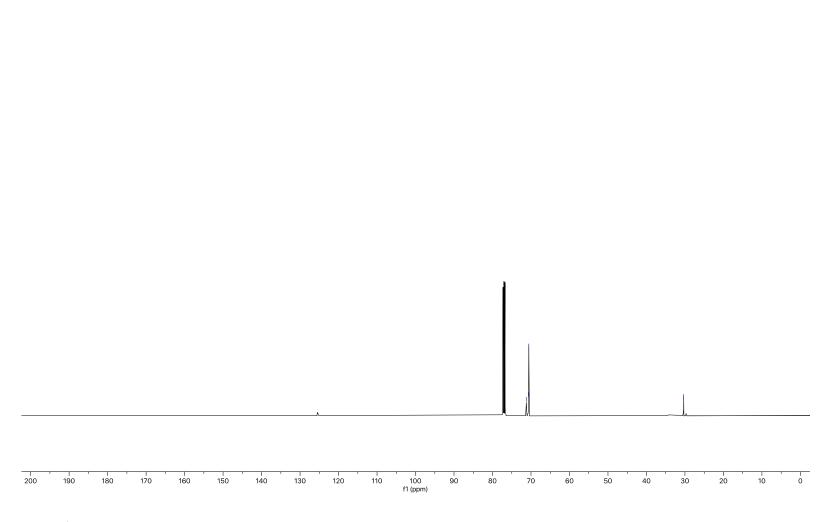


Figure S63 ¹³C NMR (125 MHz, CDCl₃) spectrum of 14.

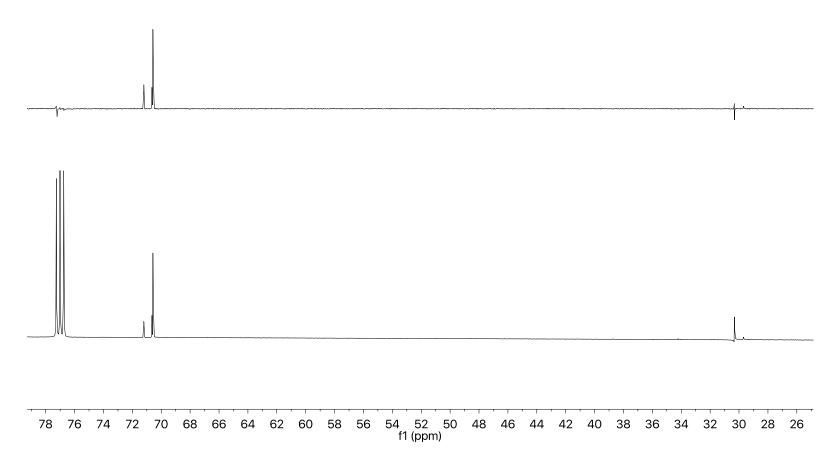


Figure S64 ¹³C and DEPT NMR (125 MHz, CDCl₃) spectrum of 14.

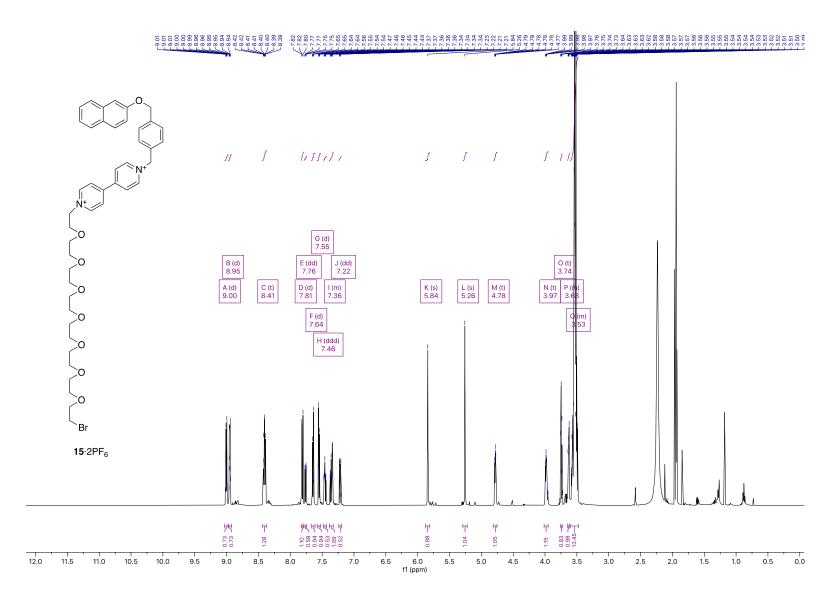


Figure S65 ¹H NMR (500 MHz, CD₃CN) spectrum of **15·**2PF₆.

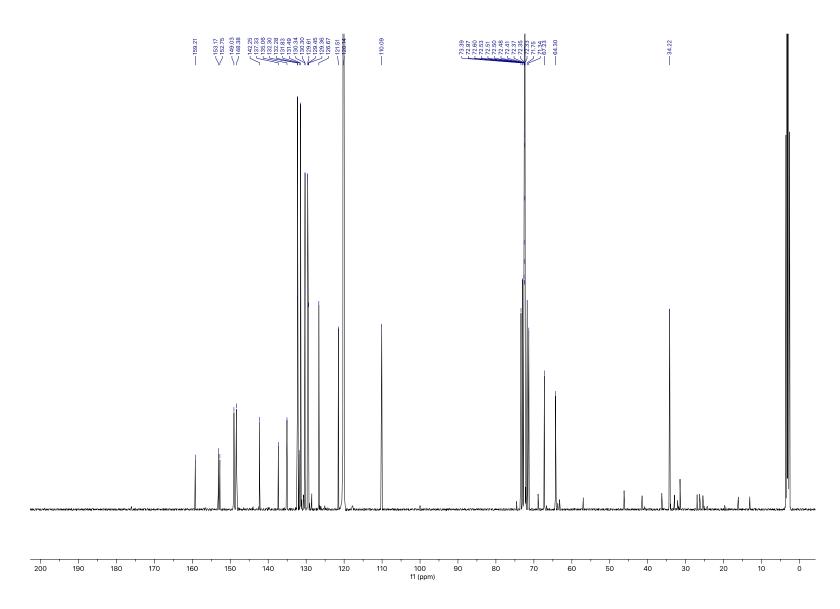


Figure S66 ¹³C NMR (125 MHz, CD₃CN) spectrum of **15**·2PF₆.

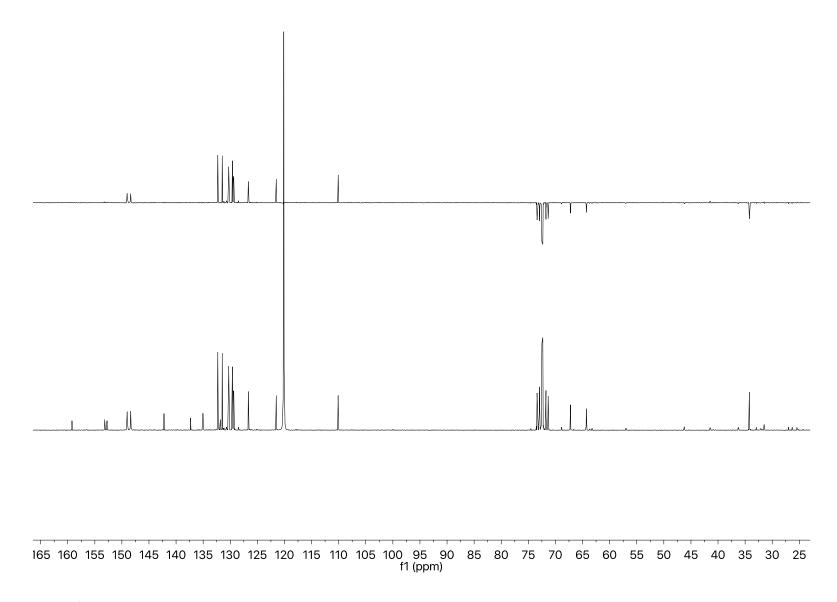


Figure S67 ¹³C and DEPT NMR (125 MHz, CD₃CN) spectrum of 15·2PF₆.

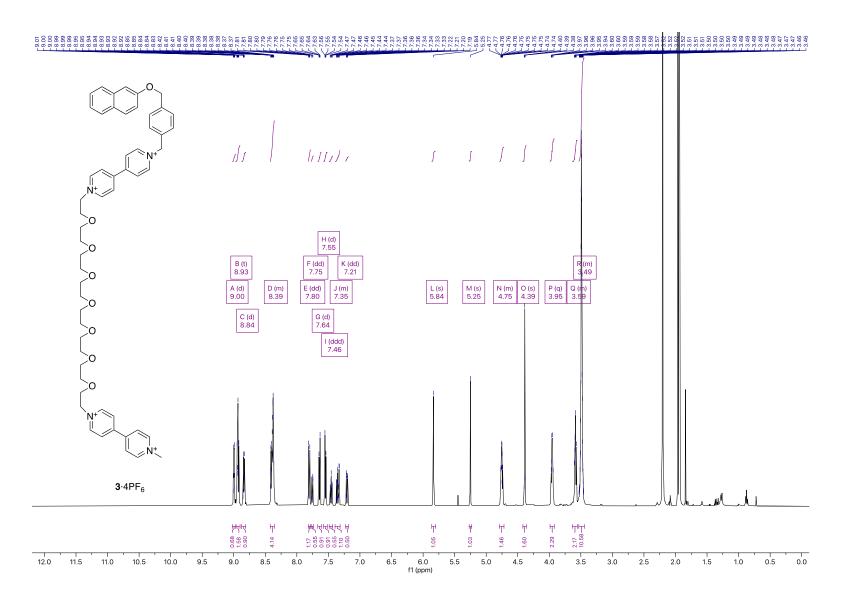


Figure S68 ¹H NMR (500 MHz, CD₃CN) spectrum of 3·4PF₆.

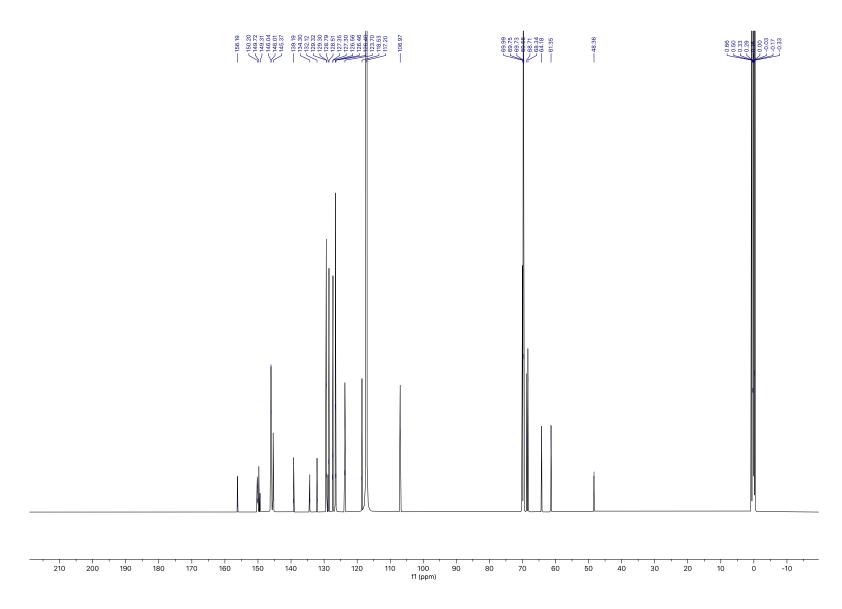
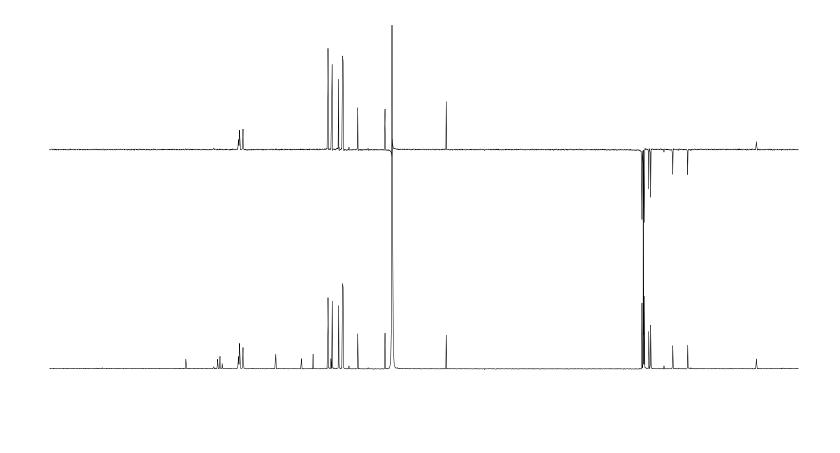



Figure S69 ¹³C NMR (125 MHz, CD₃CN) spectrum of **3·**4PF₆.

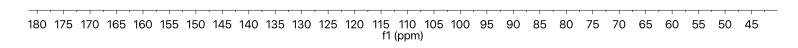


Figure S70 ¹³C and DEPT NMR (125 MHz, CD₃CN) spectrum of 3·4PF₆.

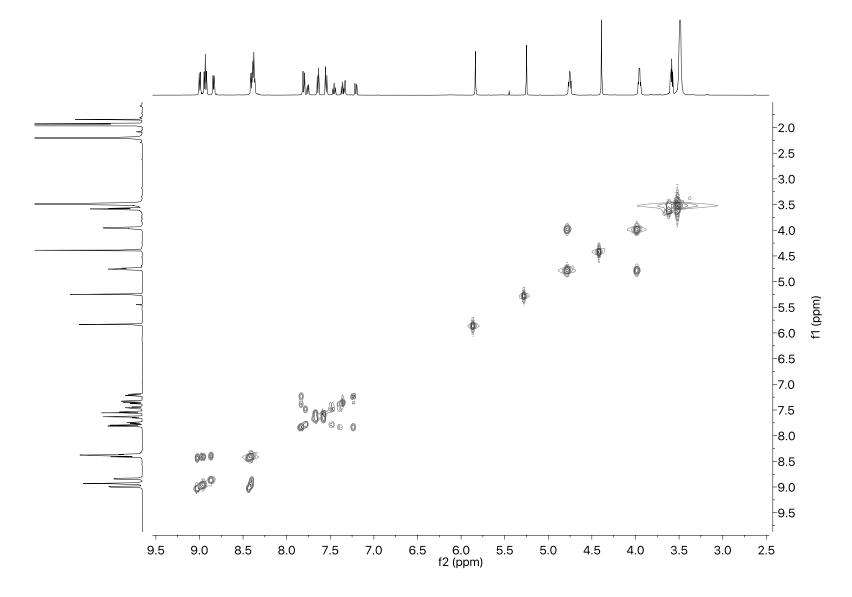


Figure S71 COSY (500 MHz, CD₃CN) spectrum of 3·4PF₆.

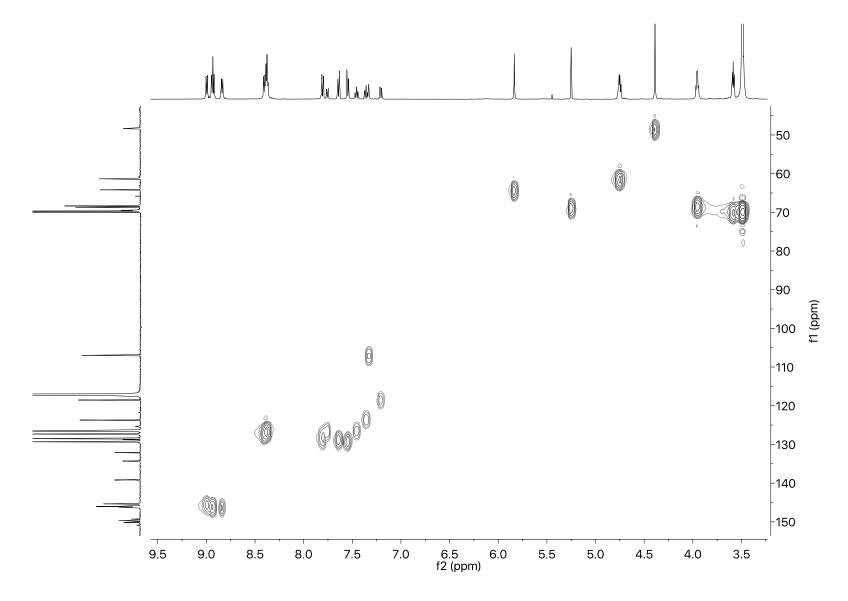


Figure \$72 HSQC (500 MHz, CD₃CN) spectrum of 3·4PF₆.

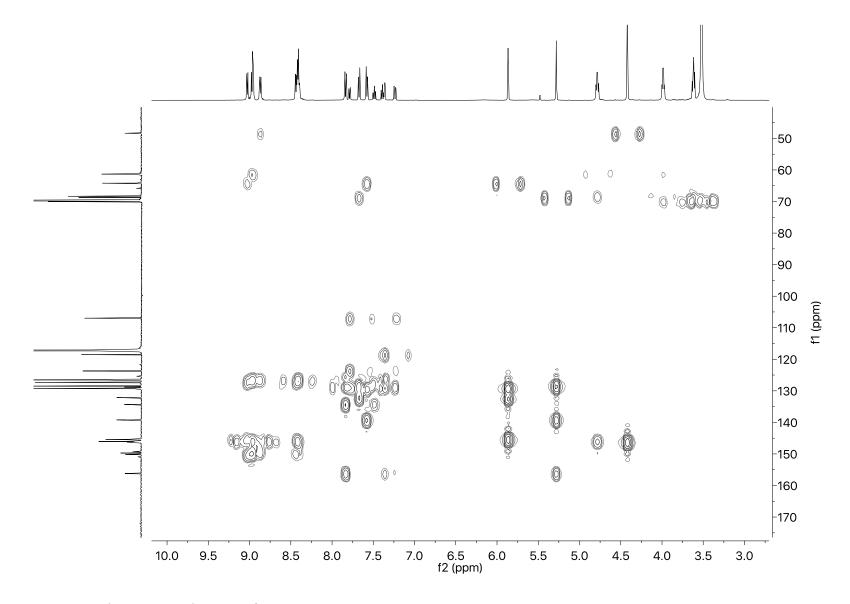
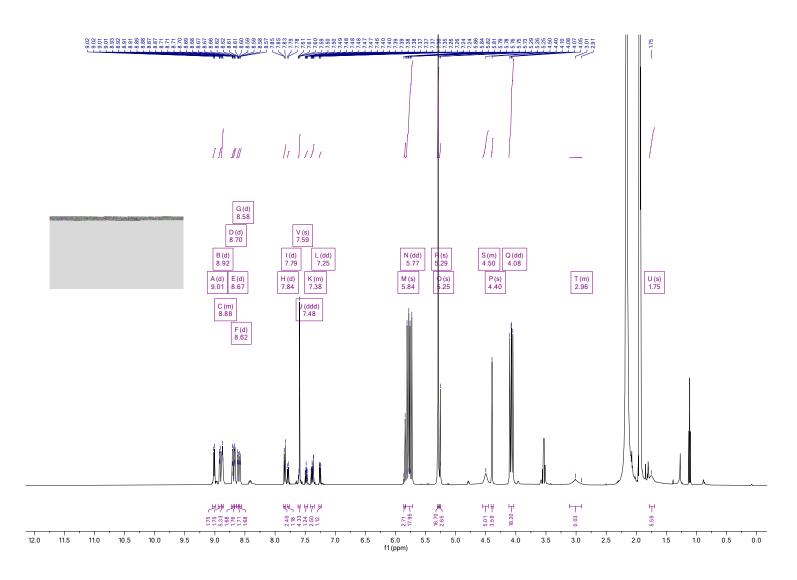



Figure S73 HMBC (500 MHz, CD₃CN) spectrum of 3·4PF₆.

Figure S74 ¹H NMR (500 MHz, CD₃CN) spectrum of **1**⊂**CB[8]**.

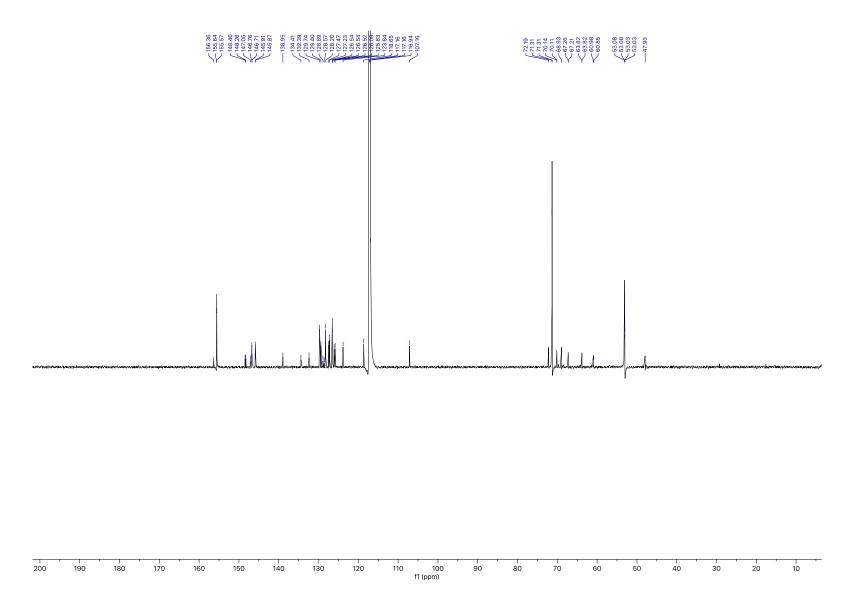


Figure S75 13 C NMR (125 MHz, CD₃CN) spectrum of 1 \subset CB[8].

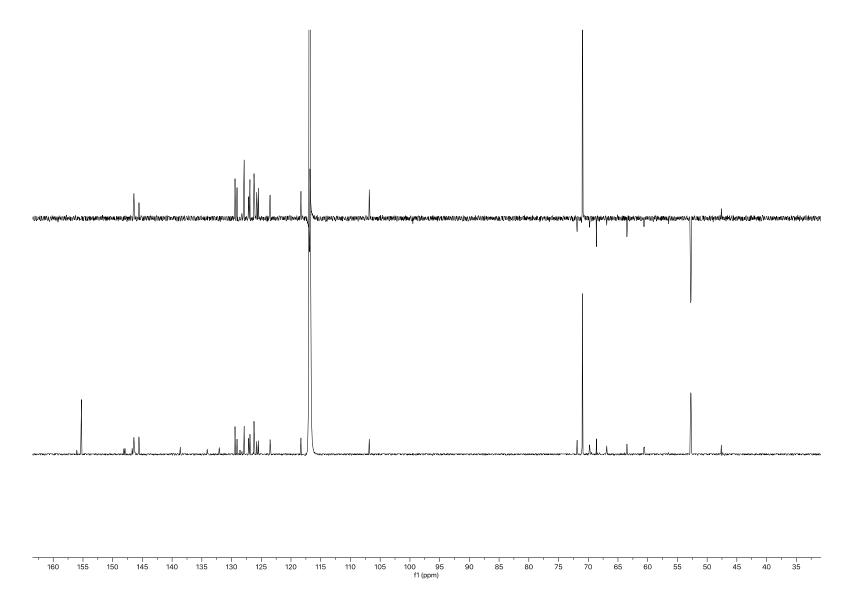


Figure S76 ¹³C and DEPT NMR (125 MHz, CD₃CN) spectrum of 1⊂CB[8].

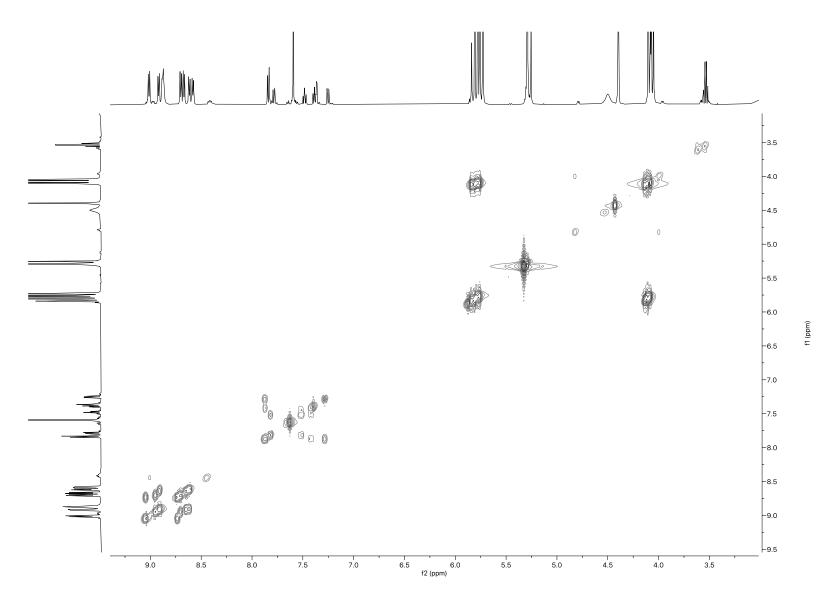


Figure S77 COSY (500 MHz, CD₃CN) spectrum of 1⊂CB[8].

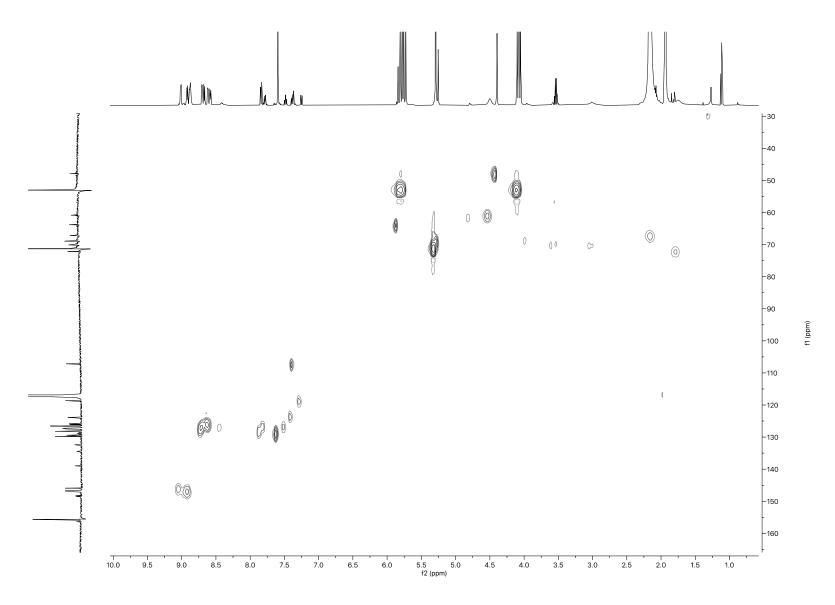


Figure S78 HSQC (500 MHz, CD₃CN) spectrum of 1⊂CB[8].

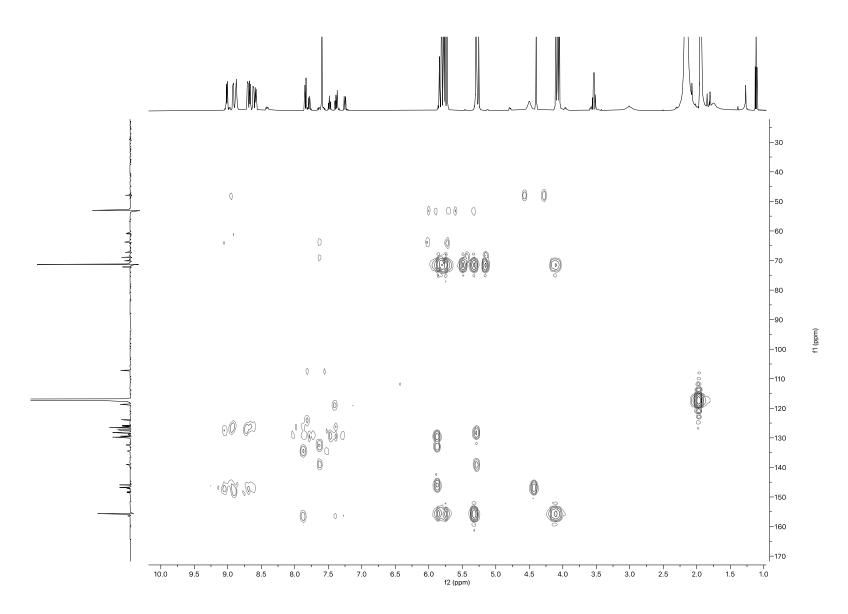


Figure S79 HMBC (500 MHz, CD₃CN) spectrum of 1⊂CB[8].

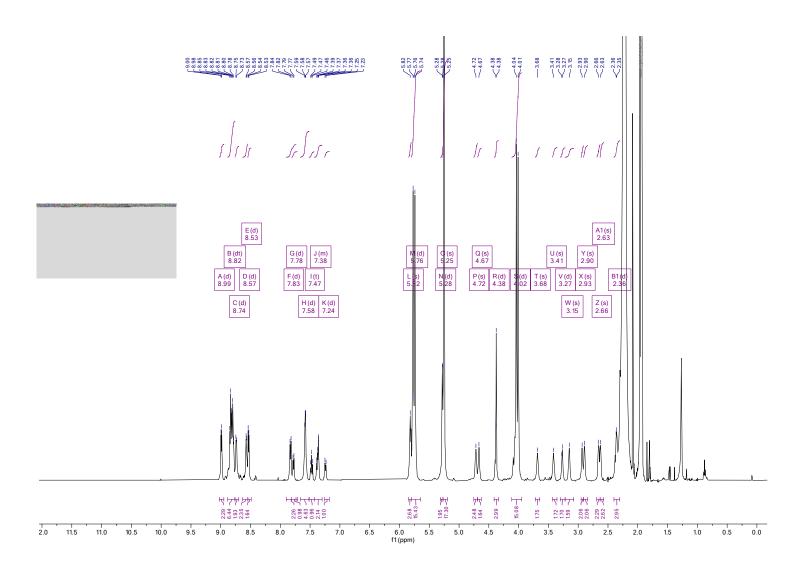
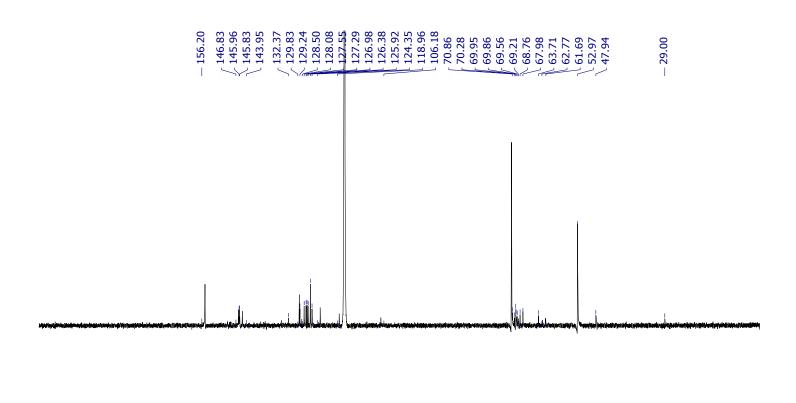



Figure S80 ¹H NMR (500 MHz, CD₃CN) spectrum of 2⊂CB[8].

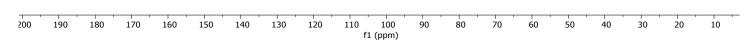


Figure S81 ¹³C NMR (500 MHz, CD₃CN) spectrum of 2⊂CB[8].

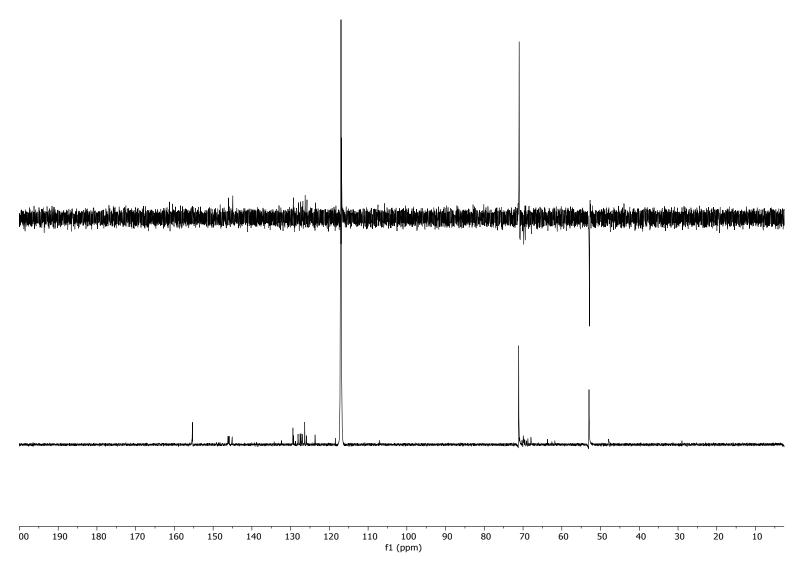


Figure S82 ¹³C and DEPT NMR (500 MHz, CD₃CN) spectrum of 2⊂CB[8].

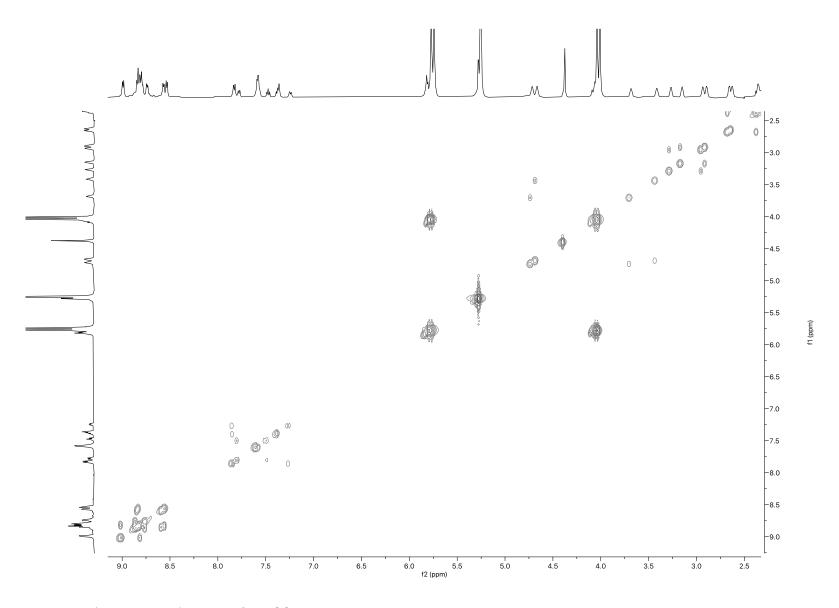


Figure S83 COSY (500 MHz, CD₃CN) spectrum of 2⊂CB[8].

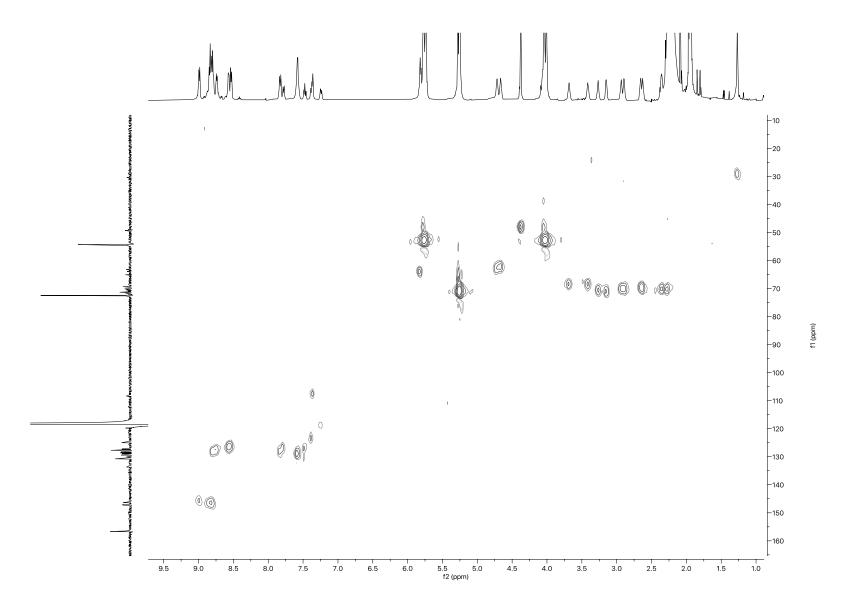


Figure S84 HSQC (500 MHz, CD₃CN) spectrum of 2⊂CB[8].

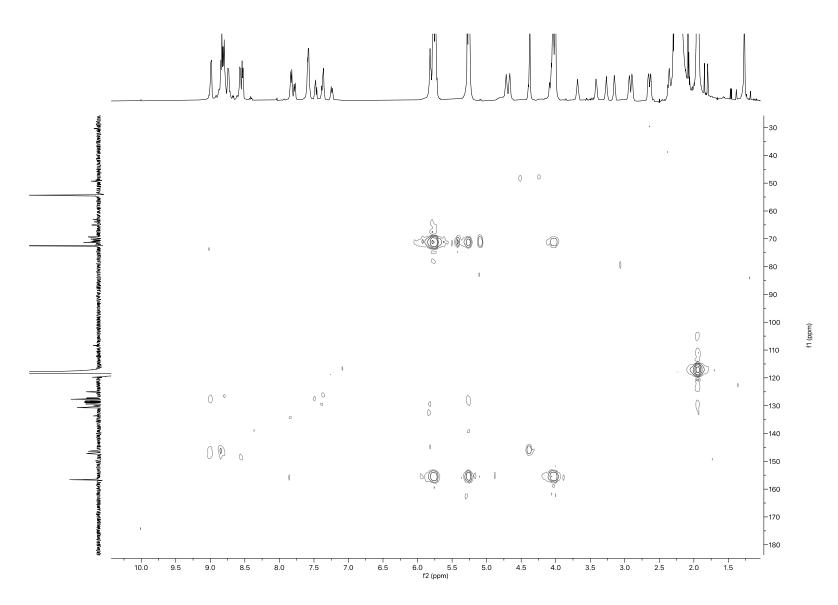


Figure S85 HMBC (500 MHz, CD₃CN) spectrum of 2⊂CB[8].

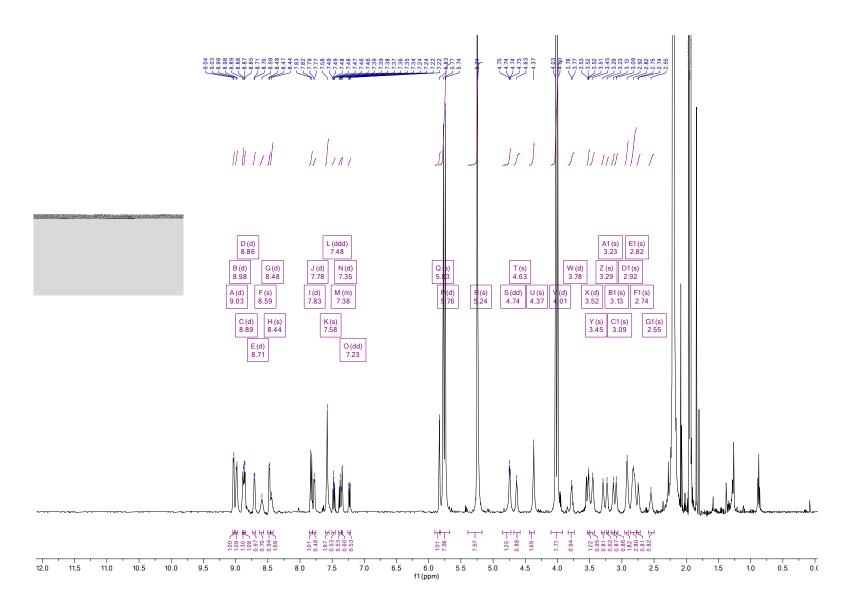


Figure S86 ¹H NMR (500 MHz, CD₃CN) spectrum of 3⊂CB[8].

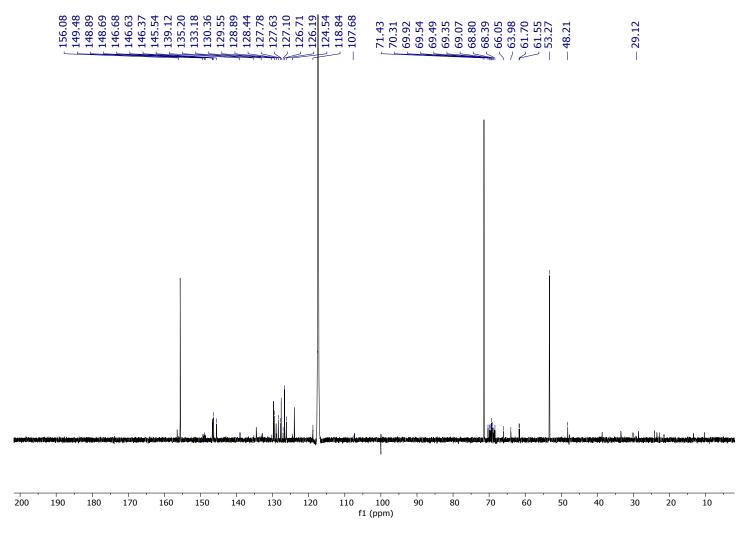


Figure S87 ¹³C NMR (125 MHz, CD₃CN) spectrum of 3⊂CB[8].

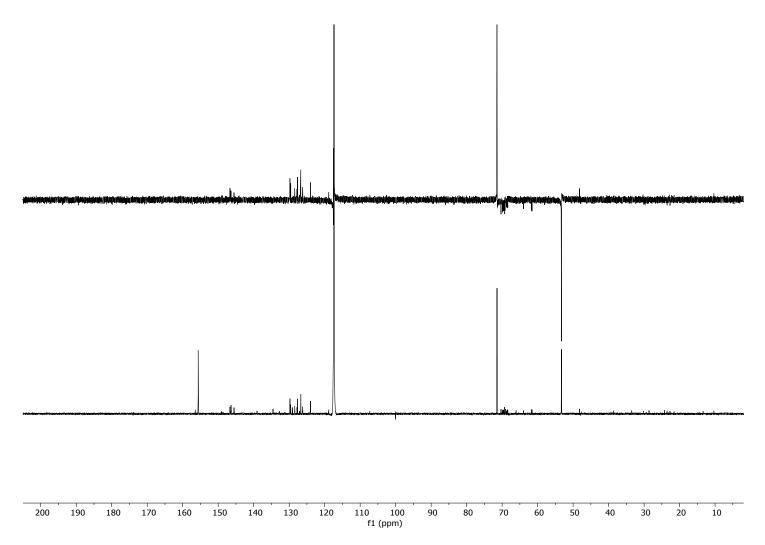


Figure S88 ¹³C and DEPT NMR (125 MHz, CD₃CN) spectrum of 3⊂CB[8].

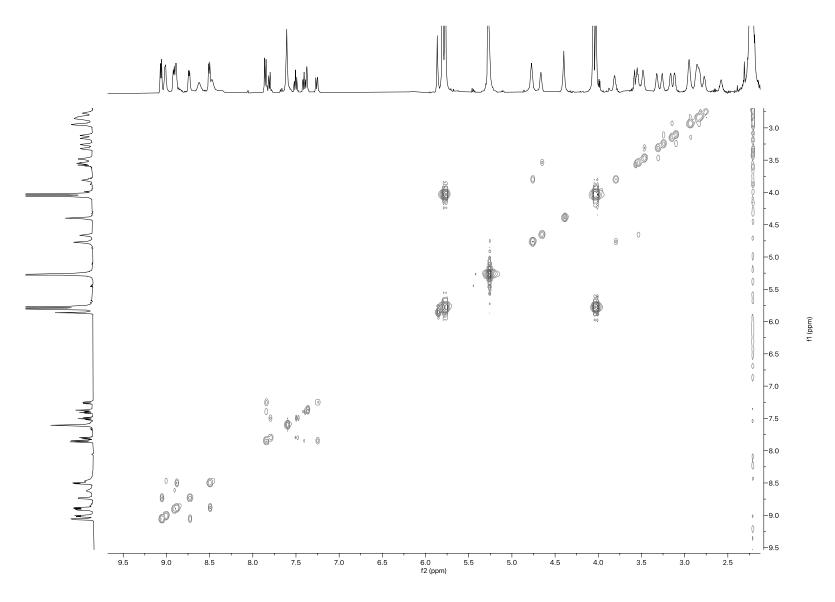
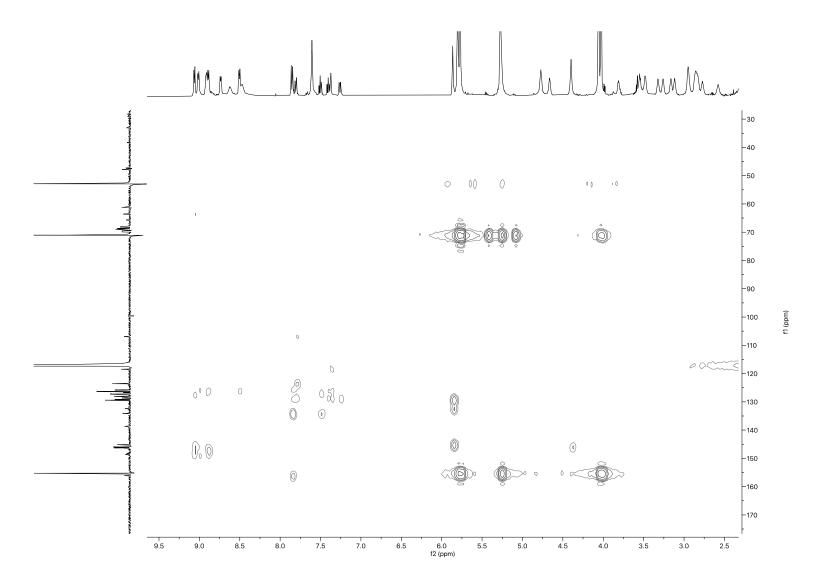



Figure S89 COSY (500 MHz, CD₃CN) spectrum of 3⊂CB[8].

Figure S90 HSQC (500 MHz, CD₃CN) spectrum of 3⊂CB[8].

Figure S91 HMBC (500 MHz, CD₃CN) spectrum of **3⊂CB[8]**.