Supporting Information

Heat- or light-induced acylarylation of unactivated alkenes towards 3-(α-acyl) indolines

Yanni Li,^a Fengyuan Ying,^a Tingfeng Fu,^a Ruihan Yang,^a Ying Dong,^b Liqing Lin,^{a,c} Yinghui Han,^{a,c} Deqiang Liang,^{*a} and Xianhao Long ^{*a}

 ^a School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
 ^b College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China

^cResearch Center on Life Sciences and Environmental Sciences, Harbin University of Commerce, Harbin 150076, China

E-mail: liangdq695@nenu.edu.cn, longxh@kmu.edu.cn

Table of Contents

I. General considerations	S2
II. Detailed optimization of reaction conditions	S3
III. Experimental procedures	S5
1. General procedure for the heat-induced reactions	S5
2. General procedure for the photoredox reactions	S5
3. Gram-scale reactions	S5
IV. Mechanistic investigations	
1. KIE experiments	
2. Light on-off experiments	S9
3. Quantum yield measurements	S9
VI. Unsuccessful substrates	S11
VI. Spectral Data of Products	S12
VII. Copies of ¹ H, ¹⁹ F, ¹³ C and DEPT NMR Spectra	S30

I. General considerations

Unless otherwise stated, commercially available chemicals were used without treatment. Solvents were degassed by bubbling Ar for 30 minutes before use. Reactions were monitored by Thin Layer Chromatography (TLC) using silica gel F254 plates. Products were purified by column chromatography over 300-400 mesh silica gel under a positive pressure of air. ¹H NMR, ¹⁹F NMR, ¹³C NMR and DEPT NMR spectra were recorded at 25 °C on a Bruker AscendTM 400 spectrometer using TMS as internal standard. High-resolution mass spectra (HRMS) were obtained using a Bruker microTOF II Focus spectrometer (ESI). Gas chromatography-mass spectrometry (GC-MS) analyses were performed on an Agilent 7890A gas chromatograph interfaced to a 5975C mass selective detector in electron impact ionization mode. Substrates **1** were prepared from anilides and allyl bromides and are known compounds.¹ The photoreactors used in this research were bought from GeAo Chem (Figure S1, containing 24 small blue LEDs, 1 W for every LED, and every reaction tube is irradiated by 6 LEDs).

Figure S1 Photochemical setup

¹ D. Liang, Q. Dong, P. Xu, Y. Dong, W. Li and Y. Ma, J. Org. Chem., 2018, 83, 11978-11986.

II. Detailed optimization of reaction conditions

	F	Ph		Cat) (HAT)	Ac			
		Ac	+ 4-CIC ₆ H ₄ CH	10	н		`Ar	
		1a	2a (<i>x</i> equiv	/)	H			
entry	x	catalyst	oxidant	$PC^b \pmod{b}$	solvent	Т	t	yield
		(mol%)	(equiv)			(°C)	(h)	(%)
1	3	FeCl₂ (5)	DTBP (4)	-	PhCl	120	6	87
2	3	_	DTBP (4)	_	PhCl	120	6	68
3	3	$Fe(OAc)_2(5)$	DTBP (4)	_	PhCl	120	6	57
4	3	$FeSO_4(5)$	DTBP (4)	_	PhCl	120	6	69
5	3	$FeCl_3(5)$	DTBP (4)	_	PhCl	120	6	57
6	3	$Fe(NO_3)_3(5)$	DTBP (4)	_	PhCl	120	6	51
7	3	$Fe_2(SO_4)_3(5)$	DTBP (4)	_	PhCl	120	6	67
8	3	CuI (5)	DTBP (4)	_	PhCl	120	6	41
9	3	$Cu(OAc)_2(5)$	DTBP (4)	_	PhCl	120	6	trace
10	3	$AgNO_3(5)$	DTBP (4)	_	PhCl	120	6	18
11	3	$NiCl_2(5)$	DTBP (4)	_	PhCl	120	6	26
12	3	$\operatorname{CoCl}_{2}(5)$	DTBP (4)	_	PhCl	120	6	0
13	3	$MnCl_2(5)$	DTBP (4)	_	PhCl	120	6	61
14	3	TBAI (5)	DTBP (4)	_	PhCl	120	6	32
15	3	$FeCl_2(5)$	$\operatorname{TBHP}^{c}(4)$	_	PhCl	120	6	55
16	3	$FeCl_2(5)$	$\operatorname{TBHP}^{d}(4)$	_	PhCl	120	6	53
17	3	$FeCl_{2}(5)$	DCP (4)	_	PhCl	120	6	71
18	3	FeCl ₂ (5)	BPO (4)	_	PhCl	120	6	trace
19	3	$FeCl_{2}(5)$	TBPB (4)	_	PhCl	120	6	61
20	3	FeCl ₂ (5)	$K_{2}S_{2}O_{8}(4)$	_	PhCl	120	6	trace
21	3	FeCl ₂ (5)	Oxone (4)	_	PhCl	120	6	0
22	3	FeCl ₂ (5)	mCPBA(4)	_	PhCl	120	6	0
23	3	FeCl ₂ (5)	$I_{2}O_{5}(4)$	_	PhCl	120	6	0

Table S1 Optimization of reaction conditions^a

24	3	$FeCl_2(5)$	DTBP (4)	_	toluene	120	6	39
25	3	FeCl ₂ (5)	DTBP (4)	_	DCE	120	6	11
26	3	FeCl ₂ (5)	DTBP (4)	_	EtOAc	120	6	25
27	3	$FeCl_{2}(5)$	DTBP (4)	_	CH ₃ CN	120	6	0
28	3	$FeCl_{2}(5)$	DTBP (4)	_	CH ₃ NO ₂	120	6	0
29	3	$FeCl_{2}(5)$	DTBP (4)	_	THF	120	6	17
30	3	$FeCl_{2}(5)$	DTBP (4)	_	DMF	120	6	18
31	3	$FeCl_{2}(5)$	DTBP (4)	_	DMSO	120	6	0
32	3	$FeCl_{2}(5)$	DTBP (4)	_	PhCl	80	6	16
33	2	$FeCl_{2}(5)$	DTBP (4)	_	PhCl	120	6	66
34	3	$FeCl_{2}(5)$	DTBP(3)	_	PhCl	120	6	78
35	3	$FeCl_2(2)$	DTBP (4)	_	PhCl	120	6	70
36	3	FeCl ₂ (5)	DTBP (4)	_	PhCl	120	3	55
37 ^e	3	$FeCl_{2}(5)$	DTBP (4)	_	PhCl	120	6	45
38	3	$FeCl_{2}(5)$	DTBP (4)	<i>fac</i> -Ir(ppy) ₃ (1)	PhCl	rt	12	52
39 ^r	3	$FeCl_{2}(5)$	DTBP (4)	<i>fac</i> -Ir(ppy) ₃ (1)	PhCl	rt	12	35
40	3	$FeCl_{2}(5)$	DTBP (4)	Ru(bpy) ₃ Cl ₂ (1)	PhCl	rt	12	nr
41	3	$FeCl_{2}(5)$	DTBP (4)	Mes-Acr ⁺ ClO ₄ ⁻ (1)	PhCl	rt	12	trace
42	3	$FeCl_{2}(5)$	DTBP (4)	4CzIPN (1)	PhCl	rt	12	62
43	3	$FeCl_{2}(5)$	DTBP (4)	Eosin Y (5)	PhCl	rt	12	nr
44	3	$FeCl_{2}(5)$	DTBP (4)	Rose Bengal (5)	PhCl	rt	12	nr
45	3	$FeCl_{2}(5)$	DTBP (4)	Rhodamine B (5)	PhCl	rt	12	trace
46	3	$FeCl_{2}(5)$	DTBP (4)	AQN-2- $CO_2H(5)$	PhCl	rt	12	nr
47	3	$FeCl_{2}(5)$	DTBP (4)	4CzIPN (1)	DCE	rt	12	52
48	3	$FeCl_{2}(5)$	DTBP (4)	4CzIPN (1)	CH ₃ CN	rt	12	30
49	3	FeCl ₂ (5)	DTBP (4)	4CzIPN (1)	DMSO	rt	12	nr
50	3	FeCl ₂ (5)	$TBHP^{c}(4)$	4CzIPN (1)	PhCl	rt	12	trace
51	3	FeCl ₂ (5)	$\mathrm{TBHP}^{d}\left(4\right)$	4CzIPN (1)	PhCl	rt	12	trace
52	3	FeCl ₂ (5)	DCP (4)	4CzIPN (1)	PhCl	rt	12	56
53	3	FeCl ₂ (5)	BPO (4)	4CzIPN (1)	PhCl	rt	12	trace
54	3	FeCl ₂ (5)	TBPB (4)	4CzIPN (1)	PhCl	rt	12	44
55	3	FeCl ₂ (5)	$K_{2}S_{2}O_{8}(4)$	4CzIPN (1)	PhCl	rt	12	nr
56	3	—	DTBP (4)	4CzIPN (1)	PhCl	rt	12	51
57	3	FeCl ₂ (5)	DTBP (4)	4CzIPN (2)	PhCl	rt	12	53
58	3	FeCl ₂ (5)	DTBP (4)	4CzIPN (1)	PhCl	rt	24	70

^{*a*} Reaction conditions: **1a** (0.5 mmol), **2a** (3.0 equiv), catalyst (5 mol%), oxidant (4.0 equiv), solvent (2.0 mL), Ar. ^{*b*} 6 W Blue LEDs were used to excite the PCs. ^{*c*} 70% aqueous. ^{*d*} 5.0–6.0 mol/L in decane. ^{*e*} The reaction tube was sealed without degassing. ^{*f*} 2,6-Lutidine (1.0 equiv) was added.

III. Experimental procedures

1. General procedure for the heat-induced reactions

A 25-mL Schlenk tube, equipped with a magnetic stirring bar, was charged sequentially with *N*-allyl aniline (0.5 mmol), aldehyde (1.5 mmol), FeCl₂ (0.025 mmol, 3 mg), and DTBP (2.0 mmol, 292 mg) under argon, followed by the addition of degassed chlorobenzene (2.0 mL). A strictly oxygen-free environment is necessary. The mixture was stirred at 120 °C for 6 h, then it was quenched with saturated aqueous Na₂S₂O₃ (1.0 mL), aqueous NaOH (0.1 M, 1.0 mL) and water (5 mL), and extracted with CH₂Cl₂ (10.0 mL) three times. The residue obtained after evaporation of the solvent was purified by column chromatography on silica gel (petroleum ether–ethyl acetate = 20:1, v/v).

2. General procedure for the photoredox reactions

A 25-mL Schlenk tube, equipped with a magnetic stirring bar, was charged sequentially with *N*-allyl anilines (0.5 mmol), aldehyde (1.5 mmol), FeCl₂ (0.025 mmol, 3 mg), 4CzIPN (0.005 mmol, 4 mg) and DTBP (2.0 mmol, 292 mg) under argon, followed by the addition of degassed chlorobenzene (2.0 mL). A strictly oxygen-free environment is necessary. The mixture was stirred at room temperature under blue LED irradiation for 24 h, then it was quenched with aqueous NaOH (0.1 M, 1.0 mL) and water (5 mL), and extracted with CH₂Cl₂ (10.0 mL) three times. The residue obtained after evaporation of the solvent was purified by column chromatography on silica gel (petroleum ether–ethyl acetate = 20:1, v/v).

3. Gram-scale reactions

By heating: A 35-mL Schlenk tube, equipped with a magnetic stirring bar, was

charged sequentially with *N*-(2-methylallyl) acetanilide **1a** (6.0 mmol, 1135 mg), 4-chlorobenzaldehyde **2a** (18.0 mmol, 2530 mg), FeCl₂ (0.3 mmol, 38 mg) and DTBP (24.0 mmol, 3510 mg) under argon, followed by the addition of degassed chlorobenzene (24.0 mL). The mixture was stirred at 120 °C for 6 h, then it was quenched with saturated aqueous Na₂S₂O₃ (10.0 mL), aqueous NaOH (0.1 M, 10.0 mL) and water (50 mL), and extracted with CH₂Cl₂ (100.0 mL) three times. The residue obtained after evaporation of the solvent was purified by column chromatography on silica gel (petroleum ether–ethyl acetate = 20:1, v/v).

By irradiation: A 35-mL Schlenk tube, equipped with a magnetic stirring bar, was charged sequentially with *N*-(2-methylallyl) acetanilide **1a** (6.0 mmol, 1135 mg), 4-chlorobenzaldehyde **2a** (18.0 mmol, 2530 mg), FeCl₂ (0.3 mmol, 38 mg), 4CzIPN (0.06 mmol, 47 mg) and DTBP (24.0 mmol, 3510 mg) under argon, followed by the addition of degassed chlorobenzene (24.0 mL). The mixture was stirred at room temperature under 6 W blue LED irradiation for 24 h (see Figure S2), then it was quenched with aqueous NaOH (0.1 M, 10.0 mL) and water (50 mL), and extracted with CH₂Cl₂ (100.0 mL) three times. The residue obtained after evaporation of the solvent was purified by column chromatography on silica gel (petroleum ether–ethyl acetate = 20:1, v/v).

Figure S2 Setup for photochemical gram-scale synthesis

IV. Mechanistic investigations

1. KIE experiments

Heat-induced: A 25-mL Schlenk tube, equipped with a magnetic stirring bar, was charged sequentially with N-(2-methylallyl) acetanilide 1a (0.25 mmol, 47 mg), 49 *N*-(2-methylallyl)-*N*-(phenyl-*d*₅)acetamide 1a-d₅ (0.25)mmol, mg), 4-chlorobenzaldehyde 2a (1.5 mmol, 211 mg), FeCl₂ (0.025 mmol, 3 mg), and DTBP (2.0 mmol, 292 mg) under argon, followed by the addition of degassed chlorobenzene (2.0 mL). The mixture was stirred at 120 °C for 6 h, then it was guenched with saturated aqueous Na₂S₂O₃ (1.0 mL), aqueous NaOH (0.1 M, 1.0 mL) and water (5.0 mL), and extracted with CH₂Cl₂ (10.0 mL) three times. The residue obtained after evaporation of the solvent was purified by column chromatography on silica gel (petroleum ether-ethyl acetate = 20:1, v/v), and the isolated pure product was subjected to ¹H NMR analysis (Figure S3).

Figure S3 ¹H NMR analysis of the KIE experiment under the heating conditions

Photoredox catalysis: A 25-mL Schlenk tube, equipped with a magnetic stirring bar, was charged sequentially with *N*-(2-methylallyl) acetanilide **1a** (0.25 mmol, 47 mg), *N*-(2-methylallyl)-*N*-(phenyl-*d*₅)acetamide **1a-***d***₅** (0.25 mmol, 49 mg), 4-chlorobenzaldehyde **2a** (1.5 mmol, 211 mg), FeCl₂ (0.025 mmol, 3 mg), 4CzIPN (0.005 mmol, 4 mg)) and DTBP (2.0 mmol, 292 mg) under argon, followed by the addition of degassed chlorobenzene (2.0 mL). The mixture was stirred at room temperature under blue LED irradiation for 24 h, then it was quenched with aqueous NaOH (0.1 M, 1.0 mL) and water (5.0 mL), and extracted with CH₂Cl₂ (10.0 mL) three times. The residue obtained after evaporation of the solvent was purified by column chromatography on silica gel (petroleum ether–ethyl acetate = 20:1, v/v), and the isolated pure product was subjected to ¹H NMR analysis (Figure S4).

Figure S4¹H NMR analysis of the KIE experiment under the photoredox conditions

2. Light on-off experiments

Table S2 Light on-off experiments							
Time (h)	2	4	6	8	10	12	
Yield ^a (%)	5.56	8.57	36.88	39.62	61.44	73.89	

^{*a*} The yields of **3a1** were determined by GC-MS analysis using biphenyl as the internal standard.

Figure S5 Light on-off experiments

3. Quantum yield measurements

A quartz cuvette $(10 \times 30 \times 45 \text{ mm})$, equipped with a magnetic stirring bar, was charged under argon sequentially with *N*-(2-methylallyl)-*N*-(4-(trifluoromethyl)phenyl)acetamide **1c** (0.4 mmol, 103 mg), 4-chlorobenzaldehyde **2a** (1.2 mmol, 169 mg), FeCl₂ (0.02 mmol, 3 mg), 4CzIPN (0.004 mmol, 3 mg) and DTBP (1.6 mmol, 234 mg), followed by the addition of degassed chlorobenzene (8.0 mL). The mixture was irradiated ($\lambda = 455$ nm, slit width = 8.0 mm, slit height 2.0 mm with the light intensity of 0.801 mW·cm⁻²) for 10800 s. The set up used fot this chemical actinometry is shown in Figure S6, and the light intensity was measured in the PAR-range (Photosynthetic active radiation, 400–700 nm) using a PAR sensor (FZ-A, Photoelectric Instrument Factory of Beijing Normal University).

Figure S6 Set up for the chemical actinometry

After irradiation, the reaction mixture was quenched with saturated aqueous $Na_2S_2O_3$ (1.0 mL), aqueous NaOH (0.1 M, 1.0 mL) and water (5.0 mL), and extracted with CH₂Cl₂ (10.0 mL) three times in a dark room under red light conditions. At last, the yield of product formed was determined by ¹⁹F NMR based on a trifluorotoluene standard.

The fraction of photons absorbed by the reaction solution was recorded using a UV-3600 Plus UV-VIS-NIR spectrophotometer (Shimadzu, Japan) in a 1 cm quartz cell (Figure S7).

Figure S7 Absorbance of diluted reaction mixtures at 455 nm

The quantum yield was determined as follows.

 ϕ = Mole number for product/Mole number for absorption of photons = 0.240

$$\phi = \frac{n_{3a7}N_{A}/t}{fP\lambda/hc}$$

 n_{3a7} : the mole number of the product **3a7**; t: reaction time (t = 10800 s); N_A: 6.02 × 10²³/mol; f: 1-10^{-A} (455 nm, A = 2.1844); P: P = E × S (E: illumination intensity, E = 0.000801 W/cm²; S: the area that irradiated, S = 1.60 cm²); λ : wavelength (λ = 4.55×10⁻⁷ m); h: planck constant (h = 6.626 × 10⁻³⁴ J*s); c: velocity of light (c = 3 × 108 m/s).

VI. Unsuccessful substrates

VI. Spectral Data of Products

3a1, 2-(1-acetyl-3-methylindolin-3-yl)-1-(4-chlorophenyl)ethan-1-one, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 8.19 (d, *J* = 8.1 Hz, 1H), 7.82 (d, *J* = 8.6 Hz, 2H), 7.41 (d, *J* = 8.6 Hz, 2H), 7.24–7.20 (m, 1H), 7.17 (d, *J* = 7.4 Hz, 1H), 7.05 (ddd, *J* = 7.5, 7.5, 1.1 Hz, 1H), 4.18 (d, *J* = 11.0 Hz, 1H), 4.03 (d, *J* = 11.0 Hz, 1H), 3.46 (d, *J* = 17.2 Hz, 1H), 3.21 (d, *J* = 17.2 Hz, 1H), 2.23 (s, 3H), 1.50 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 197.0, 168.9, 141.6, 139.9, 138.9, 135.4, 129.4, 129.0, 128.4, 123.8, 122.0, 117.2, 61.2, 48.2, 42.2, 26.3, 24.3; HRMS (ESI-TOF) Calcd for C₁₉H₁₉ClNO₂⁺ ([M+H]⁺) 328.1099. Found 328.1093.

3a2, 2-(1-acetyl-3,5-dimethylindolin-3-yl)-1-(4-chlorophenyl)ethan-1-one, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 8.06 (d, *J* = 8.2 Hz, 1H), 7.83 (d, *J* = 8.6 Hz, 2H), 7.41 (d, *J* = 8.6 Hz, 2H), 7.02 (d, *J* = 8.1 Hz, 1H), 6.95 (s, 1H), 4.16 (d, *J* = 11.0 Hz, 1H), 4.02 (d, *J* = 11.0 Hz, 1H), 3.45 (d, *J* = 17.2 Hz, 1H), 3.18 (d, *J* = 17.2 Hz, 1H), 2.32 (s, 3H), 2.21 (s, 3H), 1.48 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 197.1, 168.5, 139.9, 139.3, 139.0, 135.4, 133.4, 129.4, 128.9, 128.8, 122.7, 116.9, 61.4, 48.2, 42.2, 26.2, 24.2, 21.1; HRMS (ESI-TOF) Calcd for C₂₀H₂₁ClNO₂⁺ ([M+H]⁺) 342.1255. Found 342.1258.

3a3, 2-(1-acetyl-5-(*tert*-butyl)-3-methylindolin-3-yl)-1-(4-chlorophenyl)ethan-1-one, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 8.07 (d, *J* = 8.5 Hz, 1H), 7.77 (d, *J* = 8.6 Hz, 2H), 7.38 (d, *J* = 8.6 Hz, 2H), 7.23 (dd, *J* = 8.5, 2.0 Hz, 1H), 7.11 (d, *J* = 2.0 Hz, 1H), 4.17 (d, *J* = 10.9 Hz, 1H), 4.00 (d, *J* = 10.8 Hz, 1H), 3.41 (d, *J* = 16.5 Hz, 1H), 3.18 (d, *J* = 16.5 Hz, 1H), 2.22 (s, 3H), 1.52 (s, 3H), 1.28 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 197.3, 168.5, 147.0, 139.8, 139.3, 138.2, 135.5, 129.4, 128.9, 125.3, 118.7, 116.6, 61.5, 48.3, 42.6, 34.6, 31.5, 26.0, 24.1; HRMS (ESI-TOF) Calcd for C₂₃H₂₇ClNO₂⁺ ([M+H]⁺) 384.1725. Found 384.1726.

3a4, 2-(1-acetyl-5-methoxy-3-methylindolin-3-yl)-1-(4-chlorophenyl)ethan-1-one, colorless semisolid. ¹H NMR (400 MHz, CDCl₃) δ = 8.12 (d, *J* = 8.7 Hz, 1H), 7.82 (d, *J* = 8.6 Hz, 2H), 7.42 (d, *J* = 8.6 Hz, 2H), 6.74 (dd, *J* = 8.7, 2.6 Hz, 1H), 6.71 (d, *J* = 2.6 Hz, 1H), 4.17 (d, *J* = 11.0 Hz, 1H), 4.02 (d, *J* = 10.9 Hz, 1H), 3.79 (s, 3H), 3.43 (d, *J* = 17.2 Hz, 1H), 3.20 (d, *J* = 17.2 Hz, 1H), 2.21 (s, 3H), 1.49 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 196.9, 168.1, 156.5, 140.5, 139.9, 135.39, 135.38, 129.4, 129.0, 117.9, 112.2, 108.9, 61.4, 55.7, 48.0, 42.3, 26.1, 24.0; HRMS (ESI-TOF) Calcd for C₂₀H₂₁ClNO₃⁺ ([M+H]⁺) 358.1204. Found 358.1207.

3a5, 2-(1-acetyl-5-bromo-3-methylindolin-3-yl)-1-(4-chlorophenyl)ethan-1-one, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 8.08 (d, *J* = 8.6 Hz, 1H), 7.84 (d, *J* = 8.6 Hz, 2H), 7.43 (d, *J* = 8.6 Hz, 2H), 7.32 (dd, *J* = 8.6, 2.1 Hz, 1H), 7.26 (d, *J* = 2.0 Hz, 1H), 4.18 (d, *J* = 11.0 Hz, 1H), 4.05 (d, *J* = 11.0 Hz, 1H), 3.44 (d, *J* = 17.3 Hz, 1H), 3.21 (d, *J* = 17.4 Hz, 1H), 2.22 (s, 3H), 1.49 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 196.6, 169.0, 141.2, 140.8, 140.1, 135.2, 131.2, 129.4, 129.1, 125.4, 118.7, 116.1, 61.3, 48.0, 42.2, 26.5, 24.2; HRMS (ESI-TOF) Calcd for C₁₉H₁₈BrClNO₂⁺ ([M+H]⁺) 406.0204. Found 406.0202.

3a6, 2-(1-acetyl-5-chloro-3-methylindolin-3-yl)-1-(4-chlorophenyl)ethan-1-one, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 8.13 (d, *J* = 8.6 Hz, 1H), 7.84 (d, *J* = 8.6 Hz, 2H), 7.43 (d, *J* = 8.7 Hz, 2H), 7.18 (dd, *J* = 8.7, 2.2 Hz, 1H), 7.12 (d, *J* = 2.2 Hz, 1H), 4.19 (d, *J* = 11.0 Hz, 1H), 4.06 (d, *J* = 11.0 Hz, 1H), 3.44 (d, *J* = 17.4 Hz, 1H), 3.22 (d, *J* = 17.4 Hz, 1H), 2.23 (s, 3H), 1.49 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 196.6, 168.9, 140.8, 140.3, 140.1, 135.2, 129.4, 129.0, 128.6, 128.3, 122.4, 118.2, 61.3, 48.0, 42.2, 26.4, 24.1; HRMS (ESI-TOF) Calcd for C₁₉H₁₈Cl₂NO₂⁺ ([M+H]⁺) 362.0709. Found 362.0707.

3a7, 2-(1-acetyl-3-methyl-5-(trifluoromethyl)indolin-3-yl)-1-(4-chlorophenyl)ethan-1-one, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 8.28 (d, *J* = 8.5 Hz, 1H), 7.84 (d, *J* = 8.6 Hz, 2H), 7.49 (d, *J* = 8.5 Hz, 1H), 7.43 (d, *J* = 8.6 Hz, 2H), 7.38 (s, 1H), 4.24 (d, *J* = 11.0 Hz, 1H), 4.11 (d, *J* = 11.0 Hz, 1H), 3.48 (d, *J* = 17.3 Hz, 1H), 3.25 (d, *J* = 17.3 Hz, 1H), 2.26 (s, 3H), 1.52 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 196.5, 169.4, 144.5, 140.2, 139.4, 135.1, 129.4, 129.1, 126.08 (q, ³*J*_(C-F) = 3.5 Hz), 126.06 (q, ²*J*_(C-F) = 32.6 Hz), 125.6, 124.3 (q, ¹*J*_(C-F) = 270.0 Hz), 119.20 (q, ³*J*_(C-F) = 3.4 Hz), 116.9, 61.4, 48.0, 42.2, 26.6, 24.3; ¹⁹F NMR (376 MHz, CDCl₃) δ = -61.53 (s, 3F); HRMS (ESI-TOF) Calcd for C₂₀H₁₈ClF₃NO₂⁺ ([M+H]⁺) 396.0973. Found 396.0965.

3a8, ethyl 1-acetyl-3-(2-(4-chlorophenyl)-2-oxoethyl)-3-methylindoline-5-carboxylate, colorless oil. ¹H NMR (400 MHz, CDCl₃) δ = 8.23 (d, *J* = 8.5 Hz, 1H), 7.95 (dd, *J* =

8.5, 1.8 Hz, 1H), 7.87–7.84 (m, 3H), 7.43 (d, J = 8.6 Hz, 2H), 4.37 (q, J = 7.1 Hz, 2H), 4.24 (d, J = 11.1 Hz, 1H), 4.12 (d, J = 11.0 Hz, 1H), 3.55 (d, J = 17.5 Hz, 1H), 3.24 (d, J = 17.5 Hz, 1H), 2.26 (s, 3H), 1.51 (s, 3H), 1.40 (t, J = 7.1 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) $\delta = 196.7$, 169.5, 166.3, 145.5, 140.1, 139.2, 135.2, 130.8, 129.4, 129.0, 125.8, 123.6, 116.4, 61.6, 61.0, 48.1, 41.9, 26.8, 24.4, 14.4; HRMS (ESI-TOF) Calcd for C₂₂H₂₃ClNO₄⁺ ([M+H]⁺) 400.1310. Found 400.1311.

3a9, 1,1'-(3-(2-(4-chlorophenyl)-2-oxoethyl)-3-methylindoline-1,5-diyl)bis(ethan-1-one), pale yellow solid: mp 118–119 °C. ¹H NMR (400 MHz, CDCl₃) δ = 8.25 (d, *J* = 8.4 Hz, 1H), 7.86–7.83 (m, 4H), 7.43 (d, *J* = 8.6 Hz, 2H), 4.24 (d, *J* = 11.0 Hz, 1H), 4.12 (d, *J* = 11.0 Hz, 1H), 3.56 (d, *J* = 17.5 Hz, 1H), 3.24 (d, *J* = 17.5 Hz, 1H), 2.59 (s, 3H), 2.28 (s, 3H), 1.50 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 197.0, 196.7, 169.5, 145.7, 140.1, 139.7, 135.2, 133.0, 130.6, 129.4, 129.0, 121.9, 116.2, 61.6, 48.0, 41.9, 26.9, 26.5, 24.4; HRMS (ESI-TOF) Calcd for C₂₁H₂₁ClNO₃⁺ ([M+H]⁺) 370.1204. Found 370.1216.

3a10, 1-acetyl-3-(2-(4-chlorophenyl)-2-oxoethyl)-3-methylindoline-5-carbonitrile, pale yellow solid: mp 134–135 °C. ¹H NMR (400 MHz, CDCl₃) δ = 8.28 (d, *J* = 8.4 Hz, 1H), 7.85 (d, *J* = 8.6 Hz, 2H), 7.53 (dd, *J* = 8.4, 1.7 Hz, 1H), 7.46–7.43 (m, 3H), 4.24 (d, *J* = 11.0 Hz, 1H), 4.11 (d, *J* = 11.0 Hz, 1H), 3.50 (d, *J* = 17.6 Hz, 1H), 3.27 (d, *J* = 17.6 Hz, 1H), 2.27 (s, 3H), 1.51 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 196.2, 169.6, 145.4, 140.3, 140.0, 135.0, 133.3, 129.3, 129.1, 126.0, 119.2, 117.3, 106.5, 61.4, 47.8, 42.0, 26.9, 24.4; HRMS (ESI-TOF) Calcd for C₂₀H₁₈ClN₂O₂⁺ ([M+H]⁺) 353.1051. Found 353.1048.

3a11, 2-(1-acetyl-3-methyl-5-phenylindolin-3-yl)-1-(4-chlorophenyl)ethan-1-one, pale yellow solid: mp 187–188 °C. ¹H NMR (400 MHz, CDCl₃) δ = 8.24 (d, *J* = 8.4 Hz, 1H), 7.83 (d, *J* = 8.6 Hz, 2H), 7.56–7.53 (m, 2H), 7.47–7.39 (m, 5H), 7.35–7.31 (m, 2H), 4.23 (d, *J* = 10.9 Hz, 1H), 4.08 (d, *J* = 10.9 Hz, 1H), 3.50 (d, *J* = 17.1 Hz, 1H), 3.26 (d, *J* = 17.1 Hz, 1H), 2.26 (s, 3H), 1.56 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 197.0, 168.9, 141.1, 140.9, 140.0, 139.5, 137.1, 135.4, 129.4, 129.0, 128.8, 127.4, 127.1, 126.9, 120.8, 117.4, 61.5, 48.3, 42.4, 26.3, 24.3; HRMS (ESI-TOF) Calcd for C₂₅H₂₃ClNO₂⁺ ([M+H]⁺) 404.1412. Found 404.1406.

3b1, 1-(5-chloro-3-(2-(4-chlorophenyl)-2-oxoethyl)-3-methylindolin-1-yl)propan-1-one, white solid: mp 168–169 °C. ¹H NMR (400 MHz, CDCl₃) δ = 8.17 (d, *J* = 8.6 Hz, 1H), 7.84 (d, *J* = 8.6 Hz, 2H), 7.44 (d, *J* = 8.6 Hz, 2H), 7.18 (ddd, *J* = 8.6, 2.2, 0.7 Hz, 1H), 7.11 (d, *J* = 2.2 Hz, 1H), 4.18 (d, *J* = 11.0 Hz, 1H), 4.05 (d, *J* = 11.0 Hz, 1H), 3.44 (d, *J* = 17.4 Hz, 1H), 3.20 (d, *J* = 17.4 Hz, 1H), 2.54–2.38 (m, 2H), 1.48 (s, 3H), 1.22 (t, *J* = 7.3 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 196.6, 172.2, 140.7, 140.5, 140.1, 135.2, 129.4, 129.0, 128.4, 128.3, 122.4, 118.1, 60.4, 47.9, 42.2, 29.1, 26.4, 8.6; HRMS (ESI-TOF) Calcd for C₂₀H₂₀Cl₂NO₂⁺ ([M+H]⁺) 376.0866. Found 376.0865.

3b2, 1-(5-chloro-3-(2-(4-chlorophenyl)-2-oxoethyl)-3-methylindolin-1-yl)-2,2-dimethylpropan-1-one, colorless crystal: mp 167–168 °C. ¹H NMR (400 MHz, CDCl₃) *δ* = 8.16 (d, *J* = 8.7 Hz, 1H), 7.85 (ddd, *J* = 8.7, 2.5, 2.0 Hz, 2H), 7.44 (ddd, *J* = 8.6, 2.5, 2.0 Hz, 2H), 7.19 (dd,

J = 8.7, 2.3 Hz, 1H), 7.12 (d, J = 2.2 Hz, 1H), 4.43 (d, J = 10.8 Hz, 1H), 4.23 (d, J = 10.8 Hz, 1H), 3.44 (d, J = 17.3 Hz, 1H), 3.08 (d, J = 17.3 Hz, 1H), 1.45 (s, 3H), 1.37 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) $\delta = 196.8, 176.8, 142.1, 140.6, 140.1, 135.3, 129.4, 129.1, 128.7, 128.0, 122.1, 119.7, 61.4, 46.6, 43.0, 40.2, 27.6, 24.4; HRMS (ESI-TOF) Calcd for C₂₂H₂₄Cl₂NO₂⁺ ([M+H]⁺) 404.1179. Found 404.1186.$

3c1, *tert*-butyl 3-(2-(4-chlorophenyl)-2-oxoethyl)-3,5-dimethylindoline-1-carboxylate, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.72 (d, *J* = 8.3 Hz, 2H), 7.65 (brs, 1H), 7.29 (d, *J* = 8.4 Hz, 2H), 6.90 (d, *J* = 8.2 Hz, 1H), 6.82 (s, 1H), 3.94 (d, *J* = 11.8 Hz, 1H), 3.81 (d, *J* = 11.7 Hz, 1H), 3.30 (d, *J* = 17.0 Hz, 1H), 3.07 (d, *J* = 16.9 Hz, 1H), 2.20 (s, 3H), 1.46 (s, 9H), 1.39 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 195.8 (br), 151.5, 138.5, 137.5 (br), 134.7, 130.7, 128.3, 127.8, 127.6, 122.0 (br), 113.6, 79.5 (br), 59.3, 47.2, 40.4 (br), 27.4, 25.1, 19.9; HRMS (ESI-TOF) Calcd for C₂₃H₂₇ClNO₃⁺ ([M+H]⁺) 400.1674. Found 400.1677.

3c2, *tert*-butyl 5-chloro-3-(2-(4-chlorophenyl)-2-oxoethyl)-3-methylindoline-1-carboxylate, colorless oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.83 (d, *J* = 8.6 Hz, 3H), 7.41 (d, *J* = 8.6 Hz, 2H), 7.14 (dd, *J* = 8.6, 2.2 Hz, 1H), 7.07 (d, *J* = 2.2 Hz, 1H), 4.05 (d, *J* = 11.8 Hz, 1H), 3.93 (d, *J* = 11.7 Hz, 1H), 3.38 (d, *J* = 17.3 Hz, 1H), 3.20 (d, *J* = 17.3 Hz, 1H), 1.55 (s, 9H), 1.47 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 196.3 (br), 152.3, 140.4 (br), 139.8, 135.4, 129.3, 128.9, 128.0, 127.2, 122.7 (br), 115.8, 81.2 (br), 60.3, 48.1, 41.4 (br), 28.4, 26.4; HRMS (ESI-TOF) Calcd for C₂₂H₂₄Cl₂NO₃⁺ ([M+H]⁺) 420.1128. Found 420.1141.

3d1, 2-(5-bromo-1-(ethylsulfonyl)-3-methylindolin-3-yl)-1-(4-chlorophenyl)ethan-1-one, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.84 (ddd, *J* = 8.6, 2.5, 2.0 Hz, 2H), 7.43 (ddd, *J* = 8.6, 2.5, 2.0 Hz, 2H), 7.33–7.26 (m, 2H), 7.23 (d, *J* = 1.7 Hz, 1H), 4.13 (d, *J* = 10.5 Hz, 1H), 3.96 (d, *J* = 10.5 Hz, 1H), 3.43 (d, *J* = 17.6 Hz, 1H), 3.27 (d, *J* = 17.6 Hz, 1H), 3.18 (q, *J* = 7.4 Hz, 2H), 1.49 (s, 3H), 1.43 (t, *J* = 7.4 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 195.9, 140.6, 140.5, 140.1, 135.2, 131.3, 129.4, 129.0, 126.2, 115.6, 114.8, 62.1, 47.2, 44.3, 42.1, 26.8, 7.8; HRMS (ESI-TOF) Calcd for C₁₉H₂₀BrCINO₃S⁺ ([M+H]⁺) 456.0030. Found 456.0030.

3d2, 2-(5-chloro-1-(ethylsulfonyl)-3-methylindolin-3-yl)-1-(4-chlorophenyl)ethan-1-one, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.77 (ddd, *J* = 8.6, 2.5, 2.0 Hz, 2H), 7.36 (ddd, *J* = 8.6, 2.5, 2.0 Hz, 2H), 7.25 (d, *J* = 8.6 Hz, 1H), 7.08 (dd, *J* = 8.6, 2.2 Hz, 1H), 7.02 (d, *J* = 2.1 Hz, 1H), 4.06 (d, *J* = 10.5 Hz, 1H), 3.90 (d, *J* = 10.5 Hz, 1H), 3.36 (d, *J* = 17.6 Hz, 1H), 3.21 (d, *J* = 17.7 Hz, 1H), 3.11 (q, *J* = 7.4 Hz, 2H), 1.42 (s, 3H), 1.36 (t, *J* = 7.4 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 195.9, 140.2, 140.0, 140.0, 135.2, 129.3, 129.0, 128.3, 128.3, 123.3, 114.3, 62.2, 47.1, 44.3, 42.1, 26.7, 7.7; HRMS (ESI-TOF) Calcd for C₁₉H₂₀Cl₂NO₃S⁺ ([M+H]⁺) 412.0535. Found 412.0534.

3e1, 2-(5-chloro-3-methyl-1-(methylsulfonyl)indolin-3-yl)-1-(4-chlorophenyl)ethan-1-one, white solid: mp 143–144 °C. ¹H NMR (400 MHz, CDCl₃) δ = 7.84 (ddd, *J* = 8.6, 2.5, 2.0 Hz, 2H), 7.43 (ddd, *J* = 8.6, 2.5, 2.0 Hz, 2H), 7.36 (d, *J* = 8.6 Hz, 1H), 7.18 (dd, *J*

= 8.6, 2.2 Hz, 1H), 7.10 (d, J = 2.1 Hz, 1H), 4.10 (d, J = 10.5 Hz, 1H), 3.91 (d, J = 10.5 Hz, 1H), 3.44 (d, J = 17.8 Hz, 1H), 3.31 (d, J = 17.8 Hz, 1H), 2.98 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 195.8, 140.4, 140.0, 139.8, 135.0, 129.3, 129.0, 128.7, 128.4, 123.3, 114.3, 62.1, 47.0, 41.9, 34.8, 27.0; HRMS (ESI-TOF) Calcd for C₁₈H₁₈Cl₂NO₃S⁺ ([M+H]⁺) 398.0379. Found 398.0377.

3e2, 2-(5-chloro-3-methyl-1-tosylindolin-3-yl)-1-(4-chlorophenyl)ethan-1-one, white solid: mp 166–167 °C. ¹H NMR (400 MHz, CDCl₃) δ = 7.72 (ddd, *J* = 8.6, 2.5, 2.0 Hz, 2H), 7.66 (ddd, *J* = 8.3, 2.1, 1.9 Hz, 2H), 7.62 (d, *J* = 8.7 Hz, 1H), 7.41 (ddd, *J* = 8.6, 2.5, 2.0 Hz, 2H), 7.20 (dd, *J* = 8.6, 2.2 Hz, 1H), 7.16 (d, *J* = 7.7 Hz, 2H), 7.01 (d, *J* = 2.2 Hz, 1H), 4.08 (d, *J* = 11.4 Hz, 1H), 3.87 (d, *J* = 11.4 Hz, 1H), 3.18 (d, *J* = 17.6 Hz, 1H), 2.64 (d, *J* = 17.7 Hz, 1H), 2.29 (s, 3H), 1.27 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 195.7, 144.3, 141.3, 139.9, 139.5, 135.1, 134.0, 129.8, 129.3, 129.05, 128.95, 128.4, 127.2, 123.3, 116.2, 61.6, 47.5, 42.2, 25.2, 21.5; HRMS (ESI-TOF) Calcd for C₂₄H₂₂Cl₂NO₃S⁺ ([M+H]⁺) 474.0692. Found 474.0694.

3e3, 2-(5-chloro-3-methyl-1-(o-tolylsulfonyl)indolin-3-yl)-1-(4-chlorophenyl)ethan-1-one, white crystal: mp 166–167 °C. ¹H NMR (400 MHz, CDCl₃) δ = 7.94 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.77 (ddd, *J* = 8.7, 2.5, 2.0 Hz, 2H), 7.44–7.39 (m, 3H), 7.37 (dd, *J* = 7.5, 1.4 Hz, 1H), 7.29–7.24 (m, 2H), 7.15 (dd, *J* = 8.6, 2.2 Hz, 1H), 7.08 (d, *J* = 2.2 Hz, 1H), 4.08 (d, *J* = 11.1 Hz, 1H), 3.91 (d, *J* = 11.1 Hz, 1H), 3.31 (d, *J* = 17.7 Hz, 1H), 2.95 (d, *J* = 17.6 Hz, 1H), 2.59 (s, 3H), 1.35 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 195.8, 141.0, 140.1, 140.0, 138.1, 137.0, 135.1, 133.2, 133.0, 129.5, 129.3, 129.0, 128.7, 128.3, 126.4, 123.3, 116.0, 61.5, 47.3, 42.4, 25.5, 21.0; HRMS (ESI-TOF) Calcd for C₂₄H₂₂Cl₂NO₃S⁺ ([M+H]⁺) 474.0692. Found 474.0691.

3f, 2-(1-acetyl-7-chloro-3-methylindolin-3-yl)-1-(4-chlorophenyl)ethan-1-one, white semisolid. ¹H NMR (400 MHz, CDCl₃) δ = 7.83 (d, *J* = 8.6 Hz, 2H), 7.42 (d, *J* = 8.6 Hz, 2H), 7.25 (dd, *J* = 7.7, 1.6 Hz, 1H), 7.13–7.06 (m, 2H), 4.29 (d, *J* = 11.2 Hz, 1H), 4.07 (d, *J* = 11.2 Hz, 1H), 3.40 (d, *J* = 16.9 Hz, 1H), 3.05 (d, *J* = 16.9 Hz, 1H), 2.31 (s, 3H), 1.44 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 196.6, 144.7, 140.0, 139.6, 135.4, 129.7, 129.4, 129.0, 126.4, 124.6, 120.8, 62.9, 45.8, 44.2, 23.7, 23.6; HRMS (ESI-TOF) Calcd for C₁₉H₁₈Cl₂NO₂⁺ ([M+H]⁺) 362.0709. Found 362.0716.

3g, 2-(1-acetyl-4,6-dichloro-3-methylindolin-3-yl)-1-(4-chlorophenyl)ethan-1-one, white semisolid. ¹H NMR (400 MHz, CDCl₃) δ = 8.24 (d, *J* = 1.9 Hz, 1H), 7.85 (ddd, *J* = 8.6, 2.5, 2.0 Hz, 2H), 7.43 (ddd, *J* = 8.6, 2.5, 2.0 Hz, 2H), 6.97 (d, *J* = 1.9 Hz, 1H), 4.24 (d, *J* = 10.7 Hz, 1H), 4.01 (d, *J* = 10.8 Hz, 1H), 3.80 (d, *J* = 17.6 Hz, 1H), 3.52 (d, *J* = 17.5 Hz, 1H), 2.23 (s, 3H), 1.60 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 196.7, 169.1, 144.4, 140.0, 135.2, 134.7, 132.7, 129.8, 129.3, 129.0, 124.7, 116.1, 61.9, 45.3, 43.4, 24.9, 24.4; HRMS (ESI-TOF) Calcd for C₁₉H₁₇Cl₃NO₂⁺ ([M+H]⁺) 396.0319. Found 396.0317.

3h, 2-(1-acetyl-4-chloro-3-methylindolin-3-yl)-1-(4-chlorophenyl)ethan-1-one, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 8.18 (d, *J* = 8.1 Hz, 1H), 7.85 (d, *J* = 8.7 Hz, 2H), 7.41 (d, *J* = 8.6 Hz, 2H), 7.14 (dd, *J* = 8.1, 8.1 Hz, 1H), 6.96 (dd, *J* = 8.0, 1.0

Hz, 1H), 4.24 (d, J = 10.8 Hz, 1H), 4.00 (d, J = 10.8 Hz, 1H), 3.86 (d, J = 17.3 Hz, 1H), 3.49 (d, J = 17.3 Hz, 1H), 2.23 (s, 3H), 1.63 (s, 3H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) $\delta = 197.1$, 168.9, 143.9, 139.9, 135.3, 134.0, 129.65, 129.58, 129.4, 129.0, 125.2, 115.7, 61.5, 45.4, 43.7, 24.8, 24.4; HRMS (ESI-TOF) Calcd for C₁₉H₁₈Cl₂NO₂⁺ ([M+H]⁺) 362.0709. Found 362.0710.

3h', 2-(1-acetyl-6-chloro-3-methylindolin-3-yl)-1-(4-chlorophenyl)ethan-1-one, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 8.24 (d, *J* = 1.9 Hz, 1H), 7.83 (d, *J* = 8.6 Hz, 2H), 7.43 (d, *J* = 8.6 Hz, 2H), 7.07 (d, *J* = 8.0 Hz, 1H), 7.02 (dd, *J* = 8.0, 1.9 Hz, 1H), 4.19 (d, *J* = 10.9 Hz, 1H), 4.05 (d, *J* = 10.9 Hz, 1H), 3.43 (d, *J* = 17.3 Hz, 1H), 3.20 (d, *J* = 17.4 Hz, 1H), 2.23 (s, 3H), 1.48 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 196.7, 169.0, 142.6, 140.1, 137.3, 135.3, 133.9, 129.3, 129.0, 123.7, 122.8, 117.4, 61.5, 48.0, 41.9, 26.5, 24.2; HRMS (ESI-TOF) Calcd for C₁₉H₁₈Cl₂NO₂⁺ ([M+H]⁺) 362.0709. Found 362.0712.

3i1, 2-(1-acetyl-5-chloroindolin-3-yl)-1-(4-chlorophenyl)ethan-1-one, white crystal: mp 151–152 °C. ¹H NMR (400 MHz, CDCl₃) δ = 8.17 (d, *J* = 8.6 Hz, 1H), 7.92 (d, *J* = 8.6 Hz, 2H), 7.47 (d, *J* = 8.6 Hz, 2H), 7.20 (ddd, *J* = 8.6, 2.2, 0.7 Hz, 1H), 7.16 (s, 1H), 4.48 (dd, *J* = 11.0, 9.5 Hz, 1H), 4.01 (tq, *J* = 9.8, 4.7, 4.2 Hz, 1H), 3.68 (dd, *J* = 10.9, 5.9 Hz, 1H), 3.52 (dd, *J* = 18.3, 3.8 Hz, 1H), 3.25 (dd, *J* = 18.3, 10.2 Hz, 1H), 2.21 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 196.6, 168.8, 141.4, 140.3, 135.4, 134.5, 129.4, 129.2, 128.6, 128.3, 123.9, 118.1, 55.8, 44.8, 35.5, 24.1; HRMS (ESI-TOF) Calcd for C₁₈H₁₆Cl₂NO₂⁺ ([M+H]⁺) 348.0553. Found 348.0552.

3i2, methyl 1-acetyl-5-chloro-3-(2-(4-chlorophenyl)-2-oxoethyl)indoline-3-carboxylate, pale yellow crystal: mp 169–170 °C. ¹H NMR (400 MHz, CDCl₃) δ = 8.20 (d, *J* = 8.4 Hz, 1H), 7.91 (ddd, *J* = 8.6, 2.5, 2.0 Hz, 2H), 7.47 (ddd, *J* = 8.6, 2.5, 2.0 Hz, 2H), 7.29–7.26 (m, 2H), 5.12 (d, *J* = 11.5 Hz, 1H), 4.16 (d, *J* = 18.3 Hz, 1H), 3.84 (d, *J* = 11.5 Hz, 1H), 3.75 (s, 3H), 3.39 (d, *J* = 18.3 Hz, 1H), 2.25 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 195.9, 171.9, 168.7, 141.1, 140.6, 133.9, 132.9, 129.8, 129.6, 129.2, 128.7, 123.6, 118.4, 58.1, 53.4, 51.6, 48.5, 24.2; HRMS (ESI-TOF) Calcd for C₂₀H₁₈Cl₂NO₄⁺ ([M+H]⁺) 406.0607. Found 406.0609.

3j, 2-(1-acetyl-5-chloro-3-methylindolin-3-yl)-1-(2-chlorophenyl)ethan-1-one, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 8.13 (d, *J* = 8.6 Hz, 1H), 7.42–7.36 (m, 2H), 7.33–7.28 (m, 2H), 7.15 (dd, *J* = 8.6, 2.2 Hz, 1H), 7.05 (d, *J* = 2.2 Hz, 1H), 4.26 (d, *J* = 11.0 Hz, 1H), 4.05 (d, *J* = 11.0 Hz, 1H), 3.42 (d, *J* = 17.3 Hz, 1H), 3.27 (d, *J* = 17.3 Hz, 1H), 2.25 (s, 3H), 1.49 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 201.4, 169.0, 140.4, 140.3, 139.3, 132.1, 130.6, 128.64, 128.56, 128.3, 127.1, 122.5, 118.2, 61.3, 52.3, 42.6, 26.6, 24.2; HRMS (ESI-TOF) Calcd for C₁₉H₁₈Cl₂NO₂⁺ ([M+H]⁺) 362.0709. Found 362.0710.

3k, 2-(1-acetyl-5-chloro-3-methylindolin-3-yl)-1-(3-chlorophenyl)ethan-1-one, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 8.13 (d, *J* = 8.6 Hz, 1H), 7.87 (dd, *J* = 2.0, 2.0 Hz, 1H), 7.78 (ddd, *J* = 7.8, 1.4, 1.4 Hz, 1H), 7.55 (ddd, *J* = 8.0, 2.2, 1.1 Hz, 1H), 7.41 (dd, *J* = 7.9, 7.9 Hz, 1H), 7.18 (dd, *J* = 8.6, 2.2 Hz, 1H), 7.13 (d, *J* = 2.2 Hz, 1H),

4.18 (d, J = 11.0 Hz, 1H), 4.06 (d, J = 11.0 Hz, 1H), 3.44 (d, J = 17.5 Hz, 1H), 3.23 (d, J = 17.4 Hz, 1H), 2.23 (s, 3H), 1.49 (s, 3H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) $\delta = 196.5$, 168.9, 140.7, 140.3, 138.4, 135.2, 133.5, 130.1, 128.7, 128.3, 128.1, 126.0, 122.5, 118.2, 61.3, 48.1, 42.2, 26.4, 24.1; HRMS (ESI-TOF) Calcd for C₁₉H₁₈Cl₂NO₂⁺ ([M+H]⁺) 362.0709. Found 362.0722.

311, 2-(1-acetyl-5-chloro-3-methylindolin-3-yl)-1-(4-bromophenyl)ethan-1-one, colorless oil. ¹H NMR (400 MHz, CDCl₃) δ = 8.13 (d, *J* = 8.6 Hz, 1H), 7.76 (d, *J* = 8.6 Hz, 2H), 7.60 (d, *J* = 8.6 Hz, 2H), 7.18 (dd, *J* = 8.7, 2.2 Hz, 1H), 7.11 (d, *J* = 2.2 Hz, 1H), 4.19 (d, *J* = 10.9 Hz, 1H), 4.06 (d, *J* = 11.0 Hz, 1H), 3.43 (d, *J* = 17.4 Hz, 1H), 3.21 (d, *J* = 17.4 Hz, 1H), 2.23 (s, 3H), 1.49 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 196.7, 168.9, 140.8, 140.3, 135.6, 132.0, 129.4, 128.9, 128.6, 128.3, 122.4, 118.2, 61.3, 47.9, 42.2, 26.4, 24.2; HRMS (ESI-TOF) Calcd for C₁₉H₁₈BrClNO₂⁺ ([M+H]⁺) 406.0204. Found 406.0208.

312, 2-(1-acetyl-5-chloro-3-methylindolin-3-yl)-1-(4-fluorophenyl)ethan-1-one, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 8.13 (d, *J* = 8.6 Hz, 1H), 7.95–7.92 (m, 2H), 7.17 (dd, *J* = 8.6, 2.2 Hz, 1H), 7.15 – 7.10 (m, 3H), 4.20 (d, *J* = 11.0 Hz, 1H), 4.06 (d, *J* = 11.0 Hz, 1H), 3.45 (d, *J* = 17.3 Hz, 1H), 3.22 (d, *J* = 17.3 Hz, 1H), 2.23 (s, 3H), 1.49 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 196.2, 168.9, 166.0 (d, ¹*J*_(C-F) = 255.9 Hz), 140.9, 140.3, 133.4 (d, ⁴*J*_(C-F) = 3.0 Hz), 130.7 (d, ³*J*_(C-F) = 9.5 Hz), 128.6, 128.2, 122.5, 118.2, 115.9 (d, ²*J*_(C-F) = 21.8 Hz), 61.4, 47.9, 42.2, 26.4, 24.1; ¹⁹F NMR (376 MHz, CDCl₃) δ = -104.12 to -104.19 (m, 1F); HRMS (ESI-TOF) Calcd for C₁₉H₁₈ClFNO₂⁺ ([M+H]⁺) 346.1005. Found 346.1001.

313, 2-(1-acetyl-5-chloro-3-methylindolin-3-yl)-1-(4-(trifluoromethyl)phenyl)ethan-1-one, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 8.13 (d, *J* = 8.6 Hz, 1H), 8.00 (d, *J* = 8.2 Hz, 2H), 7.72 (d, *J* = 8.2 Hz, 2H), 7.17 (dd, *J* = 8.6, 2.2 Hz, 1H), 7.12 (d, *J* = 2.2 Hz, 1H), 4.19 (d, *J* = 10.9 Hz, 1H), 4.07 (d, *J* = 11.0 Hz, 1H), 3.49 (d, *J* = 17.5 Hz, 1H), 3.28 (d, *J* = 17.4 Hz, 1H), 2.23 (s, 3H), 1.51 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 196.9, 168.9, 140.5, 140.3, 139.4, 134.8 (q, ²*J*_(C-F) = 32.8 Hz), 128.7, 128.33, 128.31, 125.8 (q, ³*J*_(C-F) = 3.7 Hz), 123.4473 (q, ¹*J*_(C-F) = 271.2 Hz), 124.8, 122.4, 122.1, 119.4, 118.2, 61.3, 48.4, 42.2, 26.4, 24.1; ¹⁹F NMR (376 MHz, CDCl₃) δ = -63.20 (s, 3F); HRMS (ESI-TOF) Calcd for C₂₀H₁₈ClF₃NO₂⁺ ([M+H]⁺) 396.0973. Found 396.0970.

314, methyl 4-(2-(1-acetyl-5-chloro-3-methylindolin-3-yl)acetyl)benzoate, white semisolid. ¹H NMR (400 MHz, CDCl₃) δ = 8.15–8.10 (m, 3H), 7.95 (d, *J* = 8.1 Hz, 2H), 7.18 (dd, *J* = 8.6, 2.2 Hz, 1H), 7.13 (d, *J* = 2.2 Hz, 1H), 4.19 (d, *J* = 10.9 Hz, 1H), 4.08 (d, *J* = 10.9 Hz, 1H), 3.95 (s, 3H), 3.51 (d, *J* = 17.5 Hz, 1H), 3.28 (d, *J* = 17.5 Hz, 1H), 2.23 (s, 3H), 1.50 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 197.3, 168.8, 166.0, 140.7, 140.3, 140.0, 134.3, 129.9, 128.6, 128.3, 127.9, 122.5, 118.2, 61.3, 52.5, 48.4, 42.2, 26.4, 24.1; HRMS (ESI-TOF) Calcd for C₂₁H₂₁CINO₄⁺ ([M+H]⁺) 386.1154. Found 386.1152.

3m, 1-(5-chloro-3-methyl-3-(2-oxo-2-(perfluorophenyl)ethyl)indolin-1-yl)octan-1-one,

yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 8.14 (d, *J* = 8.7 Hz, 1H), 7.16 (dd, *J* = 8.7, 2.2 Hz, 1H), 7.05 (d, *J* = 2.2 Hz, 1H), 4.18 (d, *J* = 11.0 Hz, 1H), 4.01 (d, *J* = 11.1 Hz, 1H), 3.29–3.18 (m, 2H), 2.43 (t, *J* = 7.5 Hz, 2H), 1.73 (p, *J* = 7.5 Hz, 2H), 1.50 (s, 3H), 1.44–1.27 (m, 8H), 0.91–0.87 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 192.2, 171.6, 140.6, 139.2, 128.5, 122.3, 118.2, 60.2, 54.6, 42.6, 35.9, 31.7, 29.3, 29.1, 26.5, 24.5, 22.6, 14.1; ¹⁹F NMR (376 MHz, CDCl₃) δ = –140.77 to –140.86 (m, 2F), –148.12 to –148.23 (m, 1F), –159.29 to –159.45 (m, 2F); HRMS (ESI-TOF) Calcd for C₂₅H₂₆ClF₅NO₂⁺ ([M+H]⁺) 502.1567. Found 502.1566.

3n, 2-(1-acetyl-5-chloro-3-methylindolin-3-yl)-1-phenylethan-1-one, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 8.14 (d, *J* = 8.6 Hz, 1H), 7.92 (d, *J* = 7.2 Hz, 2H), 7.59 (dd, *J* = 7.4, 7.4 Hz, 1H), 7.47 (dd, *J* = 7.6, 7.6 Hz, 2H), 7.18 (dd, *J* = 8.6, 2.2 Hz, 1H), 7.13 (d, *J* = 2.2 Hz, 1H), 4.20 (d, *J* = 11.0 Hz, 1H), 4.08 (d, *J* = 11.0 Hz, 1H), 3.50 (d, *J* = 17.4 Hz, 1H), 3.24 (d, *J* = 17.4 Hz, 1H), 2.22 (s, 3H), 1.49 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 197.8, 168.9, 141.1, 140.3, 136.9, 133.6, 128.7, 128.6, 128.2, 128.0, 122.5, 118.1, 61.4, 47.9, 42.2, 26.5, 24.2; HRMS (ESI-TOF) Calcd for C₁₉H₁₉ClNO₂⁺ ([M+H]⁺) 328.1099. Found 328.1096.

30, 2-(1-acetyl-5-chloro-3-methylindolin-3-yl)-1-(*o*-tolyl)ethan-1-one, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 8.14 (d, *J* = 8.6 Hz, 1H), 7.58 (d, *J* = 7.1 Hz, 1H), 7.39 (dd, *J* = 7.3, 7.3 Hz, 1H), 7.28–7.24 (m, 2H), 7.17 (dd, *J* = 8.6, 2.2 Hz, 1H), 7.07 (d, *J* = 2.2 Hz, 1H), 4.25 (d, *J* = 11.0 Hz, 1H), 4.08 (d, *J* = 11.0 Hz, 1H), 3.39 (d, *J* = 17.1 Hz, 1H), 3.21 (d, *J* = 17.1 Hz, 1H), 2.46 (s, 3H), 2.23 (s, 3H), 1.48 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 168.9, 140.9, 140.3, 138.1, 137.8, 132.2, 131.8, 128.6, 128.4, 128.2, 125.8, 122.5, 118.1, 61.4, 50.7, 42.5, 26.6, 24.2, 21.3; HRMS (ESI-TOF) Calcd for C₂₀H₂₁ClNO₂⁺ ([M+H]⁺) 342.1255. Found 342.1261.

3p1, 2-(1-acetyl-5-chloro-3-methylindolin-3-yl)-1-(*p*-tolyl)ethan-1-one, colorless oil. ¹H NMR (400 MHz, CDCl₃) δ = 8.14 (d, *J* = 8.6 Hz, 1H), 7.82 (d, *J* = 7.9 Hz, 2H), 7.26 (d, *J* = 8.0 Hz, 2H), 7.18 (dd, *J* = 8.6, 2.2 Hz, 1H), 7.13 (d, *J* = 2.2 Hz, 1H), 4.21 (d, *J* = 11.0 Hz, 1H), 4.07 (d, *J* = 11.0 Hz, 1H), 3.48 (d, *J* = 17.4 Hz, 1H), 3.20 (d, *J* = 17.3 Hz, 1H), 2.42 (s, 3H), 2.22 (s, 3H), 1.48 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 197.4, 168.9, 144.5, 141.2, 140.3, 134.5, 129.4, 128.5, 128.12, 128.08, 122.5, 118.1, 61.5, 47.7, 42.2, 26.5, 24.2, 21.7; HRMS (ESI-TOF) Calcd for C₂₀H₂₁ClNO₂⁺ ([M+H]⁺) 342.1255. Found 342.1257.

3p2, 4-(2-(1-acetyl-5-chloro-3-methylindolin-3-yl)acetyl)phenyl acetate, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 8.14 (d, *J* = 8.7 Hz, 1H), 7.95 (d, *J* = 8.7 Hz, 2H), 7.21–7.17 (m, 3H), 7.12 (d, *J* = 2.2 Hz, 1H), 4.19 (d, *J* = 11.0 Hz, 1H), 4.07 (d, *J* = 11.0 Hz, 1H), 3.47 (d, *J* = 17.4 Hz, 1H), 3.22 (d, *J* = 17.4 Hz, 1H), 2.33 (s, 3H), 2.22 (s, 3H), 1.48 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 196.5, 168.9, 168.7, 154.7, 141.0, 140.3, 134.5, 129.6, 128.6, 128.2, 122.4, 122.0, 118.2, 61.4, 47.9, 42.2, 26.4, 24.2, 21.2; HRMS (ESI-TOF) Calcd for C₂₁H₂₁ClNO₄⁺ ([M+H]⁺) 386.1154. Found 386.1152.

3p3, 2-(1-acetyl-5-chloro-3-methylindolin-3-yl)-1-(4-methoxyphenyl)ethan-1-one, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 8.14 (d, *J* = 8.6 Hz, 1H), 7.89 (d, *J* = 8.9 Hz, 2H), 7.17 (dd, *J* = 8.6, 2.2 Hz, 1H), 7.13 (d, *J* = 2.2 Hz, 1H), 6.92 (d, *J* = 8.9 Hz, 2H), 4.22 (d, *J* = 11.0 Hz, 1H), 4.06 (d, *J* = 11.0 Hz, 1H), 3.87 (s, 3H), 3.45 (d, *J*

= 17.1 Hz, 1H), 3.17 (d, J = 17.2 Hz, 1H), 2.22 (s, 3H), 1.48 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 196.2, 169.0, 163.8, 141.3, 140.3, 130.3, 130.1, 128.5, 128.1, 122.5, 118.1, 113.9, 61.5, 55.5, 47.5, 42.3, 26.5, 24.2; HRMS (ESI-TOF) Calcd for C₂₀H₂₁ClNO₃⁺ ([M+H]⁺) 358.1204. Found 358.1204.

3q, 2-(1-acetyl-5-chloro-3-methylindolin-3-yl)-1-(thiophen-2-yl)ethan-1-one, yellow solid: mp 134–135 °C. ¹H NMR (400 MHz, CDCl₃) δ = 8.13 (d, *J* = 8.6 Hz, 1H), 7.67–7.66 (m, 2H), 7.18 (dd, *J* = 8.6, 2.2 Hz, 1H), 7.14–7.12 (m, 2H), 4.29 (d, *J* = 11.0 Hz, 1H), 4.00 (d, *J* = 11.0 Hz, 1H), 3.38 (d, *J* = 16.6 Hz, 1H), 3.14 (d, *J* = 16.6 Hz, 1H), 2.23 (s, 3H), 1.49 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 190.7, 168.9, 144.4, 140.7, 140.3, 134.5, 132.4, 128.6, 128.33, 128.26, 122.5, 118.2, 61.3, 48.5, 42.5, 26.3, 24.1; HRMS (ESI-TOF) Calcd for C₁₇H₁₇ClNO₂S⁺ ([M+H]⁺) 334.0663. Found 334.0661.

3r, 2-(1-acetyl-5-chloro-3-methylindolin-3-yl)-1-cyclohexylethan-1-one, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 8.13 (d, *J* = 8.6 Hz, 1H), 7.17 (dd, *J* = 8.6, 2.2 Hz, 1H), 7.06 (d, *J* = 2.2 Hz, 1H), 4.09 (d, *J* = 11.0 Hz, 1H), 3.98 (d, *J* = 10.9 Hz, 1H), 2.94 (d, *J* = 17.5 Hz, 1H), 2.72 (d, *J* = 17.5 Hz, 1H), 2.29–2.21 (m, 4H), 1.92–1.74 (m, 4H), 1.37–1.16 (m, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 212.1, 168.9, 141.0, 140.2, 128.5, 128.1, 122.3, 118.1, 61.5, 51.6, 50.0, 41.9, 28.3, 28.2, 26.3, 25.7, 25.6, 25.5, 24.1; HRMS (ESI-TOF) Calcd for C₁₉H₂₅ClNO₂⁺ ([M+H]⁺) 334.1568. Found 334.1569.

3r', 1-(5-chloro-3-(cyclohexylmethyl)-3-methylindolin-1-yl)ethan-1-one, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) $\delta = 8.12$ (d, J = 8.6 Hz, 1H), 7.15 (dd, J = 8.6, 2.2

Hz, 1H), 7.04 (d, J = 2.0 Hz, 1H), 3.92 (d, J = 10.2 Hz, 1H), 3.71 (d, J = 10.2 Hz, 1H), 2.21 (s, 3H), 1.67–0.84 (m, 16H); ¹³C{¹H} NMR (100 MHz, CDCl₃) $\delta = 168.7$, 142.2, 140.4, 128.5, 127.6, 122.7, 117.9, 61.9, 48.4, 43.8, 35.4, 34.7, 34.6, 27.8, 26.32, 26.26, 26.1, 24.2; HRMS (ESI-TOF) Calcd for C₁₈H₂₅ClNO⁺ ([M+H]⁺) 306.1619. Found 306.1622.

4a, 4-(2-(4-chlorophenyl)-2-oxoethyl)-2,4-dimethyl-3,4-dihydroisoquinolin-1(2*H*)-one, white semisolid. ¹H NMR (400 MHz, CDCl₃) δ = 8.10 (dd, *J* = 7.7, 1.5 Hz, 1H), 7.68 (ddd, *J* = 8.6, 2.5, 2.0 Hz, 2H), 7.43 (ddd, *J* = 7.5, 7.5, 1.5 Hz, 1H), 7.36–7.32 (m, 3H), 7.27 (dd, *J* = 7.8, 1.2 Hz, 1H), 3.67 (d, *J* = 12.7 Hz, 1H), 3.54 (d, *J* = 12.7 Hz, 1H), 3.24 (d, *J* = 15.3 Hz, 1H), 3.12 (d, *J* = 9.0 Hz, 4H), 1.54 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 197.3, 164.5, 144.9, 139.7, 135.8, 132.1, 129.4, 128.9, 128.8, 128.2, 127.3, 123.8, 57.2, 45.6, 37.3, 35.1, 22.5; HRMS (ESI-TOF) Calcd for C₁₉H₁₉ClNO₂⁺ ([M+H]⁺) 328.1099. Found 328.1097.

4b, 2-benzyl-7-chloro-4-(2-(4-chlorophenyl)-2-oxoethyl)-4-methyl-3,4-dihydroisoquinolin-1(2*H*)-one, yellow solid: mp 132–133 °C. ¹H NMR (400 MHz, CDCl₃) δ = 8.14 (d, *J* = 2.4 Hz, 1H), 7.55 (ddd, *J* = 8.6, 2.5, 2.0 Hz, 2H), 7.40 (dd, *J* = 8.3, 2.3 Hz, 1H), 7.33 (d, *J* = 8.5 Hz, 4H), 7.26–7.22 (m, 3H), 7.20–7.16 (m, 1H), 4.88 (d, *J* = 14.3 Hz, 1H), 4.57 (d, *J* = 14.3 Hz, 1H), 3.67 (d, *J* = 12.8 Hz, 1H), 3.43 (d, *J* = 12.8 Hz, 1H), 3.07 (d, *J* = 16.7 Hz, 1H), 2.88 (d, *J* = 16.7 Hz, 1H), 1.48 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 196.1, 163.0, 143.2, 139.7, 136.7, 135.3, 133.6, 132.0, 129.8, 129.3, 128.9, 128.8, 128.74, 128.71, 127.7, 126.2, 54.6, 50.6, 45.1, 36.4, 22.1; HRMS (ESI-TOF)

Calcd for C₂₅H₂₂Cl₂NO₂⁺ ([M+H]⁺) 438.1022. Found 438.1033.

5a, 2,2,6,6-tetramethylpiperidin-1-yl 4-chlorobenzoate, greenish oil. ¹H NMR (400 MHz, CDCl₃) δ = 8.01 (ddd, *J* = 8.6, 2.4, 2.0 Hz, 2H), 7.44 (ddd, *J* = 8.6, 2.4, 2.0 Hz, 2H), 1.81–1.58 (m, 5H), 1.49–1.42 (m, 1H), 1.26 (s, 6H), 1.11 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 165.5, 139.3, 130.9, 128.8, 128.0, 60.4, 39.0, 31.9, 20.8, 16.9; HRMS (ESI-TOF) Calcd for C₁₆H₂₃ClNO₂⁺ ([M+H]⁺) 296.1412. Found 296.1410.

5b, 1,3-bis(4-chlorophenyl)-2-(3,5-di-*tert*-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)propane-1,3-dione, yellow solid: mp 171–172 °C. ¹H NMR (400 MHz, CDCl₃) δ = 7.95 (ddd, J = 8.6, 2.4, 2.0 Hz, 4H), 7.48 (ddd, J = 8.6, 2.4, 2.0 Hz, 4H), 6.86 (s, 2H), 1.16 (s, 18H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ = 192.4, 185.8, 151.6, 145.9, 141.4, 135.3, 134.9, 131.7, 129.4, 127.9, 35.7, 29.3; HRMS (ESI-TOF) Calcd for C₂₉H₂₉Cl₂O₃⁺ ([M+H]⁺) 495.1488. Found 495.1492.

f1 (ppm)

S32

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

S40

S41

8.30 8.25 8.20 8.15 8.10 8.05 8.00 7.95 7.90 7.85 7.80 7.75 7.70 7.65 7.60 7.55 7.50 7.45 7.40 7.35

S44

8.30 8.25 8.20 8.15 8.10 8.05 8.00 7.95 7.90 7.85 7.80 7.75 7.70 7.65 7.60 7.55 7.50 7.45 7.40

¹³C NMR

S52

S53

S58

broad and low peaks arising from the slow rotation of the N-(CO) bond

S72

f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 $_{f1\ (ppm)}$

S82

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

S91

S92

¹³C NMR

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

S108

S115

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

