Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Nitrate Promoted Mild and Versatile Pd-catalysed $C(sp^2)$ -H Oxidation with Carboxylic Acids

Table of Contents

I.	General	S2
II.	Conditions Screening for the C-H bond oxidation of O-methyl oxime	S2
III.	Conditions Screening for the C-H bond oxidation of Azobenzene	S5
IV.	Typical experimental procedure for synthesis of products	S6
V.	Reactivities of the Pd complexes in the oxidation reactions	S7
VI.	Computational Studies	S9
VII.	Characterization of the products	S13
VIII.	References	S33
IX.	NMR spectra	S34
X.	DFT optimized Cartesian coordinates of all structures	S99

I. General

Unless otherwise stated, all reagents were purchased from commercial suppliers and used without purification. Most ¹H NMR and ¹³C NMR spectra were obtained on a Bruker AVANCE III 500 instrument in CDCl₃ using TMS as an internal standard, operating at 500 MHz and 126 MHz, respectively. Some ¹H NMR and ¹³C NMR spectra were obtained on a Bruker ASCEND (600M) instrument in CDCl₃ using TMS as an internal standard, operating at 600 MHz and 151 MHz, respectively. Chemical shifts are expressed in ppm and coupling constants *J* are given in Hz. For CDCl₃ or DMSO-*d*₆ solutions the chemical shifts are reported as parts per million (ppm) to residual protium or carbon of the solvents; CHCl₃ H (7.28 ppm) and CDCl₃ C (77.03 ppm). GC experiments were carried out using Agilent 7890B GC. GC-MS experiments that used dodecane as an internal standard were performed with a Thermo DSQ II, Trace GC Ultra. High resolution mass spectra (HRMS (ESI-TOF)) were obtained on an Agilent 6545 Q-TOF LCMS spectrometer equipped with an ESI source.

II. Conditions Screening for the C-H bond oxidation of O-methyl oxime

H N 1a	^{_O} + PhCOOH 1.5 equiv. 2a	Pd(OAc) ₂ (5 mol%) <u>KNO₃ (2 equiv.)</u> Oxidant (2 equiv.) CH ₃ NO ₂ , 30 °C, 24 h	Ph O J 3a	+ F N O
Entry	Oxidant	Conv. of 1a (%)	Yield of 3a $(\%)^b$	Yield of $3a' (\%)^b$
1	Selectfluor	99	74	8
2^c	Selectfluor	95	72	11
3	O_2	NR		
4	NFSI	86	59	26
5	Air	NR		
6	$Na_2S_2O_8$	12	2	
7	(NH ₄) ₂ S ₂ O ₈	NR		
8	PhI(OAc) ₂	40		
9	Cu(OAc) ₂	NR		
10	BQ	15		
11	CAN	92	65	

Table S1. Screening of oxidants^a

^{*a*}Reaction conditions: **1a** (0.1 mmol, 14.9 mg), PhCOOH (0.15 mmol, 18.3 mg), Oxidant (0.2 mmol), KNO₃ (0.2 mmol, 20.2 mg), Pd(OAc)₂ (5 mol%, 1.2 mg), CH₃NO₂ (1 mL), 30 °C, 24 h, ^{*b*}GC yields, ^{*c*}Under N₂ atmosphere.

 Table S2. Screening of solvents^a

H N 1a	, ^O , + PhCOOH 1.5 equiv. 2a	Pd(OAc) ₂ (5 mol%) KNO ₃ (2 equiv.) Selectfluor (2 equiv.) Solvent, 30 °C, 24 h	Ph O 3a	+ F N O
Entry	Solvent	Conv. of 1a (%)	Yield of $3a (\%)^b$	Yield of 3a' $(\%)^{b}$
1	CH ₃ NO ₂	99	74	8
2	DCE	45	44	
3	DCM	35	34	
4	DMF	NR		
5	Toluene	16	15	
6	MeOH	NR		
7	Dioxane	NR		
8	THF	NR		
9	EtOAc	NR		
10	MeCN	45	44	
11	Acetone	NR		

^{*a*}Reaction conditions: **1a** (0.1 mmol, 14.9 mg), PhCOOH (0.15 mmol, 18.3 mg), Selectfluor (0.2 mmol, 70.8 mg), KNO₃ (0.2 mmol, 20.2 mg), Pd(OAc)₂ (5 mol%, 1.2 mg), Solvent (1 mL), 30 °C, 24 h, under air, ^{*b*}GC yields.

Table S3. Screening of nitrate additives^a

H Ia	N ^{∕O} ∕ + PhCOOH 1.5 equiv. 2a	Pd(OAc) ₂ (5 mol%) Nitrate (2 equiv.) Selectfluor (2.0 equiv.) CH ₃ NO ₂ , 30 °C, 24 h	Ph Ph Sa	+ F N ^{-O} 3a'
Entry	Nitrate	Conv. of 1a (%)	Yield of $3a (\%)^b$	Yield of $3a' (\%)^b$
1	KNO ₃	99	74	8
2	/	21	13	0
3	AgNO ₃	99	73	16
4	LiNO ₃	99	54	5
5	NaNO ₃	95	73	18
6	$Mg(NO_3)_2 \bullet 6H_2O$	99	30	
7	$Fe(NO_3)_3 \bullet 9H_2O$	99	23	16
8	$Cu(NO_3)_2$	97	40	
9	Ba(NO ₃) ₃	99	38	

^{*a*}Reaction conditions: **1a** (0.1 mmol, 14.9 mg), PhCOOH (0.15 mmol, 18.3 mg), Selectfluor (0.2 mmol, 70.8 mg), Nitrate (0.2 mmol), Pd(OAc)₂ (5 mol%, 1.2 mg), CH₃NO₂ (1 mL), 30 °C, 24 h, ^{*b*}GC yields.

III. Conditions Screening for the C-H bond oxidation of Azobenzene

ĺ	H N ^N N 4a	+ PhCOOH 1.5 equiv. 2a	Pd(OAc) ₂ (x ₁ <u>KNO₃ (x₂ e</u> Selectfluor (x ₃ Solvent, 30 °	mol%) <u>quiv.)</u> ₃ equiv.) C, 24 h	Ph N _N 5a
Entry	Pd(OAc) ₂	KNO ₃	Solvent	Selectfluor	Yield of 5a $(\%)^b$
1	5 mol%	0.2 equiv.	CH ₃ NO ₂	2.0 equiv.	57
2	5 mol%	0.2 equiv.	DCE	2.0 equiv.	74
3	5 mol%	0.4 equiv.	DCE	2.0 equiv.	76
4	5 mol%	1.0 equiv.	DCE	2.0 equiv.	62
5	5 mol%	2.0 equiv.	DCE	2.0 equiv.	66
6	5 mol%	0 equiv.	DCE	2.0 equiv.	32
7	5 mol%	0.4 equiv.	DCE	1.5 equiv.	51
8	5 mol%	0.4 equiv.	DCE	2.0 equiv.	74
9	5 mol%	0.4 equiv.	DCE	2.5 equiv.	86
10	10 mol%	0.4 equiv.	DCE	2.0 equiv.	84
11	15 mol%	0.4 equiv.	DCE	2.0 equiv.	80
12^c	10 mol%	0.4 equiv.	DCE	2.5 equiv.	88
13 ^c	15 mol%	0 equiv.	DCE	2.5 equiv.	19

Table S4. Screening of azobenzene oxidation conditions^a

^{*a*}Reaction conditions: **4a** (0.1 mmol, 18.2 mg), PhCOOH (0.15 mmol, 18.3 mg), Selectfluor (x_3 equiv.), KNO₃ (x_2 equiv.), Pd(OAc)₂ (x_1 mol%.), Solvent (1 mL), 30 °C, 24 h, under air, ^{*b*}GC yields, ^{*c*}AgNO₃ instead of KNO₃ and PdCl₂ instead of Pd(OAc)₂.

IV. Typical experimental procedure for synthesis of products

A. Typical experimental procedure for synthesis of 1 and 4

O-methyl oximes 1 and azobenzenes 4 were prepared according to the literature procedure.¹

In a 50 mL round bottom flask equipped with a stir bar, acetophenone (1.7 mmol, 1 *equiv.*), MeONH₂•HCl (384.2 mg, 4.6 mmol, 2.7 *equiv.*), NaOAc (615 mg, 7.5 mmol, 4.4 *equiv.*), H₂O (15 mL), and EtOH (5 mL). The flask was equipped with a reflux condenser and heated at 70 °C for 2 h. After cooling, the mixture was extracted with EtOAc (3 x 15 mL). The organic layers were combined, dried with MgSO₄, and concentrated to afford the desired product oximes.

In a 100 mL round bottom flask equipped with a stir bar, CuBr (143 mg, 1.0 mmol, 0.2 *equiv.*), pyridine (253.1 mg, 3.2 mmol, 0.6 *equiv.*), aniline- R_1 (5 mmol, 1.0 *equiv.*) and aniline- R_2 (5 mmol, 1.0 *equiv.*) were mixed in toluene (60 mL). The reaction mixture was vigorously stirred at 60-100 °C for 24 h. After cooling down to room temperature and concentrating under vacuum, the residue was purified by silica gel chromatography (petroleum ether) to afford the desired product azobenzenes.

B. Typical experimental procedure for synthesis of 3

In a 10 mL test tube equipped with a stir bar, O-methyl oxime **1** (0.3 mmol, 1.0 *equiv.*), **2** (0.45 mmol, 1.5 *equiv.*), $Pd(OAc)_2$ (3.4 mg, 0.015 mmol, 5 mol%), Selectfluor (212.4 mg, 0.6 mmol, 2.0 *equiv.*), KNO₃ (60.6 mg, 0.6 mmol, 2.0 *equiv.*) and CH₃NO₂ (3.0 mL) were added successively. Then the tube was sealed at indicated temperature for 24 h under stirring. Upon completion, the residue was purified by silica gel chromatography (petroleum ether / EtOAc = 30:1) to afford the desired products **3**.

C. Typical experimental procedure for synthesis of 5

In a 10 mL test tube equipped with a stir bar, azobenzene **4** (0.3 mmol, 1.0 *equiv.*), **2** (0.45 mmol, 1.5 *equiv.*), $PdCl_2$ (5.1 mg, 0.03 mmol, 10 mol%), Selectfluor (258.8 mg, 0.75 mmol, 2.5 *equiv.*), $AgNO_3$ (20.4 mg, 0.12 mmol, 0.4 *equiv.*) and DCE (3.0 mL) were added successively. Then the tube was sealed at indicated temperature for 24 h under stirring. Upon completion, the residue was purified by silica gel chromatography (petroleum ether / EtOAc = 30:1) to afford the desired products **5**.

V. Reactivities of the Pd complexes in the oxidation reactions

(A) Preparation of Pd(II) complexes

Int-I, Int-II were prepared according to the literature procedures.¹

(B) Catalytic activity of Int-I

	N + PhCOOH Selectfluor (2.5 equiv.) 1.5 equiv. DCE, r.t., 24 h				
Entry	[Pd]	AgNO ₃	Yield of 5a ^b		
1	Int-I	0	27		
2	Int-I	0.1 equiv.	69		
3	Int-I	0.2 equiv.	77		
4	Int-I	0.4 equiv.	70		
5	Int-I	0.5 equiv.	68		

^{*a*}Reaction conditions: **4a** (0.1 mmol, 18.2 mg), PhCOOH (0.15 mmol, 18.3 mg), Selectfluor (0.25 mmol, 88.5 mg), AgNO₃ (x mmol), [Pd] (0.01 mmol), DCE (1 mL), room temperature, 24 h, under air, b GC yields.

(C) Stoichiometric transformation of Int-II

In a 10 mL test tube equipped with a stir bar, **Int-II** (39 mg, 0.1 mmol, 1.0 *equiv.*), PhCOOH (18.3 mg, 0.15 mmol, 1.5 *equiv.*), Selectfluor (88.5 mg, 0.25 mmol, 2.5 *equiv.*) and DCE (1.0 mL) were added successively. Then the tube was sealed and stirred at room temperature for 24 h. Upon completion, CH₃COOH (0.5 mL) was added to the resulting mixture and stirred vigorously for the indicated time. The resulting acidic mixture was neutralized by NaOH aqueous, extracted with EtOAc and separated.

The organic layer was filtered, the yield was determined by GC (82% yield).

(D) Catalytic activity of Int-II

	+ PhCOOH 1.5 equiv. 4a	Int-II (10 mol%) Selectfluor (2.5 equiv.) AgNO ₃ (x equiv.) DCE, r.t., 24-48 h	5a
Entry	[Pd]	AgNO ₃	Yield of 5a ^b
1	Int-II	0	58
2	Int-II	0.1 equiv.	79
3	Int-II	0.2 equiv.	84
4	Int-II	0.4 equiv.	86
5	Int-II	0.5 equiv.	84

^{*a*}Reaction conditions: **4a** (0.1 mmol, 18.2 mg), PhCOOH (0.15 mmol, 18.3 mg), Selectfluor (0.25 mmol, 88.5 mg), AgNO₃ (x mmol), [Pd] (0.01 mmol), DCE (1 mL), room temperature, 24 h, under air, b GC yields.

(E) Kinetic study for the oxidation of azobenzene with benzoic acid

Reaction condition : In a 10 mL test tube equipped with a stir bar, **4a** (54.6 mg, 0.3 mmol, 1.0 *equiv.*), PhCOOH (54.9 mg, 0.45 mmol, 1.5 *equiv.*), Selectfluor (265.2 mg, 0.2 mmol, 2.5 *equiv.*) and DCE (3 mL) [a] PdCl₂ (5.3 mg, 0.03 mmol, 10 mmol%), [b] PdCl₂ (5.3 mg, 0.03 mmol, 10 mmol%), AgNO3 (10.2 mg, 0.12mmol, 40 mmol%) [c] **Int-II** (11.7 mg, 0.03 mmol, 10 mmol%) were added successively. Then the tube was sealed and stirred at 30 °C oil bath for the indicated time. The resulting mixture diluted with EtOAc and filtered, followed by GC experiments. The data of kinetic curves from reaction a, b and c are included below. Each data point is an average of three independent GC injections using biphenyl as an internal standard.

Table S5. Kinetic study for the oxidation of azobenzene with benzoic acid

Time / min.	Conv. / % (GC)		
	а	b	с
5	0	0	0
10	0	0	1.4
20	0	4.5	2.4
30	0	20.5	5.2
60	0	30.3	10.6
90	0	36.8	12.2
150	0	40.1	19
210	0	43.7	23.5
330	0	46.3	31
450	0	50.8	39.2
570	0	56.4	48.5
750	0	61.4	55.8
930	1.4	64.3	56.8

Figure S1 Kinetic plots for the oxidation reaction of 4a

As shown in Figure S1, the time-conversion curves of oxidation reaction displayed a lack of induction period, indicating that the palladacycle complex **Int-II** might be involved in the catalytic cycle.

VI. Computational Studies

Computational Details

All calculations were carried out with Gaussian 16 program.² The geometry optimizations were performed at the B3LYP³/BSI level. In the basis set BSI, the 6-31G(d) basis set was considered for all nonmetallic atoms, and the Stuttgart/Dresden effective core potential (ECP) together with associated

basis set (MWB28)⁴ was used for Pd atom. Each optimized structure was subsequently analyzed by harmonic vibration frequencies at the same level to characterize a minimum without imaginary frequency ($N_{imag} = 0$) or a transition state with only one imaginary frequency ($N_{imag} = 1$) and to obtain the thermodynamic corrections to Gibbs free energy. The connection of transition states was generally confirmed via intrinsic reaction coordinate (IRC) calculations, while some of transition states were confirmed to connect corresponding minima via separate geometrical optimization along with the reaction coordinates due to the failure in IRC following (Figures S3-S5 and S7-S10). All the structures were optimized without any symmetry restrictions. The subsequent single-point calculations were carried out at the level of M06⁵/BSII together with SMD model⁶ for considering the dichloroethane (DCE) solvation effect. Gibbs free energies in solution described in the study were obtained from such single-point calculations, including gas-phase free energy corrections.

Fig. S2 Compared different processes of C–H activation of **4a** catalyzed by PdCl₂. The free energies are given in kcal/mol.

Reaction Coordinates

Fig. S3 Geometrical optimization curves along with the reaction coordinates at the both sides of transition state TS_{Cl} . It is shown that such optimizations can reach the corresponding reactants and products.

Fig. S4 IRC calculations of TS'_{Cl} and the geometrical optimization curves along with the reaction coordinates at the both sides. It is shown that such optimizations can reach the corresponding reactants and products.

Fig. S5 IRC calculations of TS''_{Cl} and the geometrical optimization curves along with the reaction coordinates at the both sides. It is shown that such optimizations can reach the corresponding reactants and products.

Fig. S6 Compared different processes of C–H activation of **4a** catalyzed by $Pd(NO_3)_2$. The free energies are given in kcal/mol.

Fig. S7 Geometrical optimization curves along with the reaction coordinates at the both sides of transition state TS_{Cl} . It is shown that such optimizations can reach the corresponding reactants and products.

Fig. S8 IRC calculations of TS'_{NO3} and the geometrical optimization curves along with the reaction coordinates at the both sides. It is shown that such optimizations can reach the corresponding reactants and products.

Fig. S9 IRC calculations of TS"_{NO3} and the geometrical optimization curves along with the reaction

coordinates at the both sides. It is shown that such optimizations can reach the corresponding reactants and products.

Fig. S10 IRC calculations of TS''_{NO3} and the geometrical optimization curves along with the reaction coordinates at the both sides. It is shown that such optimizations can reach the corresponding reactants and products.

Fig. S11 Computed reductive elimination processes (C–O bond coupling) of the species D_{Cl} and D_{NO3} . The relative free energies and energy barriers are given in kcal/mol.

VII. Characterization of the products

(**Z**)-2-(1-(methoxyimino)ethyl)phenyl benzoate (3a): Colorless oil (70%, 56.5 mg); $R_f = 0.22$ (petroleum ether-EtOAc = 30:1) ; ¹H NMR (500 MHz, CDCl₃) $\delta = 8.25-8.19$ (m, 2H), 7.69-7.62 (m, 1H), 7.57-7.49 (m, 3H), 7.44 (td, $J_I = 7.8$ Hz, $J_2 = 1.7$ Hz, 1H), 7.32 (td, $J_I = 7.6$ Hz, $J_2 = 1.3$ Hz, 1H), 7.29-7.22 (m, 1H), 3.76 (s, 3H), 2.17 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 165.1$, 153.2, 148.3, 133.6, 130.4, 130.3 (2C), 129.7, 129.6, 129.5, 128.6 (2C), 126.1, 123.4, 61.7, 15.1 ppm; HRMS

(**Z**)-2-(1-(methoxyimino)ethyl)-5-methylphenyl benzoate (3b): Colorless oil (80%, 67.9 mg); $R_f = 0.22$ (petroleum ether-EtOAc = 30:1); ¹H NMR (500 MHz, CDCl₃) $\delta = 8.26-8.16$ (m, 2H), 7.72-7.58 (m, 1H), 7.56-7.49 (m, 2H), 7.40 (d, J = 7.9 Hz, 1H), 7.15-7.10 (m, 1H), 7.07 (s, 1H), 3.73 (s, 3H), 2.41 (s, 3H), 2.16 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 164.3$, 151.9, 147.5, 139.6, 133.4, 129.5 (2C), 129.0, 128.8, 128.4 (2C), 126.9, 126.4, 123.6, 60.9, 20.5, 14.4 ppm; HRMS (ESI-TOF) for $C_{17}H_{17}NO_3$: calcd. [M+Na]⁺ 306.1101; found: 306.1104.

(Z)-5-butyl-2-(1-(methoxyimino)ethyl)phenyl benzoate (3c): Brown oil (80%, 78.3 mg); $R_f = 0.29$ (petroleum ether-EtOAc = 30:1); ¹H NMR (500 MHz, CDCl₃) $\delta = 8.22-8.17$ (m, 2H), 7.63 (ddt, $J_I = 8.8$ Hz, $J_2 = 7.1$ Hz, $J_3 = 1.4$ Hz, 1H), 7.54-7.46 (m, 2H), 7.39 (d, J = 7.9 Hz, 1H), 7.11 (dd, $J_I = 7.9$ Hz, $J_2 = 1.7$ Hz, 1H), 7.04 (d, J = 1.7 Hz, 1H), 3.71 (s, 3H), 2.72-2.57 (m, 2H), 2.13 (s, 3H), 1.61 (m, 2H), 1.41-1.33 (m, 2H), 0.92 (t, J = 7.3 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 165.1$, 153.2, 148.1, 145.2, 133.5, 130.2 (2C), 129.7, 129.2, 128.5 (2C), 127.6, 126.2, 123.2, 61.6, 35.2, 33.2, 22.2, 15.0, 13.9 ppm; HRMS (ESI-TOF) for C₂₀H₂₃NO₃: calcd. [M+Na]⁺ 348.1570; found: 348.1573.

(**Z**)-5-methoxy-2-(1-(methoxyimino)ethyl)phenyl benzoate (3d): Yellow solid (90%, 80.7 mg); $R_f = 0.25$ (petroleum ether-EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) $\delta = 8.22$ -8.18 (m, 2H), 7.69-7.61 (m, 1H), 7.56-7.49 (m, 2H), 7.43 (d, J = 8.7 Hz, 1H), 6.86 (dd, $J_I = 8.7$ Hz, $J_2 = 2.6$ Hz, 1H), 6.78 (d, J = 2.6 Hz, 1H), 3.84 (s, 3H), 3.70 (s, 3H), 2.14 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 165.0$, 160.7, 152.9, 149.3, 133.6, 130.3 (2C), 130.1, 129.6, 128.6 (2C), 122.9, 112.1, 109.0, 61.6, 55.6, 15.0 ppm; HRMS (ESI-TOF) for C₁₇H₁₇NO₄: calcd. [M+Na]⁺ 322.0554; found: 322.1057.

(Z)-5-acetoxy-2-(1-(methoxyimino)ethyl)phenyl benzoate (3e): White solid (85%, 83.4 mg, E/Z = 19:1); $R_f = 0.20$ (petroleum ether-EtOAc = 20:1); Major *E*-isomer: ¹H NMR (500 MHz, CDCl₃) $\delta = 8.25-8.16$ (m, 2H), 7.98 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.6$ Hz, 1H), 7.92 (d, J = 1.6 Hz, 1H), 7.70-7.63 (m, 1H), 7.59 (d, J = 8.1 Hz, 1H), 7.53 (t, J = 7.8 Hz, 2H), 3.94 (s, 3H), 3.76 (s, 3H), 2.17 (s, 3H) ppm; ¹³C NMR (126 MHz, DMSO) $\delta = 164.8$, 164.2, 151.6, 147.6, 134.1, 133.8, 130.8, 129.7 (2C), 129.6, 128.6 (2C), 128.5, 126.6, 124.2, 61.3, 52.1, 14.4 ppm; HRMS (ESI-TOF) for C₁₈H₁₇NO₅: calcd. [M+Na]⁺ 350.0999; found: 350.1003.

(Z)-4-(1-(methoxyimino)ethyl)-[1,1'-biphenyl]-3-yl benzoate (3f): White solid (60%, 62.1 mg); $R_f = 0.24$ (petroleum ether-EtOAc = 30:1); ¹H NMR (500 MHz, CDCl₃) $\delta = 8.32$ -8.18 (m, 2H), 7.71-7.61 (m, 3H), 7.60 (d, J = 8.1 Hz, 1H), 7.59-7.52 (m, 3H), 7.52-7.44 (m, 3H), 7.43-7.36 (m, 1H), 3.77 (s, 3H), 2.22 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 165.1$, 152.9, 148.6, 143.0, 139.5, 133.6, 130.3 (2C), 129.8, 129.5, 129.0, 128.8 (2C), 128.6 (2C), 127.9, 127.1 (2C), 124.7, 122.0, 61.7, 14.9 ppm; HRMS (ESI-TOF) for $C_{22}H_{19}NO_3$: calcd. [M+Na]⁺ 368.1257; found: 368.1259.

(Z)-5-fluoro-2-(1-(methoxyimino)ethyl)phenyl benzoate (3g): Colorless oil (86%, 74.0 mg, E/Z = 20:1); $R_f = 0.27$ (petroleum ether-EtOAc = 30:1); Major *E*-isomer: ¹H NMR (500 MHz, CDCl₃) $\delta = 8.21$ (dd, $J_1 = 8.2$ Hz, $J_2 = 1.3$ Hz, 2H), 7.76-7.62 (m, 1H), 7.58-7.42 (m, 3H), 7.14-6.91 (m, 2H), 3.75 (s, 3H), 2.16 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 164.6$, 162.7 (d, J = 250.2 Hz), 152.4, 149.2 (d, J = 11.0 Hz), 133.8, 130.5 (d, J = 9.4 Hz), 130.3 (2C), 129.1, 128.6 (2C), 126.8(d, J = 3.7 Hz), 113.2 (d, J = 21.3 Hz), 111.3 (d, J = 24.5 Hz), 61.7, 15.1 ppm; HRMS (ESI-TOF) for C₁₆H₁₄FNO₃: calcd. [M+Na]⁺ 310.0850; found: 310.0853.

(Z)-2-(1-(methoxyimino)ethyl)-5-nitrophenyl benzoate(3h): White solid (48%, 45.2 mg); $R_f = 0.25$ (petroleum ether-EtOAc = 20:1); 1H NMR (500 MHz, CDCl3) $\delta = 8.21$ (d, J = 1.3 Hz, 1H), 8.20 (d, J = 1.4 Hz, 1H), 8.17 (dd, $J_1 = 8.5$ Hz, $J_2 = 2.3$ Hz, 1H), 8.15 (d, J = 2.2 Hz, 1H), 7.73-7.66 (m, 2H), 7.59-7.52 (m, 2H), 3.78 (s, 3H), 2.19 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 164.5$, 151.6, 148.6, 148.0, 136.8, 134.1, 130.3 (2C), 130.2, 128.7 (2C), 128.6, 120.9, 119.3, 62.1, 14.8 ppm; HRMS (ESI-TOF) for C₁₆H₁₄N₂O₅: calcd. [M+Na]⁺ 337.0795; found: 337.0790

(E)-2-(1-(methoxyimino)ethyl)-5-(methylsulfonyl)phenyl benzoate (3i): Pale yellow solid (66%, 69.2 mg); $R_f = 0.33$ (petroleum ether-EtOAc = 3:1); ¹H NMR (500 MHz, CDCl₃) $\delta = 8.25-8.14$ (m, 2H), 7.87 (dd, $J_I = 8.1$ Hz, $J_2 = 1.8$ Hz, 1H), 7.84 (d, J = 1.8 Hz, 1H), 7.71 (d, J = 8.1 Hz, 1H), 7.71-7.64 (m, 1H), 7.54 (t, J = 7.8 Hz, 2H), 3.77 (s, 3H), 3.10 (s, 3H), 2.18 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 164.6$, 151.9, 148.7, 141.5, 135.9, 134.1, 130.7, 130.3 (2C), 128.8 (2C), 128.7, 124.8, 123.0, 62.1, 44.5, 14.9 ppm; HRMS (ESI-TOF) for C₁₇H₁₇NO₅S: calcd. [M+Na]⁺ 370.0720; found: 370.0726.

(E)-2-(1-(methoxyimino)ethyl)phenyl benzoate (3j): Pale yellow oil (79%, 67.0 mg, E/Z = 20:1); $R_f = 0.22$ (petroleum ether-EtOAc = 30:1); major *E*-isomer: ¹H NMR (500 MHz, CDCl₃) $\delta = 8.17$ (dd, $J_1 = 8.3$ Hz, $J_2 = 1.4$ Hz, 2H), 7.69-7.62 (m, 1H), 7.52 (t, J = 7.8 Hz, 2H), 7.32 (t, J = 7.9 Hz, 1H), 7.16 (d, J = 7.7 Hz, 1H), 7.12 (d, J = 8.1 Hz, 1H), 3.84 (s, 3H), 2.36 (s, 3H), 2.09 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 165.0$, 153.0, 148.8, 138.0, 133.6, 130.5, 130.1 (2C), 129.5, 129.0, 128.6 (2C), 127.9, 120.2, 61.7, 19.5, 16.1 ppm; HRMS (ESI-TOF) for C₁₇H₁₇NO₃: calcd. [M+Na]⁺ 306.1101; found: 306.1094.

(**Z**)-3-methoxy-2-(1-(methoxyimino)ethyl)phenyl benzoate(3k): Pale yellow oil (90%, 80.7 mg); $R_f = 0.25$ (petroleum ether-EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) $\delta = 8.25$ -8.13 (m, 2H), 7.72-7.59 (m, 1H), 7.55-7.48 (m, 2H), 7.37 (t, J = 8.3 Hz, 1H), 6.91 (dd, $J_I = 8.2$ Hz, $J_2 = 1.0$ Hz, 1H), 6.86 (dd, $J_I = 8.4$ Hz, $J_2 = 1.0$ Hz, 1H), 3.86 (s, 3H), 3.72 (s, 3H), 2.12 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 165.0$, 158.5, 151.4, 149.1, 133.4, 130.1 (2C), 129.7, 129.5, 128.4 (2C), 120.4, 115.1, 108.6, 61.5, 55.9, 15.7 ppm; HRMS (ESI-TOF) for C₁₇H₁₇NO₄: calcd. [M+Na]⁺ 322.0554; found: 322.0726.

(Z)-3-fluoro-2-(1-(methoxyimino)ethyl)phenyl benzoate (3l): Colorless oil (73%, 62.9 mg, E/Z = 20:1); $R_f = 0.22$ (petroleum ether-EtOAc = 30:1); Major (E-isomer): ¹H NMR (500 MHz, CDCl₃) $\delta = 8.18$ (dd, $J_1 = 8.4$ Hz, $J_2 = 1.4$ Hz, 2H), 7.70-7.62 (m, 1H), 7.56-7.50 (m, 2H), 7.42-7.37 (m, 1H), 7.13-7.03 (m, 2H), 3.71 (s, 3H), 2.16 (d, J = 1.8 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 164.9$, 161.0 (d, J = 249.4 Hz), 149.2 (d, J = 6.3 Hz), 148.9, 133.7, 130.3 (2C), 129.9 (d, J = 10.0 Hz), 129.2, 128.6 (2C), 120.0 (d, J = 17.7 Hz), 118.9 (d, J = 3.4 Hz), 113.5 (d, J = 22.0 Hz), 61.8, 15.8 (d, J = 3.0 Hz) ppm; HRMS (ESI-TOF) for C₁₆H₁₄FNO₃: calcd. [M+Na]⁺ 310.0857; found: 310.0850.

(E)-3-(1-(methoxyimino)ethyl)naphthalen-2-yl benzoate (3m): Pale yellow solid (65%, 62.2 mg, E/Z = 10:1); $R_f = 0.22$ (petroleum ether-EtOAc = 30:1); *Major* (*E-isomer*): ¹H NMR (500 MHz, CDCl₃) $\delta = 8.31-8.25$ (m, 2H), 8.00 (s, 1H), 7.91 (d, J = 7.2 Hz, 1H), 7.83 (d, J = 7.2 Hz, 1H), 7.73 (s, 1H), 7.71-7.64 (m, 1H), 7.59-7.48 (m, 4H), 3.77 (s, 3H), 2.28 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 165.3$, 153.4, 146.0, 133.6, 131.3, 130.3 (2C), 129.7, 129.7, 129.4, 128.6 (2C), 128.1, 127.3, 127.2, 126.2, 120.8, 61.8, 15.2 ppm; HRMS (ESI-TOF) for C₂₀H₁₇NO₃: calcd. [M+Na]⁺ 342.1101; found: 342.1103.

(Z)-2-(1-(methoxyimino)ethyl)-4-methylphenyl benzoate (3n): Pale yellow oil (81%, 68.8 mg); $R_f = 0.22$ (petroleum ether-EtOAc = 30:1); ¹H NMR (600 MHz, CDCl₃) $\delta = 8.19$ (dd, $J_I = 8.3$ Hz, $J_2 = 1.4$ Hz, 2H), 7.65-7.58 (m, 1H), 7.53-7.46 (m, 2H), 7.28 (d, J = 2.3 Hz, 1H), 7.22-7.19 (m, 1H), 7.10 (d, J = 8.2 Hz, 1H), 3.75 (s, 3H), 2.38 (s, 3H), 2.13 (s, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) $\delta = 165.3$, 153.5, 146.1, 135.8, 133.6, 130.4, 130.3 (2C), 130.0, 129.9, 129.6, 128.6 (2C), 123.1, 61.7, 20.9, 15.2 ppm; HRMS (ESI-TOF) for $C_{17}H_{17}NO_3$: calcd. [M+Na]⁺ 306.1101; found: 306.1102.

(**Z**)-4-methoxy-2-(1-(methoxyimino)ethyl)phenyl benzoate (30): Pale yellow oil (91%, 81.6 mg); $R_f = 0.25$ (petroleum ether-EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) $\delta = 8.24-8.17$ (m, 2H), 7.69-7.61 (m, 1H), 7.52 (t, J = 7.8 Hz, 2H), 7.15 (d, J = 8.9 Hz, 1H), 7.02 (d, J = 3.0 Hz, 1H), 6.96 (dd, $J_1 = 8.8$ Hz, $J_2 = 3.1$ Hz, 1H), 3.86 (s, 3H), 3.77 (s, 3H), 2.15 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 165.4$, 157.3, 153.2, 141.7, 133.5, 131.1, 130.2 (2C), 129.6, 128.5 (2C), 124.2, 115.0, 114.4, 61.7, 55.7, 15.0 ppm; HRMS (ESI-TOF) for C₁₇H₁₇NO₄: calcd. [M+Na]⁺ 322.0554; found: 322.1056.

(**Z**)-4-fluoro-2-(1-(methoxyimino)ethyl)phenyl benzoate (3p): Pale yellow oil (60%, 51.7 mg, E/Z = 15:1); $R_f = 0.22$ (petroleum ether-EtOAc = 30:1); *Major (E-isomer):* ¹H NMR (500 MHz, CDCl₃) $\delta = 8.32-8.15$ (m, 2H), 7.66 (m, 1H), 7.53 (t, J = 7.8 Hz, 2H), 7.26-7.17 (m, 2H), 7.17-7.08 (m, 1H), 3.76 (s, 3H), 2.15 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 164.0$, 155.0 (d, J = 249.3 Hz), 152.3 (d, J = 2.8 Hz), 136.4 (d, J = 14.2 Hz), 133.8, 132.8, 130.5 (2C), 128.8, 128.6 (2C), 126.7 (d, J = 8.0 Hz), 124.4 (d, J = 3.5 Hz), 116.8 (d, J = 19.0 Hz), 61.9, 14.9 ppm; HRMS (ESI-TOF) for C₁₆H₁₄FNO₃: calcd. [M+Na]⁺ 310.0850; found: 310.0858.

(**Z**)-2-fluoro-6-(1-(methoxyimino)ethyl)phenyl benzoate (3p'): Pale yellow oil (30%, 25.8 mg); $R_f = 0.22$ (petroleum ether-EtOAc = 30:1); ¹H NMR (500 MHz, CDCl₃) $\delta = 8.32$ -8.15 (m, 2H), 7.66 (m, 1H), 7.53 (t, J = 7.8 Hz, 2H), 7.26-7.17 (m, 2H), 7.17-7.08 (m, 1H), 3.76 (s, 3H), 2.15 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 165.1$, 160.1 (d, J = 245.4 Hz), 152.2 (d, J = 1.8 Hz), 144.1 (d, J = 2.9 Hz), 133.7, 131.9 (d, J = 8.0 Hz), 130.3 (2C), 129.3, 128.6 (2C), 124.9 (d, J = 8.7 Hz), 116.3 (d, J = 23.3 Hz), 116.1 (d, J = 24.5 Hz), 61.9, 14.8 ppm; HRMS (ESI-TOF) for C₁₆H₁₄FNO₃: calcd. [M+Na]⁺ 310.0850; found: 310.0853.

(Z)-4-chloro-2-(1-(methoxyimino)ethyl)phenyl benzoatee (3q): Pale yellow oil (86%, 78.2 mg); $R_f = 0.38$ (petroleum ether-EtOAc = 30:1); ¹H NMR (500 MHz, CDCl₃) $\delta = 8.23-8.16$ (m, 2H), 7.70-7.62 (m, 1H), 7.57-7.48 (m, 3H), 7.39 (dd, $J_1 = 8.6$ Hz, $J_2 = 2.6$ Hz, 1H), 7.19 (d, J = 8.7 Hz, 1H), 3.77 (s, 3H), 2.15 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 164.8$, 152.1, 146.8, 133.8, 131.9, 131.5, 130.3 (2C), 129.6, 129.4, 129.2, 128.6 (2C), 124.8, 61.9, 14.9 ppm; HRMS (ESI-TOF) for $C_{16}H_{14}CINO_3$: calcd. [M+Na]⁺ 326.0554; found: 326.0556.

(Z)-4-bromo-2-(1-(methoxyimino)ethyl)phenyl benzoate (3r): Yellow oil (80%, 83.3 mg); $R_f = 0.38$

(petroleum ether-EtOAc = 30:1); ¹H NMR (500 MHz, CDCl3) δ = 8.20 (dd, J_1 = 8.3 Hz, J_2 = 1.3 Hz, 2H), 7.70-7.63 (m, 2H), 7.57-7.49 (m, 3H), 7.13 (d, J = 8.6 Hz, 1H), 3.77 (s, 3H), 2.14 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ = 164.7, 152.0, 147.4, 133.8, 132.5, 132.3 (2C), 130.3 (2C), 129.1, 128.6 (2C), 125.1, 119.1, 61.9, 14.9 ppm; HRMS (ESI-TOF) for C₁₆H₁₄BrNO₃: calcd. [M+Na]⁺ 370.0049; found: 370.0055.

(Z)-2-(1-(methoxyimino)ethyl)-4-(trifluoromethyl)phenyl benzoate (3s): Colorless oil (82%, 82.9 mg); $R_f = 0.40$ (petroleum ether-EtOAc = 30:1); ¹H NMR (500 MHz, CDCl₃) $\delta = 8.24-8.19$ (m, 2H), 7.80 (d, J = 2.3 Hz, 1H), 7.73-7.65 (m, 2H), 7.55 (t, J = 7.8 Hz, 2H), 7.39 (d, J = 8.4 Hz, 1H), 3.79 (s, 3H), 2.19 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 164.6$, 152.1, 150.9, 134.0, 131.3, 130.4 (2C), 128.9, 128.7 (2C), 128.5 (q, J = 32.8 Hz), 126.9 (q, J = 3.7 Hz), 126.7 (q, J = 3.6 Hz), 124.2, 123.7 (q, J = 273.42 Hz), 62.0, 15.0 ppm; HRMS (ESI-TOF) for C₁₇H₁₄F₃NO₃: calcd. [M+Na]⁺ 360.0818; found: 360.0825.

(**Z**)-2-(1-(methoxyimino)ethyl)-4,5-dimethylphenyl benzoate (3t): Pale yellow oil (83%, 74.0 mg); $R_f = 0.22$ (petroleum ether-EtOAc = 30:1); ¹H NMR (500 MHz, CDCl₃) $\delta = 8.23-8.17$ (m, 2H), 7.69-7.59 (m, 1H), 7.52 (t, J = 7.8 Hz, 2H), 7.26 (s, 1H), 7.01 (s, 1H), 3.75 (s, 3H), 2.30 (s, 6H), 2.14 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 165.3$, 153.4, 146.0, 138.7, 134.5, 133.4, 130.3 (2C), 130.2, 129.8, 128.5 (2C), 127.5, 124.2, 61.6, 19.7, 19.2, 15.0 ppm; HRMS (ESI-TOF) for C₁₈H₁₉NO₃: calcd. [M+Na]⁺ 320.1257; found: 320.1264.

(**Z**)-3-fluoro-5-methoxy-2-(1-(methoxyimino)ethyl)phenyl benzoate (3u): Pale orange solid (80%, 76.0 mg, E/Z = 15:1); $R_f = 0.40$ (petroleum ether-EtOAc = 20:1); *Major (E-isomer):* ¹H NMR (500 MHz, CDCl₃) $\delta = 8.21-8.12$ (m, 2H), 7.70-7.62 (m, 1H), 7.52 (t, J = 7.8 Hz, 2H), 6.68-6.56 (m, 2H), 3.83 (s, 3H), 3.67 (s, 3H), 2.12 (d, J = 1.9 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 164.8$, 161.7 (d, J = 228.8 Hz), 160.7 (d, J = 5.1 Hz), 149.9 (d, J = 9.3 Hz), 149.0, 133.7, 130.3 (2C), 129.2, 128.6 (2C), 112.5 (d, J = 18.0 Hz), 105.0 (d, J = 3.0 Hz), 100.2 (d, J = 26.0 Hz), 61.7, 55.8, 15.9 (d, J = 3.4 Hz) ppm; HRMS (ESI-TOF) for C₁₇H₁₆FNO₄: calcd. [M+Na]⁺ 349.0956; found: 349.0959.

(**Z**)-2-(1-(methoxyimino)propyl)-5-methylphenyl benzoate (3v): Pale yellow oil (68%, 60.6 mg, E/Z = 15:1); $R_f = 0.22$ (petroleum ether-EtOAc = 30:1); *Major (E-isomer):* ¹H NMR (600 MHz, CDCl₃) $\delta = 8.20-8.13$ (m, 2H), 7.68-7.58 (m, 1H), 7.50 (td, $J_I = 7.8$ Hz, $J_2 = 1.5$ Hz, 2H), 7.33 (dd, $J_I = 7.9$ Hz, $J_2 = 1.4$ Hz, 1H), 7.11 (t, J = 6.5 Hz, 1H), 7.06 (s, 1H), 3.68 (d, J = 1.5 Hz, 3H), 2.64 (q, J = 7.6 Hz, 2H), 2.39 (s, 3H), 1.03 (t, J = 7.6 Hz, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) $\delta = 165.2$, 158.2, 148.3, 140.1, 133.5, 130.3 (2C), 129.7, 129.5, 128.5(2C), 126.9, 126.4, 124.0, 61.6, 22.1, 21.2, 10.6 ppm; HRMS (ESI-TOF) for C₁₈H₁₉NO₃: calcd. [M+Na]⁺ 320.1257; found: 320.1261.

(Z)-2-(1-(methoxyimino)butyl)phenyl benzoate (3w): Pale yellow oil (65%, 57.9 mg, E/Z = 10:1); $R_f = 0.22$ (petroleum ether-EtOAc = 30:1); *Major (E-isomer):* ¹H NMR (500 MHz, CDCl₃) $\delta = 8.21$ (dd, $J_1 = 8.4$ Hz, $J_2 = 1.3$ Hz, 2H), 7.69-7.61 (m, 1H), 7.57-7.49 (m, 2H), 7.49-7.40 (m, 2H), 7.31 (td, $J_1 = 7.6$ Hz, $J_2 = 1.3$ Hz, 1H), 7.30-7.24 (m, 1H), 3.72 (s, 3H), 2.68-2.62 (m, 2H), 1.57-1.45 (m, 2H), 0.89 (t, J = 7.4 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 165.0$, 157.1, 148.5, 133.5, 130.2 (2C), 129.8, 129.6, 129.6, 129.6, 128.5 (2C), 126.0, 123.5, 61.6, 30.7, 19.4, 14.1 ppm; HRMS (ESI-TOF) for C₁₈H₁₀NO₃: calcd. [M+Na]⁺ 320.1257; found: 320.1300.

(Z)-2-(1-(methoxyimino)-2-phenylethyl)phenyl benzoate (3x): Pale yellow solid (64%, 66.2 mg, E/Z = 20:1); $R_f = 0.24$ (petroleum ether-EtOAc = 30:1); *Major (E-isomer):* ¹H NMR (500 MHz, CDCl₃) $\delta = 8.20-8.13$ (m, 2H), 7.69-7.62 (m, 1H), 7.53 (t, J = 7.8 Hz, 2H), 7.45-7.37 (m, 1H), 7.36 (dd, $J_I = 7.8$ Hz, $J_2 = 1.7$ Hz, 1H), 7.28-7.20 (m, 4H), 7.20-7.15 (m, 3H), 4.08 (s, 2H), 3.75 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 165.1$, 152.9, 148.6, 143.0, 139.5, 133.6, 130.3 (2C), 129.8, 129.5, 129.0, 128.8 (2C), 128.6 (2C), 127.9, 127.1 (2C), 124.7, 122.0, 61.7, 14.9 ppm; HRMS (ESI-TOF) for C₂₂H₁₉NO₃: calcd. [M+Na]⁺ 368.1257; found: 368.1262.

(Z)-2-(cyclopropyl(methoxyimino)methyl)phenyl benzoate (3y): Colorless oil (62%, 54.9 mg); $R_f = 0.40$ (petroleum ether-EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) $\delta = 8.21$ (dd, $J_I = 8.4$ Hz, $J_2 = 1.4$ Hz, 2H), 7.69-7.62 (m, 1H), 7.57-7.48 (m, 2H), 7.47-7.40 (m, 1H), 7.33 (dd, $J_I = 8.1$ Hz, $J_2 = 1.1$ Hz, 1H), 7.31-7.25(m, 2H), 3.87 (s, 3H), 2.41-2.23 (m, 1H), 0.83 (dd, $J_I = 8.5$ Hz, $J_2 = 2.0$ Hz, 2H), 0.57 (dd, $J_I = 5.3$ Hz, $J_2 = 1.9$ Hz, 2H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 164.7$, 158.6, 149.2, 133.6, 130.8, 130.2 (2C), 129.8, 129.6, 128.6 (2C), 126.5, 125.6, 123.0, 61.9, 10.0, 5.4 (2C) ppm; HRMS (ESI-TOF) for C₁₈H₁₇NO₃: calcd. [M+Na]⁺ 318.1101; found: 318.1105.

(**Z**)-2-(cyclopentyl(methoxyimino)methyl)phenyl benzoate (3z): Pale yellow oil (55%, 53.3 mg); $R_f = 0.25$ (petroleum ether-EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) $\delta = 8.22$ -8.15 (m, 2H), 7.68-7.60 (m, 1H), 7.52 (t, J = 7.8 Hz, 2H), 7.47-7.39 (m, 1H), 7.33 (dd, $J_I = 7.5$ Hz, $J_2 = 1.8$ Hz, 2H), 7.29 (dd, $J_I = 7.3$ Hz, $J_2 = 1.2$ Hz, 1H), 3.80 (s, 3H), 3.46-3.28 (m, 1H), 2.04-1.80 (m, 2H), 1.65-1.42 (m, 6H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 164.7$, 160.5, 148.8, 133.5, 130.3, 130.2 (2C), 129.6, 129.4, 129.1, 128.6 (2C), 125.5, 123.0, 61.6, 39.9, 29.8 (2C), 25.2 (2C) ppm; HRMS (ESI-TOF) for $C_{20}H_{21}NO_3$: calcd. [M+Na]⁺ 346.1414; found: 346.1546.

(**Z**)-2-(cyclohexyl(methoxyimino)methyl)phenyl benzoate (3aa): Yellow oil (60%, 60.7 mg, E/Z = 15:1); $R_f = 0.24$ (petroleum ether-EtOAc = 30:1); *Major (E-isomer):* ¹H NMR (500 MHz, CDCl₃) $\delta = 8$.21-8.16 (m, 2H), 7.68-7.61 (m, 1H), 7.52 (t, J = 7.8 Hz, 2H), 7.47-7.40 (m, 1H), 7.35 (dd, $J_I = 7.7$ Hz, $J_2 = 1.8$ Hz, 1H), 7.34-7.25 (m, 2H), 3.78 (s, 3H), 3.27-3.05 (m, 1H), 1.80 (d, J = 11.4 Hz, 2H), 1.74-1.60 (m, 3H), 1.38-1.24 (m, 4H), 1.17-1.06 (m, 1H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 164.9$, 160.4, 148.9, 133.5, 130.4, 130.2 (2C), 129.6, 129.3, 128.9, 128.5 (2C), 125.4, 123.2, 61.6, 39.1, 29.1 (2C), 26.1 (2C), 25.9 ppm; HRMS (ESI-TOF) for C₂₁H₂₃NO₃: calcd. [M+Na]⁺ 360.1570; found: 360.1682.

(E)-2-(2,2-dichloro-1-(methoxyimino)ethyl)phenyl benzoate (3ab): Colorless oil (90%, 91.0 mg); $R_f = 0.35$ (petroleum ether-EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) $\delta = 8.25-8.19$ (m, 2H), 7.83 (dd, $J_1 = 8.2$ Hz, $J_2 = 1.6$ Hz, 1H), 7.69-7.62 (m, 1H), 7.58-7.50 (m, 3H), 7.39 (d, J = 7.9 Hz, 2H), 7.18 (s, 1H), 3.81 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 164.7$, 149.8, 149.3, 133.5, 130.9, 130.7, 130.2 (2C), 129.3, 128.5 (2C), 125.5, 124.3, 123.5, 63.0, 60.3 ppm; HRMS (ESI-TOF) for $C_{16}H_{13}Cl_2NO_3$: calcd. [M+Na]⁺ 360.0165; found: 360.0165.

(E)-8-(methoxyimino)-5,6,7,8-tetrahydronaphthalen-1-yl benzoate (3ac): Pale red oil (73%, 64.6 mg, E/Z = 19:1); $R_f = 0.35$ (petroleum ether-EtOAc = 20:1); major *E*-isomer: ¹H NMR (500 MHz, CDCl₃) $\delta = 8.29-8.23$ (m, 2H), 7.66-7.59 (m, 1H), 7.51 (t, *J* = 7.8 Hz, 2H), 7.30 (t, *J* = 7.8 Hz, 1H), 7.12 (d, *J* = 7.6 Hz, 1H), 7.07 (d, *J* = 8.0 Hz, 1H), 3.36 (s, 3H), 2.78 (t, *J* = 4.0 Hz, 2H), 2.73 (t, *J* = 6.7 Hz, 2H), 1.87-1.78 (m, 2H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 165.6$, 152.2, 148.1, 142.6, 133.0, 130.5, 130.4 (2C), 129.0, 128.3 (2C), 126.4, 123.6, 122.2, 61.4, 30.5, 24.7, 21.0 ppm; HRMS (ESI-TOF) for C₁₈H₁₇NO₃: calcd. [M+Na]⁺ 318.1101; found: 318.1104.

(E)-9-(methoxyimino)-6,7,8,9-tetrahydro-5H-benzo[7]annulen-1-yl benzoate (3ad): Pale yellow solid (47%, 43.6 mg); $R_f = 0.22$ (petroleum ether-EtOAc = 30:1); ¹H NMR (500 MHz, CDCl₃) $\delta = 8.22$ -8.14 (m, 2H), 7.67-7.58 (m, 1H), 7.51 (t, J = 7.8 Hz, 2H), 7.33 (t, J = 7.8 Hz, 1H), 7.12 (dd, $J_I = 8.2$ Hz, $J_2 = 1.2$ Hz, 1H), 7.08 (d, J = 7.1 Hz, 1H), 3.59 (s, 3H), 2.78 (t, J = 6.6 Hz, 2H), 2.64-2.56 (m, 2H), 1.82-1.73 (m, 2H), 1.71-1.63 (m, 2H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 165.5$, 157.2, 148.0, 141.8, 133.3, 130.2 (2C), 129.9, 129.5, 128.8, 128.4 (2C), 126.3, 120.8, 61.6, 32.3, 26.5, 26.3, 22.1 ppm; HRMS (ESI-TOF) for C₁₉H₁₉NO₃: calcd. [M+Na]⁺ 332.1257; found: 332.1260.

(**Z**)-2-((methoxyimino)methyl)phenyl benzoate (3ae): Pale yellow solid (64%, 49.0 mg); $R_f = 0.40$ (petroleum ether-EtOAc = 30:1); ¹H NMR (500 MHz, CDCl₃) $\delta = 8.27-8.21$ (m, 2H), 8.20 (s, 1H), 7.87 (dd, $J_I = 7.9$ Hz, $J_2 = 1.7$ Hz, 1H), 7.72-7.64 (m, 1H), 7.54 (t, J = 7.8 Hz, 2H), 7.46 (td, $J_I = 7.8$ Hz, $J_2 = 1.7$ Hz, 1H), 7.32 (td, $J_I = 7.6$ Hz, $J_2 = 1.2$ Hz, 1H), 7.25 (dd, $J_I = 8.1$ Hz, $J_2 = 1.2$ Hz, 1H), 3.87 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 164.9$, 148.9, 143.8, 133.8, 130.7, 130.3 (2C), 129.1, 128.6 (2C), 127.7, 126.3, 124.9, 123.1, 62.0 ppm; HRMS (ESI-TOF) for C₁₅H₁₃NO₃: calcd. [M+Na]⁺ 278.0788; found: 278.0793.

(**Z**)-2-(1-(methoxyimino)ethyl)phenyl 4-fluorobenzoate (3af): Pale yellow oil (90%, 77.5 mg); $R_f = 0.20$ (petroleum ether-EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) $\delta = 8.27-8.20$ (m, 2H), 7.51 (dd, $J_I = 7.7$ Hz, $J_2 = 1.7$ Hz, 1H), 7.44 (td, $J_I = 7.7$ Hz, $J_2 = 1.7$ Hz, 1H), 7.32 (td, $J_I = 7.6$ Hz, $J_2 = 1.3$ Hz, 1H), 7.26-7.17 (m, 3H), 3.74 (s, 3H), 2.16 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 166.1$ (d, J = 255.1 Hz), 164.1, 153.1, 148.1, 132.9 (d, J = 9.3 Hz, 2C), 130.4, 129.8, 129.5, 126.2, 125.8 (d, J = 2.9 Hz), 123.4, 115.8 (d, J = 22.0 Hz, 2C), 61.7, 15.0 ppm; HRMS (ESI-TOF) for C₁₆H₁₄FNO₃: calcd. [M+Na]⁺ 310.0850; found: 310.0859.

(**Z**)-2-(1-(methoxyimino)ethyl)phenyl [1,1'-biphenyl]-4-carboxylate (3ag): Pale yellow oil (60%, 62.1 mg); $R_f = 0.20$ (petroleum ether-EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) $\delta = 8.31-8.26$ (m, 2H), 7.79-7.73 (m, 2H), 7.69 (dd, $J_I = 8.2$ Hz, $J_2 = 1.3$ Hz, 2H), 7.52 (m, 3H), 7.45(m, 2H), 7.33 (td, $J_I = 7.6$ Hz, $J_2 = 1.3$ Hz, 1H), 7.27 (dd, $J_I = 8.1$ Hz, $J_2 = 1.2$ Hz, 1H), 3.80 (s, 3H), 2.20 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 165.0$, 153.3, 148.3, 146.3, 139.8, 130.8 (2C), 130.5, 129.8, 129.5, 129.0 (2C), 128.3, 128.2, 127.3 (2C), 127.2 (2C), 126.1, 123.4, 61.8, 15.1 ppm; HRMS (ESI-TOF) for $C_{22}H_{19}NO_3$: calcd. [M+Na]⁺ 368.1257; found: 368.1266.

(Z)-2-(1-(methoxyimino)ethyl)phenyl 1-naphthoate (3ah): Pale yellow oil (89%, 85.2 mg); $R_f = 0.30$ (petroleum ether-EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) $\delta = 9.11$ (dd, $J_I = 8.7$ Hz, $J_2 = 1.1$ Hz, 1H), 8.54 (dd, $J_I = 7.3$ Hz, $J_2 = 1.4$ Hz, 1H), 8.13 (d, J = 8.2 Hz, 1H), 7.95 (d, J = 8.1 Hz, 1H),

7.70-7.65 (m, 1H), 7.63-7.56 (m, 2H), 7.55 (dd, $J_1 = 7.7$ Hz, $J_2 = 1.7$ Hz, 1H), 7.53-7.46 (m, 1H), 7.40-7.31 (m, 2H), 3.77 (s, 3H), 2.23 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 165.5$, 153.3, 148.2, 134.3, 133.9, 131.7, 131.4, 130.8, 129.7, 129.5, 128.6, 128.1, 126.4, 126.1, 125.8, 125.7, 124.5, 123.5, 61.7, 15.2 ppm; HRMS (ESI-TOF) for C₂₀H₁₇NO₃: calcd. [M+Na]⁺ 342.1101; found: 342.1102.

(**Z**)-2-(1-(methoxyimino)ethyl)phenyl thiophene-3-carboxylate (3ai): Pale yellow oil (80%, 66.0 mg); $R_f = 0.30$ (petroleum ether-EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) $\delta = 8.32$ (dd, $J_I = 3.0$ Hz, $J_2 = 1.1$ Hz, 1H), 7.68 (dd, $J_I = 5.0$ Hz, $J_2 = 1.1$ Hz, 1H), 7.50 (dd, $J_I = 7.7$ Hz, $J_2 = 1.7$ Hz, 1H), 7.43 (td, $J_I = 7.7$ Hz, $J_2 = 1.5$ Hz, 1H), 7.39 (dd, $J_I = 5.0$ Hz, $J_2 = 3.1$ Hz, 1H), 7.31 (t, J = 7.6 Hz, 1H), 7.24 (d, J = 8.1 Hz, 1H), 3.79 (s, 3H), 2.17 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 160.9$, 153.3, 148.0, 134.1, 132.9, 130.4, 129.7, 129.5, 128.3, 126.4, 126.1, 123.4, 61.7, 15.1 ppm; HRMS (ESI-TOF) for C₁₄H₁₃NO₃S: calcd. [M+Na]⁺ 298.0508; found: 298.0519.

(Z)-2-(1-(methoxyimino)ethyl)phenyl isobutyrate (3aj): Yellow oil (88%, 62.0 mg); $R_f = 0.40$ (petroleum ether-EtOAc = 20:1); ¹H NMR (500 MHz, CDCl3) $\delta = 7.44-7.34$ (m, 2H), 7.25 (td, $J_I = 7.6$ Hz, $J_2 = 1.2$, 1H), 7.09 (dd, $J_I = 8.1$ Hz, $J_2 = 1.2$ Hz, 1H), 3.97 (s, 3H), 2.87-2.75 (m, 1H), 2.16 (s, 3H), 1.33 (s, 3H), 1.32 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 175.2$, 153.6, 148.2, 130.7, 129.6, 129.4, 125.9, 123.0, 61.8, 34.2, 18.8 (2C), 15.5 ppm; HRMS (ESI-TOF) for C₁₃H₁₇NO₃: calcd. [M+Na]⁺ 258.101; found: 258.1237.

(Z)-2-(1-(methoxyimino)ethyl)phenyl cyclopropanecarboxylate (3ak): Yellow oil (89%, 62.2 mg, E/Z = 15:1); $R_f = 0.20$ (petroleum ether-EtOAc = 20:1); major *E*-isomer: ¹H NMR (500 MHz, CDCl₃) δ = 7.43 (dd, $J_1 = 7.7$ Hz, $J_2 = 1.7$ Hz, 1H), 7.40-7.33 (m, 1H), 7.25 (td, $J_1 = 7.6$ Hz, $J_2 = 1.3$, 1H), 7.11 (dd, $J_1 = 8.1$ Hz, $J_2 = 1.2$ Hz, 1H), 4.00 (s, 3H), 2.17 (s, 3H), 1.91-1.82 (m, 1H), 1.22-1.15 (m, 2H), 1.06-0.97 (m, 2H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ = 173.2, 153.6, 148.1, 130.5, 129.6, 129.4, 125.9, 123.2, 61.9, 15.2, 13.0, 9.1 (2C) ppm; HRMS (ESI-TOF) for C₁₃H₁₅NO₃: calcd. [M+Na]⁺ 256.0944; found: 256.1091.

(**Z**)-2-(1-(methoxyimino)ethyl)phenyl cyclobutanecarboxylate (3al): Colorless oil (84%, 62.2 mg); $R_f = 0.30$ (petroleum ether-EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) $\delta = 7.42$ (dd, $J_1 = 7.7$ Hz, $J_2 = 1.7$ Hz, 1H), 7.41-7.34 (m, 1H), 7.25 (td, $J_1 = 7.6$ Hz, $J_2 = 1.2$ Hz, 1H), 7.11 (dd, $J_1 = 8.1$ Hz, $J_2 = 1.2$ Hz, 1H), 3.97 (s, 3H), 3.45-3.30 (m, 1H), 2.51-2.40 (m, 2H), 2.38-2.27 (m, 2H), 2.15 (s, 3H), 2.07 (dt, $J_1 = 11.3$ Hz, $J_2 = 8.8$ Hz, 1H), 2.04-1.94 (m, 1H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 173.5$, 153.7, 148.1, 130.6, 129.6, 129.4, 125.9, 123.0, 61.8, 38.1, 25.2 (2C), 18.4, 15.4 ppm; HRMS (ESI-TOF) for C₁₄H₁₇NO₃: calcd. [M+Na]⁺ 270.1208; found: 270.1256.

2-((Z)-1-(methoxyimino)ethyl)phenyl (**3r,5r,7r)-adamantane-1-carboxylate** (**3am):** Colorless oil (84%, 82.4 mg); $R_f = 0.40$ (petroleum ether-EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) $\delta = 7.42-7.33$ (m, 2H), 7.24 (td, $J_I = 7.5$ Hz, $J_2 = 1.2$ Hz, 1H), 7.03 (dd, $J_I = 8.1$ Hz, $J_2 = 1.2$ Hz, 1H), 3.98 (s, 3H), 2.15 (s, 3H), 2.10 (s, 3H), 2.06 (d, J = 2.9 Hz, 6H), 1.78 (s, 6H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 175.8$, 153.7, 148.5, 130.9, 129.6, 129.4, 125.7, 123.0, 61.8, 41.0, 38.7 (3C), 36.4 (3C), 27.9 (3C), 15.8 ppm; HRMS (ESI-TOF) for C₂₀H₂₅NO₃: calcd. [M+Na]⁺ 350.1727; found: 350.1737

(E)-2-(phenyldiazenyl)phenyl benzoate (5a): Orange solid (80%, 72.5 mg); $R_f = 0.33$ (petroleum ether-EtOAc = 30:1); ¹H NMR (500 MHz, CDCl₃) $\delta = 8.31$ (d, J = 7.2 Hz, 2H), 7.92 (dd, $J_I = 8.3$ Hz, $J_2 = 1.6$ Hz, 1H), 7.75 (dd, $J_I = 2.5$ Hz, $J_2 = 1.5$ Hz, 2H), 7.73-7.66 (m, 1H), 7.61-7.53 (m, 3H), 7.46-7.36 (m, 5H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 165.5$, 152.7, 149.3, 144.0, 133.6, 132.1, 131.2, 130.4 (2C), 129.5, 129.0 (2C), 128.6 (2C), 126.6, 123.6, 123.1 (2C), 117.9 ppm; HRMS (ESI-TOF) for C₁₉H₁₄N₂O₂: calcd. [M+Na]⁺ 325.0947; found: 325.0952.

(E)-5-methyl-2-(p-tolyldiazenyl)phenyl benzoate (5b): Orange solid (70%, 69.3 mg); $R_f = 0.37$ (petroleum ether-EtOAc = 30:1); ¹H NMR (500 MHz, CDCl₃) $\delta = 8.30$ (dd, $J_1 = 8.3$ Hz, $J_2 = 1.4$ Hz, 2H), 7.82 (d, J = 8.8 Hz, 1H), 7.73-7.65 (m, 1H), 7.62 (d, J = 8.3 Hz, 2H), 7.56 (t, J = 7.8 Hz, 2H),

7.24-7.12 (m, 4H), 2.48 (s, 3H), 2.38 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ = 165.6, 150.9, 149.0, 142.8, 141.8, 141.5, 133.5, 130.3 (2C), 129.9, 129.6 (2C), 128.6 (2C), 127.4, 123.8, 122.9 (2C), 117.6, 21.5, 21.4 ppm; HRMS (ESI-TOF) for C₂₁H₁₈N₂O₂: calcd. [M+Na]⁺ 353.1260; found: 353.1263.

(E)-5-ethyl-2-((4-ethylphenyl)diazenyl)phenyl benzoate (5c): Orange solid (75%, 80.6 mg); $R_f = 0.40$ (petroleum ether-EtOAc = 30:1); ¹H NMR (500 MHz, CDCl₃) $\delta = 8.32$ (dd, $J_I = 9.5$ Hz, $J_2 = 1.5$ Hz, 2H), 7.86(d, J = 8.8 Hz, 1H), 7.72-7.64 (m, 3H), 7.57 (t, J = 7.8 Hz, 2H), 7.27-7.19 (m, 4H), 2.80 (q, J = 7.6 Hz, 2H), 2.68 (q, J = 7.6 Hz, 2H), 1.35 (t, J = 7.6 Hz, 3H), 1.26 (t, J = 7.6 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 165.6$, 151.1, 149.1, 149.0, 147.7, 142.0, 133.5, 130.3 (2C), 129.6, 128.6 (2C), 128.4 (2C), 126.1, 123.0 (2C), 122.6, 117.7, 28.7, 28.7, 15.3, 15.0 ppm; HRMS (ESI-TOF) for $C_{23}H_{22}N_2O_2$: calcd. [M+Na]⁺ 381.1537; found: 381.1582.

(E)-5-methoxy-2-((4-methoxyphenyl)diazenyl)phenyl benzoate (5d): Orange solid (83%, 90.1 mg); $R_f = 0.33$ (petroleum ether-EtOAc = 10:1); ¹H NMR (500 MHz, CDCl₃) $\delta = 8.31-8.26$ (m, 2H), 7.89 (d, J = 8.9 Hz, 1H), 7.71-7.67 (m, 1H), 7.66-7.63 (m, 2H), 7.56 (dd, $J_I = 8.4$ Hz, $J_2 = 7.1$ Hz, 2H), 6.94-6.89 (m, 2H), 6.87-6.83 (m, 2H), 3.91 (s, 3H), 3.83 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 165.4$, 162.3, 161.7, 150.4, 147.2, 138.2, 133.6, 130.4 (2C), 129.5, 128.6 (2C), 124.5 (2C), 118.9, 114.0 (2C), 112.8, 108.1, 55.8, 55.5 ppm; HRMS (ESI-TOF) for C₂₁H₁₈N₂O₄: calcd. [M+Na]⁺ 385.1159; found: 385.1165.

(E)-5-(trifluoromethoxy)-2-((4-(trifluoromethoxy)phenyl)diazenyl)phenyl benzoate (5e): Pale pink solid (70%, 98.7 mg, E/Z = 19:1); $R_f = 0.50$ (petroleum ether-EtOAc = 30:1); major *E*-isomer: ¹H NMR (500 MHz, CDCl₃) $\delta = 8.27$ (dd, $J_I = 8.3$ Hz, $J_2 = 1.3$ Hz, 2H), 7.95 (d, J = 8.9 Hz, 1H), 7.78-7.68 (m, 3H), 7.62-7.55 (m, 2H), 7.31 (d, J = 1.5 Hz, 1H), 7.30-7.24 (m, 1H), 7.23 (dd, $J_I = 9.0$ Hz, $J_2 = 1.0$ Hz, 2H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 165.0$, 151.6, 151.3, 150.6, 150.1, 142.2, 134.1, 130.4 (2C), 128.8 (2C), 128.8, 124.6 (2C), 121.2 (2C), 120.4 (q, J = 258.3 Hz), 119.2 (q, J = 258.3 Hz), 118.7, 118.1, 116.2 ppm; HRMS (ESI-TOF) for C₂₁H₁₂F₆N₂O₄: calcd. [M+Na]⁺ 493.0593; found: 493.0606.

(E)-5-fluoro-2-((4-fluorophenyl)diazenyl)phenyl benzoate (5f): Yellow solid (72%, 73.0 mg, E/Z = 14:1); $R_f = 0.43$ (petroleum ether-EtOAc = 30:1); major *E*-isomer: ¹H NMR (500 MHz, CDCl₃) $\delta = 8.27$ (dd, $J_I = 8.3$ Hz, $J_2 = 1.3$ Hz, 2H), 8.01-7.85 (m, 1H), 7.78-7.64 (m, 2H), 7.57 (t, J = 7.8 Hz, 2H), 7.25-7.18 (m, 1H), 7.19-7.12 (m, 1H), 7.14-7.08 (m, 1H), 7.06 (dd, $J_I = 9.0$ Hz, $J_2 = 8.2$ Hz, 2H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 165.5$ (d, J = 2.2 Hz), 164.4 (d, J = 251.9 Hz), 164.3 (d, J = 201.7 Hz), 150.4 (d, J = 11.7 Hz), 149.2 (d, J = 3.2 Hz), 140.6 (d, J = 3.8 Hz), 133.9, 130.4 (2C), 129.0, 128.7 (2C), 125.0 (d, J = 9.1 Hz), 124.8 (d, J = 9.0 Hz), 119.2 (d, J = 10.1 Hz), 116.1 (d, J = 22.9 Hz), 116.0 (d, J = 22.8 Hz), 113.9 (d, J = 22.6 Hz), 111.3 (d, J = 25.1 Hz) ppm; HRMS (ESI-TOF) for C₁₉H₁₂F₂N₂O₂: calcd. [M+Na]⁺ 361.0759; found: 361.0769.

(E)-5-(trifluoromethyl)-2-((4-(trifluoromethyl)phenyl)diazenyl)phenyl benzoate (5g): Yellow solid (68%, 89.4 mg, E/Z = 28:1); $R_f = 0.50$ (petroleum ether-EtOAc = 30:1); major *E*-isomer: ¹H NMR (500 MHz, CDCl₃) $\delta = 8.27$ (dd, $J_1 = 8.3$ Hz, $J_2 = 1.4$ Hz, 2H), 7.99 (dd, $J_1 = 8.4$ Hz, $J_2 = 1.0$ Hz, 1H), 7.82 (d, J = 7.9 Hz, 2H), 7.77-7.69 (m, 2H), 7.72-7.65 (m, 3H), 7.62-7.55 (m, 2H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 165.1$, 154.2, 149.5, 145.7, 134.2(q, J = 32.8 Hz), 134.2, 133.2(q, J = 32.8 Hz), 130.4 (2C), 128.9 (2C), 128.6, 126.4 (q, J = 3.7 Hz, 2C), 123.7 (q, J = 273.4 Hz), 123.6 (q, J = 3.7 Hz), 123.4 (2C), 123.3 (q, J = 237.4 Hz), 121.4 (q, J = 3.7 Hz), 118.5 ppm; HRMS (ESI-TOF) for C₂₁H₁₂F₆N₂O₂: calcd. [M+Na]⁺ 461.0695; found: 461.0698.

(E)-3-methyl-2-(o-tolyldiazenyl)phenyl benzoate (5h): Red brown solid (61%, 60.4 mg, E/Z = 20:1); $R_f = 0.40$ (petroleum ether-EtOAc = 30:1); major *E*-isomer: ¹H NMR (500 MHz, CDCl₃) $\delta = 8.15$ (dd, $J_I = 8.3$ Hz, $J_2 = 1.4$ Hz, 2H), 7.65-7.58 (m, 1H), 7.50-7.43 (m, 2H), 7.42 (dd, $J_I = 8.1$ Hz, $J_2 = 1.4$ Hz, 1H), 7.36 (t, J = 7.8 Hz, 1H), 7.33-7.25 (m, 2H), 7.24-7.15 (m, 2H), 7.16-7.09 (m, 1H), 2.58 (s, 3H), 2.41 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 165.4$, 151.3, 143.8, 142.8, 138.3, 134.8, 133.4, 131.2, 131.1, 130.3 (2C), 129.6, 129.4, 129.3, 128.4 (2C), 126.2, 121.5, 115.2, 19.3, 17.4 ppm; HRMS (ESI-TOF) for C₂₁H₁₈N₂O₂: calcd. [M+Na]⁺ 353.1260; found: 353.1267.

(E)-4-ethyl-2-((3-ethylphenyl)diazenyl)phenyl benzoate (5i): Orange solid (80%, 85.9 mg); $R_f = 0.43$ (petroleum ether-EtOAc = 30:1); ¹H NMR (600 MHz, CDCl₃) ¹H NMR (600 MHz, CDCl₃) $\delta = 8.31$ (dd, $J_I = 8.4$ Hz, $J_2 = 1.3$ Hz, 2H), 7.75 (d, J = 2.2 Hz, 1H), 7.71-7.66 (m, 1H), 7.62-7.59 (m, 1H), 7.58-7.55 (m, 2H), 7.54-7.52 (m, 1H), 7.42 (dd, $J_I = 8.2$ Hz, $J_2 = 2.2$ Hz, 1H), 7.36-7.30 (m, 2H), 7.26-7.23 (m, 1H), 2.79 (q, J = 7.6 Hz, 2H), 2.59 (q, J = 7.6 Hz, 2H), 1.35 (t, J = 7.7 Hz, 3H), 1.13 (t, J = 7.6 Hz, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) $\delta = 165.8, 153.0, 147.4, 145.1, 143.4, 142.7, 133.5, 131.6, 130.9, 130.4 (2C), 129.6, 128.8, 128.6 (2C), 116.7, 28.6, 28.5, 15.5, 15.2 ppm; HRMS (ESI-TOF) for C₂₃H₂₂N₂O₂: calcd. [M+Na]⁺ 381.1573; found: 381.1583.$

(E)-4-methoxy-2-((3-methoxyphenyl)diazenyl)phenyl benzoate (5j): Orange solid (65%, 70.6 mg, E/Z = 6:1); $R_f = 0.33$ (petroleum ether-EtOAc = 10:1); major *E*-isomer: ¹H NMR (500 MHz, CDCl₃) $\delta = 8.30$ (dd, $J_1 = 8.3$ Hz, $J_2 = 1.4$ Hz, 2H), 7.70-7.63 (m, 1H), 7.54 (t, J = 7.8 Hz, 2H), 7.52-7.46 (m, 1H), 7.44 (d, J = 3.1 Hz, 1H), 7.37-7.29 (m, 2H), 7.18-7.10 (m, 2H), 7.00-6.94 (m, 1H), 3.92 (s, 3H), 3.43 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 165.5$, 162.4, 161.7, 150.4, 147.3, 138.2, 133.6, 130.4 (2C), 129.5, 128.6 (2C), 124.5 (2C), 118.9, 114.0 (2C), 112.9, 108.1, 55.8, 55.5 ppm; HRMS (ESI-TOF) for C₂₁H₁₈N₂O₄: calcd. [M+Na]⁺ 385.1159; found: 385.1167.

(E)-4-fluoro-2-((3-fluorophenyl)diazenyl)phenyl benzoate (5k): Yellow solid (77%, 78.1 mg, major regioisomer: minor regioisomer = 15:1); $R_f = 0.40$ (petroleum ether-EtOAc = 30:1); major regioisomer: ¹H NMR (500 MHz, CDCl₃) $\delta = 8.28$ (dd, $J_I = 8.3$ Hz, $J_2 = 1.4$ Hz, 2H), 7.74-7.67 (m, 1H), 7.62 (dd, $J_I = 9.2$ Hz, $J_2 = 2.9$ Hz, 2H), 7.61-7.54 (m, 2H), 7.44-7.35 (m, 2H), 7.35 (dt, $J_I = 9.7$ Hz, $J_2 = 2.3$ Hz, 1H), 7.34-7.26 (m, 1H), 7.18-7.15 (m, 1H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 165.5$, 163.1 (d, J = 248.1 Hz), 160.7 (d, J = 247.1 Hz), 153.8 (d, J = 7.0 Hz), 145.8 (d, J = 3.3 Hz), 144.5 (d, J = 6.3 Hz), 133.9, 130.3 (2C), 130.3 (d, J = 8.3 Hz), 129.0, 128.7 (2C), 124.8 (d, J = 8.6 Hz), 121.0 (d, J = 2.9 Hz), 119.1 (d, J = 24.3 Hz), 118.5 (d, J = 22.0 Hz), 108.2 (d, J = 23.1 Hz), 104.3 (d, J = 24.8 Hz) ppm; HRMS (ESI-TOF) for C₁₉H₁₂F₂N₂O₂: calcd. [M+Na]⁺ 361.0759; found: 361.0765.

(E)-4-chloro-2-((3-chlorophenyl)diazenyl)phenyl benzoate (5l): Pale pink oil (68%, 75.5 mg, E/Z = 13:1); $R_f = 0.40$ (petroleum ether-EtOAc = 30:1); major *E*-isomer: ¹H NMR (500 MHz, CDCl₃) $\delta = 8.27$ (dd, $J_I = 8.3$ Hz, $J_2 = 1.4$ Hz, 2H), 7.88 (d, J = 2.5 Hz, 1H), 7.74-7.67 (m, 1H), 7.69-7.61 (m, 2H), 7.61-7.52 (m, 3H), 7.43-7.33 (m, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 165.4$, 153.2, 148.3, 144.0, 135.2, 134.0, 132.5, 132.2, 131.5, 130.4 (2C), 130.1, 128.9, 128.8 (2C), 124.9, 122.7, 122.1, 117.8 ppm; HRMS (ESI-TOF) for C₁₉H₁₂Cl₂N₂O₂: calcd. [M+Na]⁺ 393.0168; found: 393.2096.

(E)-4-bromo-2-((3-bromophenyl)diazenyl)phenyl benzoate (5m): Yellow solid (75%, 103.3 mg); $R_f = 0.43$ (petroleum ether-EtOAc = 30:1); ¹H NMR (500 MHz, CDCl₃) $\delta = 8.30-8.24$ (m, 2H), 8.02 (d, J = 2.4 Hz, 1H), 7.78 (t, J = 1.9 Hz, 1H), 7.74-7.67 (m, 3H), 7.61-7.54 (m, 2H), 7.57-7.51 (m, 1H), 7.35-7.26 (m, 2H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 165.3$, 153.3, 148.8, 144.1, 135.1, 134.3, 134.0, 130.4, 130.4 (2C), 128.9, 128.8 (2C), 125.2, 124.9, 123.3, 123.1, 120.7, 120.0 ppm; HRMS (ESI-TOF) for C₁₉H₁₂Br₂N₂O₂: calcd. [M+Na]⁺ 482.9158; found: 482.9148.

(E)-4-fluoro-2-((3-fluoro-4-methylphenyl)diazenyl)-5-methylphenyl benzoate (5n): Yellow solid (62%, 68.1 mg, major regioisomer: minor regioisomer = 9: 1); $R_f = 0.40$ (petroleum ether-EtOAc = 30:1); major regioisomer: ¹H NMR (500 MHz, CDCl₃) $\delta = 8.33-8.20$ (m, 2H), 7.73-7.66 (m, 1H), 7.61-7.55 (m, 3H), 7.49 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.9$ Hz, 1H), 7.28 (dd, $J_1 = 10.5$ Hz, $J_2 = 1.9$ Hz, 1H), 7.26-7.18(m, 2H), 2.40 (d, J = 2.0 Hz, 3H), 2.30 (d, J = 2.1 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 165.7$, 161.5 (d, J = 246.8 Hz), 159.3 (d, J = 245.9 Hz), 152.2 (d, J = 7.0 Hz), 145.3 (d, J = 2.9 Hz), 142.6 (d, J = 6.5 Hz), 133.8, 131.5 (d, J = 5.6 Hz), 130.5 (2C), 129.9 (d, J = 20.2 Hz), 129.2, 128.7 (d, J = 28.0 Hz), 128.7 (2C), 125.7 (d, J = 5.3 Hz), 120.7 (d, J = 3.2 Hz), 107.6 (d, J = 23.8 Hz), 103.7 (d, J = 25.8 Hz), 15.0 (d, J = 2.9 Hz), 14.8 (d, J = 3.4 Hz) ppm; HRMS (ESI-TOF) for C₂₁H₁₆F₂N₂O₂: calcd. [M+Na]⁺ 389.1072; found: 389.1079.

(E)-2-(mesityldiazenyl)-5-methylphenyl benzoate (50): Orange solid (88%, 94.5 mg); $R_f = 0.40$ (petroleum ether-EtOAc = 30:1); ¹H NMR (500 MHz, CDCl₃) $\delta = 8.33-8.17$ (m, 2H), 7.84-7.69 (m, 2H), 7.55-7.48 (m, 2H), 7.23-7.18 (m, 2H), 6.86(s, 2H), 2.49 (s, 3H), 2.32 (s, 6H), 2.29 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 165.3$, 149.3, 148.0, 142.9, 142.5, 139.1, 133.5, 132.8, 130.3 (2C), 130.0 (2C), 129.5, 129.1, 128.5 (2C), 127.5, 124.0, 116.5, 21.4, 21.1, 19.8 (2C) ppm; HRMS (ESI-TOF) for $C_{23}H_{22}N_2O_2$: calcd. [M+Na]⁺ 381.1573; found: 381.1581.

(E)-4-chloro-2-(mesityldiazenyl)phenyl benzoate (5p): Red brown solid (66%, 74.8 mg, E/Z = 11:1); $R_f = 0.47$ (petroleum ether-EtOAc = 30:1); major *E*-isomer: ¹H NMR (500 MHz, CDCl₃) $\delta = 8.23$ (dd, $J_1 = 8.3$ Hz, $J_2 = 1.3$ Hz, 2H), 7.79 (d, J = 2.5 Hz, 1H), 7.70-7.62 (m, 1H), 7.55-7.45 (m, 3H), 7.32 (d, J = 8.6 Hz, 1H), 6.88 (s, 2H), 2.34 (s, 6H), 2.29 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 165.1$, 147.9, 147.5, 145.3, 140.4, 133.7, 133.7, 132.5, 131.0, 130.4 (2C), 130.2 (2C), 129.2, 129.1, 128.6 (2C), 124.9, 116.8, 21.2, 20.2 (2C) ppm; HRMS (ESI-TOF) for C₂₂H₁₉ClN₂O₂: calcd. [M+Na]⁺ 401.1027; found: 401.1033.

(E)-2-((4-chlorophenyl)diazenyl)phenyl benzoate (5q): Orange solid (67%, 67.5 mg); $R_f = 0.30$ (petroleum ether-EtOAc = 30:1); ¹H NMR (500 MHz, CDCl₃) $\delta = 8.31-8.24$ (m, 2H), 7.89 (dd, $J_I = 8.3$ Hz, $J_2 = 1.6$ Hz, 1H), 7.72-7.68 (m, 1H), 7.67-7.64 (m, 2H), 7.59-7.54 (m, 3H), 7.43-7.39 (m, 2H), 7.37-7.33 (m, 2H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 165.5$, 151.1, 149.4, 143.8, 137.2, 133.7, 132.4, 130.3 (2C), 129.4, 129.3 (2C), 128.7 (2C), 126.6, 124.2 (2C), 123.6, 117.9 ppm; HRMS (ESI-TOF) for C₁₉H₁₃ClN₂O₂: calcd. [M+Na]⁺ 359.0558; found: 359.0564.

(E)-2-((4-chlorophenyl)diazenyl)-5-methylphenyl benzoate (5r): Yellow solid (58%, 60.8 mg, E/Z = 6:1); $R_f = 0.37$ (petroleum ether-EtOAc = 30:1); major *E*-isomer: ¹H NMR (600 MHz, CDCl₃) $\delta = 8.28$ (dd, J = 8.3, 1.4 Hz, 2H), 7.71-7.64 (m, 4H), 7.58-7.54 (m, 2H), 7.40 (ddd, $J_I = 8.2$ Hz, $J_2 = 2.2$ Hz, $J_3 = 0.8$ Hz, 1H), 7.37-7.34 (m, 2H), 7.29 (d, J = 9.0 Hz, 1H), 2.48 (s, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) $\delta = 165.7$, 151.1, 147.3, 143.3, 137.1, 136.6, 133.6, 133.1, 130.3(2C), 129.4, 129.3 (2C), 128.6 (2C),

124.2 (2C), 123.2, 118.0, 21.1 ppm; HRMS (ESI-TOF) for $C_{20}H_{15}N_2O_2$: calcd. $[M+Na]^+$ 373.0714; found: 373.0718.

(E)-2-(phenyldiazenyl)phenyl 4-fluorobenzoate (5s): Orange solid (82%, 78.7 mg); $R_f = 0.37$ (petroleum ether-EtOAc = 30:1); ¹H NMR (500 MHz, CDCl₃) $\delta = 8.35-8.28$ (m, 2H), 7.91 (dd, $J_I = 8.0$ Hz, $J_2 = 1.6$, 1H), 7.74 (dd, $J_I = 7.8$ Hz, $J_2 = 1.9$ Hz, 2H), 7.57 (td, $J_I = 7.7$ Hz, $J_2 = 1.7$ Hz, 1H), 7.46-7.38 (m, 5H), 7.27-7.20 (m, 2H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 166.2$ (d, J = 254.9 Hz), 164.5, 152.7, 149.1, 143.9, 133.0 (d, J = 9.5 Hz, 2C), 132.1, 131.3, 129.0 (2C), 126.7, 125.7 (d, J = 2.9 Hz), 123.5, 123.0 (2C), 118.0, 115.9 (d, J = 22.2 Hz, 2C,) ppm; HRMS (ESI-TOF) for C₁₉H₁₃FN₂O₂: calcd. [M+Na]⁺ 343.0853; found: 343.0857.

(E)-2-(phenyldiazenyl)phenyl [1,1'-biphenyl]-4-carboxylate (5t): Orange solid (46%, 52.1 mg); $R_f = 0.27$ (petroleum ether-EtOAc = 30:1); ¹H NMR (600 MHz, CDCl₃) $\delta = 8.36$ (d, J = 8.4 Hz, 2H), 7.92 (dd, $J_1 = 8.4$ Hz, $J_2 = 1.7$ Hz, 1H), 7.79 (d, J = 8.4 Hz, 2H), 7.76 (dd, $J_1 = 7.7$ Hz, $J_2 = 2.1$ Hz, 2H), 7.72 (dd, $J_1 = 8.2$ Hz, $J_2 = 1.3$ Hz, 2H), 7.62-7.57 (m, 1H), 7.53 (dd, $J_1 = 8.4$ Hz, $J_2 = 6.9$ Hz, 2H), 7.48-7.44 (m, 2H), 7.44-7.40 (m, 4H) ppm; ¹³C NMR (151 MHz, CDCl₃) $\delta = 165.4$, 152.7, 149.3, 146.3, 144.0, 139.9, 132.1, 131.3, 130.9 (2C), 129.0 (2C), 129.0 (2C), 128.4, 128.1, 127.4 (2C), 127.3 (2C), 126.6, 123.6, 123.1 (2C), 117.8 ppm; HRMS (ESI-TOF) for C₂₅H₁₈N₂O₂: calcd. [M+Na]⁺ 401.1260; found: 401.1268.

(E)-2-(phenyldiazenyl)phenyl 1-naphthoate (5u): Orange solid (82%, 86.6 mg); $R_f = 0.30$ (petroleum ether-EtOAc = 30:1); ¹H NMR (500 MHz, CDCl₃) $\delta = 9.11$ (d, J = 8.5 Hz, 1H), 8.62 (d, J = 7.2 Hz, 1H), 8.16 (d, J = 8.3 Hz, 1H), 8.04-7.96 (m, 2H), 7.86 (d, J = 8.0 Hz, 2H), 7.69-7.58 (m, 4H), 7.52 (d, J = 7.9 Hz, 1H), 7.51-7.44 (m, 1H), 7.44-7.34 (m, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 166.1$, 152.6, 149.4, 144.1, 134.1, 133.8, 132.1, 131.6, 131.2, 131.2, 128.9 (2C), 128.6, 128.0, 126.6, 126.4, 126.1, 125.8, 124.5, 123.6, 123.1 (2C), 117.5 ppm; HRMS (ESI-TOF) forre C₂₃H₁₆N₂O₂: calcd. [M+Na]⁺ 375.1104; found: 375.1104.

(E)-2-(phenyldiazenyl)phenyl thiophene-3-carboxylate (5v): Orange solid (81%, 74.8 mg); $R_f = 0.27$ (petroleum ether-EtOAc = 30:1); ¹H NMR (500 MHz, CDCl₃) $\delta = 8.42$ (dd, $J_I = 3.0$ Hz, $J_2 = 1.2$ Hz, 1H), 7.91 (dd, $J_I = 8.4$ Hz, $J_2 = 1.6$ Hz, 1H), 7.78-7.74 (m, 3H), 7.61-7.53 (m, 1H), 7.45-7.38 (m, 6H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 161.2$, 152.7, 148.9, 144.0, 134.2, 132.6, 132.0, 131.2, 129.0 (2C), 128.3, 126.5, 126.4, 123.5, 123.0 (2C), 117.8 ppm; HRMS (ESI-TOF) for $C_{17}H_{12}N_2O_2S$: calcd. [M+Na]⁺ 331.0512; found: 331.0513.

(E)-2-(phenyldiazenyl)phenyl isobutyrate (5w): Orange solid (65%, 52.3 mg); $R_f = 0.37$ (petroleum ether-EtOAc = 30:1); ¹H NMR (500 MHz, CDCl₃) $\delta = 7.91-7.85$ (m, 2H), 7.82 (dd, $J_I = 8.1$ Hz, $J_2 = 1.6$ Hz, 1H), 7.56-7.47 (m, 4H), 7.39-7.32 (m, 1H), 7.25 (dd, $J_I = 8.0$ Hz, $J_2 = 1.3$ Hz, 1H), 2.95 (m, J = 7.0 Hz, 1H), 1.40 (s, 3H), 1.39 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 175.5$, 152.9, 149.2, 144.3, 132.0, 131.2, 129.0 (2C), 126.4, 123.4, 123.0 (2C), 117.3, 34.2, 19.1 (2C) ppm; HRMS (ESI-TOF) for C₁₆H₁₆N₂O₂: calcd. [M+Na]⁺ 291.1104; found: 291.1109.

(E)-2-(phenyldiazenyl)phenyl cyclopropanecarboxylate (5x): Orange solid (66%, 52.7 mg); $R_f = 0.30$ (petroleum ether-EtOAc = 30:1); ¹H NMR (600 MHz, CDCl₃) $\delta = 7.92-7.86$ (m, 2H), 7.80 (dd, J = 8.1, 1.9 Hz, 1H), 7.54-7.45 (m, 4H), 7.33 (t, J = 7.7 Hz, 1H), 7.26-7.22 (m, 1H), 2.02-1.92 (m, 1H), 1.27-1.20 (m, 2H), 1.11-1.00 (m, 2H) ppm; ¹³C NMR (151 MHz, CDCl₃) $\delta = 173.6, 152.8, 149.2, 144.0, 132.0, 131.3, 129.1$ (2C), 126.4, 123.4, 123.1 (2C), 117.4, 13.0, 9.2 (2C) ppm; HRMS (ESI-TOF) for $C_{16}H_{14}N_2O_2$: calcd. [M+Na]⁺ 289.0947; found: 289.0954.

(E)-2-(phenyldiazenyl)phenyl cyclobutanecarboxylate (5y): Orange solid (60%, 50.4 mg); $R_f = 0.33$ (petroleum ether-EtOAc = 30:1); ¹H NMR (500 MHz, CDCl₃) δ = 7.91-7.85 (m, 2H), 7.83 (dd, J_I = 8.1

Hz, $J_2 = 1.6$ Hz, 1H), 7.56-7.47 (m, 4H), 7.39-7.32 (m, 1H), 7.26 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.3$ Hz, 1H), 3.59-3.48 (m, 1H), 2.61-2.50 (m, 2H), 2.45-2.34 (m, 2H), 2.15-1.98 (m, 2H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 173.9$, 152.9, 149.2, 144.2, 132.0, 131.3, 129.0 (2C), 126.4, 123.4, 123.0 (2C), 117.3, 38.1, 25.4 (2C), 18.6 ppm; HRMS (ESI-TOF) for C₁₇H₁₆N₂O₂: calcd. [M+Na]⁺ 303.1104; found: 303.1111.

VIII. References

- (1) (a) S.-J. Lou, D.-Q. Xu and Z.-Y. Xu, Mild and versatile nitrate promoted C-H bond fluorination, *Angew. Chem., Int. Ed.*, **2014**, *53*, 10330. (b) Y.-J. Mao, G. Luo, H.-Y. Hao, Z.-Y. Xu, S.-J. Lou and D.-Q. Xu, Anion ligand promoted selective C–F bond reductive elimination enables C(*sp*²)-H fluorination, *Chem. Commun.*, **2019**, *55*, 14458.
- (2) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 16, Revision A.03*; Gaussian, Inc., Wallingford, CT, 2016.
- (3) (a) Beck, A. D. J. Chem. Phys. 1993, 98, 5648–5652. (b) Lee, C. T.; Yang, W. T.; Parr, R. G. Phys. Rev. B 1988, 37, 785–789.
- (4) (a) Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. Energy-adjusted ab initio pseudopotentials for the first row transition elements. *J. Chem. Phys.* 1987, *86*, 866–872. (b) Bergner, A.; Dolg, M.; Küchle, W.; Stoll, H.; Preuss, H. *Ab initio* energy-adjusted pseudopotentials for elements of groups 13–17. *Mol. Phys.* 1993, *80*, 1431–1441.
- (5) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215-241.
- (6) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378-6396.

IX. NMR spectra

S35

S36

S38

-2.222

---3.768

ppm o

€1:070 €1:057 1:045

Restance in the second second

8 200 8

ppm ò

---3.997

 $<^{21.488}_{21.405}$

Parameter 2013

La 339 4.8 234 4.8 235 4.8 236 4.8 236 4.8 236 4.8 236 4.8 236 4.8 236 4.8 236 4.8 25 4.8 2

90 80 ppm o 170 160 150 140 130 120 110 100 70 60 50 40 30 20 10

8 238 8 238 8 238 8 238 8 228 8 28 8

-166.33 -153.26 -153.26 -144.09 -144.09 -133.13 -133.43 -133.43 -133.43 -133.43 -133.43 -133.43 -133.43 -133.43 -123.0

R 228 R 228 R 227 R 228 R

 $\sum_{\substack{2.404\\ \hline 2.299}}^{2.400}$

-2.485 -2.315 -2.286

2.336
2.233

名 8 2 8 2 8 2 2 8

133.58 133.58 133.59 133.59 133.59 132.55 123.61 123.61 112.86 117.86 117.86 ~151.11 ~149.38

S90

S91

Radia and a state of the second secon

5.0

4.5 4.0 ppm 3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

88,8389 89,8389 89,8389 89,8389 80,8389 80,8389 80,8389 80,8389 80,8389 80,8389 80,8389 80,8389 80,8389 80,8389 80,8389 80,8389 80,8389 80,838 80,80,838 80,

0,101 0,

Part 2012 Part 2

-161.21 -152.70 -152.70 -148.88 -132.60 -132.60 -132.60 -123.53 -172.6

<1.405 1.391

---34.16

7,393 7,919 7,10

X. DFT optimized Cartesian coordinates of all structures

Optimized Cartesian coordinates and single-point calculation energies ($\Delta E_{(SCF Done)}$, a.u.) for all of the stationary as well as the imaginary frequencies (IF, cm⁻¹) of transition states.

Ν	-0.439509000	-0.568795000	-0.034504000
N	0. 375900000	-1.512287000	0.009465000
C	-1.832273000	-0.917321000	-0.033895000
C	-2,252114000	-2.130898000	0. 530579000
C	-2.751842000	-0. 030339000	-0. 603869000
C	-3, 604656000	-2,452532000	0. 512342000
Н	-1. 522301000	-2.792510000	0.981976000
С	-4.102417000	-0.371231000	-0.623580000
Н	-2.405158000	0.901857000	-1.038296000
С	-4.531159000	-1.577126000	-0.064840000
Н	-3.938877000	-3.384467000	0.958410000
Н	-4.818268000	0.309381000	-1.073712000
Н	-5. 586672000	-1.833187000	-0.071571000
С	1.757488000	-1.322711000	0.130859000
С	2.356097000	-0.346472000	0.950387000
С	2.547603000	-2.256304000	-0.564678000
С	3.746419000	-0.286670000	1.018950000
С	3.932564000	-2.157776000	-0.513026000
Н	2.056079000	-3.020366000	-1.157989000
С	4.533671000	-1.171891000	0.277888000
Н	4.214492000	0.452202000	1.662495000
Н	4.544776000	-2.855380000	-1.076292000
Н	5.616630000	-1.108480000	0.332958000
Pd	0.009478000	1.387881000	-0.086540000
C1	0.578079000	1.393927000	-2.316376000
C1	-0.501386000	1.775380000	2.137980000
Н	1.748509000	0.305413000	1.568185000

TS_{Cl} , $\Delta E_{(SCF Done)} = -1620.802987$ a.u., IF = -215.46 cm⁻¹

Ν	0.785821000	0.702669000	-0.009215000
Ν	0.239088000	1.840167000	0.134012000
С	2.193813000	0.631372000	-0.084664000
С	2.962561000	1.710262000	-0.554541000
С	2.795238000	-0.575999000	0.310214000
С	4.341679000	1.566613000	-0.633236000
Н	2.468899000	2.627384000	-0.854730000
С	4.180664000	-0.697456000	0.232756000
Н	2.178957000	-1.366453000	0.729165000

С	4.951579000	0.366048000	-0.242890000
Н	4.947578000	2.388433000	-1.002924000
Н	4.656693000	-1.618981000	0.552680000
Н	6.030958000	0.264417000	-0.309172000
С	-1.151423000	1.748215000	0.145305000
С	-1.776215000	0.478764000	0.408138000
С	-1.914284000	2.889247000	-0.107653000
С	-3.180178000	0.386851000	0.275680000
С	-3. 302134000	2.764698000	-0.194563000
Н	-1.419327000	3.840768000	-0.271636000
С	-3.930908000	1.520936000	-0.020237000
Н	-3.660790000	-0.570137000	0.450291000
Н	-3.903246000	3.643231000	-0.410118000
Н	-5.011541000	1.450000000	-0.099081000
Pd	-0.380759000	-0.902615000	-0.461950000
C1	-1.661938000	-2.613641000	-1.235701000
C1	-0.200992000	-1.123530000	2. 593858000
Н	-1.300137000	-0.143644000	1.297143000

$TS_{CI}', \Delta E_{(SCF Done)} = -1620.785548 a.u., IF = -995.53 cm^{-1}$

Ν	1.140595000	0.488507000	-0.082556000
Ν	0.628132000	1.639357000	-0.129335000
С	2.551694000	0.447382000	-0.099508000
С	3.379135000	1.586069000	-0.122284000
С	3.118742000	-0.836047000	-0.093244000
С	4.758593000	1.426684000	-0.139341000
Н	2.922892000	2.569245000	-0.126385000
С	4.503915000	-0.986164000	-0.111954000
Н	2.457214000	-1.696698000	-0.078284000
С	5.324156000	0.143591000	-0.134412000
Н	5.402762000	2.301479000	-0.156424000
Н	4.941722000	-1.979976000	-0.109386000
Н	6.404612000	0.029519000	-0.147913000
С	-0.781352000	1.678117000	-0.083285000
С	-1.652939000	0.582447000	0.190851000
С	-1.331880000	2.952937000	-0.273096000
С	-3.045491000	0.798178000	0.199319000
С	-2.711481000	3.147556000	-0.250679000
Н	-0.647517000	3.776762000	-0.449950000
С	-3. 572241000	2.072673000	-0.009810000
Н	-3.710289000	-0.038478000	0.389061000
Н	-3.116763000	4.141435000	-0.417315000
Н	-4.647566000	2.222581000	0.010517000
Pd	-0.984754000	-1.314019000	0.023255000

C1	-1.514397000	-1.600110000	-2.175184000
C1	-0.780503000	-0.984030000	2.500529000
Н	-1.321289000	0.073787000	1.533403000

$TS_{CI}'', \Delta E_{(SCF Done)} = -1620.776233 a.u., IF = -1013.91 cm^{-1}$

Ν	0.857161000	0.547638000	-0.296950000
Ν	0.249493000	1.622647000	-0.049676000
С	2.270531000	0.601184000	-0.305943000
С	3.008880000	1.716467000	0.125901000
С	2.924710000	-0.544145000	-0.780247000
С	4.396620000	1.674333000	0.071550000
Н	2.483359000	2.587919000	0.498856000
С	4.316382000	-0.574352000	-0.834982000
Н	2.330314000	-1.392216000	-1.108250000
С	5.052839000	0.533066000	-0.408735000
Н	4.974737000	2.529695000	0.409503000
Н	4.823988000	-1.459883000	-1.205362000
Н	6.138402000	0.508534000	-0.443824000
С	-1.155531000	1.566695000	0.003766000
С	-1.952274000	0.399006000	0.139398000
С	-1.794550000	2.804682000	-0.180386000
С	-3.335066000	0.476203000	-0.051981000
С	-3.177066000	2.883686000	-0.305580000
Н	-1.165112000	3.684724000	-0.266619000
С	-3.943908000	1.718428000	-0.259061000
Н	-3.943170000	-0.420584000	-0.011079000
Н	-3.653189000	3.846783000	-0.461726000
Н	-5.023104000	1.764353000	-0.371915000
Pd	-0.676733000	-1.218029000	0.245041000
C1	-1.406728000	-1.935199000	-1.813491000
C1	0.159252000	-0.973340000	2.393785000
Н	-2.045397000	-0.898339000	0.967711000

$B_{Cl}, \Delta E_{(SCF Done)} = -1160.036225 a.u.$

Ν	-0.780453000	0.589176000	-0.030183000
Ν	-0.255916000	1.749073000	-0.036712000
С	-2.196049000	0.505662000	-0.018044000
С	-3.014514000	1.635468000	0.148643000
С	-2.768670000	-0.764806000	-0.170899000
С	-4.395545000	1.479450000	0.158990000
Н	-2. 555654000	2.609306000	0.269616000
С	-4.154985000	-0.908743000	-0.160458000
Н	-2.131607000	-1.635228000	-0.311521000
С	-4.970666000	0.211539000	0.005333000

Н	-5.030838000	2.350603000	0.290865000
Н	-4. 593912000	-1.894281000	-0.282424000
Н	-6.051038000	0.100458000	0.016866000
С	1.125297000	1.691535000	-0.030165000
С	1.766636000	0.422853000	-0.010126000
С	1.879330000	2.876598000	-0.044279000
С	3.153488000	0.350867000	-0.002457000
С	3.267687000	2.795618000	-0.038709000
Н	1.361368000	3.830597000	-0.058794000
С	3.894560000	1.543651000	-0.018264000
Н	3.654169000	-0.609848000	0.013966000
Н	3.865187000	3.702007000	-0.050029000
Н	4.979985000	1.486657000	-0.014980000
Pd	0.475452000	-1.041570000	0.010460000
C1	1.786276000	-2.907878000	0.070363000

HCl, $\Delta E_{(SCF Done)} = -460.798054$ a.u.

C1	0.000000000	0.00000000	0.071636000
Н	0.000000000	0.000000000	-1.217812000

$B_{Cl}'', \Delta E_{(SCF Done)} = -1620.804947$ a.u.

Ν	0.773879000	0.616245000	0.000095000
N	0.143501000	1.711385000	0.000345000
С	2.185735000	0.672747000	0.000162000
С	2.900227000	1.883980000	-0.000070000
С	2.868131000	-0.551737000	0.000425000
С	4.288790000	1.853964000	-0.000007000
Н	2.355900000	2.820797000	-0.000314000
С	4.261215000	-0.569891000	0.000506000
Н	2.305385000	-1.480381000	0.000590000
С	4.972904000	0.630894000	0.000291000
Н	4.845694000	2.786547000	-0.000206000
Н	4.787599000	-1.519409000	0.000733000
Н	6.059096000	0.618148000	0.000339000
С	-1.244061000	1.563773000	0.000264000
С	-1.883151000	0.306338000	-0.000065000
С	-2.038590000	2.721718000	0.000536000
С	-3.257654000	0.178942000	-0.000044000
С	-3. 425939000	2.613694000	0.000538000
Н	-1.538391000	3.685179000	0.000718000
С	-4.029151000	1.353817000	0.000249000
Н	-3.737361000	-0.792014000	-0.000339000
Н	-4. 039207000	3.509291000	0.000744000
Н	-5.112099000	1.267918000	0.000268000

Pd	-0.571444000	-1.173802000	-0.000249000
C1	-0.529242000	-1.378302000	-2.302590000
C1	-0.529764000	-1.379716000	2.301982000
Н	-1.649476000	-2.257706000	-0.000530000

$I_{NO3}, \Delta E_{(SCF Done)} = -1260.923318$ a.u.

Ν	0.612138000	0.835380000	-0.344351000
N	-0.017384000	1.923086000	-0.321675000
С	2.017116000	0.944698000	-0.609353000
С	2.714818000	2.111170000	-0.260714000
С	2.678229000	-0.130499000	-1.215866000
С	4.075173000	2.197379000	-0.535636000
Н	2.187704000	2.921291000	0.229266000
С	4.038788000	-0.026253000	-1.495904000
Н	2.129812000	-1.030921000	-1.471480000
С	4.738962000	1.132989000	-1.155365000
Н	4.622283000	3.092787000	-0.256172000
Н	4.551566000	-0.855924000	-1.972430000
Н	5.802854000	1.204403000	-1.362038000
С	-1.365850000	1.974360000	0.060409000
С	-1.925962000	1.207751000	1.101358000
С	-2.138343000	2.940889000	-0.609185000
С	-3.270868000	1.385040000	1.420069000
С	-3.487453000	3.077377000	-0.303378000
Н	-1.668032000	3.547575000	-1.376420000
С	-4.055976000	2.298281000	0.710554000
Н	-3.703810000	0.812623000	2.235236000
Н	-4.092925000	3.800422000	-0.841485000
Н	-5.105209000	2.421034000	0.963407000
Pd	-0.214788000	-1.035901000	-0.144305000
Н	-1.297749000	0.549513000	1.691678000
0	-1.796945000	-0.982448000	-1.495624000
Ν	-2.123699000	-2.223548000	-1.263440000
0	-1.351277000	-2.793188000	-0.394196000
0	-3.044702000	-2.770569000	-1.802357000
0	0.613077000	-0.173570000	2.585548000
Ν	1.376692000	-1.097927000	2.285448000
0	1.242071000	-1.675068000	1.079651000
0	2.263745000	-1.548828000	2.985063000

TS_{NO3} , $\Delta E_{(SCF Done)} = -1260.889536$ a.u., IF = -107.08 cm⁻¹

Ν	-0.022360000	-2.195212000	-0.204112000
Ν	-0.653800000	-1.095770000	-0.199757000
С	1.362303000	-2.016651000	-0.202190000

С	2.178670000	-3.063905000	-0.633178000
С	1.908030000	-0.758326000	0.209019000
С	3.553868000	-2.844551000	-0.736038000
Н	1.732938000	-4.011338000	-0.917895000
С	3.294812000	-0.567793000	0.064306000
Н	1.447194000	-0.275376000	1.208335000
С	4.108242000	-1.600613000	-0.404900000
Н	4.198755000	-3.645958000	-1.084231000
Н	3.732005000	0.379522000	0.367073000
Н	5.179799000	-1.448470000	-0.493475000
С	-2.070263000	-1.133817000	-0.231452000
С	-2.753106000	-2.232395000	-0.781710000
С	-2.763858000	-0.036374000	0.302789000
С	-4.141841000	-2.220841000	-0.797187000
С	-4.156754000	-0.050389000	0.289912000
Н	-2.213428000	0.778396000	0.763513000
С	-4.844996000	-1.132831000	-0.262977000
Н	-4.681170000	-3.057897000	-1.230351000
Н	-4.702218000	0.785898000	0.715588000
Н	-5.931055000	-1.132169000	-0.280228000
Pd	0.395317000	0.623266000	-0.443047000
Н	-2.189618000	-3.062111000	-1.192370000
0	1.117317000	-0.021894000	2.715869000
Ν	0.190314000	0.855325000	2.921520000
0	-0.306836000	1.457201000	1.923963000
0	-0.180966000	1.076853000	4.065388000
0	1.340483000	2.394152000	-0.909142000
Ν	0.299508000	2.922931000	-1.495762000
0	-0.716354000	2.131015000	-1.535816000
0	0.308350000	4.032580000	-1.951185000

TSual' AF	1260 886655 a u	IF – . 1380 50 cm ⁻¹
I ONO3 , DC (SCF Done)	1200.000055 a.u.	-1500.50 cm

Ν	-0.191028000	2.286583000	-0.338103000
Ν	-0.773028000	1.180021000	-0.131257000
С	1.191355000	2.248903000	-0.196967000
С	1.847672000	3.482216000	-0.091630000
С	1.889987000	1.012638000	-0.058081000
С	3.205336000	3.512236000	0.220707000
Н	1.272312000	4.394213000	-0.212947000
С	3.242419000	1.084175000	0.303665000
Н	1.898787000	-0.125242000	-0.866851000
С	3.894261000	2.316581000	0.436981000
Н	3.720134000	4.463729000	0.311749000
Н	3.812236000	0.169650000	0.437319000

Н	4.949032000	2.337072000	0.695303000
С	-2.195805000	1.191893000	-0.207890000
С	-2.912883000	2.318771000	0.224504000
С	-2.854426000	0.074894000	-0.737233000
С	-4.299775000	2.316894000	0.128254000
С	-4.243329000	0.097805000	-0.845074000
Н	-2.285608000	-0.780968000	-1.083833000
С	-4.966952000	1.209592000	-0.407785000
Н	-4.862969000	3.177726000	0.476252000
Н	-4.758564000	-0.760210000	-1.265472000
Н	-6.050800000	1.213074000	-0.478509000
Pd	0.384847000	-0.435919000	0.325180000
Н	-2.378397000	3.166208000	0.638227000
0	2.424636000	-1.208636000	-1.469015000
Ν	2.433622000	-2.170563000	-0.596191000
0	1.726718000	-2.026114000	0.481946000
0	3.095060000	-3.162641000	-0.770178000
0	-1.085032000	-1.561525000	1.179802000
Ν	-1.431002000	-2.640708000	0.467404000
0	-1.016554000	-2.717706000	-0.699396000
0	-2.154356000	-3.447117000	1.021944000

 $TS_{NO3}'', \Delta E_{(SCF Done)} = -1260.863171 a.u., IF = -1211.96 cm^{-1}$

Ν	-0.815581000	-1.808778000	-0.747371000
Ν	-1.243896000	-0.688625000	-0.360724000
С	0.586114000	-1.977327000	-0.666889000
С	1.079152000	-3.092800000	-1.353738000
С	1.464759000	-1.156154000	0.102757000
С	2.442714000	-3.383770000	-1.338134000
Н	0.376084000	-3.713324000	-1.900765000
С	2.836982000	-1.495118000	0.112793000
Н	1.001425000	-1.040372000	1.366611000
С	3.326107000	-2.589918000	-0.599074000
Н	2.816061000	-4.240416000	-1.892209000
Н	3. 523184000	-0.899280000	0.709452000
Н	4.384916000	-2.830435000	-0.570805000
С	-2.646404000	-0.522108000	-0.383650000
С	-3. 557094000	-1.514552000	-0.792236000
С	-3.111731000	0.732821000	0.038610000
С	-4.918216000	-1.239077000	-0.775206000
С	-4. 479634000	0.999092000	0.053221000
Н	-2.388142000	1.480076000	0.350813000
С	-5.382789000	0.014979000	-0.353425000
Н	-5.626723000	-2.000374000	-1.089721000

Н	-4.839025000	1.970137000	0.380594000
Н	-6.449721000	0.220067000	-0.343043000
Pd	1.039876000	0.897169000	0.170790000
Н	-3.178140000	-2.477737000	-1.114132000
0	0.576550000	-1.092009000	2.558384000
Ν	0.405086000	0.118770000	2.988473000
0	0.620288000	1.098751000	2.178836000
0	0.058294000	0.325512000	4.125786000
0	1.471155000	1.264112000	-1.811848000
Ν	1.236060000	2.546752000	-1.721166000
0	0.894991000	2.917488000	-0.534208000
0	1.333015000	3.289727000	-2.659176000

TS _{NO3} "	$\Delta E_{(\text{SCF Done})} = -120$	50.848494 a.u., IF = -	1348.43 cm ⁻¹
N	1 102957000	0.002106000	_0 15096200

Ν	1.103857000	0.902106000	-0.158263000
Ν	0.577494000	1.883955000	-0.749690000
С	2.491956000	0.741698000	-0.362407000
С	3.271797000	1.580422000	-1.182590000
С	3.084474000	-0.339982000	0.308687000
С	4.629578000	1.327513000	-1.321306000
Н	2.796105000	2.410108000	-1.692428000
С	4.449092000	-0.583812000	0.162792000
Н	2.466119000	-0.969080000	0.940659000
С	5.221416000	0.246755000	-0.650890000
Н	5.236522000	1.970031000	-1.953174000
Н	4.906729000	-1.420072000	0.682778000
Н	6.284892000	0.056569000	-0.766944000
С	-0.817973000	2.021274000	-0.576787000
С	-1.681884000	1.082019000	0.065579000
С	-1.348524000	3.198817000	-1.116016000
С	-3.062617000	1.372614000	0.111177000
С	-2.716910000	3.462134000	-1.040582000
Н	-0.667487000	3.894807000	-1.595381000
С	-3.580442000	2.552504000	-0.424505000
Н	-3.733019000	0.666689000	0.595023000
Н	-3.110167000	4.380807000	-1.466881000
Н	-4.645263000	2.757781000	-0.366969000
Pd	-1.127090000	-0.937227000	0.151199000
Н	-1.310014000	0.695130000	1.334409000
0	-1.363017000	-1.634707000	-1.773933000
Ν	-0.985727000	-2.852710000	-1.480143000
0	-0.686674000	-3.001349000	-0.236561000
0	-0.931018000	-3.727040000	-2.301169000
0	-1.085653000	-0.238310000	2.162267000

Ν	0.187141000	-0.116104000	2.765353000
0	0.450385000	0.984108000	3.194644000
0	0.841296000	-1.135553000	2.811508000

B_{NO3} , $\Delta E_{(SCF Done)} = -980.074700$ a.u.

Ν	0.737922000	-0.915922000	-0.030884000
Ν	0.219934000	-2.078303000	-0.035040000
С	2.158119000	-0.841277000	-0.016970000
С	2.758957000	0.407833000	-0.226975000
С	2.951175000	-1.981860000	0.203449000
С	4.149689000	0.513263000	-0.224034000
Н	2.147635000	1.286600000	-0.396846000
С	4.334951000	-1.860402000	0.207126000
Н	2.470870000	-2.938185000	0.369981000
С	4.940129000	-0.615356000	-0.006940000
Н	4.610746000	1.482165000	-0.390231000
Н	4.948098000	-2.739912000	0.381824000
Н	6.022942000	-0.529394000	0.000032000
С	-1.162462000	-2.047229000	-0.028933000
С	-1.803844000	-0.782075000	-0.013713000
С	-1.898800000	-3.242416000	-0.039966000
С	-3.191721000	-0.728682000	-0.007591000
С	-3.289011000	-3.172243000	-0.035262000
Н	-1.374683000	-4.193178000	-0.051482000
С	-3.927330000	-1.925450000	-0.019331000
Н	-3.706163000	0.228436000	0.004941000
Н	-3.879303000	-4.083426000	-0.043863000
Н	-5.013438000	-1.880208000	-0.016489000
Pd	-0.531098000	0.706430000	0.003999000
0	-1.759953000	2.384717000	0.047809000
Ν	-0.791407000	3.263545000	0.054758000
0	0.382911000	2.747003000	0.037286000
0	-1.008015000	4.448458000	0.076300000

HNO₃, $\Delta E_{(SCF Done)} = -280.846432$ a.u.

Н	-1.729078000	0.197181000	-0.000963000
0	-1.122821000	-0.571419000	0.000147000
N	0.147604000	0.038209000	-0.000053000
0	0.146921000	1.255007000	0.000062000
0	1.062882000	-0.741668000	-0.000043000

$\mathbf{D}_{\text{Cl}}, \Delta E_{(\text{SCF Done})} = \textbf{-1579.820675}$ a.u.

Ν	1.448434000	0.819990000	-0.462367000
Ν	2.059884000	0.244954000	-1.404333000

С	1.517475000	2.218078000	-0.311923000
С	0.553018000	2.847815000	0.498788000
С	2.543770000	2.960973000	-0.931638000
С	0.614876000	4.225611000	0.680083000
Н	-0.251845000	2.271267000	0.943159000
С	2.586120000	4.333971000	-0.740362000
Н	3.282267000	2.452127000	-1.540031000
С	1.628212000	4.968023000	0.065323000
Н	-0.128784000	4.720814000	1.295789000
Н	3.371678000	4.916736000	-1.210789000
Н	1.676497000	6.042299000	0.214476000
С	2.048810000	-1.129235000	-1.307139000
С	1.421618000	-1.762253000	-0.201670000
С	2.654276000	-1.927885000	-2.287593000
С	1.321344000	-3.133651000	-0.079223000
С	2.593770000	-3.315080000	-2.165421000
Н	3.149869000	-1.445373000	-3.123805000
С	1.940451000	-3.907728000	-1.078736000
Н	0.811620000	-3.603668000	0.752478000
Н	3.049055000	-3.941813000	-2.925109000
Н	1.897671000	-4.989640000	-0.995101000
Pd	0.765058000	-0.414170000	1.084879000
0	-1.143877000	-0.033340000	0.644522000
С	-1.644685000	-0.379941000	-0.548862000
0	-1.002200000	-0.761519000	-1.506262000
С	-3.122363000	-0.138236000	-0.530223000
С	-3.728474000	0.270910000	-1.729956000
С	-3.886462000	-0.311491000	0.640314000
С	-5.103200000	0.473895000	-1.761381000
Н	-3.122265000	0.391627000	-2.621303000
С	-5.263824000	-0.108735000	0.593519000
Н	-3. 405091000	-0.622310000	1.560609000
С	-5.870379000	0.288809000	-0.600423000
Н	-5.584988000	0.761969000	-2.690796000
Н	-5.862346000	-0.259003000	1.486521000
Н	-6.943546000	0.452039000	-0.633726000
C1	0.508930000	-1.649062000	2.960186000

TS1_{Cl}, $\Delta E_{(SCF Done)} = -1579.820544$ a.u., IF = -139.86 cm⁻¹

Ν	-1.536146000	-0.501183000	-0.578641000
Ν	-1.829066000	0.236554000	-1.565545000
С	-2.002009000	-1.826160000	-0.527651000
С	-1.410806000	-2.700286000	0.407358000
С	-3.051345000	-2.260733000	-1.365992000
С	-1.866805000	-4.010780000	0.493377000
----	--------------	--------------	--------------
Н	-0.581678000	-2.366284000	1.022440000
С	-3.490689000	-3.571617000	-1.265151000
Н	-3.499271000	-1.567691000	-2.068191000
С	-2.904717000	-4.446861000	-0.337209000
Н	-1.411852000	-4.693372000	1.203544000
Н	-4.298022000	-3.917630000	-1.902647000
Н	-3.262311000	-5.469217000	-0.262160000
С	-1.455700000	1.552982000	-1.382873000
С	-0.659402000	1.923468000	-0.255527000
С	-1.902527000	2.552684000	-2.254956000
С	-0.262722000	3.241574000	-0.031228000
С	-1.554921000	3.880245000	-2.003789000
Н	-2.529121000	2.274045000	-3.095995000
С	-0.760461000	4.220192000	-0.896279000
Н	0.398925000	3.495979000	0.787253000
Н	-1.895854000	4.659625000	-2.677456000
Н	-0.494935000	5.257959000	-0.719417000
Pd	-0.774332000	0.478147000	1.103781000
0	1.031651000	-0.522387000	0.882879000
С	1.707664000	0.068967000	-0.044007000
0	1.274748000	1.040523000	-0.718184000
С	3.072376000	-0.471258000	-0.311556000
С	3.787049000	0.010052000	-1.420559000
С	3.635096000	-1.441306000	0.534735000
С	5.062988000	-0.482652000	-1.678512000
Н	3.340400000	0.761330000	-2.061667000
С	4.914129000	-1.922092000	0.268359000
Н	3.079396000	-1.798050000	1.394426000
С	5.626180000	-1.446559000	-0.836643000
Н	5.620523000	-0.111317000	-2.532929000
Н	5.356574000	-2.666052000	0.923689000
Н	6.623461000	-1.825330000	-1.040428000
C1	-0.271878000	1.556436000	3.023290000

$P_{Cl}, \Delta E_{(SCF Done)} = -1579.876497$ a.u.

Ν	1.487230000	0.321534000	-0.625740000
Ν	1.482481000	-0.384561000	-1.664530000
С	2.063232000	1.621212000	-0.691118000
С	1.993001000	2.421018000	0.462076000
С	2.695206000	2.087830000	-1.858954000
С	2.562754000	3.691486000	0.449717000
Н	1.489851000	2.057109000	1.354731000
С	3.258191000	3.356302000	-1.854357000

Н	2.738660000	1.456497000	-2.738312000
С	3.195216000	4.158255000	-0.704964000
Н	2.511942000	4.313491000	1.337318000
Н	3.751058000	3.726544000	-2.747708000
Н	3.640813000	5.148278000	-0.714017000
С	0.875600000	-1.659624000	-1.524842000
С	-0.469429000	-1.820339000	-1.139450000
С	1.634850000	-2.794484000	-1.839660000
С	-1.026813000	-3.088155000	-1.015517000
С	1.086365000	-4.065788000	-1.682852000
Н	2.658117000	-2.661229000	-2.175744000
С	-0.237092000	-4.213608000	-1.259355000
Н	-2.076000000	-3.183890000	-0.754802000
Н	1.690177000	-4.940151000	-1.902277000
Н	-0.669509000	-5.202747000	-1.150197000
Pd	0.988673000	-0.516593000	1.211258000
0	-1.003575000	-0.005050000	1.022265000
С	-1.695014000	-0.041803000	-0.018829000
0	-1.342954000	-0.716046000	-1.121114000
С	-2.955727000	0.684552000	-0.117908000
С	-3.789253000	0.535068000	-1.244964000
С	-3.338750000	1.530530000	0.943150000
С	-4.988585000	1.234717000	-1.306671000
Н	-3.494235000	-0.120339000	-2.056233000
С	-4.542171000	2.220410000	0.870684000
Н	-2.693964000	1.630921000	1.809311000
С	-5.365108000	2.074157000	-0.252178000
Н	-5.633275000	1.125174000	-2.172838000
Н	-4.842594000	2.870939000	1.685745000
Н	-6.305332000	2.615238000	-0.304744000
C1	0.823573000	-1.556057000	3. 197090000

D_{NO3} , $\Delta E_{(SCF Done)} = -1399.85299$ a.u.

Ν	1.591608000	0.504028000	-0.751016000
Ν	2.048922000	-0.256002000	-1.650998000
С	1.890003000	1.879016000	-0.759276000
С	1.111228000	2.740586000	0.038833000
С	2.954211000	2.376627000	-1.543128000
С	1.392774000	4.102151000	0.038201000
Н	0.290503000	2.352527000	0.631030000
С	3.217765000	3.736873000	-1.528794000
Н	3.546458000	1.693172000	-2.139860000
С	2.442191000	4.601446000	-0.739793000
Н	0.794772000	4.773488000	0.645525000

Н	4.033709000	4.131446000	-2.125867000
Н	2.663164000	5.664367000	-0.730167000
С	1.812596000	-1.595694000	-1.418329000
С	1.059284000	-1.968657000	-0.273522000
С	2.312925000	-2.585921000	-2.271141000
С	0.748766000	-3.290234000	0.003108000
С	2.038487000	-3.923171000	-1.976415000
Н	2.903364000	-2.300122000	-3.135574000
С	1.276924000	-4.271726000	-0.851703000
Н	0.134874000	-3.564013000	0.855824000
Н	2.412491000	-4.703296000	-2.631394000
Н	1.073960000	-5.317425000	-0.640919000
Pd	0.733537000	-0.434468000	0.901382000
0	0.061856000	-1.325109000	2.621781000
Ν	0.070321000	-0.230885000	3. 380712000
0	0.504364000	0.802307000	2.768934000
0	-0.299438000	-0.267624000	4.515049000
0	-1.126500000	0.174503000	0.368647000
С	-1.710294000	-0.390004000	-0.681726000
0	-1.187287000	-1.133957000	-1.492641000
С	-3.128112000	0.102575000	-0.774499000
С	-3.688146000	0.221909000	-2.056338000
С	-3.873049000	0.435829000	0.371546000
С	-5.007634000	0.642881000	-2.183341000
Н	-3.098320000	-0.045987000	-2.926037000
С	-5.196192000	0.849297000	0.229803000
Н	-3. 425335000	0.349442000	1.354788000
С	-5.760494000	0.960112000	-1.042851000
Н	-5.459034000	0.708497000	-3.168722000
Н	-5.783236000	1.089076000	1.110839000
Н	-6.789386000	1.290037000	-1.151910000

$TS1_{NO3}$, $\Delta E_{(SCF Done)} = -1399.852805$ a.u., IF = -47.6 cm⁻¹

Ν	-1.487003000	-0.368409000	-0.915495000
N	-1.724835000	0.443194000	-1.857474000
С	-1.939580000	-1.695465000	-0.994850000
С	-1.408806000	-2.639739000	-0.091819000
С	-2.910312000	-2.069262000	-1.951842000
С	-1.841792000	-3.958611000	-0.159845000
Н	-0.658175000	-2.346916000	0.633044000
С	-3.328301000	-3.388709000	-2.001646000
Н	-3.311780000	-1.324161000	-2.628141000
С	-2.798898000	-4.334576000	-1.108243000
Н	-1.434969000	-4.693114000	0.527191000

Н	-4.074098000	-3.688580000	-2.730832000
Н	-3.139987000	-5.364420000	-1.151571000
С	-1.370783000	1.744978000	-1.559209000
С	-0.664424000	2.005531000	-0.348051000
С	-1.734548000	2.807931000	-2.390900000
С	-0.280967000	3.296920000	0.011709000
С	-1.389708000	4.106785000	-2.007785000
Н	-2.289804000	2.609627000	-3.301885000
С	-0.689268000	4.349849000	-0.814014000
Н	0.305264000	3.478877000	0.906843000
Н	-1.661904000	4.941459000	-2.645701000
Н	-0. 433669000	5.368205000	-0.537599000
Pd	-0.787774000	0.466620000	0.859321000
0	-0.264675000	1.261234000	2.665384000
Ν	-0.583477000	0.201145000	3.407156000
0	-1.084361000	-0.754595000	2.725713000
0	-0.401718000	0.201411000	4.586210000
0	1.069503000	-0.411725000	0.585386000
С	1.796741000	0.207183000	-0.299350000
0	1.423664000	1.177401000	-0.979441000
С	3.172791000	-0.368037000	-0.473135000
С	3.945505000	0.079691000	-1.556081000
С	3.679366000	-1.325790000	0.419973000
С	5.227854000	-0.431175000	-1.737746000
Н	3.539361000	0.822519000	-2.232908000
С	4.965744000	-1.824624000	0.229392000
Н	3.077034000	-1.661311000	1.256219000
С	5.737834000	-1.381631000	-0.847971000
Н	5.832417000	-0.081546000	-2.569178000
Н	5.365324000	-2.559157000	0.921933000
Н	6.739785000	-1.774813000	-0.993033000

P_{NO3} , $\Delta E_{(SCF Done)} = -1399.926669$ a.u.

Ν	-0.822740000	-0.855811000	-0.931880000
Ν	0.151834000	-0.272087000	-1.489471000
С	-0.857893000	-2.262743000	-0.871697000
С	-2.043710000	-2.870482000	-0.422690000
С	0.258002000	-3.034186000	-1.255342000
С	-2.116159000	-4.258386000	-0.366567000
Н	-2.893988000	-2.263583000	-0.130094000
С	0.167973000	-4.416188000	-1.189321000
Н	1.164460000	-2.543672000	-1.589095000
С	-1.014364000	-5.029778000	-0.747324000
Н	-3.028278000	-4.736751000	-0.025553000

Н	1.019664000	-5.023857000	-1.477808000
Н	-1.071613000	-6.112900000	-0.697645000
С	-0.038577000	1.128235000	-1.421194000
С	1.020737000	1.976453000	-1.057515000
С	-1.328639000	1.678956000	-1.723004000
С	0.797802000	3.349848000	-0.992698000
С	-1.517341000	3.081952000	-1.648573000
Н	-2.013869000	1.093368000	-2.337959000
С	-0.462575000	3.902265000	-1.279759000
Н	1.625480000	3.987144000	-0.696902000
Н	-2.481611000	3.501962000	-1.916413000
Н	-0.597290000	4.977398000	-1.224325000
Pd	-2.010823000	0.464892000	0.069410000
0	-3.162703000	1.674367000	1.256841000
Ν	-3.515036000	0.696246000	2.051410000
0	-2.985872000	-0.437468000	1.684320000
0	-4.231527000	0.828357000	2.990180000
0	1.437225000	0.351235000	1.016352000
С	2.403667000	0.663421000	0.356896000
0	2.268138000	1.493009000	-0.767003000
С	3.801686000	0.272621000	0.587786000
С	4.846602000	0.666200000	-0.265939000
С	4.072460000	-0.522882000	1.715137000
С	6.149732000	0.261144000	0.009609000
Н	4.637498000	1.281601000	-1.133415000
С	5.377913000	-0.920342000	1.984022000
Н	3.254426000	-0.813018000	2.366051000
С	6.415870000	-0.529337000	1.131861000
Н	6.959106000	0.563048000	-0.647944000
Н	5.589300000	-1.531249000	2.856218000
Н	7.434982000	-0.839582000	1.343988000