Development of Oxetane Modified Building Blocks for Peptide Synthesis

Stefan Roesner, Jonathan D. Beadle, Leo K. B. Tam, Ina Wilkening, Guy J. Clarkson, Piotr Raubo and Michael Shipman

Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, U.K.

E-mail: <u>M.Shipman@warwick.ac.uk</u>

Table of Contents

1. General experimental information	S2
2. Synthesis and characterisation of oxetane modified alanine building blocks	S3
3. Solid phase peptide synthesis	S12
4. General procedures	S18
5. Synthesis and characterisation of oxetane modified glycine building blocks	S21
5.1 Synthesis of Fmoc-GOx-Glu(<i>t</i> Bu)-OCumyl	S21
5.2 Synthesis of Fmoc-GOx-Ile-OCumyl	S22
5.3 Synthesis of Fmoc-GOx-Leu-OCumyl	S24
5.4 Synthesis of Fmoc-GOx-Asn(Trt)OCumyl	S25
5.5 Synthesis of Fmoc-GOx-Gln(Trt)-OCumyl	S27
5.6 Synthesis of Fmoc-GOx-Trp(Boc)-OCumyl	S28
5.7 Synthesis of Fmoc-GOx-Tyr(<i>t</i> Bu)-OCumyl	S30
5.8 Synthesis of Fmoc-GOx-Cys(Trt)-OCumyl	S31
5.9 Synthesis of Fmoc-GOx-Met-OCumyl	S33
5.10 Synthesis of Fmoc-GOx-His(Trt)-OCumyl	S34
5.11 Synthesis of Fmoc-GOx-Ser(Trt)-OBn	S36
5.12 Synthesis of Fmoc-GOx-Thr(Trt)-OBn	S37
5.13 Synthesis of Fmoc-GOx-His(Trt)-OBn	S38
6. Peptide couplings of selected oxetane modified glycine building blocks	S39
7. References	S41
8. ¹ H NMR and ¹³ C NMR spectra	S42

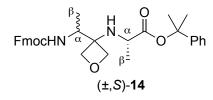
1. General experimental information

Reaction mixtures were stirred magnetically. All chemicals were purchased from Acros Organics, Alfa Aesar, Fluorochem or Sigma-Aldrich and used as received unless otherwise mentioned. Anhydrous solvents were purchased from Sigma-Aldrich or Acros Organics in Sure-SealTM bottles. All other solvents were reagent grade and used as received. Petroleum ether (PE) refers to the fraction that boils in the range of 40–60 °C. All amino acids are of *L*-configuration unless otherwise stated. Fmoc-Ala-OCumyl,¹ NO₂-GOx-Thr(*t*Bu)-OCumyl¹ and 3-(1-nitroethylidene)oxetane (**5**)² were prepared following known literature procedures.

¹H Nuclear Magnetic Resonance (NMR) spectra were recorded in CDCl₃ on a Bruker HD300 (300 MHz), HD400 (400 MHz), AV500 (500 MHz) or AV600 (600 MHz) Fourier transform spectrometer. Chemical shifts ($\delta_{\rm H}$) are quoted in parts per million (ppm) and referred to the residual protic solvent signal of CDCl₃ (7.26 ppm). ¹H NMR coupling constants (*J*) are reported in hertz (Hz) and refer to apparent multiplicities. Data are reported as follows: chemical shift, multiplicity (s = singlet, br. s = broad singlet, d = doublet, t = triplet, q = quartet, quint = quintet, m = multiplet, dd = doublet of doublet, etc.), coupling constant, integration, and assignment. ¹³C NMR spectra were recorded at 101, 126 or 151 MHz. Chemical shifts ($\delta_{\rm C}$) are quoted in ppm referenced to CDCl₃ (77.16 ppm). NMR assignments were deduced using 2D experiments (COSY, HSQC and HMBC).

Low-resolution mass spectra were recorded on an Agilent 6130B single Quad (ESI) instrument. High-resolution mass spectra were recorded using a Bruker MaXis Impact. All infrared spectra were recorded on the neat compounds using a Bruker ALPHA-Platinum FTIR spectrometer, irradiating between 4000 cm⁻¹ and 600 cm⁻¹. Only strong and selected absorbances (v_{max}) are reported. Analytical TLC was performed on aluminium backed silica plates (Merck, Silica Gel 60 F₂₅₄, 0.25 mm). Compounds were visualised by fluorescence quenching or by staining the plates with 5% solution of phosphomolybdic acid (H₃PMo₁₂O₄₀) in EtOH or 1% solution of potassium permanganate (KMnO₄) in water followed by heating. Flash column chromatography was performed on silica gel (Aldrich, Silica Gel 60, 40–63 µm). All mixed solvent eluents are reported as v/v solutions. Optical rotations were obtained using an AA-1000 polarimeter at 589 nm (Na D-line) in a cell with a path length of 2 dm. Specific rotation values are given in (deg mL)/(g dm). Melting points were measured with a Gallenkamp melting point apparatus.

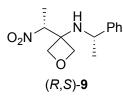
2. Synthesis and characterisation of oxetane modified alanine building blocks


2-Phenylpropan-2-yl [3-((±)-1-nitroethyl)oxetan-3-yl]-L-alaninate (7)

$$O_2 N \xrightarrow{\xi} N \xrightarrow{\alpha} O \xrightarrow{\beta} O$$

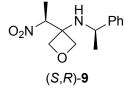
Fmoc-Ala-OCumyl¹ (976 mg, 2.27 mmol, 1.5 equiv) in 50% diethylamine in CH₂Cl₂ (5.0 mL) was stirred at room temperature for 1 h. The reaction mixture was concentrated under reduced pressure and the resulting residue repeatedly dissolved in CH₂Cl₂ $(3 \times 20 \text{ mL})$ and concentrated under reduced pressure to give

crude amine 6. To 6 in CH₂Cl₂ (7.5 mL) was added 3-(1-nitroethylidene)oxetane $(5)^2$ (196 mg, 1.51 mmol, 1.0 equiv) in CH₂Cl₂ (7.5 mL). The reaction mixture was stirred at room temperature until consumption of the nitroalkene (¹H NMR monitoring, 8 h) and then concentrated under reduced pressure to give a crude product which ¹H-NMR showed to consist of a 50:50 mixture of diastereoisomers. Purification by column chromatography (SiO₂, PE/EtOAc 9:1 \rightarrow 4:1) gave 7 (436 mg, 1.30 mmol, 86%) as a colourless oil as a 55:45 mixture of diastereoisomers. **R**_f (PE/EtOAc 4:1) 0.29; ¹**H** NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 7.40–7.30 (m, 4H, ArH), 7.30–7.22 (m, 1H, ArH), 4.97–4.86 (m, 1H, NO₂CH), 4.61–4.57 (m, 1.55H, 2 × major diastereoisomer OCHH-Ox and minor diastereoisomer OCHH-Ox), 4.55 (d, J = 7.5 Hz, 1H, OCHH-Ox), 4.48 (d, J = 7.6 Hz, 0.45H, minor diastereoisomer OCHH-Ox), 4.45 (d, J = 7.6 Hz, 0.45H, minor diastereoisomer OCHH-Ox), 4.41 (d, J = 7.8 Hz, 0.55 H, major diastereoisomer OCHH-Ox), 3.79–3.69 (m, 0.45H, minor diastereoisomer CHa-Ala), 3.68– 3.57 (m, 0.55H, major diastereoisomer CHa-Ala), 2.36 (br. s, 0.45H, minor diastereoisomer NH), 2.19 (br. s, 0.55H, major diastereoisomer NH), 1.81–1.77 (m, 6H, 2 × CH₃, cumyl), 1.68 (d, J = 7.1 Hz, 1.35H, minor diastereoisomer NO₂CHCH₃), 1.67 (d, J = 7.0 Hz, 1.65H, major diastereoisomer NO₂CHCH₃), 1.34 (d, J = 7.1 Hz, 1.35H, minor diastereoisomer CH₃ β -Ala), 1.32 (d, J = 7.1 Hz, 1.65H, major diastereoisomer CH₃ β -Ala); ¹³C NMR (126 MHz, CDCl₃) $\delta_{\rm C}$ 174.9 (C=O), 174.7 (C=O), 145.1 (C), 128.52 (2 × CH), 128.5 (2 × CH), 127.53 (CH), 127.48 (CH), 124.39 (2 × CH), 124.37 (2 × CH), 86.9 (NO₂CH), 85.3 (NO₂CH), 82.83 (C, cumyl), 82.78 (C, cumyl), 78.2 (OCH₂), 77.9 (OCH₂), 77.8 (OCH₂), 76.9 (OCH₂), 62.6 (C, Ox), 62.2 (C, Ox), 51.9 (CH, α-Ala), 51.7 (CH, α-Ala), 28.52 (CH₃, cumyl), 28.47 (CH₃, cumyl), 28.45 (CH₃, cumyl), 28.3 (CH₃, cumyl), 21.3 (CH₃, NO₂CHCH₃), 21.0 (CH₃, NO₂CHCH₃), 14.0 (CH₃, β -Ala), 13.5 (CH₃, β -Ala); v_{max} (neat) = 3342 (NH), 2981, 2937, 2883, 1730 (C=O), 1549, 1448, 1366, 1271, 1132, 1101 cm⁻¹; MS (ESI⁺) *m/z* 359 [M+Na]⁺; **HRMS** (ESI⁺) calcd. for C₁₇H₂₄N₂O₅Na [M+Na]⁺ 359.1577, found 359.1571.


Fmoc-L-AOx-Ala-OCumyl and Fmoc-D-AOx-Ala-OCumyl ((±,S)-14)

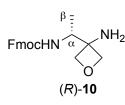
Following general procedure 4, 7 (377 mg, 1.12 mmol, 0.88 mmol, 79%) as a white solid. HPLC analysis showed a 58:42 mixture of diastereoisomers. $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂/EtOAc 85:5)

0.47; ¹**H NMR** (500 MHz, CDCl₃) $\delta_{\rm H}$ 7.76 (d, J = 7.6 Hz, 2H, ArH), 7.63–7.54 (m, 2H, ArH), 7.45-7.20 (m, 9H, ArH), 5.69-4.91 (m, 1H, NH), 4.78-4.02 (m, 8H, CHCH₂-Fmoc, CHa-AOx, $2 \times \text{OCH}_2$ -Ox), 4.01–3.63 (m, 1H, CH α -Ala), 1.82 (s, 3H, CH₃, cumyl), 1.79 (s, 1.8H, major diastereoisomer CH₃, cumyl), 1.78 (s, 1.2H, minor diastereoisomer CH₃, cumyl), 1.38 $(d, J = 6.9 \text{ Hz}, 3H, CH_3\beta$ -Ala), 1.23–0.90 (m, 3H, CH_3\beta-AOx); ¹³C NMR (126 MHz, CDCl₃) δ_C 175.6 (2 × C=O), 156.5 (C=O, Fmoc), 156.3 (C=O, Fmoc), 145.17 (C), 145.15 (C), 144.12 (C), 144.09 (C), 144.06 (C), 141.5 (C), 128.53 (CH), 128.48 (CH), 127.82 (CH), 127.79 (CH), 127.49 (CH), 127.47 (CH), 127.2 (CH), 125.36 (CH), 125.27 (CH), 125.19 (CH), 124.4 (CH), 124.3 (CH), 120.12 (CH), 120.08 (CH), 82.80 (C, cumyl), 82.78 (C, cumyl), 79.1 (OCH₂), 79.0 (OCH₂), 78.9 (OCH₂), 77.9 (OCH₂), 66.8 (CH₂, Fmoc), 66.7 (CH₂, Fmoc), 62.5 (C, Ox), 62.4 (C, Ox), 52.1 (CH, α-Ala), 52.0 (CH, Fmoc or α-AOx), 51.2 (CH, α-Ala), 47.5 (CH, Fmoc or α-AOx), 47.4 (CH, Fmoc), 28.8 (CH₃, cumyl), 28.2 (CH₃, cumyl), 28.1 (CH₃, cumyl), 21.7 (CH₃, β-Ala), 20.8 (CH₃, β-Ala), 14.9 (CH₃, β-AOx), 14.6 (CH₃, β-AOx); v_{max} (neat) = 3330 (NH), 2976, 2940, 2875, 1718 (C=O), 1496, 1448, 1241, 1132, 1101 cm⁻¹; MS(ESI⁺) m/z 529 [M+H]⁺, 551 [M+Na]⁺; **HRMS** (ESI⁺) calcd. for C₃₂H₃₆N₂O₅Na [M+Na]⁺ 551.2516, found 551.2515; HPLC (Chiralcel OD-H (0.46 cm × 25 cm, 5 μm), 20% isopropanol in hexane, 25 °C, 1.0 mL/min, $\lambda = 254$ nm) $t_{\rm R} = 54$ min (major), 93 min (minor).


3-((R)-1-Nitroethyl)-N-((S)-1-phenylethyl)oxetan-3-amine ((R,S)-9)

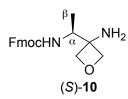
 $O_2 N \xrightarrow{\mathsf{N}} Ph \qquad \text{To 3-(1-nitroethylidene)oxetane (5)}^2 (100 \text{ mg, } 0.77 \text{ mmol, } 1.0 \text{ equiv) in} \\ CH_2 Cl_2 (8.0 \text{ mL}) \text{ was added } (S)-(-)-\alpha-\text{methylbenzylamine } ((S)-8) \\ (120 \ \mu\text{L}, \ 0.93 \text{ mmol, } 1.2 \text{ equiv) and the mixture was stirred at room} \end{cases}$ temperature for 16 h. The reaction mixture was concentrated under reduced pressure to give a crude product which ¹H NMR showed to

consist of a 60:40 mixture of diastereoisomers. Purification by column chromatography (SiO₂, PE/EtOAc 7:1) gave the major diastereoisomer (R,S)-9 (108 mg, 0.43 mmol, 56%, dr >95:5) as a white solid. R_f (PE/EtOAc 4:1) 0.29; mp 76–79 °C; ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 7.39–7.29 (m, 4H, ArH), 7.28–7.21 (m, 1H, ArH), 5.05 (q, J = 6.9 Hz, 1H, NO₂CH), 4.53 (d, J = 7.2 Hz, 1H, OCHH-Ox), 4.43 (d, J = 7.6 Hz, 1H, OCHH-Ox), 4.41 (d, J = 7.6 Hz, 1H, OCH*H*-Ox), 4.30–4.22 (m, 2H, OCH*H*-Ox, NHC*H*), 1.84 (br. s, 1H, NH), 1.73 (d, *J* = 6.9 Hz, 3H, NO₂CHCH₃), 1.37 (d, J = 6.7 Hz, 3H, NHCHCH₃); ¹³C NMR (126 MHz, CDCl₃) $\delta_{\rm C}$ 146.7 (C), 128.9 (CH), 127.4 (CH), 126.3 (CH), 86.2 (NO₂CH), 77.8 (OCH₂), 76.9 (OCH₂), 62.4 (C, Ox), 52.7 (NHCH), 26.3 (NO₂CHCH₃), 14.4 (NHCHCH₃); v_{max} (neat) = 3330 (NH), 2977, 2968, 2925, 2881, 1546, 1389, 1289, 974 cm⁻¹; MS (ESI⁺) m/z 251 [M+H], 273 $[M+Na]^+$, 289 $[M+K]^+$; **HRMS** (ESI⁺) calcd. for $C_{13}H_{19}N_2O_3$ $[M+H]^+$ 251.1390, found 251.1397; $[\alpha]_{D}^{18}$ -10.3 (*c* 0.60, CHCl₃).


3-((S)-1-Nitroethyl)-N-((R)-1-phenylethyl)oxetan-3-amine ((S,R)-9)

 $O_2 N \xrightarrow{\mathsf{N}} \mathsf{Ph} \qquad \begin{array}{c} \text{To } 3-(1-\text{nitroethylidene}) \text{oxetane } (\mathbf{5})^2 \ (1.06 \text{ g}, 8.17 \text{ mmol}, 1.0 \text{ equiv}) \text{ in} \\ CH_2 Cl_2 \ (82 \text{ mL}) \text{ was added } (R)-(+)-\alpha-\text{methylbenzylamine } ((R)-\mathbf{8}) \\ (1.25 \text{ mL} \ 9.81 \text{ mmol} \ 1.2 \text{ cm/s}) \end{array}$ (1.25 mL, 9.81 mmol, 1.2 equiv) and the mixture was stirred at room temperature for 16 h. The reaction mixture was concentrated under reduced pressure to give a crude product which ¹H NMR showed to

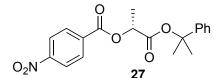
consist of 60:40 mixture of diastereoisomers. Purification by column chromatography (SiO₂, PE/EtOAc 9:1 \rightarrow 85:15) gave the major diastereoisomer (S,R)-9 (1.03 g, 4.12 mmol, 50%, dr >95:5) as a white solid. mp 71–74 °C; $[\alpha]_D^{19}$ +7.9 (c 0.19, CHCl₃). Other analytical data as described for (R,S)-9.


Fmoc-D-AOx-NH₂ ((*R*)-10)

To (*R*,*S*)-9 (531 mg, 2.12 mmol, 1.0 equiv) in MeOH (21 mL) was added FmocHN α NH₂ NH₂ 20% Pd(OH)₂/C (212 mg). The reaction mixture was stirred under an atmosphere of H₂ (balloon) at room temperature for 4 d. The mixture was filtered through a plug of Celite eluting with MeOH and the filtrate was concentrated under reduced pressure to give the crude diamine. To

the crude diamine were added CH₂Cl₂ (10 mL), NaHCO₃ (356 mg, 4.24 mmol, 2.0 equiv) and Fmoc N-hydroxysuccinimide ester (715 mg, 2.12 mmol, 1.0 equiv) and the mixture was stirred at room temperature for 2 h. The reaction mixture was diluted with EtOAc and washed with saturated Na₂CO₃ (2 \times 20 mL) and brine (10 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by column chromatography (SiO₂, EtOAc \rightarrow CH₂Cl₂ \rightarrow CH₂Cl₂/MeOH 19:1) gave (R)-10 (415 mg, 1.23 mmol, 58%) as a sticky white gum. **R**_f (CH₂Cl₂/MeOH 9:1) 0.44; ¹**H** NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 7.77 (d, J = 7.4 Hz, 2H, ArH), 7.59 (d, J = 7.4 Hz, 2H, ArH), 7.40 (t, J = 7.4 Hz, 2H, ArH), 7.32 (t, J = 7.4 Hz, 2H, ArH), 5.13 (d, J = 8.2 Hz, 1H, NH), 4.57 (d, J = 6.6 Hz, 1H, OCHH-Ox), 4.54 (d, J = 6.3 Hz, 1H, OCHH-Ox), 4.49–4.37 (m, 2H, CH₂-Fmoc), 4.36–4.26 (m, 2H, 2 × OCHH-Ox), 4.26– 4.15 (m, 2H, CH-Fmoc, CH α -AOx), 1.57 (s, 2H, NH₂), 1.11 (d, J = 6.5 Hz, 3H, CH₃ β -AOx). *N.B.* NH₂ overlapping with H₂O signal; ¹³C NMR (126 MHz, CDCl₃) $\delta_{\rm C}$ 156.3 (C=O, Fmoc), 144.1 (C), 144.0 (C), 141.5 (C), 127.8 (CH), 127.2 (CH), 125.2 (CH), 125.1 (CH), 120.14 (CH), 120.10 (CH), 83.0 (OCH₂), 82.4 (OCH₂), 66.7 (CH₂, Fmoc), 58.9 (C, Ox), 51.5 (CH, α-AOx), 47.5 (CH, Fmoc), 14.8 (CH₃, β-AOx). N.B. One aromatic C signal not observed; v_{max} (neat) = 3298 (NH), 2946, 2868, 1700 (C=O), 1529, 1448, 1242, 1050, 970 cm⁻¹; MS (ESI⁺)m/z 339 [M+H]⁺, 361 [M+Na]⁺; **HRMS** (ESI⁺) calcd. for C₁₈H₂₀N₅NaO₂ [M+Na]⁺ 361.1509, found 361.1511; **[α**]¹⁸_D –9.6 (*c* 0.45, CHCl₃).

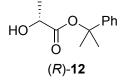
Fmoc-L-AOx-NH $_2$ ((S)-10)


To (*S*,*R*)-9 (605 mg, 2.42 mmol, 1.0 equiv) in MeOH (24 mL) was added FmocHN α NH₂ NH₂ 20% Pd(OH)₂/C (242 mg). The reaction mixture was stirred under an atmosphere of H₂ (balloon) at room temperature for 4 d. The mixture was filtered through a plug of Celite eluting with MeOH and the filtrate was concentrated under reduced pressure to give the crude diamine. To

the crude diamine were added CH₂Cl₂ (10 mL), NaHCO₃ (407 mg, 4.84 mmol, 2.0 equiv) and Fmoc N-hydroxysuccinimide (816 mg, 2.42 mmol, 1.0 equiv) and the mixture was stirred at room temperature for 2 h. The reaction mixture was diluted with EtOAc and washed with saturated Na₂CO₃ (2 × 20 mL) and brine (10 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by column chromatography (SiO₂, EtOAc \rightarrow CH₂Cl₂ \rightarrow CH₂Cl₂/MeOH 19:1) gave (S)-10 (407 mg, 1.20 mmol, 50%) as a sticky white gum. $[\alpha]_D^{22}$ +7.1 (*c* 0.47, CHCl₃). Other analytical data as described for (*R*)-10.

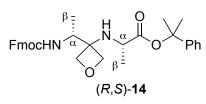
2-Phenylpropan-2-yl (S)-2-hydroxypropanoate ((S)-12)

Following general procedure 1, L-lactic acid (1.05 g, 11.6 mmol, 1.0 equiv) gave, after column chromatography (SiO₂, PE/EtOAc $9:1\rightarrow 85:15$), (S)-12 (1.47 g, 7.07 mmol, 61%) contaminated with traces of (S)-**12** 2-phenyl-2-propanol (~19:1 by ¹H NMR) as a colourless oil. $\mathbf{R}_{\mathbf{f}}$ (PE/EtOAc 85:15) 0.30; ¹H NMR (500 MHz, CDCl₃) δ_H 7.39–7.32 (m, 4H, ArH), 7.31–7.24 (m, 1H, ArH), 4.24 (q, J = 6.9 Hz, 1H, CH), 2.76 (br. s, 1H, OH), 1.82 (s, 3H, CH₃, cumyl), 1.80 (s, 3H, CH₃, cumyl), 1.45 (d, J = 6.9 Hz, 3H, CHCH₃); ¹³C NMR (126 MHz, CDCl₃) $\delta_{\rm C}$ 174.6 (C=O), 145.1 (C), 128.5 (CH), 127.5 (CH), 124.3 (CH), 83.5 (C, cumyl), 67.0 (CH), 28.8 (CH₃, cumyl), 28.4 (CH₃, cumyl), 20.6 (CHCH₃); v_{max} (neat) = 3358 (OH), 3058, 2977, 2937, 1721 (C=O), 1446, 1368, 1219, 1123, 1042 cm⁻¹; MS (ESI⁺) *m/z* 231 [M+Na]⁺, 439 [2M+Na]⁺; **HRMS** (ESI⁺) calcd. for C₁₂H₁₆NaO₃ [M+Na]⁺ 231.0992, found 231.0994; $[\alpha]_{D}^{22}$ -3.5 (*c* 0.50, CHCl₃).


(R)-1-Oxo-1-[(2-phenylpropan-2-yl)oxy]propan-2-yl 4-nitrobenzoate (27)

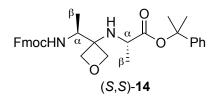
To (S)-12 (1.27 g, 6.08 mmol, 1.0 equiv) in CH₂Cl₂ (61 mL) O Ph was added triphenylphosphine (2.39 g, 9.12 mmol, 1.5 equiv) and 4-nitrobenzoic acid (1.52 g, 9.12 mmol, 1.5 equiv) and the reaction mixture cooled to 0 °C. Diethyl

azodicarboxylate (1.44 mL, 9.12 mmol, 1.5 equiv) was added dropwise and the mixture stirred at room temperature for 16 h. The reaction mixture was concentrated under reduced pressure and the crude mixture dissolved in EtOAc (150 mL). The organic layer was washed with a saturated solution of NaHCO₃ (3×50 mL) and brine (25 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by column chromatography (SiO₂, PE/EtOAc 9:1) gave 27 (2.06 g, 5.77 mmol, 95%) as a yellow oil. R_f (PE/EtOAc 9:1) 0.30; ¹H NMR (500 MHz, CDCl₃) δ_H 8.30–8.26 (m, 2H, ArH), 8.26–8.21 (m, 2H, ArH), 7.39–7.29 (m, 4H, ArH), 7.28–7.22 (m, 1H, ArH), 5.35 (q, J = 7.1 Hz, 1H, CH), 1.82 (s, 3H, CH₃, cumyl), 1.80 (s, 3H, CH₃, cumyl), 1.67 (d, J = 7.1 Hz, 3H, CHCH₃); ¹³C NMR (126) MHz, CDCl₃) δ_C 168.7 (C=O), 164.2 (C=O), 150.8 (C), 145.0 (C), 135.2 (C), 131.1 (CH), 128.5 (CH), 127.5 (CH), 124.3 (CH), 123.6 (CH), 83.7 (C, cumyl), 70.3 (CH), 28.8 (CH₃, cumyl), 28.3 (CH₃, cumyl), 17.0 (CHCH₃); v_{max} (neat) = 3112, 3058, 2985, 2940, 2877, 1753 (C=O), 1726 (C=O), 1525, 1346, 1268, 1213, 1098 cm⁻¹; MS (ESI⁺) *m/z* 380 [M+Na]⁺, 396 [M+K]⁺; **HRMS** (ESI⁺) calcd. for C₁₉H₁₉NNaO₆ [M+Na]⁺ 380.1105, found 380.1110; $[\alpha]_{D}^{22}$ +6.9 (c 1.60, CHCl₃).


2-Phenylpropan-2-yl (R)-2-hydroxypropanoate ((R)-12)

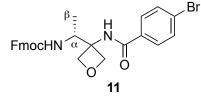
To 27 (3.12 g, 8.74 mmol, 1.0 equiv) in MeOH (87 mL) was added K₂CO₃ (1.27 g, 9.17 mmol, 1.05 equiv) and the reaction mixture stirred at room temperature for 5 min before it was quenched with a saturated solution of aqueous NH₄Cl (150 mL). The resulting mixture was extracted with EtOAc $(3 \times 150 \text{ mL})$ and the combined organic layers were washed with brine (50 mL), dried

over MgSO₄, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography (SiO₂, PE/EtOAc 9:1 \rightarrow 85:15) to give (R)-12 (1.52 g, 7.32 mmol, 84%) as a colourless oil that crystallised to a white solid upon storage at -20 °C. **mp** 58–60 °C; ¹**H NMR** (500 MHz, CDCl₃) $\delta_{\rm H}$ 7.38–7.32 (m, 4H, ArH), 7.31–7.24 (m, 1H ArH), 4.23 (qd, J = 6.8, 5.4 Hz, 1H, CH), 2.76 (d, J = 5.4 Hz, 1H, OH), 1.82 (s, 3H, CH₃, cumyl), 1.80 (s, 3H, CH₃, cumyl), 1.45 (d, J = 6.8 Hz, 3H, CHCH₃); $[\alpha]_D^{21} + 1.0$ (c 0.70, CHCl₃). Other analytical data as described for (*S*)-12.


Fmoc-D-AOx-Ala-OCumyl ((R,S)-14)

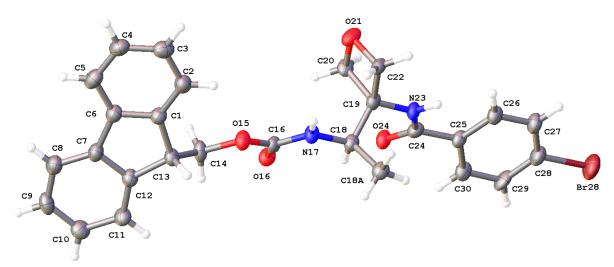
was added DIPEA (825 µL, 4.74 mmol, 2.15 equiv) followed by the dropwise addition of a solution of triflic anhydride

(408 µL, 2.42 mmol, 1.1 equiv) in CH₂Cl₂ (2.5 mL). The reaction mixture was allowed to reach room temperature and stirred for 1 h. Petroleum ether (12.5 mL) was added and the reaction mixture was filtered through a plug of silica gel eluting with 50% CH₂Cl₂ in petroleum ether. The eluent was concentrated under reduced pressure to give triflate 13 (629 mg, 1.85 mmol, 84%), which was used immediately without further purification. To triflate 13 in MeCN (4.0 mL) was added a solution of (R)-10 (377 mg, 1.12 mmol, 1.0 equiv) and DIPEA (322 µL, 1.85 mmol, 1.65 equiv) in MeCN (4.0 mL). The reaction mixture was stirred at 30 °C for 20 h and then concentrated under reduced pressure. The crude material was purified by repeat column chromatography (SiO₂, PE/EtOAc 7:3 \rightarrow 3:2; CH₂/EtOAc 9:1 \rightarrow 4:1) to give (R,S)-14 (340 mg, 0.64 mmol, 57%, dr 98:2) as a white solid. R_f (PE/EtOAc 7:3) 0.21; **mp** 63–65 °C; ¹**H NMR** (500 MHz, CDCl₃) $\delta_{\rm H}$ 7.76 (d, J = 7.4 Hz, 2H, ArH), 7.58 (d, J = 7.4 Hz, 2H, ArH), 7.43–7.23 (m, 9H, ArH), 5.20 (d, J = 8.3 Hz, 1H, NH), 4.61–4.40 (m, 8H, CHCH₂-Fmoc, CH α -AOx, 2 × OCH₂-Ox), 3.88–3.76 (m, 1H, CH α -Ala), 2.07 (br. s, 1H, NH), 1.82 (s, 3H, CH₃, cumyl), 1.79 (s, 3H, CH₃, cumyl), 1.38 (d, J = 6.9 Hz, 3H, CH₃ β -Ala), 1.12 (d, J = 6.4 Hz, 3H, CH₃ β -AOx); ¹³C NMR (126 MHz, CDCl₃) $\delta_{\rm C}$ 175.6 (C=O), 156.3 (C=O, Fmoc), 145.2 (C), 144.1 (C), 141.5 (C), 128.5 (CH), 127.8 (CH), 127.5 (CH), 127.2 (CH), 125.20 (CH),125.18 (CH), 124.3 (CH), 120.1 (CH), 82.8 (C, Ox), 79.0 (OCH₂), 77.9 (OCH₂), 66.7 (CH₂, Fmoc), 62.5 (C, Ox), 52.0 (CH, α-AOx), 51.2 (CH, α-Ala), 47.5 (CH, Fmoc), 28.8 (CH₃, cumyl), 28.2 (CH₃, cumyl), 21.7 (CH₃, β-Ala), 14.6 (CH₃, β-AOx). *N.B.* Two aromatic C signals not observed; v_{max} (neat) = 3332 (NH), 2977, 2942, 2875, 1719 (C=O), 1496, 1447, 1270, 1131 cm⁻¹; MS (ESI⁺) *m/z* 529 [M+H]⁺, 551 [M+Na]⁺; HRMS (ESI⁺) calcd. for $C_{32}H_{36}N_2NaO_5$ [M+Na]⁺ 551.2516, found 551.2520; $[\alpha]_D^{22}$ -18.4 (c 0.38, CHCl₃); HPLC (Chiralcel OD-H (0.46 cm × 25 cm, 5 µm), 20% isopropanol in hexane, 25 °C, 1.0 mL/min, $\lambda = 254$ nm) $t_{\rm R} = 55$ min (major), 97 min (minor).


Fmoc-L-AOx-Ala-OCumyl ((S,S)-14)

The synthesis of (*S*,*S*)-14 was adapted from a procedure originally published by Carreira and co-workers.³ To (*R*)-12 (458 mg, 2.20 mmol, 1.0 equiv) in CH₂Cl₂ (10 mL) at -20 °C was added DIPEA (824 µL, 4.73 mmol, 2.15 equiv) followed by the dropwise addition of a solution of triflic anhydride

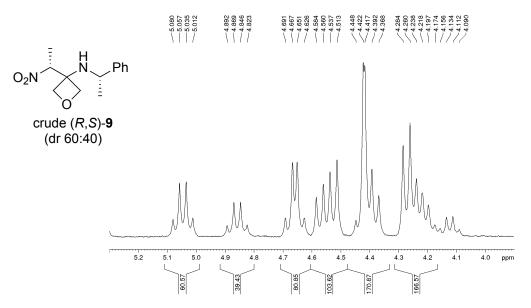
(407 µL, 2.42 mmol, 1.1 equiv) in CH₂Cl₂ (2.5 mL). The reaction mixture was allowed to reach room temperature and stirred for 1 h. Petroleum ether (12.5 mL) was added and the reaction mixture filtered through a plug of silica gel eluting with 50% CH₂Cl₂ in petroleum ether. The eluent was concentrated under reduced pressure to give triflate 13 (734 mg, 2.16 mmol, 98%) which was used immediately without further purification. To triflate 13 in MeCN (4.0 mL) was added a solution of (S)-10 (338 mg, 1.00 mmol, 1.0 equiv) and DIPEA (376 µL, 2.16 mmol, 2.16 equiv) in MeCN (4.0 mL). The reaction mixture was stirred at 30 °C for 20 h and then concentrated under reduced pressure. The crude material was purified by repeat column chromatography (SiO₂, PE/EtOAc 7:3 \rightarrow 3:2; CH₂Cl₂/EtOAc 9:1 \rightarrow 4:1) to give (S,S)-14 (264 mg, 0.50 mmol, 50%, dr >98:2) as a white solid. R_f (PE/EtOAc 7:3) 0.20; **mp** 73–76 °C; ¹**H NMR** (500 MHz, CDCl₃) $\delta_{\rm H}$ 7.76 (d, J = 7.5 Hz, 2H, ArH), 7.59 (d, J = 7.5 Hz, 2H, ArH), 7.44–7.21 (m, 9H, ArH), 5.57 (d, J = 7.1 Hz, 1H, NH), 4.67–3.81 (m, 8H, 2 × OCH₂-Ox, CH₂CH-Fmoc, CHα-AOx), 3.79–3.64 (m, 1H, CHα-Ala), 1.82 (s, 3H, CH₃, cumyl), 1.80–1.70 (m, 4H, CH₃, cumyl, NH), 1.38 (d, J = 6.8 Hz, 3H, CH₃ β -Ala), 1.16 (d, J = 5.9 Hz, 3H, CH₃ β -AOx); ¹³C NMR (126 MHz, CDCl₃) δ_{C} 175.5 (C=O), 156.5 (C=O), Fmoc), 145.2 (C), 144.12 (C), 144.10 (C), 141.5 (C), 128.5 (CH), 127.8 (CH), 127.5 (CH), 127.2 (CH), 125.4 (CH), 125.3 (CH), 124.4 (CH), 120.1 (CH), 82.8 (C, cumyl), 79.1 (OCH₂), 78.9 (OCH₂), 66.8 (CH₂, Fmoc), 62.4 (C, Ox), 52.1 (CH, α-Ala), 52.0 (CH, α-AOx), 47.4 (CH, Fmoc), 28.9 (CH₃, cumyl), 28.1 (CH₃, cumyl), 20.8 (CH₃, β-Ala), 14.9 (CH₃, β-AOx). *N.B.* One aromatic C signal not observed; v_{max} (neat) = 3329 (NH), 2976, 2937, 1718 (C=O), 1497, 1448, 1242, 1132, 1077 cm⁻¹; **MS** (ESI⁺) m/z 529 [M+H]⁺, 551 [M+Na]⁺, 567 [M+K]⁺; **HRMS** (ESI⁺) calcd. for C₃₂H₃₆N₂NaO₅ [M+Na]⁺ 551.2516, found 551.2512; $[\alpha]_{D}^{18}$ -13.4 (c 0.25, CHCl₃); HPLC (Chiralcel OD-H (0.46 cm \times 25 cm, 5 µm), 20% isopropanol in hexane, 25 °C, 1.0 mL/min, $\lambda = 254$ nm) $t_{\rm R} = 56$ min (minor), 87 min (major).


(9*H*-Fluoren-9-yl)methyl (*R*)-(1-(3-(4-bromobenzamido)oxetan-3-yl)ethyl)carbamate (11)

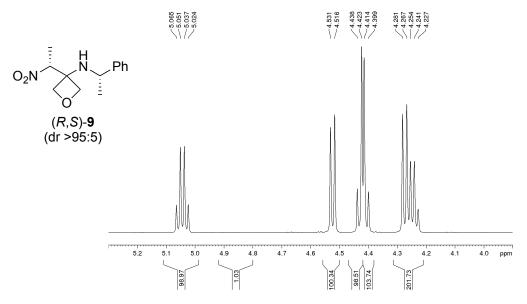
To (*R*)-10 (289 mg, 0.85 mmol, 1.0 equiv) in CH₂Cl₂ (9.0 mL) was added DIPEA (297 μ L, 1.71 mmol, 2.0 equiv) and 4-bromobenzoyl chloride (375 mg, 1.71 mmol, 2.0 equiv). The mixture was stirred at room temperature for 16 h. The reaction mixture was diluted with CH₂Cl₂ (20 mL),

washed with a saturated solution of NaHCO₃ (20 mL) and brine (10 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by column chromatography (SiO₂, PE/EtOAc 2:3) gave **11** (384 mg, 0.74 mmol, 87%) as a white solid. A crystal suitable for X-ray analysis was grown from toluene. **R**_f (PE/EtOAc 2:3) 0.43; **mp** 164–167 °C; ¹**H NMR** (500 MHz, CDCl₃) $\delta_{\rm H}$ 7.76 (d, *J* = 7.6 Hz, 2H, ArH), 7.67 (d, *J* = 8.0 Hz, 2H, ArH),

7.61–7.53 (m, 4H, ArH), 7.44–7.36 (m, 2H, ArH), 7.33–7.25 (m, 2H, ArH), 6.91 (s, 1H, NH), 5.93 (d, J = 7.1 Hz, 1H, NH), 4.98 (d, J = 6.6 Hz, 1H, OC*H*H-Ox), 4.92 (d, J = 6.6 Hz, 1H, OC*H*H-Ox), 4.67 (d, J = 6.6 Hz, 1H, OCH*H*-Ox), 4.57 (d, J = 6.6 Hz, 1H, OCH*H*-Ox), 4.46–4.27 (m, 3H, CH₂-Fmoc, CHα-AOx), 4.23–4.16 (m, 1H, CH-Fmoc), 1.36 (d, J = 6.4 Hz, 3H, CH₃β-AOx); ¹³C **NMR** (126 MHz, CDCl₃) $\delta_{\rm C}$ 167.1 (C=O), 157.0 (C=O, Fmoc), 143.94 (C), 143.89 (C), 141.5 (C), 141.4 (C), 132.6 (C), 132.1 (CH), 128.8 (CH), 127.9 (CH), 127.2 (CH), 127.1 (C), 125.2 (CH), 120.1 (CH), 78.0 (OCH₂), 77.5 (OCH₂), 67.1 (CH₂, Fmoc), 60.7 (C, Ox), 52.6 (CH, α-AOx), 47.3 (CH, Fmoc), 15.5 (CH₃, β-AOx); **v**_{max} (neat) = 3371 (NH), 3352 (NH), 2967, 2893, 1693 (C=O), 1643 (C=O), 1516, 1248, 989 cm⁻¹; **MS** (ESI⁺) *m/z* 543 [M(⁷⁹Br)+Na]⁺, 545 [M(⁸¹Br)+Na]⁺; **HRMS** (ESI⁺) calcd. for C₂₇H₂₅BrN₂NaO₄ [M+Na]⁺ 543.0890 (⁷⁹Br) and 545.0874 (⁸¹Br), found 543.0890 (⁷⁹Br) and 545.0873 (⁸¹Br); [**α**]²²_D +23.5 (*c* 0.50, CHCl₃).

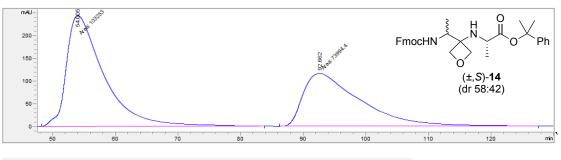


Crystal Data for C_{28.75}H₂₇BrN₂O₄ (CCDC 2005273, M = 544.43 g/mol): monoclinic, space group C2 (no. 5), a = 25.7843(4) Å, b = 5.30700(10) Å, c = 18.5521(3) Å, $\beta = 95.2280(10)^{\circ}$, V = 2528.06(7) Å³, Z = 4, T = 100(2) K, μ (CuK α) = 2.526 mm⁻¹, *Dcalc* = 1.430 g/cm³, 22540 reflections measured (6.884° $\leq 2\Theta \leq 136.32^{\circ}$), 4460 unique ($R_{int} = 0.0686$, $R_{sigma} = 0.0454$) which were used in all calculations. The final R_1 was 0.0722 (I > 2 σ (I)) and wR_2 was 0.2005 (all data).

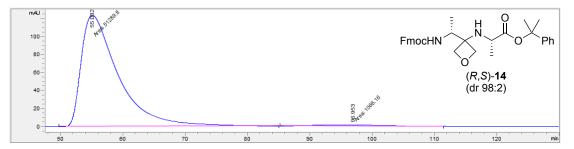

Diastereomeric purity of (R,S)-9 and (S,R)-9

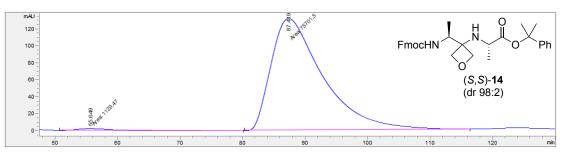
Confirmation that (R,S)-9 was isolated as a single diastereoisomer (dr >95:5) was demonstrated by comparison of the NO₂CH signals in the crude ¹H NMR (300 MHz, CDCl₃) spectrum with the same region in the ¹H NMR (500 MHz, CDCl₃) spectrum after column chromatography. Integration of the signals at 5.05 (q, J = 6.8 Hz) ppm and 4.86 (q, J = 6.9 Hz) ppm in spectrum **A** relative to that in spectrum **B** confirmed dr >95:5. ¹H NMR analysis of (S,R)-4 was conducted in the same fashion and also confirmed dr >95:5.

A. Expanded ¹H NMR (300 MHz, CDCl₃) of crude (R,S)-9


B. Expanded ¹H NMR (500 MHz, CDCl₃) of (R,S)-9 after column chromatography

HPLC Analysis of (±,S)-14, (R,S)-14 and (S,S)-14


HPLC analysis was conducted on an Agilent Technologies 1200 Series HPLC, using Chiralcel OD-H column (0.46 cm \times 25 cm, 5 μ m) at 25 °C, with detection by UV at 254 nm. Samples were eluted at a flow rate of 1.0 mL/min with a mobile phase system composed of 20% isopropanol in hexane. Retention times (t_R) are reported in minutes.


#	Time	Area	Height	Width	Area%	Symmetry
1	54.005	103252.9	245.4	7.0114	58.254	0.423
2	92.662	73994.4	116.8	10.5588	41.746	0.391

(*R*,*S*)-14

#	Time	Area	Height	Width	Area%	Symmetry
1	55.082	51289.8	123.4	6.929	97.964	0.41
2	96.953	1066.2	1.3	13.2996	2.036	1.216

(*S*,*S*)-14

#	Time	Area	Height	Width	Area%	Symmetry
1	55.649	1129.5	2.3	8.1607	1.470	0.399
2	87.419	75701.5	131.1	9.6274	98.530	0.498

3. Solid phase peptide synthesis

General information

All peptides were synthesised on a NovaSyn[®] TGR R (0.18 mmol/g, 0.025 mmol) resin (Novabiochem) on a Prelude peptide synthesizer (ProteinTechnologies Inc.) using an Fmoc/*t*Bu protecting group strategy. Couplings were performed under standard coupling conditions using HATU/DIPEA or HCTU/NMM. Oxetane building blocks were manually incorporated by double coupling using 2 equiv of building block, 1.9 equiv HATU and 6 equiv DIPEA. Fmoc-deprotection was achieved with 20% piperidine in DMF and capping after every coupling step with Ac₂O (5%) and NMM (5%) in DMF. Crude peptides were purified by preparative HPLC (Agilent Infinity 1260) on a Agilent PLRP-S column (100 Å, 8 μ m, 150×25 mm).

Loading the resin with Fmoc-Tyr(tBu)-OH

NovaSyn® TGR R (0.18 mmol/g, 139 mg, 0.025 mmol, 1.0 equiv) resin was pre-swollen in DMF for 1 h and washed with DMF. Fmoc-Tyr(*t*Bu)-OH (0.25 mmol, 115 mg, 10 equiv), PyBOP (0.25 mmol, 130 mg, 10 equiv) and DIPEA (0.5 mmol, 87 μ L, 20 equiv) in DMF (1.5 mL) were added to the resin and the mixture was agitated for 1 h at room temperature. The solvent was removed and the resin washed several times with DMF. Loading was repeated in case of a positive TNBS-test.

Peptide synthesis

Peptides were synthesized on the peptide synthesizer using N- α -Fmoc protected amino acids (10 equiv), HCTU (10 equiv) and NMM (20 equiv). The first twelve amino acids were attached by double coupling (45 min each), whereas for the last five amino acids triple couplings were performed. After each amino acid, the peptide was capped with Ac₂O:NMM:DMF (5:5:90; v/v/v) at room temperature for 2 × 15 min. After the last amino acid, the Fmoc group was cleaved manually with 20% piperidine in DMF at room temperature for 20 min and the N-terminus was capped with Ac₂O:NMM:DMF (5:5:90; v/v/v) at room temperature for 2 × 20 min.

In case of the oxetane-modified peptides, the oxetane-containing dipeptide building blocks were first deprotected as follows; (S,S)-14 or 15 (2.0 equiv) in 2% TFA/CH₂Cl₂ (0.05 M) was stirred at room temperature until consumption of starting material. The reaction mixture was concentrated under reduced pressure and the resulting residue dissolved in CH₂Cl₂ and concentrated under reduced pressure (3×) to give the crude acid 16 or 17. The crude acid was manually double coupled using HATU (1.9 equiv) and DIPEA (6.0 equiv) at room temperature for 2-12 h until a negative TNBS test was observed. In case of the N-terminal modified peptides the last two coupling steps with alanine and lysine were also done manually under standard conditions.

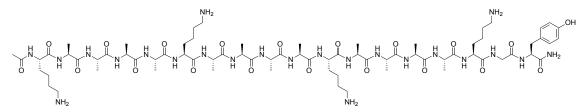
In all cases, cleavage from the resin was achieved with 95% TFA, 2.5% TIS, 2.5% water. The cleavage solution was concentrated under a stream of nitrogen and the peptide was precipitated in ice-cold ether. The crude peptide was re-dissolved in water/acetonitrile and purified by preparative HPLC (A: $H_2O(0.1 \% TFA)$), B: MeCN (0.1 % TFA)).

Parent peptide **18** Gradient: 0–5 min, 5% B; 5–30 min, 5–50% B, 30–35 min, 50–100% B; t_R : 19.3 min. Central AlaOX **19** Gradient: 0–5 min, 5% B; 5–35 min, 5–35% B, 35–40 min, 50–100% B; t_R : 22.7 min. Terminal AlaOX **20** Gradient: 0–3 min, 5% B; 3–22 min, 5-30% B, 22–27 min, 30–100% B; t_R : 17.2 min. Treminal GlyOX **21** Gradient: 0–3 min, 5% B; 3–22 min, 5–30% B, 22–27 min, 30–100% B; t_R : 16.2 min.

Analytical data

Pure peptides were analysed on an Agilent Technologies 1200 Series RP-HPLC, using an Agilent Eclipse Plus C18 (5 μ m, 4.6 × 150 mm) at 25 °C, with detection by UV at 214 and 280 nm. Gradients were run using a solvent system consisting of solution A (5% MeCN in H₂O + 0.1% TFA) and B (5% H₂O in MeCN + 0.1% TFA). Two gradients were used to characterise each peptide; a gradient from 5-95% solution B over 20 min and a gradient from 5-50% solution B over 20 min. Analytical RP-HPLC data is recorded as column retention time (*t*_R) in min. High-resolution mass spectra were recorded using a Bruker MaXis Impact.

Table S1. Peptide characterisation data


Entry	Peptide Sequence	$t_{\rm R} ({\rm min})^a$	Purity $(\%)^{b,c}$
1	Ac-KAAAA-KAAAA-KAAAA-KGY-NH2, 18 parent	8.75 + 10.46	92
2	Ac-KAAAA-KAAOxAA-KAAAA-KGY-NH ₂ , 19 central AOx	7.83 + 8.61	90
3	Ac-KA AO xAA-KAAAA-KAAAA-KGY-NH2, 20 <i>N</i> -terminal AOx	9.39 + 11.47	76
4	Ac-KA GO xAA-KAAAA-KAAAA-KGY-NH ₂ , 21 <i>N</i> -terminal GOx	9.35 + 11.38	90

^{*a*} First t_R is the gradient from 5–95% solution B over 20 min; second number is the gradient from 5–50% over 20 min. ^{*b*} Measured at 214 nm. ^{*c*} Lowest purity of the two gradients runs.

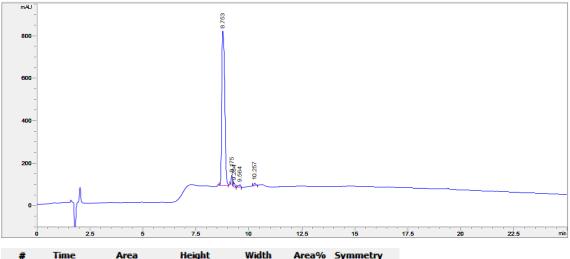
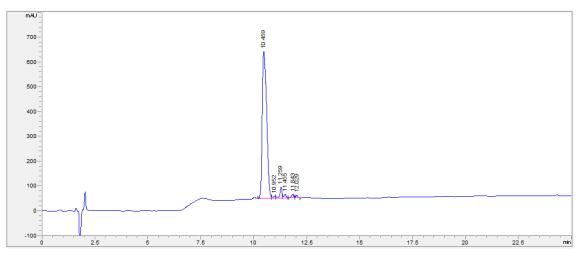
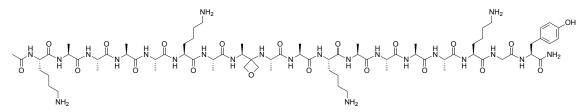

Entry	Peptide Sequence	HR	$\Delta MW (ppm)$	
Linuy	i epide sequence	Calculated	Observed	
1	Ac-KAAAA-KAAAA-KAAAA-KGY-NH2, 18	822.9808	822.9808	0.0
I	parent	$[M+2H]^{2+}$	$[M+2H]^{2+}$	0.0
2	Ac-KAAAA-KAAOxAA-KAAAA-KGY-NH2, 19	858.9784	858.9766	2.1
Z	central AOx	[M+2Na] ²⁺	[M+2Na] ²⁺	2.1
3	Ac-KAAOxAA-KAAAA-KAAAA-KGY-NH ₂ , 20	558.3334	558.3331	-0.5
3	<i>N</i> -terminal AOx	[M+3H] ³⁺	[M+3H] ³⁺	-0.5
4	Ac-KAGOxAA-KAAAA-KAAAA-KGY-NH2, 21	851.9706	851.9701	-0.6
4	N-terminal GOx	[M+2Na] ²⁺	[M+2Na] ²⁺	-0.0

Table S2. Peptide characterisation data

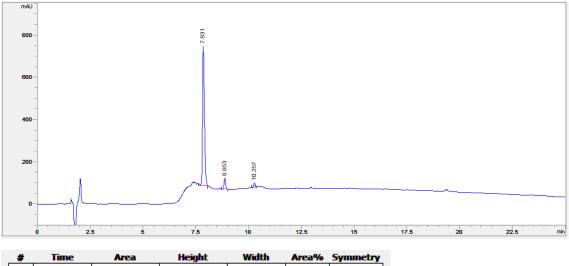
Ac-KAAAA-KAAAA-KAAAA-KGY-NH2 (18)



Analytical HPLC (5-95% gradient)

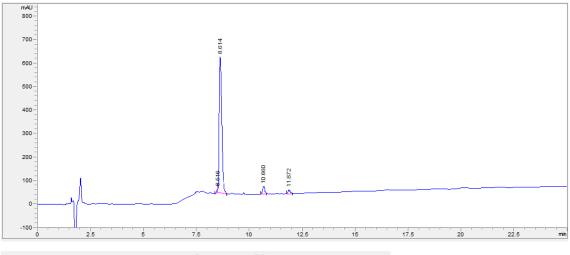

	#	Time	Area	Height	Width	Area%	Symmetry
	1	8.753	7078.9	726.6	0.1624	94.512	0.562
[2	9.175	163.4	42.7	0.0637	2.182	0.965
[3	9.284	70.2	20.2	0.0578	0.937	0.332
[4	9.564	107.8	13.9	0.1293	1.440	2.122
[5	10.257	69.7	12.5	0.093	0.930	0.803

Analytical HPLC (5-50% gradient)

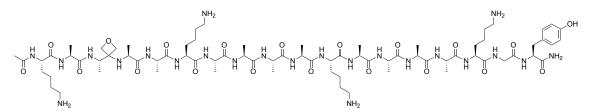


#	Time	Area	Height	Width	Area%	Symmetry
1	10.459	8226.4	593.6	0.2237	92.041	0.583
2	10.952	85.2	9.8	0.1231	0.954	1.169
3	11.259	321.6	44.8	0.1057	3.598	1.171
4	11.455	109.8	16	0.1038	1.228	0.985
5	11.843	118.9	14.9	0.1173	1.330	1.272
6	12.029	75.9	11.2	0.103	0.849	0.892

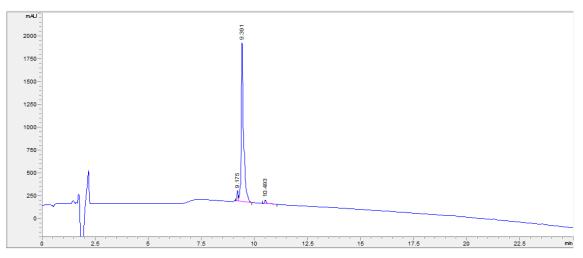
Ac-KAAAA-KAAOxAA-KAAAA-KGY-NH2(19)



Analytical HPLC (5-95% gradient)

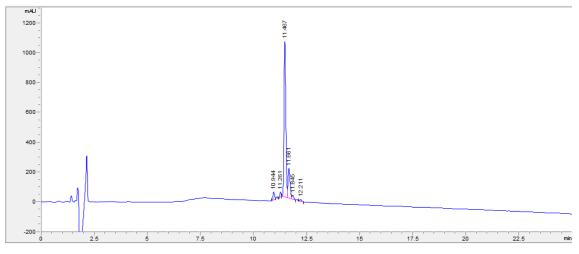

#	lime	Area	Height	Width	Area%	Symmetry
1	7.831	4160.5	662.8	0.1046	90.857	0.581
2	8.853	308.9	52.3	0.0984	6.746	0.801
3	10.257	109.8	21.6	0.0848	2.398	0.896

Analytical HPLC (5-50% gradient)

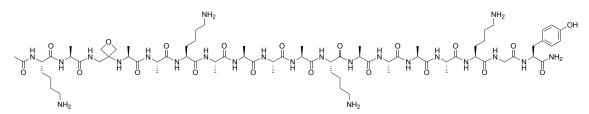


#	Time	Area	Height	Width	Area%	Symmetry
1	8.516	92.3	17.9	0.0858	1.654	1.228
2	8.614	5027.7	581	0.1442	90.059	0.58
3	10.66	292.8	34	0.1434	5.244	0.759
4	11.872	169.9	18.7	0.1514	3.043	0.617
						·

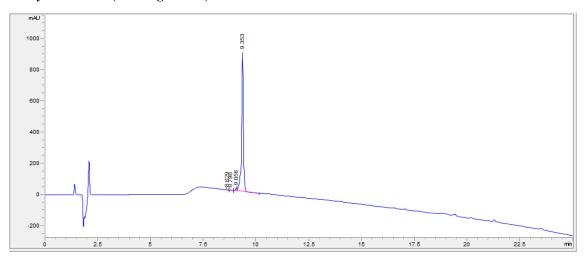
Ac-KAAOxAA-KAAAA-KAAAA-KGY-NH2 (20)



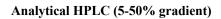
Analytical HPLC (5-95% gradient)

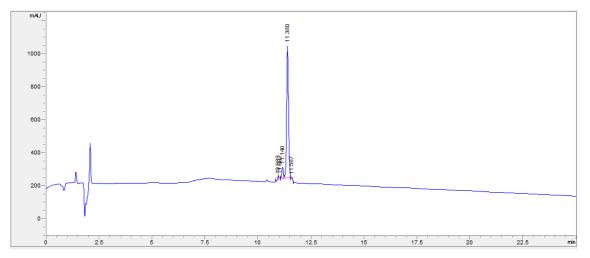

#	Time	Area	Height	Width	Area%	Symmetry
1	9.175	479.8	114.9	0.0647	3.423	0.845
2	9.391	13290.4	1741.4	0.109	94.829	0.508
3	10.493	245	38.4	0.0945	1.748	0.536

Analytical HPLC (5-50% gradient)



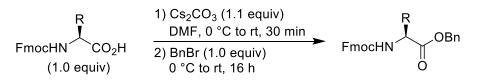
#	Time	Area	Height	Width	Area%	Symmetry
1	10.944	300.1	55.7	0.0809	3.705	0.728
2	11.261	172.1	36.6	0.0769	2.125	1.063
3	11.467	6127.7	1043.2	0.0925	75.667	0.749
4	11.661	1284.4	197.6	0.0978	15.861	0.723
5	11.845	135.2	25.5	0.0798	1.670	0.739
6	12.211	78.7	14.5	0.0875	0.972	0.757


Ac-KAGOxAA-KAAAA-KAAAA-KGY-NH₂ (21)



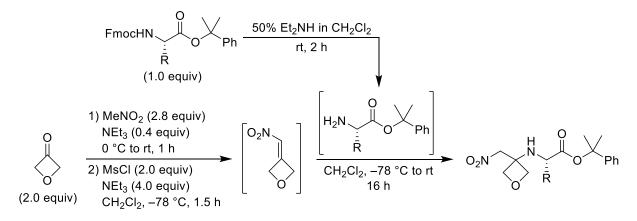
Analytical HPLC (5-95% gradient)

#	Time	Area	Height	Width	Area%	Symmetry
1	8.629	16.3	3.2	0.075	0.300	0.668
2	8.798	11.7	2.1	0.0815	0.216	0.427
3	9.056	86.1	19	0.0669	1.586	1.094
4	9.353	5313.7	895.1	0.0873	97.898	1.12

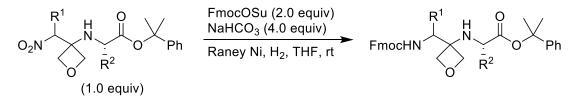

#	Time	Area	Height	Width	Area%	Symmetry
1	10.933	102.9	22.4	0.0696	1.857	1.332
2	11.002	51.6	14.6	0.0552	0.931	0.998
3	11.146	367.4	69.3	0.0838	6.630	0.796
4	11.38	4968.7	803.4	0.0942	89.666	0.833
5	11.587	50.7	13.1	0.0631	0.915	0.419

4. General procedures

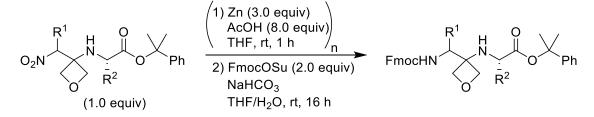
General procedure 1: Synthesis of cumyl esters with 2-phenylisopropyltrichloroacetimidate


Cumyl esters were prepared following a modified procedure by Potier and co-workers.⁴ To sodium hydride (60% dispersion in mineral oil, 0.5 equiv) in Et₂O (0.5 M) at 0 °C was added 2-phenyl-2-propanol (2.2 equiv) in Et₂O (2.0 M) and the mixture was stirred at room temperature for 1 h. The reaction mixture was cooled to 0 °C, trichloroacetonitrile (2.0 equiv) was added slowly and stirring was continued for 3 h at room temperature. The solvent was removed under reduced pressure and the residue re-dissolved in petroleum ether (4.0 M), MeOH (0.5 equiv) was added dropwise and this mixture was stirred at room temperature for 10 min. The reaction mixture was filtered through a plug of Celite eluting with petroleum ether. The filtrate was concentrated under reduced pressure to give the crude imidate. To the crude imidate in CH₂Cl₂ (0.15 M) was added a carboxylic acid (1.0 equiv) and the reaction mixture was stirred at room temperature for 16 h. The mixture was filtered through a plug of Celite eluting with CH₂Cl₂ to remove precipitated trichloroacetamide. The crude product was concentrated *in vacuo* and purified by column chromatography (SiO₂, PE/EtOAc or toluene/EtOAc) to give the pure cumyl ester.

General procedure 2: Synthesis of benzyl esters


To a solution of Fmoc-protected amino acid (1.0 equiv) in DMF (0.25 M) was added Cs_2CO_3 (1.1 equiv) at 0 °C, the mixture was allowed to warm to room temperature and stirred for 30 min. Benzyl bromide (1.0 equiv) was added slowly at 0 °C, the mixture was allowed to warm to room temperature and stirred for 16 h. The mixture was filtered through a plug of Celite eluting with diethyl ether. The filtrate was washed with water, the aqueous phase was extracted with diethyl ether (2 × 5.0 mL/mmol), the combined organic layers were washed with water (2 × 5.0 mL/mmol) and brine (5.0 mL/mmol), dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was used without further purification.

General procedure 3: Synthesis of oxetane containing nitro amino cumyl esters


An N-Fmoc amino cumyl ester (1.0 equiv) in 50% diethylamine/CH₂Cl₂ (0.5 M) was stirred at room temperature for 2 h. The reaction mixture was concentrated under reduced pressure and the resulting residue repeatedly dissolved in CH_2Cl_2 (3 × 5.0 mL/mmol) and concentrated under reduced pressure to give the crude amine. Meanwhile in a second reaction vessel, oxetan-3-one (2.0 equiv), nitromethane (2.8 equiv) and triethylamine (0.4 equiv) were combined at 0 °C and stirred for 1 h at room temperature. CH₂Cl₂ (0.2 M) was added and the reaction mixture cooled to -78 °C. Triethylamine (4.0 equiv) was added followed by the dropwise addition of a solution of methanesulfonyl chloride (2.0 equiv) in CH₂Cl₂ (1.0 M). The reaction mixture was stirred at -78 °C for 1.5 h. The crude amine in CH₂Cl₂ (0.25 M) was added slowly to the oxetane mixture via syringe at -78 °C, the reaction mixture was allowed to reach room temperature and stirred for 16 h. A saturated solution of NH₄Cl (8 mL/mmol) was added and stirred for 10 min. The layers were separated and the aqueous extracted with CH_2Cl_2 (2 × 5.0 mL/mmol) and EtOAc (2 × 5.0 mL/mmol). The combined organic layers were washed with saturated NaHCO₃ (2×8.0 mL/mmol), then brine (5.0 mL/mmol), dried over MgSO₄, filtered and concentrated in vacuo, and the crude product purified by column chromatography (SiO₂, PE/EtOAc).

General procedure 4: Nitro reduction and Fmoc protection using H₂/Raney Ni

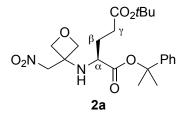
To a nitro alkane (1.0 equiv) in THF (0.1 M) was added Fmoc *N*-hydroxysuccinimide ester (2.0 equiv), NaHCO₃ (4.0 equiv) and Raney Ni (1.0 mL/mmol, slurry in H₂O). The reaction mixture was placed under an atmosphere of nitrogen, evacuated, filled with hydrogen (balloon) and stirred at room temperature until full conversion of the starting material (MS monitoring). The reaction mixture was filtered through a plug of Celite eluting with EtOAc. The filtrate was washed with saturated Na₂CO₃ (3×8.0 mL/mmol) and brine (5.0 mL/mmol), dried over MgSO₄, filtered, concentrated under reduced pressure, and the crude product was purified by column chromatography (SiO₂, CH₂Cl₂/EtOAc).

General procedure 5: Nitro reduction and Fmoc protection using Zn/AcOH

To a solution of nitro alkane (1.0 equiv) in THF (0.05 M) was added zinc powder (3.0 equiv) and acetic acid (8.0 equiv) and the reaction mixture was vigorously stirred with a glass-coated magnetic stir bar at room temperature for 1h. Additional zinc powder (3.0 equiv) and acetic acid (8.0 equiv) were added and the mixture was stirred at ambient temperature for 1 h (repeat until all starting material has been consumed, MS monitoring). The mixture was cooled to 0 °C and saturated aqueous NaHCO₃ solution (20 mL/mmol) was added followed by Fmoc *N*-hydroxysuccinimide ester (2.0 equiv) and the solution was stirred for 16 h at room temperature. Brine (15 mL/mmol) was added and the mixture as extracted with EtOAc (3 × 10 mL/mmol). The combined organic layers were washed with saturated aqueous NaHCO₃ solution (20 mL/mmol), dried over MgSO₄, filtered, concentrated *in vacuo*, and the crude product was purified by column chromatography (SiO₂, CH₂Cl₂/EtOAc).

5. Synthesis and characterisation of oxetane modified glycine building blocks

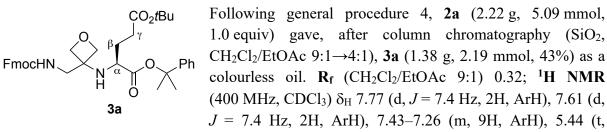
5.1 Synthesis of Fmoc-GOx-Glu(tBu)-OCumyl


Fmoc-Glu(tBu)-OCumyl (1a)

 $FmocHN \xrightarrow{\beta} O Ph$

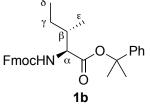
Following general procedure 1, Fmoc-Glu(*t*Bu)-OH (6.38 g, 15.0 mmol, 1.0 equiv) gave, after column chromatography (SiO₂, PE/EtOAc 9:1 \rightarrow 4:1), **1a** (5.95 g, 10.9 mmol, 73%) contaminated with traces of 2-phenyl-2-propanol as a pale yellow viscous oil. **R**_f (PE/EtOAc 2:1) 0.49; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.76 (d, J = 7.4 Hz, 2H, ArH), 7.58 (d, J = 7.4 Hz, 2H, ArH), 7.41–7.28 (m,

9H, ArH), 5.39 (d, J = 7.9 Hz, 1H, NH), 4.56–4.23 (m, 3H, CH₂-Fmoc, CHα-Glu), 4.20 (t, J = 6.9 Hz, 1H, CH-Fmoc), 2.48–2.09 (m, 3H, CH₂γ-Glu, C*H*Hβ-Glu), 2.03–1.90 (m, 1H, CH*H*β-Glu), 1.82 (s, 3H, CH₃, cumyl), 1.80 (s, 3H, CH₃, cumyl), 1.47 (s, 9H, 3 × CH₃, *t*Bu); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm C}$ 172.3 (C=O), 170.7 (C=O), 156.1 (C=O, Fmoc), 145.0 (C), 144.0 (C), 143.9 (C), 141.4 (C), 128.5 (CH), 128.4 (CH), 127.8 (CH), 127.5 (CH), 127.2 (CH), 126.8 (CH), 125.3 (CH), 124.5 (CH), 120.1 (CH), 83.6 (C, cumyl), 80.9 (C, *t*Bu), 67.2 (CH₂, Fmoc), 54.0 (CH, α-Glu), 47.3 (CH, Fmoc), 31.6 (CH₂, γ-Glu), 28.8 (CH₃, cumyl), 28.3 (CH₃, cumyl), 28.2 (CH₃, *t*Bu), 27.9 (CH₂, β-Glu). *N.B.* One aromatic C not observed; **v**_{max} (neat) = 3340 (NH), 2977, 1720 (C=O), 1514, 1448, 1366, 1249, 1136, 957, 841, 739, 698 cm⁻¹; MS (ESI⁺) *m/z* 494 [M+Na]⁺, 510 [M+K]⁺; HRMS (ESI⁺) calcd. for C₃₀H₃₃NNaO₄ [M+Na]⁺ 494.2302, found 494.2299; [**α**]₂²⁶ –0.1 (*c* 1.03, CHCl₃).


NO₂-GOx-Glu(*t*Bu)-OCumyl (2a)

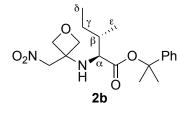
Following general procedure 3, **1a** (5.97 g, 10.9 mmol, 1.0 equiv), oxetan-3-one (1.28 mL, 20.0 mmol, 1.8 equiv) and nitromethane (1.52 mL, 28.0 mmol, 2.5 equiv) were combined to give, after column chromatography (SiO₂, PE/EtOAc 4:1 \rightarrow 2:1), **2a** (2.36 g, 5.41 mmol, 49%) as an orange oil. **R**_f (PE/EtOAc 2:1) 0.27; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.39–7.31 (m, 4H, ArH),

7.29–7.24 (m, 1H, ArH), 4.78 (d, J = 12.8 Hz, 1H, NO₂C*H*H), 4.71 (d, J = 12.8 Hz, 1H, NO₂CH*H*), 4.56 (d, J = 7.1 Hz, 1H, OC*H*H-Ox), 4.52 (d, J = 7.1 Hz, 1H, OC*H*H-Ox), 4.43 (d, J = 7.1 Hz, 1H, OCH*H*-Ox), 4.39 (d, J = 7.1 Hz, 1H, OCH*H*-Ox), 3.55 (t, J = 10.1 Hz, 1H, CHα-Glu), 2.38–2.28 (m, 2H, CH₂γ-Glu), 2.25 (d, J = 10.5 Hz, 1H, NH), 2.04 (dd, J = 13.5, 6.3 Hz, 1H, C*H*Hβ-Glu), 1.80 (s, 6H, 2 × CH₃, cumyl), 1.70 (dd, J = 13.5, 7.4 Hz, 1H, CH*H*β-Glu), 1.46 (s, 9H, 3 × CH₃, *t*Bu); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm C}$ 174.0 (C=O), 172.5 (C=O), 144.8 (C), 128.5 (CH), 127.6 (CH), 124.5 (CH), 83.2 (C, cumyl), 80.7 (C, *t*Bu), 78.9 (NO₂CH₂, OCH₂), 78.6 (OCH₂), 59.5 (C, Ox), 55.4 (CH, α-Glu), 31.5 (CH₂, γ-Glu), 29.4 (CH₂, β-Glu), 28.4 (CH₃, cumyl), 28.2 (CH₃, *t*Bu); **v**_{max} (neat) = 3331 (NH), 2978, 1723 (C=O), 1555, 1367, 1272, 1137, 979, 836, 763, 700 cm⁻¹; MS (ESI⁺) *m/z* 437 [M+H]⁺, 459 [M+Na]⁺, 475 [M+K]⁺; HRMS (ESI⁺) calcd. for C₂₂H₃₂N₂NaO₇ [M+Na]⁺ 459.2102, found 459.2105; [**α**]²⁸_D –0.8 (*c* 0.22, CHCl₃).


Fmoc-GOx-Glu(tBu)-OCumyl (3a)

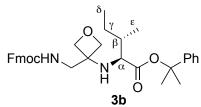
J = 7.0 Hz, 1H, NH), 4.46–4.35 (m, 3H, CH₂-Fmoc, C*H*H-Ox), 4.31 (s, 2H, CH₂-Ox), 4.27– 4.16 (m, 2H, CH*H*-Ox, CH-Fmoc), 3.66 (dd, *J* = 13.6, 5.1 Hz, 1H, C*H*HGOx), 3.45 (dd, *J* = 13.6, 4.1 Hz, 1H, CH*H*GOx), 3.38 (dd, *J* = 8.0, 3.3 Hz, 1H, CHα-Glu), 2.48–2.31 (m, 2H, CH₂γ-Glu), 2.14–1.92 (m, 2H, C*H*Hβ-Glu, NH), 1.80 (s, 6H, 2 × CH₃, cumyl), 1.79–1.72 (m, 1H, CH*H*β-Glu), 1.47 (s, 9H, 3 × CH₃, *t*Bu); ¹³C **NMR** (101 MHz, CDCl₃) $\delta_{\rm C}$ 174.7 (C=O), 172.7 (C=O), 157.1 (C=O, Fmoc), 144.8 (C), 144.09 (C), 144.05 (C), 141.4 (C), 128.5 (CH), 127.8 (CH), 127.6 (CH), 127.2 (CH), 125.3 (CH), 124.4 (CH), 120.1 (CH), 83.1 (C, cumyl), 80.8 (C, *t*Bu), 79.8 (OCH₂), 79.6 (OCH₂), 67.0 (CH₂, Fmoc), 59.6 (C, Ox), 55.4 (CH, α-Glu), 47.3 (CH, Fmoc), 45.5 (CH₂, GOx), 32.1 (CH₂, γ-Glu), 29.6 (CH₂, β-Glu), 28.4 (CH₃, cumyl), 28.3 (CH₃, cumyl), 28.2 (CH₃, *t*Bu). *N.B.* One aromatic C not observed; **v**_{max} (neat) = 3332 (NH), 2977, 1720 (C=O), 1518, 1449, 1366, 1240, 1133, 972, 838, 740, 699 cm⁻¹; **MS** (ESI⁺) *m*/*z* 629 [M+H]⁺, 651 [M+Na]⁺, 667 [M+K]⁺; **HRMS** (ESI⁺) calcd. for C₃₇H₄₄N₂NaO₇ [M+Na]⁺ 651.3041, found 651.3039; **[α]**₂²⁶ +0.7 (*c* 1.00, CHCl₃).

5.2 Synthesis of Fmoc-GOx-Ile-OCumyl


Fmoc-Ile-OCumyl (1b)

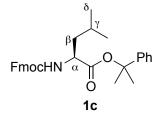
Following general procedure 1, Fmoc-Ile-OH (5.30 g, 15.0 mmol, 1.0 equiv) gave, after column chromatography (SiO₂, PE/EtOAc 9:1 \rightarrow 4:1), **1b** (6.26 g, 13.3 mmol, 89%) as a white solid. **R**_f (PE/EtOAc 4:1) 0.37; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.76 (d, J = 7.4 Hz, 2H, ArH), 7.58 (d, J = 7.4 Hz, 2H, ArH), 7.43–7.27 (m, 9H, ArH), 5.26 (d, J = 8.7 Hz, 1H, NH), 4.60–4.27 (m, 3H, CH α -Ile,

CH₂-Fmoc), 4.22 (t, J = 7.0 Hz, 1H, CH-Fmoc), 1.96 (br. m, 1H, CHβ-Ile), 1.82 (s, 3H, CH₃, cumyl), 1.81 (s, 3H, CH₃, cumyl), 1.46–1.34 (m, 1H, C*H*Hγ-Ile), 1.23–1.13 (m, 1H, CH*H*γ-Ile), 1.01–0.86 (m, 6H, CH₃δ-Ile, CH₃ε-Ile); ¹³**C NMR** (101 MHz, CDCl₃) $\delta_{\rm C}$ 170.8 (C=O), 156.3 (C=O, Fmoc), 145.2 (C), 144.1 (C), 144.0 (C), 141.4 (C), 128.4 (CH), 127.8 (CH), 127.5 (CH), 127.2 (CH), 125.3 (CH), 124.6 (CH), 120.1 (CH), 83.3 (C, cumyl), 67.1 (CH₂, Fmoc), 58.9 (CH, α-Ile), 47.4 (CH, Fmoc), 38.4 (CH, β-Ile), 28.6 (CH₃, cumyl), 28.4 (CH₃, cumyl), 24.9 (CH₂, γ-Ile), 15.7 (CH₃, ε-Ile), 11.9 (CH₃, δ-Ile). *N.B.* One aromatic C not observed; **v**_{max} (neat) = 3346 (NH), 2963, 1706 (C=O), 1536, 1448, 1342, 1245, 1202, 1134, 1086, 1042, 825, 757, 737, 697 cm⁻¹; **MS** (ESI⁺) *m*/*z* 566 [M+Na]⁺, 582 [M+K]⁺; **HRMS** (ESI⁺) calcd. for C₃₃H₃₇NNaO₆ [M+Na]⁺ 566.2513, found 566.2507; [**α**]_D²⁸ –2.5 (*c* 0.63, CHCl₃).


NO₂-GOx-Ile-OCumyl (2b)

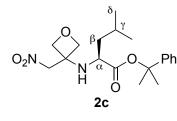
Following general procedure 3, **1b** (5.75 g, 12.2 mmol, 1.0 equiv), oxetan-3-one (1.54 mL, 24.0 mmol, 2.0 equiv) and nitromethane (1.82 mL, 33.6 mmol, 2.8 equiv) were combined to give, after column chromatography (SiO₂, PE/EtOAc 9:1 \rightarrow 4:1 \rightarrow 2:1), **2b** (3.26 g, 8.95 mmol, 73%) as an orange oil. **R**_f (PE/EtOAc 2:1) 0.14; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.42–7.30

(m, 4H, ArH), 7.29–7.26 (m, 1H, ArH), 4.77 (d, J = 12.7 Hz, 1H, NO₂CHH), 4.66 (d, J = 12.7 Hz, 1H, NO₂CHH), 4.56 (d, J = 7.0 Hz, 1H, OCHH-Ox), 4.48 (d, J = 7.0 Hz, 1H, OCHH-Ox), 4.43 (d, J = 7.0 Hz, 2H, 2 × OCHH-Ox), 3.36 (d, J = 2.9 Hz, 1H, CHα-Ile), 2.24 (br. s, 1H, NH), 1.82 (s, 3H, CH₃, cumyl), 1.80 (s, 3H, CH₃, cumyl), 1.78–1.72 (m, 1H, CHβ-Ile), 1.42–1.31 (m, 1H, CHHγ-Ile), 1.07 (dq, J = 10.8, 7.4 Hz, 1H, CHHγ-Ile), 0.93 (d, J = 7.2 Hz, 3H, CH₃ε-Ile), 0.90 (t, J = 7.4 Hz, 3H, CH₃δ-Ile); ¹³C NMR (101 MHz, CDCl₃) δ_C 174.1 (C=O), 144.9 (C), 128.4 (CH), 127.6 (CH), 124.7 (CH), 82.9 (C, cumyl), 79.2 (NO₂CH₂), 78.8 (OCH₂), 78.5 (OCH₂), 60.7 (CH, α-Ile), 59.7 (C, Ox), 39.2 (CH, β-Ile), 28.5 (CH₃, cumyl), 28.0 (CH₃, cumyl), 24.5 (CH₂, γ-Ile), 16.0 (CH₃, ε-Ile), 11.9 (CH₃, δ-Ile); **v**_{max} (neat) = 3346 (NH), 2963, 1707 (C=O), 1536, 1449, 1342, 1246, 1202, 1133, 1086, 828, 757, 697 cm⁻¹; MS (ESI⁺) m/z 387 [M+Na]⁺, 403 [M+K]⁺; HRMS (ESI⁺) calcd. for C₁₉H₂₈N₂NaO₅ [M+Na]⁺ 387.1890, found 387.1894; [**α**]_D²⁸ –3.6 (c 0.69, CHCl₃).


Fmoc-GOx-Ile-OCumyl (3b)

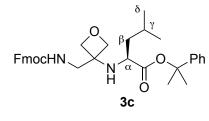
Following general procedure 4, **2b** (3.15 g, 8.64 mmol, 1.0 equiv) gave, after column chromatography (SiO₂, CH₂Cl₂/EtOAc 19:1 \rightarrow 9:1 \rightarrow 4:1), **3b** (1.50 g, 2.69 mmol, 31%) as a sticky colourless oil. **R**_f (CH₂Cl₂/EtOAc 9:1) 0.23; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.77 (d, J = 7.4 Hz, 2H,

ArH), 7.59 (d, J = 6.8 Hz, 2H, ArH), 7.43–7.27 (m, 9H, ArH), 5.24 (t, J = 5.3 Hz, 1H, NH), 4.47–4.18 (m, 7H, 2 × OCH₂-Ox, CH₂-Fmoc, CH-Fmoc), 3.70 (dd, J = 13.4, 5.7 Hz, 1H, CHHGOx), 3.36 (dd, J = 13.4, 3.7 Hz, 1H, CHHGOx), 3.22 (d, J = 3.5 Hz, 1H, CHα-IIe), 1.96 (br. s, 1H, NH), 1.83 (s, 3H, CH₃, cumyl), 1.80 (s, 3H, CH₃, cumyl), 1.80–1.74 (m, 1H, CHβ-IIe), 1.46–1.37 (m, 1H, CHHγ-IIe), 1.19–1.09 (m, 1H, CHHγ-IIe), 1.00 (d, J = 6.3 Hz, 3H, CH₃ε-IIe), 0.94 (t, J = 7.0 Hz, 3H, CH₃δ-IIe); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm C}$ 174.8 (C=O), 156.9 (C=O, Fmoc), 144.9 (C), 144.1 (C), 144.0 (C), 141.4 (C), 128.4 (CH), 127.8 (CH), 127.6 (CH), 127.1 (CH), 125.2 (CH), 124.6 (CH), 120.1 (CH), 82.9 (C, cumyl), 79.7 (OCH₂), 79.5 (OCH₂), 67.0 (CH₂, Fmoc), 60.6 (CH, α-IIe), 59.5 (C, Ox), 47.3 (CH, Fmoc), 45.8 (CH₂, GOx), 39.2 (CH, β-IIe), 28.6 (CH₃, cumyl), 28.0 (CH₃, cumyl), 24.6 (CH₂, γ-IIe), 16.2 (CH₃, ε-IIe), 11.9 (CH₃, δ-IIe). *N.B.* One aromatic C not observed; **v**_{max} (neat) = 3334 (NH), 2961, 1720 (C=O), 1515, 1448, 1237, 1130, 972, 739, 698 cm⁻¹; **MS** (ESI⁺) m/z 557 [M+H]⁺, 579 [M+Na]⁺, 595 [M+K]⁺; **HRMS** (ESI⁺) calcd. for C₃₄H₄₀N₂NaO₅ [M+Na]⁺ 579.2829, found 579.2826; [**α**]²⁹₂+10.9 (c 0.58, CHCl₃).


Fmoc-Leu-OCumyl (1c)

Following general procedure 1, Fmoc-Leu-OH (7.07 g, 20.0 mmol, 1.0 equiv) gave, after column chromatography (SiO₂, PE/EtOAc 9:1 \rightarrow 4:1), **1c** (8.61 g, 18.3 mmol, 91%) as a viscous colourless oil. **R**_f (PE/EtOAc 4:1) 0.29; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.75 (d, J = 7.4 Hz, 2H, ArH), 7.57 (d, J = 7.4 Hz, 2H, ArH), 7.41–7.23 (m, 9H, ArH), 5.13 (d, J = 8.6 Hz, 1H, NH), 4.42–4.35 (m, 3H, CH₂-

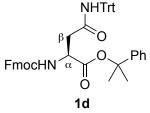
Fmoc, CHα-Leu), 4.20 (t, J = 6.8 Hz, 1H, CH-Fmoc), 1.79 (s, 6H, 2 × CH₃, cumyl), 1.73– 1.61 (m, 2H, CHγ-Leu, CHHβ-Leu), 1.56–1.46 (m, 1H, CHHβ-Leu), 1.04–0.87 (m, 6H, 2 × CH₃δ-Leu); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm C}$ 171.8 (C=O), 156.1 (C=O, Fmoc), 145.3 (C), 144.1 (C), 143.9 (C), 141.4 (C), 128.5 (CH), 127.8 (CH), 127.4 (CH), 127.2 (CH), 125.2 (CH), 124.4 (CH), 120.1 (CH), 83.2 (C, cumyl), 67.0 (CH₂, Fmoc), 53.0 (CH, α-Leu), 47.3 (CH, Fmoc), 42.0 (CH₂, β-Leu), 28.59 (CH₃, cumyl), 28.55 (CH₃, cumyl), 24.9 (CH, γ-Leu), 23.1 (CH₃, δ-Leu), 22.0 (CH₃, δ-Leu). *N.B.* One aromatic C not observed; **v**_{max} (neat) = 3343 (NH), 2958, 1707 (C=O), 1518, 1448, 1248, 1133, 1045, 739, 698 cm⁻¹; **MS** (ESI⁺) *m/z* 494 [M+Na]⁺, 510 [M+K]⁺; **HRMS** (ESI⁺) calcd. for C₃₀H₃₃NNaO₄ [M+Na]⁺ 494.2302, found 480.2294; [**α**]_D²⁹ –16.3 (*c* 0.61, CHCl₃).


NO₂-GOx-Leu-OCumyl (2c)

Following general procedure 3, 1c (8.49 g, 18.0 mmol, 1.0 equiv), oxetan-3-one (2.31 mL, 36.0 mmol, 2.0 equiv) and nitromethane (2.73 mL, 50.4 mmol, 2.8 equiv) were combined to give, after column chromatography (SiO₂, PE/EtOAc 4:1 \rightarrow 2:1), 2c (4.19 g, 11.5 mmol, 64%) as an orange oil. R_f (PE/EtOAc 2:1) 0.44; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.38–7.32 (m, 4H, ArH),

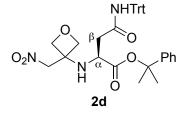
7.30–7.22 (m, 1H, ArH), 4.80 (d, J = 12.6 Hz, 1H, NO₂C*H*H), 4.72 (d, J = 12.6 Hz, 1H, NO₂CH*H*), 4.57 (d, J = 7.0 Hz, 1H, OC*H*H-Ox), 4.52 (d, J = 7.1 Hz, 1H, OC*H*H-Ox), 4.46 (d, J = 7.1 Hz, 1H, OCH*H*-Ox), 4.36 (d, J = 7.0 Hz, 1H, OCH*H*-Ox), 3.47 (dd, J = 12.8, 8.4 Hz, 1H, CHα-Leu), 2.17 (d, J = 10.0 Hz, 1H, NH), 1.81 (s, 3H, CH₃, cumyl), 1.78 (s, 3H, CH₃, cumyl), 1.77–1.70 (m, 1H, CHγ-Leu), 1.54–1.46 (m, 1H, C*H*Hβ-Leu), 1.39–1.31 (m, 1H, CH*H*β-Leu), 0.94 (d, J = 6.9 Hz, 3H, CH₃δ-Leu), 0.92 (d, J = 6.9 Hz, 3H, CH₃δ-Leu); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm C}$ 174.8 (C=O), 145.0 (C), 128.5 (CH), 127.6 (CH), 124.5 (CH), 82.9 (C, cumyl), 79.0 (NO₂CH₂ or OCH₂), 78.9 (NO₂CH₂ or OCH₂), 78.8 (OCH₂), 59.7 (C, Ox), 54.9 (CH, α-Leu), 43.7 (CH₂, β-Leu), 28.6 (CH₃, cumyl), 27.9 (CH₃, cumyl), 24.7 (CH, γ -Leu), 23.1 (CH₃, δ -Leu), 22.2 (CH₃, δ -Leu); **IR** (neat) = 3332 (NH), 2957, 1729 (C=O), 1555, 1381, 1271, 1193, 1132, 978, 763 cm⁻¹; MS (ESI⁺) *m/z* 387 [M+Na]⁺, 403 [M+K]⁺; HRMS (ESI⁺) calcd. for C₁₉H₂₈N₂NaO₅ [M+Na]⁺ 387.1890, found 387.1884; [**α**]₂^B -5.3 (*c* 0.10, CHCl₃).

Fmoc-GOx-Leu-OCumyl (3c)



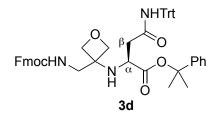
Following general procedure 4, **2c** (1.40 g, 3.84 mmol, 1.0 equiv) gave, after column chromatography (SiO₂, CH₂Cl₂/EtOAc 19:1 \rightarrow 9:1), **3c** (1.09 g, 1.96 mmol, 51%) as a sticky colourless oil. **R**_f (CH₂Cl₂/EtOAc 9:1) 0.40; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.77 (d, *J* = 7.4 Hz, 2H, ArH), 7.58 (d, *J* = 7.4 Hz, 2H, ArH), 7.44–7.26 (m, 9H, ArH), 5.24 (t,

J = 5.6 Hz, 1H, NH), 4.54–4.17 (m, 7H, 2 × OCH₂-Ox, CH₂CH-Fmoc), 3.71 (dd, *J* = 13.6, 5.7 Hz, 1H, C*H*HGOx), 3.41 (dd, *J* = 13.6, 4.1 Hz, 1H, CH*H*GOx), 3.33 (dd, *J* = 8.0, 5.0 Hz, 1H, CHα-Leu), 1.93–1.83 (m, 2H, CHγ-Leu, NH), 1.81 (s, 3H, CH₃, cumyl), 1.78 (s, 3H, CH₃, cumyl), 1.56–1.47 (m, 1H, C*H*Hβ-Leu), 1.43–1.34 (m, 1H, CH*H*β-Leu), 0.98 (d, *J* = 7.8 Hz, 3H, CH₃δ-Leu), 0.96 (d, *J* = 8.5 Hz, 3H, CH₃δ-Leu); ¹³C **NMR** (101 MHz, CDCl₃) $\delta_{\rm C}$ 175.6 (C=O), 156.9 (C=O, Fmoc), 145.0 (C), 144.1 (C), 144.0 (C), 141.4 (C), 128.5 (CH), 127.8 (CH), 127.5 (CH), 127.2 (CH), 125.2 (CH), 124.5 (CH), 120.1 (CH), 82.8 (C, cumyl), 80.0 (OCH₂), 79.7 (OCH₂), 67.0 (CH₂, Fmoc), 59.5 (C, Ox), 54.6 (CH, α-Leu), 47.4 (CH, Fmoc), 45.6 (CH₂, GOx), 43.8 (CH₂, β-Leu), 28.6 (CH₃, cumyl), 28.0 (CH₃, cumyl), 24.9 (CH, γ-Leu), 23.3 (CH₃, δ-Leu), 22.0 (CH₃, δ-Leu). *N.B.* One aromatic C not observed; **v**_{max} (neat) = 3331 (NH), 2954, 1720 (C=O), 1515, 1449, 1227, 1131, 971, 739, 699 cm⁻¹; **MS** (ESI⁺) *m/z* 557 [M+H]⁺, 579 [M+Na]⁺, 595 [M+K]⁺; **HRMS** (ESI⁺) calcd. for C₃₄H₄₀N₂NaO₅ [M+Na]⁺ 579.2829, found 579.2824; [**α**]³⁰_D +0.2 (*c* 0.52, CHCl₃).


5.4 Synthesis of Fmoc-GOx-Asn(Trt)-OCumyl

Fmoc-Asn(Trt)-OCumyl (1d)

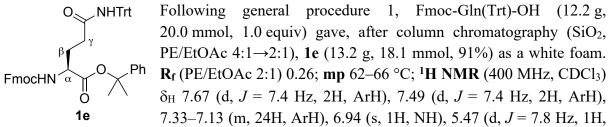
Following general procedure 1, Fmoc-Asn(Trt)-OH (5.97 g, 10.0 mmol, 1.0 equiv) gave, after column chromatography (SiO₂, PE/EtOAc 4:1 \rightarrow 2:1), **1d** (6.79 g, 9.50 mmol, 95%) as a white foam. **R**_f (PE/EtOAc 2:1) 0.34; **mp** 101–103 °C; ¹**H NMR** (300 MHz, CDCl₃) $\delta_{\rm H}$ 7.76 (d, J = 7.5 Hz, 2H, ArH), 7.59 (d, J = 7.5 Hz, 2H, ArH), 7.40 (t, J = 7.5 Hz, 2H, ArH), 7.33–7.20 (m, 16H, ArH), 7.19–


7.12 (m, 6H, ArH), 6.68 (s, 1H, NH), 6.14 (d, J = 8.4 Hz, 1H, NH), 4.57 (dt, J = 8.8, 3.9 Hz, 1H, CHα-Asn), 4.42 (dd, J = 9.9, 7.4 Hz, 1H, CHH-Fmoc), 4.30 (dd, J = 9.9, 7.4 Hz, 1H, CHH-Fmoc), 4.20 (t, J = 7.4 Hz, 1H, CH-Fmoc), 3.10 (dd, J = 16.1, 3.9 Hz, 1H, CHHβ-Asn), 2.85 (dd, J = 16.1, 3.9 Hz, 1H, CHHβ-Asn), 1.72 (s, 3H, CH₃, cumyl), 1.67 (s, 3H, CH₃, cumyl); ¹³C NMR (126 MHz, CDCl₃) $\delta_{\rm C}$ 169.7 (C=O), 169.4 (C=O), 156.5 (C=O, Fmoc), 145.5 (C), 144.5 (C), 144.1 (C), 143.9 (C), 141.42 (C), 141.39 (C), 128.8 (CH), 128.4 (CH), 128.2 (CH), 127.8 (CH), 127.3 (CH), 127.2 (CH), 125.4 (CH), 125.3 (CH), 124.4 (CH), 120.1 (CH), 83.7 (C, cumyl), 71.1 (C, Trt), 67.4 (CH₂, Fmoc), 51.6 (CH, α-Asn), 47.3 (CH, Fmoc), 38.7 (CH₂, β-Asn), 28.7 (CH₃, cumyl), 27.9 (CH₃, cumyl); $\mathbf{v_{max}}$ (neat) = 3311 (NH), 2932, 1721 (C=O), 1491, 1447, 1216, 1137, 1033, 740, 697 cm⁻¹; MS (ESI⁺) *m/z* 737 [M+Na]⁺, 753 [M+K]⁺; HRMS (ESI⁺) calcd. for C₄₇H₄₂N₂NaO₅ [M+Na]⁺ 737.2986, found 737.2980; [α]_D²⁷ +3.3 (*c* 0.20, CHCl₃).

Following general procedure 3, 1d (8.22 g, 11.5 mmol, 1.0 equiv), oxetan-3-one (1.47 mL, 23.0 mmol, 2.0 equiv) and nitromethane (1.74 mL, 32.2 mmol, 2.8 equiv) were combined to give, after column chromatography (SiO₂, PE/EtOAc 2:1 \rightarrow 1:1), 2d (3.58 g, 5.89 mmol, 51%) as an orange foam. **R**_f (PE/EtOAc 1:1) 0.57; **mp** 68–70 °C. ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.32–

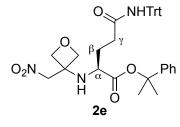
7.25 (m, 14H, ArH), 7.20 (d, J = 7.3 Hz, 6H, ArH), 7.16 (s, 1H, NH), 4.69 (d, J = 13.8 Hz, 1H, NO₂C*H*H), 4.65 (d, J = 13.8 Hz, 1H, NO₂C*HH*), 4.60 (d, J = 7.2 Hz, 1H, OC*H*H-Ox), 4.46 (d, J = 7.3 Hz, 1H, OC*H*H-Ox), 4.33 (d, J = 7.3 Hz, 1H, OC*H*H-Ox), 4.29 (d, J = 7.2 Hz, 1H, OC*H*H-Ox), 3.94 (br. s, 1H, CHα-Asn), 2.80–2.67 (m, 2H, C*H*Hβ-Asn, NH), 2.49 (dd, J = 14.8, 9.3 Hz, 1H, CH*H*β-Asn), 1.74 (s, 6H, 2 × CH₃, cumyl); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm C}$ 173.1 (C=O), 168.6 (C=O), 144.7 (C), 144.5 (C), 128.8 (CH), 128.5 (CH), 128.1 (CH), 127.6 (CH), 127.3 (CH), 124.4 (CH), 83.8 (C, cumyl), 79.3 (NO₂CH₂), 78.5 (OCH₂), 77.7 (OCH₂), 70.9 (C, Trt), 59.3 (C, Ox), 53.6 (CH, α-Asn), 41.8 (CH₂, β-Asn), 28.3 (CH₃, cumyl); **v**_{max} (neat) = 3367 (NH), 2980, 1724 (C=O), 1683, 1552, 1491, 1447, 1271, 1134, 1032, 971, 824, 751, 697 cm⁻¹; **MS** (ESI⁺) *m*/z 630 [M+Na]⁺, 646 [M+K]⁺; **HRMS** (ESI⁺) calcd. for C₃₆H₃₇N₃NaO₆ [M+Na]⁺ 630.2575, found 630.2571; [**α**]₂²⁶ -8.4 (*c* 0.44, CHCl₃).

Fmoc-GOx-Asn(Trt)-OCumyl (3d)



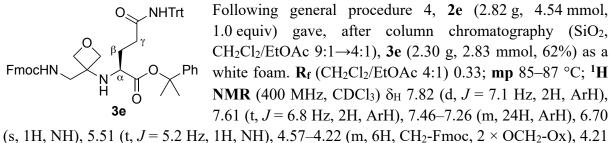
Following general procedure 4, **2d** (1.22 g, 2.00 mmol, 1.0 equiv) gave, after column chromatography (SiO₂, CH₂Cl₂/EtOAc 19:1 \rightarrow 9:1 \rightarrow 4:1), **3d** (335 mg, 0.42 mmol, 21%) as a white foam. **R**_f (CH₂Cl₂/EtOAc 9:1) 0.22; **mp** 107–110 °C; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.68 (d, J = 7.3 Hz, 2H, ArH), 7.46–7.38 (m, 2H, ArH), 7.31 (dd,

J = 12.2, 6.5 Hz, 2H, ArH), 7.26–7.15 (m, 23H, ArH, NH), 5.54 (t, *J* = 5.7 Hz, 1H, NH), 4.35–4.27 (m, 3H, OCH₂-Ox, OC*H*H-Ox), 4.16 (t, *J* = 7.7 Hz, 2H, CH₂-Fmoc), 3.99–3.86 (m, 2H, OCH*H*-Ox, CH-Fmoc), 3.85 (d, *J* = 9.9 Hz, 1H, CHα-Asn), 3.58 (dd, *J* = 14.4, 6.0 Hz, 1H, C*H*HGOx), 3.50 (dd, *J* = 14.4, 4.8 Hz, 1H, CH*H*GOx), 2.70 (d, *J* = 14.2 Hz, 1H, C*H*Hβ-Asn,), 2.34 (dd, *J* = 14.2, 11.1 Hz, 2H, CH*H*β-Asn, NH), 1.70 (s, 3H, CH₃, cumyl), 1.68 (s, 3H, CH₃, cumyl); ¹³**C** NMR (101 MHz, CDCl₃) $\delta_{\rm C}$ 173.6 (C=O), 169.0 (C=O), 157.4 (C=O, Fmoc), 144.6 (C), 144.5 (C), 144.3 (C), 143.9 (C), 141.4 (C), 141.2 (C), 128.9 (CH), 128.5 (CH), 128.1 (CH), 127.72 (CH), 127.66 (CH), 127.6 (CH), 127.2 (CH), 127.1 (CH), 125.7 (CH), 125.2 (CH), 124.4 (CH), 120.0 (CH), 119.9 (CH), 83.4 (C, cumyl), 79.8 (OCH₂), 79.5 (OCH₂), 71.0 (C, Trt), 67.2 (CH₂, Fmoc), 59.8 (C, Ox), 53.4 (CH, α-Asn), 47.1 (CH, Fmoc), 45.4 (CH₂, GOx), 41.3 (CH₂, β-Asn), 28.5 (CH₃, cumyl), 28.2 (CH₃, cumyl); **v**_{max} (neat) = 3316 (NH), 2934, 1722 (C=O), 1672, 1492, 1447, 1244, 1134, 1031, 967, 827, 742, 697 cm⁻¹; **MS** (ESI⁺) *m/z* 800 [M+H]⁺, 822 [M+Na]⁺; **HRMS** (ESI⁺) calcd. for C₅₁H₄₉N₃NaO₆ [M+Na]⁺ 822.3514, found 822.3517; [**α**]₂²⁷ +16.9 (*c* 0.20, CHCl₃).


5.5 Synthesis of Fmoc-GOx-Gln(Trt)-OCumyl

Fmoc-Gln(Trt)-OCumyl (1e)

NH), 4.40–4.21 (m, 3H, CH₂-Fmoc, CHα-Gln), 4.12 (t, J = 6.8 Hz, 1H, CH-Fmoc), 2.38–2.16 (m, 3H, CH₂γ-Gln, *CH*Hβ-Gln), 1.90–1.79 (m, 1H, CH*H*β-Gln), 1.73 (s, 3H, CH₃, cumyl), 1.68 (s, 3H, CH₃, cumyl); ¹³**C NMR** (101 MHz, CDCl₃) $\delta_{\rm C}$ 171.2 (C=O), 170.7 (C=O), 156.6 (C=O, Fmoc), 144.9 (C), 144.7 (C), 144.0 (C), 143.7 (C), 141.42 (C), 141.39 (C), 128.8 (CH), 128.5 (CH), 128.1 (CH), 127.8 (CH), 127.5 (CH), 127.19 (CH), 127.17 (CH), 125.2 (CH), 124.4 (CH), 120.1 (CH), 83.6 (C, cumyl), 70.8 (C, Trt), 67.1 (CH₂, Fmoc), 54.0 (CH, α-Gln), 47.3 (CH, Fmoc), 33.6 (CH₂, γ-Gln), 29.0 (CH₂, β-Gln), 28.9 (CH₃, cumyl), 28.2 (CH₃, cumyl); **v**_{max} (neat) = 3331 (NH), 2953, 1716 (C=O), 1493, 1447, 1220, 1134, 824, 740, 697 cm⁻¹; **MS** (ESI⁺) *m*/*z* 751 [M+Na]⁺; **HRMS** (ESI⁺) calcd. for C₄₈H₄₄N₂NaO₅ [M+Na]⁺ 751.3142, found 751.3129; **[α]**_P²⁹ +5.5 (*c* 0.20, CHCl₃).


NO₂-GOx-Gln(Trt)-OCumyl (2e)

Following general procedure 3, **1e** (12.8 g, 17.5 mmol, 1.0 equiv), oxetan-3-one (2.31 mL, 36.0 mmol, 2.0 equiv) and nitromethane (2.73 mL, 50.4 mmol, 2.8 equiv) were combined to give, after column chromatography (SiO₂, PE/EtOAc 2:1 \rightarrow 1:1) and recrystallisation from EtOAc, **2e** (5.29 g, 8.51 mmol, 49%) as an off-white solid. **R**_f (PE/EtOAc 1:1) 0.30; **mp** 162–164 °C

(decomposition); ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.30–7.15 (m, 20H, ArH), 6.59 (s, 1H, NH), 4.63 (d, *J* = 12.0 Hz, 1H, NO₂CHH), 4.63 (d, *J* = 12.0 Hz, 1H, NO₂CHH), 4.48 (d, *J* = 7.1 Hz, 1H, OCHH-Ox), 4.43 (d, *J* = 7.0 Hz, 1H, OCHH-Ox), 4.35 (d, *J* = 7.1 Hz, 1H, OCHH-Ox), 4.25 (d, *J* = 7.0 Hz, 1H, OCHH-Ox), 3.43 (br. m, 1H, CHα-Gln), 2.42–2.23 (m, 2H, CH₂γ-Gln), 2.20 (d, *J* = 5.8 Hz, 1H, NH), 2.04 (td, *J* = 13.6, 7.1 Hz, 1H, CHHβ-Gln), 1.73 (s, 6H, 2 × CH₃, cumyl), 1.67 (dd, *J* = 15.2, 7.6 Hz, 1H, CHHβ-Gln); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm C}$ 173.9 (C=O), 171.2 (C=O), 144.8 (C), 128.8 (CH), 128.5 (CH), 128.1 (CH), 127.6 (CH), 127.2 (CH), 124.5 (CH), 83.2 (C, cumyl), 78.9 (OCH₂), 78.7 (OCH₂), 78.6 (NO₂CH₂), 70.6 (C, Trt), 59.6 (C, Ox), 55.7 (CH, α-Gln), 33.1 (CH₂, γ-Gln), 29.3 (CH₂, β-Gln), 28.4 (CH₃, cumyl), 28.3 (CH₃, cumyl). *N.B.* One aromatic C not observed; **v**_{max} (neat) = 3351 (NH), 2980, 1682 (C=O), 1551, 1489, 1269, 1138, 971, 841, 753, 696 cm⁻¹; MS (ESI⁺) *m/z* 623 [M+H]⁺, 645 [M+Na]⁺, 661 [M+K]⁺; HRMS (ESI⁺) calcd. for C₃₇H₃₉N₃NaO₆ [M+Na]⁺ 645.2731, found 645.2726; [**α**]²⁹₂+12.5 (*c* 0.20, CHCl₃).

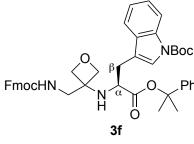
Fmoc-GOx-Gln(Trt)-OCumyl (3e)

(t, J = 6.5 Hz, 1H, CH-Fmoc), 3.64 (dd, J = 13.6, 5.8 Hz, 1H, CHHGOx), 3.52–3.30 (m, 2H, CHHGOx, CH α -Gln), 2.64–2.31 (m, 2H, CH₂ γ -Gln), 2.20 (dt, J = 12.8, 6.9 Hz, 1H, CHH β -Gln), 2.12 (br. s, 1H, NH), 1.92–1.86 (m, 1H, CHHβ-Gln), 1.85 (s, 3H, CH₃, cumyl), 1.84 (s, 3H, CH₃, cumyl); ¹³C NMR (101 MHz, CDCl₃) δ_C 174.7 (C=O), 171.2 (C=O), 157.1 (C=O, Fmoc), 144.8 (C), 144.7 (C), 144.1 (C), 141.40 (C), 141.37 (C), 128.8 (CH), 128.5 (CH), 128.1 (CH), 127.8 (CH), 127.6 (CH), 127.21 (CH), 127.17 (CH), 127.15 (CH), 125.3 (CH), 124.5 (CH), 120.0 (CH), 83.1 (C, cumyl), 79.9 (OCH₂), 79.6 (OCH₂), 70.7 (C, Trt), 67.0 (CH₂, Fmoc), 59.8 (C, Ox), 55.5 (CH, α-Gln), 47.3 (CH, Fmoc), 45.4 (CH₂, GOx), 33.4 (CH₂, γ-Gln), 29.7 (CH₂, β-Gln), 28.5 (CH₃, cumyl), 28.3 (CH₃, cumyl). N.B. One aromatic C not observed; v_{max} (neat) = 3302 (NH), 2943, 1716 (C=O), 1490, 1447, 1243, 1132, 969, 741 cm⁻¹; MS (ESI⁺) *m/z* 814 [M+H]⁺, 836 [M+Na]⁺, 852 [M+K]⁺; HRMS (ESI⁺) calcd. for $C_{52}H_{51}N_3NaO_6 [M+Na]^+ 836.3670$, found 836.3661; $[\alpha]_D^{29} + 11.8$ (*c* 0.20, CHCl₃).

5.6 Synthesis of Fmoc-GOx-Trp(Boc)-OCumyl

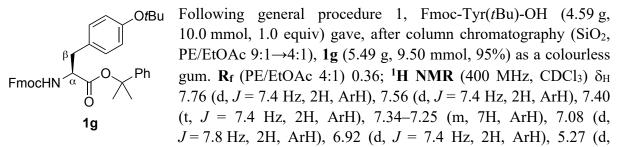
Fmoc-Trp(Boc)-OCumyl (1f)

Following general procedure 1, Fmoc-Trp(Boc)-OH (5.27 g, 10.0 mmol, 1.0 equiv) gave, after column chromatography (SiO₂, PE/EtOAc 4:1), 1f (6.06 g, 9.40 mmol, 94%) contaminated with traces of 2-phenyl-2-propanol as a white solid. $\mathbf{R}_{\mathbf{f}}$ (PE/EtOAc 4:1) 0.61; mp 56–60 °C; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 8.18 (d, J = 6.3 Hz, 1H, ArH), 7.76 (d, J = 7.4 Hz, 2H, ArH), 7.63 (d, J = 7.5 Hz, 1H, ArH), 7.57–7.27 (m, 11H, ArH), 7.26–7.21 (m, 3H, 1f ArH), 5.42 (br. s, 1H, NH), 4.78 (d, J = 6.0 Hz, 1H, CH α -Trp), 4.44–4.38 (m, 2H, CH₂-Fmoc), 4.21 (t, J = 6.9 Hz, 1H, CH-Fmoc), 3.35–3.24 (m, 2H, CH₂ β -Trp), 1.77 (s, 3H, CH₃, cumyl), 1.75 (s, 3H, CH₃, cumyl), 1.65 (s, 9H, $3 \times CH_3$, tBu); ¹³C NMR (101 MHz, CDCl₃) δ_C 170.4 (C=O), 155.9 (C=O, Fmoc), 149.6 (C=O, Boc), 145.0 (C), 144.0 (C), 143.9 (C), 141.4 (C), 135.5 (C), 130.8 (C), 128.4 (CH), 127.8 (CH), 127.4 (CH), 127.2 (CH), 125.3 (CH), 125.2 (CH), 124.7 (CH), 124.5 (CH), 124.3 (CH), 122.9 (CH), 120.1 (CH), 119.2 (CH), 115.4 (CH), 115.3 (C), 83.9 (C, cumyl), 83.7 (C, tBu), 67.3 (CH₂, Fmoc), 54.6 (CH, α-Trp), 47.2 (CH, Fmoc), 28.8 (CH₃, cumyl), 28.3 (CH₃, tBu), 28.1 (CH₂, β-Trp), 28.0 (CH₃, cumyl). *N.B.* One aromatic C not observed; v_{max} (neat) = 2979, 1722 (C=O), 1450, 1368, 1309, 1152, 1085, 758, 739, 698 cm⁻¹; MS (ESI⁺) m/z 667 [M+Na]⁺; HRMS (ESI⁺) calcd. for $C_{40}H_{40}N_2NaO_6 [M+Na]^+ 667.2779$, found 667.2780; $[\alpha]_D^{29} + 10.5$ (*c* 1.02, CHCl₃).

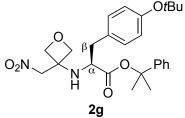

NO₂-GOx-Trp(Boc)-OCumyl (2f)

Following general procedure 3, **1f** (3.22 g, 5.00 mmol, 1.0 equiv), oxetan-3-one (640 µL, 10.0 mmol, 2.0 equiv) and nitromethane (760 µL, 14.0 mmol, 2.8 equiv) were combined to give, after column chromatography (SiO₂, PE/EtOAc 4:1), **2f** (1.35 g, 2.51 mmol, 50%) as a yellow sticky solid. **R**_f (PE/EtOAc 4:1) 0.37; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 8.17 (d, J = 7.4 Hz, 1H, ArH), 7.60 (d, J = 7.6 Hz, 1H, ArH), 7.49–7.26 (m, 4H, ArH),

7.25–7.09 (m, 4H, ArH), 4.77 (d, J = 12.8 Hz, 1H, NO₂C*H*H), 4.70 (d, J = 12.8 Hz, 1H, NO₂CH*H*), 4.51 (d, J = 7.2 Hz, 1H, OC*H*H-Ox), 4.39 (d, J = 4.6 Hz, 1H, OC*H*H-Ox), 4.38 (d, J = 4.6 Hz, 1H, OC*H*H-Ox), 4.29 (d, J = 7.2 Hz, 1H, OC*H*H-Ox), 3.84 (br. m, 1H, CHa-Trp), 3.10 (dd, J = 14.3, 6.3 Hz, 1H, C*H*Hβ-Trp), 2.97 (dd, J = 14.3, 6.9 Hz, 1H, C*H*Hβ-Trp), 2.97 (br. s, 1H, NH), 1.75 (s, 3H, CH₃, cumyl), 1.69 (s, 3H, CH₃, cumyl), 1.65 (s, 9H, 3 × CH₃, *t*Bu); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm C}$ 173.5 (C=O), 149.7 (C=O, Boc), 144.8 (C), 135.6 (C), 130.4 (C), 128.4 (CH), 127.5 (CH), 124.7 (CH), 124.6 (CH), 124.4 (CH), 122.8 (CH), 119.1 (CH), 115.6 (C), 115.4 (CH), 83.7 (C, cumyl), 83.5 (C, *t*Bu), 78.9 (NO₂CH₂ or OCH₂), 78.8 (NO₂CH₂ or OCH₂), 78.7 (OCH₂), 59.6 (C, Ox), 56.6 (CH, α-Trp), 30.4 (CH₂, β-Trp), 28.7 (CH₃, cumyl), 28.3 (CH₃, *t*Bu), 27.5 (CH₃, cumyl); **v**_{max} (neat) = 2979, 1721 (C=O), 1451, 1368, 1220, 1152, 1085, 1055, 758, 739 cm⁻¹; **MS** (ESI⁺) *m/z* 560 [M+Na]⁺; **HRMS** (ESI⁺) calcd. for C₂₉H₃₅N₃NaO₇ [M+Na]⁺ 560.2367, found 560.2372; [**α**]²⁹₂+6.2 (*c* 1.09, CHCl₃).

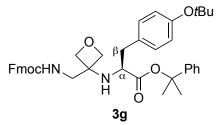

Fmoc-GOx-Trp(Boc)-OCumyl (3f)

Following general procedure 4, 2f (2.28 g, 4.23 mmol, 1.0 equiv) gave, after column chromatography (SiO₂, CH₂Cl₂/EtOAc 19:1→9:1→4:1), 3f (1.35 g, 1.85 mmol, 44%) as a white foam. R_f (CH₂Cl₂/EtOAc 4:1) 0.44; mp
h 85–90 °C; ¹H NMR (400 MHz, CDCl₃) δ_H 8.16 (d, J = 7.0 Hz, 1H, ArH), 7.76 (d, J = 7.5 Hz, 2H, ArH), 7.60 (d, J = 7.6 Hz, 1H, ArH), 7.54 (t, J = 6.7 Hz, 2H, ArH), 7.49 (s, 1H, ArH), 7.44–7.26 (m, 8H, ArH), 7.24 (d, J = 7.2 Hz, 3H,


ArH), 5.07 (br. s, 1H, NH), 4.50–4.18 (m, 6H, 2 × OCH₂-Ox, CH₂-Fmoc), 4.16 (s, 1H, CH-Fmoc), 3.70 (t, J = 6.4 Hz, 1H, CH α -Trp), 3.63 (dd, J = 13.8, 6.3 Hz, 1H, CHHGOx), 3.30 (dd, J = 13.8, 4.7 Hz, 1H, CHHGOx), 3.16 (dd, J = 14.3, 5.3 Hz, 1H, CHH β -Trp), 2.94 (dd, J = 14.3, 8.1 Hz, 1H, CHH β -Trp), 1.78 (s, 3H, CH₃, cumyl), 1.73 (s, 3H, CH₃, cumyl), 1.64 (s, 9H, 3 × CH₃, *t*Bu); ¹³C **NMR** (101 MHz, CDCl₃) $\delta_{\rm C}$ 174.2 (C=O), 156.9 (C=O, Fmoc), 149.7 (C=O, Boc), 144.8 (C), 144.1 (C), 141.4 (C), 135.7 (C), 130.4 (C), 128.4 (CH), 127.8 (CH), 127.6 (CH), 127.2 (CH), 125.3 (CH), 124.9 (CH), 124.4 (CH), 122.9 (CH), 120.1 (CH), 119.1 (CH), 116.0 (C), 115.7 (CH), 83.9 (C, cumyl), 83.4 (C, *t*Bu), 79.8 (OCH₂), 79.7 (OCH₂), 67.0 (CH₂, Fmoc), 59.6 (C, Ox), 59.5 (CH, α-Trp), 47.3 (CH, Fmoc), 45.4 (CH₂, GOx), 30.5 (CH₂, β-Trp), 28.7 (CH₃, cumyl), 28.3 (CH₃, *t*Bu), 27.6 (CH₃, cumyl). *N.B.* Two aromatic C and one aromatic CH signal not observed; **v**_{max} (neat) = 2979, 2933, 1722 (C=O), 1450, 1368, 1254, 1152, 1055, 758, 739, 698 cm⁻¹; **MS** (ESI⁺) *m/z* 730 [M+H]⁺, 752 [M+Na]⁺; **HRMS** (ESI⁺) calcd. for C₄₄H₄₇N₃NaO₇ [M+Na]⁺ 752.3306, found 752.3300; [**α**]²⁹₂ -1.8 (*c* 1.00, CHCl₃).

Fmoc-Tyr(tBu)-OCumyl (1g)

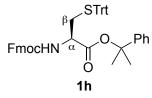
J = 7.8 Hz, 1H, NH), 4.63 (dd, *J* = 13.1, 6.3 Hz, 1H, CHα-Tyr), 4.40 (t, *J* = 7.9 Hz, 1H, C*H*H-Fmoc), 4.32 (dd, *J* = 9.8, 7.5 Hz, 1H, C*H*H-Fmoc), 4.20 (t, *J* = 6.9 Hz, 1H, CH-Fmoc), 3.12 (dd, *J* = 14.6, 6.8 Hz, 1H, C*H*Hβ-Tyr), 3.06 (dd, *J* = 14.6, 7.2 Hz, 1H, CH*H*β-Tyr), 1.75 (s, 3H, CH₃, cumyl), 1.72 (s, 3H, CH₃, cumyl), 1.32 (s, 9H, $3 \times$ CH₃, *t*Bu); ¹³C **NMR** (101 MHz, CDCl₃) $\delta_{\rm C}$ 170.4 (C=O), 155.7 (C=O, Fmoc), 154.5 (C), 145.0 (C), 143.9 (C), 141.4 (C), 130.9 (C), 130.1 (CH), 128.5 (CH), 127.8 (CH), 127.4 (CH), 127.2 (CH), 125.3 (CH), 125.2 (CH), 124.5 (CH), 124.3 (CH), 120.1 (CH), 83.6 (C, cumyl), 78.5 (C, *t*Bu), 67.1 (CH₂, Fmoc), 55.3 (CH, α-Tyr), 47.3 (CH, Fmoc), 37.9 (CH₂, β-Tyr), 29.0 (CH₃, *t*Bu), 28.9 (CH₃, cumyl), 28.0 (CH₃, cumyl); **v**_{max} (neat) = 3328 (NH), 2977, 1717 (C=O), 1505, 1448, 1365, 1236, 1159, 1136, 1102, 1031, 896, 826, 739 cm⁻¹; **MS** (ESI⁺) *m/z* 600 [M+Na]⁺, 616 [M+K]⁺; **HRMS** (ESI⁺) calcd. for C₃₇H₃₉NNaO₅ [M+Na]⁺ 600.2720, found 600.2725; [**α**]_D²⁸ +16.0 (*c* 0.80, CHCl₃).


NO₂-GOx-Tyr(*t*Bu)-OCumyl (2g)

Following general procedure 3, **1g** (5.78 g, 10.0 mmol, 1.0 equiv), oxetan-3-one (1.28 mL, 20.0 mmol, 2.0 equiv) and nitromethane (1.52 mL, 28.0 mmol, 2.8 equiv) were combined to give, after column chromatography (SiO₂, PE/EtOAc 4:1 \rightarrow 2:1), **2g** (2.91 g, 6.18 mmol, 62%) as an orange oil. **R**_f (PE/EtOAc 2:1) 0.46; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.38–

7.22 (m, 5H, ArH), 7.10 (d, J = 7.9 Hz, 2H, ArH), 6.93 (d, J = 7.9 Hz, 2H, ArH), 4.72 (d, J = 12.7 Hz, 1H, NO₂CHH), 4.65 (d, J = 12.7 Hz, 1H, NO₂CHH), 4.44 (d, J = 7.1 Hz, 1H, OCHH-Ox), 4.32 (d, J = 7.1 Hz, 1H, OCHH-Ox), 4.28–4.23 (m, 2H, OCH₂-Ox), 3.67 (q, J = 7.9 Hz, 1H, CHα-Tyr), 2.96 (dd, J = 13.4, 5.7 Hz, 1H, CHHβ-Tyr), 2.77 (dd, J = 13.4, 7.9 Hz, 1H, CHHβ-Tyr), 2.32 (d, J = 7.9 Hz, 1H, NH), 1.76 (s, 3H, CH₃, cumyl), 1.70 (s, 3H, CH₃, cumyl), 1.32 (s, 9H, 3 × CH₃, *t*Bu); ¹³C NMR (101 MHz, CDCl₃) δ_C 173.5 (C=O), 154.4 (C), 144.9 (C), 132.0 (C), 130.2 (CH), 128.5 (CH), 127.6 (CH), 124.5 (CH), 124.3 (CH), 83.3 (C, cumyl), 79.0 (NO₂CH₂), 78.8 (OCH₂), 78.7 (OCH₂), 78.6 (C, *t*Bu), 59.5 (C, Ox), 58.1 (C, α-Tyr), 40.3 (CH₂, β-Tyr), 29.0 (CH₃, *t*Bu), 28.8 (CH₃, cumyl), 27.6 (CH₃, cumyl); **v**_{max} (neat) = 3336 (NH), 2976, 1727 (C=O), 1555, 1505, 1366, 1236, 1160, 1135, 981 cm⁻¹; MS (ESI⁺) m/z 493 [M+Na]⁺, 509 [M+K]⁺; HRMS (ESI⁺) calcd. for C₂₆H₃₄N₂NaO₆ [M+Na]⁺ 493.2309, found 493.2310; [**α**]_D²⁸ +5.3 (*c* 1.47, CHCl₃).

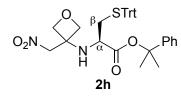
Fmoc-GOx-Tyr(tBu)-OCumyl (3g)



Following general procedure 4, **2g** (2.76 g, 5.87 mmol, 1.0 equiv) gave, after column chromatography (SiO₂, CH₂Cl₂/EtOAc 9:1 \rightarrow 4:1), **3g** (2.26 g, 3.41 mmol, 58%) as a white foam. **R**_f (CH₂Cl₂/EtOAc 9:1) 0.37; **mp** 60–62 °C; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.77 (d, *J* = 7.5 Hz, 2H, ArH), 7.58 (t, *J* = 7.2 Hz, 2H, ArH), 7.40 (t, *J* = 7.4 Hz,

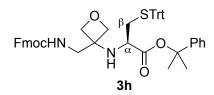
2H, ArH), 7.35–7.29 (m, 6H, ArH), 7.26–7.21 (m, 1H, ArH), 7.14 (d, J = 7.6 Hz, 2H, ArH), 6.94 (d, J = 7.6 Hz, 2H, ArH), 4.95 (t, J = 5.5 Hz, 1H, NH), 4.38 (dd, J = 9.8, 8.1 Hz, 1H, CHH-Fmoc), 4.31 (t, J = 8.5 Hz, 1H, CHH-Fmoc), 4.25–4.18 (m, 2H, CH-Fmoc, OCHH-Ox), 4.17–4.09 (m, 3H, OCH₂-Ox, OCHH-Ox), 3.58–3.40 (m, 2H, CH α -Tyr, CHHGOX), 3.33 (dd, J = 13.7, 4.6 Hz, 1H, CHHGOX), 3.03 (dd, J = 12.9, 3.6 Hz, 1H, CHH β -Tyr), 2.69 (dd, J = 12.9, 9.3 Hz, 1H, CHH β -Tyr), 2.03 (br. s, 1H, NH), 1.77 (s, 3H, CH₃, cumyl), 1.73 (s, 3H, CH₃, cumyl), 1.29 (s, 9H, 3 × CH₃, tBu); ¹³C NMR (101 MHz, CDCl₃) δ_c 174.2 (C=O), 156.9 (C=O, Fmoc), 154.5 (C), 144.9 (C), 144.2 (C), 144.1 (C), 141.4 (C), 132.3 (C), 130.0 (CH), 128.5 (CH), 127.8 (CH), 127.5 (CH), 127.2 (CH), 125.3 (CH), 124.5 (CH), 120.1 (CH), 83.2 (C, cumyl), 79.8 (OCH₂), 79.5 (OCH₂), 78.5 (C, *t*Bu), 66.9 (CH₂, Fmoc), 59.5 (C, Ox), 58.1 (CH, α-Tyr), 47.3 (CH, Fmoc), 45.3 (CH₂, GOx), 40.3 (CH₂, β-Tyr), 28.9 (CH₃, *t*Bu), 28.7 (CH₃, cumyl), 27.8 (CH₃, cumyl). *N.B.* One aromatic C and one aromatic CH signal not observed; **v**_{max} (neat) = 3329 (NH), 2976, 1720 (C=O), 1505, 1448, 1365, 1235, 1159, 1133, 1100, 974, 895, 831, 740 cm⁻¹; **MS** (ESI⁺) *m*/*z* 663 [M+H]⁺, 685 [M+Na]⁺; **HRMS** (ESI⁺) calcd. for C₄₁H₄₆N₂NaO₆ [M+Na]⁺ 685.3248, found 685.3254; [**α**]²⁸₂–0.1 (*c* 0.40, CHCl₃).

5.8 Synthesis of Fmoc-GOx-Cys(Trt)-OCumyl


Fmoc-Cys(Trt)-OCumyl (1h)

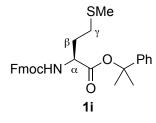
Following general procedure 1, Fmoc-Cys(Trt)-OH (4.15 g, 7.10 mmol, 1.0 equiv) gave, after column chromatography (SiO₂, PE/EtOAc 9:1 \rightarrow 4:1), **1h** (3.88 g, 5.51 mmol, 78%) as a white foam. **R**_f (PE/EtOAc 4:1) 0.22; **mp** 60–62 °C; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.81 (d, J = 7.4 Hz, 2H, ArH), 7.64 (d, J = 7.4 Hz, 2H, ArH),

7.51–7.39 (m, 8H, ArH), 7.36–7.26 (m, 16H, ArH), 5.33 (d, J = 8.1 Hz, 1H, NH), 4.47–4.37 (m, 3H, CH₂-Fmoc, CHα-Cys), 4.27 (t, J = 6.8 Hz, 1H, CH-Fmoc), 2.73 (dd, J = 11.4, 6.6 Hz, 1H, CHHβ-Cys), 2.65 (dd, J = 11.4, 2.8 Hz, 1H, CHHβ-Cys), 1.81 (s, 6H, 2 × CH₃, cumyl); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm C}$ 169.2 (C=O), 155.7 (C=O, Fmoc), 145.0 (C), 144.5 (C), 144.0 (C), 143.9 (C), 141.4 (C), 129.6 (CH), 128.4 (CH), 128.2 (CH), 127.8 (CH), 127.4 (CH), 127.2 (CH), 127.0 (CH), 125.3 (CH), 124.5 (CH), 120.1 (CH), 83.9 (C, cumyl), 67.3 (CH₂, Fmoc), 67.0 (C, Trt), 53.5 (CH, α-Cys), 47.2 (CH, Fmoc), 34.5 (CH₂, β-Cys), 28.43 (CH₃, cumyl), 28.41 (CH₃, cumyl). *N.B.* One aromatic C not observed; **v**_{max} (neat) = 3317 (NH), 2979, 1719 (C=O), 1493, 1446, 1201, 1134, 1031, 831, 734 cm⁻¹; **MS** (ESI⁺) *m/z* 726 [M+Na]⁺; **HRMS** (ESI⁺) calcd. for C₄₆H₄₁NNaO₄S [M+Na]⁺ 726.2649, found 726.2642; [**α**]^D₂ +20.1 (*c* 0.40, CHCl₃).


NO₂-GOx-Cys(Trt)-OCumyl (2h)

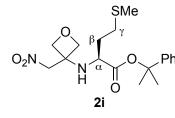
Following general procedure 3, **1h** (3.85 g, 5.47 mmol, 1.0 equiv), oxetan-3-one (699 μ L, 10.9 mmol, 2.0 equiv) and nitromethane (829 μ L, 15.3 mmol, 2.8 equiv) were combined to give, after column chromatography (SiO₂, PE/EtOAc 4:1 \rightarrow 2:1), **2h** (1.48 g, 2.45 mmol, 45%) as an orange gum. **R**_f (PE/EtOAc

2:1) 0.36; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.45 (d, *J* = 7.5 Hz, 6H, ArH), 7.35–7.25 (m, 14H), 4.70 (d, *J* = 13.4 Hz, 1H, NO₂C*H*H), 4.66 (d, *J* = 13.4 Hz, 1H, NO₂CH*H*), 4.55 (d, *J* = 7.0 Hz, 1H, OC*H*H-Ox), 4.46–4.36 (m, 3H, OCH*H*-Ox, OCH₂-Ox), 3.23 (br. s, 1H, CHα-Cys), 2.50 (dd, *J* = 12.7, 5.4 Hz, 1H, C*H*Hβ-Cys), 2.44 (dd, *J* = 12.7, 7.8 Hz, 1H, CH*H*β-Cys), 2.40 (br. s, 1H, NH), 1.75 (s, 3H, CH₃, cumyl), 1.73 (s, 3H, CH₃, cumyl); ¹³C **NMR** (101 MHz, CDCl₃) $\delta_{\rm C}$ 172.1 (C=O), 144.69 (C), 144.67 (C), 129.7 (CH), 128.4 (CH), 128.2 (CH), 127.6 (CH), 126.9 (CH), 124.5 (CH), 83.6 (C, cumyl), 78.91 (NO₂CH₂ or OCH₂), 78.87 (NO₂CH₂ or OCH₂), 78.4 (OCH₂), 67.2 (C, Trt), 59.2 (C, Ox), 56.4 (CH, α-Cys), 36.3 (CH₂, β-Cys), 28.4 (CH₃, cumyl), 28.1 (CH₃, cumyl); **v**_{max} (neat) = 3367 (NH), 2979, 1721 (C=O), 1492, 1446, 1200, 1334, 1031, 831, 740 cm⁻¹; **MS** (ESI⁺) *m/z* 619 [M+Na]⁺, 635 [M+K]⁺; **HRMS** (ESI⁺) calcd. for C₃₅H₃₆N₂NaO₅S [M+Na]⁺ 619.2237, found 619.2243; [**α**]_D²⁸ +20.0 (*c* 0.14, CHCl₃).


Fmoc-GOx-Cys(Trt)-OCumyl (3h)

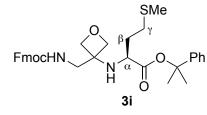
Following general procedure 5, **2h** (878 mg, 1.47 mmol, 1.0 equiv) gave, after column chromatography (SiO₂, CH₂Cl₂/EtOAc 19:1 \rightarrow 9:1), **3h** (427 mg, 0.54 mmol, 37%) as a white foam. **R**_f (CH₂Cl₂/EtOAc 9:1) 0.48; **mp** 69–71 °C; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.79 (d, J = 7.4 Hz, 2H,

ArH), 7.65–7.55 (m, 2H, ArH), 7.48 (d, J = 7.4 Hz, 6H, ArH), 7.42 (t, J = 7.4 Hz, 2H, ArH), 7.34–7.21 (m, 16H, ArH), 5.54 (t, J = 5.3 Hz, 1H, NH), 4.48–4.24 (m, 5H, CH₂-Fmoc, OCH₂-Ox, OCHH-Ox), 4.19 (d, J = 6.0 Hz, 1H, OCHH-Ox), 4.13 (t, J = 7.3 Hz, 1H, CH-Fmoc), 3.57 (dd, J = 13.6, 5.7 Hz, 1H, CHHGOx), 3.47 (dd, J = 13.6, 2.7 Hz, 1H, CHHGOx), 2.97 (br. s, 1H, CH α -Cys), 2.60–2.40 (m, 2H, CH₂ β -Cys), 2.04 (br. s, 1H, NH), 1.77 (s, 3H, CH₃, cumyl), 1.72 (s, 3H, CH₃, cumyl); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm C}$ 172.8 (C=O), 157.0 (C=O, Fmoc), 144.6 (C), 144.2 (C), 144.0 (C), 141.4 (C), 141.3 (C), 129.7 (CH), 128.4 (CH), 128.2 (CH), 127.8 (CH), 127.6 (CH), 127.2 (CH), 127.0 (CH), 125.4 (CH), 125.3 (CH), 124.4 (CH), 120.0 (CH), 83.4 (C, cumyl), 80.2 (OCH₂), 79.6 (OCH₂), 67.5 (C, Trt), 67.1 (CH₂, Fmoc), 59.2 (C, Ox), 56.0 (CH₃, cumyl). *N.B.* One aromatic C not observed; **v**_{max} (neat) = 3338 (NH), 2978, 1722 (C=O), 1492, 1446, 1201, 1134, 1031, 831, 740 cm⁻¹; **MS** (ESI⁺) *m*/*z* 789 [M+H]⁺, 811 [M+Na]⁺, 827 [M+K]⁺; **HRMS** (ESI⁺) calcd. for C₅₀H₄₈N₂NaO₅S [M+Na]⁺ 811.3176, found 811.3176; [**a**]^D_D⁹ +41.3 (*c* 0.20, CHCl₃).


Fmoc-Met-OCumyl (1i)

Following general procedure 1, Fmoc-Met-OH (3.71 g, 10.0 mmol, 1.0 equiv) gave, after column chromatography (SiO₂, PE/EtOAc 4:1), **1i** (4.65 g, 9.50 mmol, 95%) contaminated with traces of 2-phenyl-2-propanol (~ 3:1 by ¹H NMR) as a colourless oil. **R**_f (PE/EtOAc 4:1) 0.60; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.77 (d, J = 7.4 Hz, 2H, ArH), 7.59 (d, J = 7.4 Hz, 2H, ArH), 7.43–7.28 (m, 9H, ArH), 5.40 (br. s,

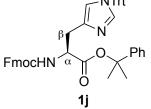
1H, NH), 4.50 (s, 1H, CHα-Met), 4.44–4.36 (m, 2H, CH₂-Fmoc), 4.22 (t, J = 6.7 Hz, 1H, CH-Fmoc), 2.66–2.39 (m, 2H, CH₂γ-Met), 2.34–2.17 (m, 1H, CHHβ-Met), 2.12 (s, 3H, CH₃, Met), 2.00 (dd, J = 13.4, 7.4 Hz, 1H, CHHβ-Met), 1.82 (s, 3H, CH₃, cumyl), 1.75 (s, 3H, CH₃, cumyl); ¹³C **NMR** (101 MHz, CDCl₃) $\delta_{\rm C}$ 170.6 (C=O), 156.0 (C=O, Fmoc), 144.9 (C), 144.0 (C), 143.9 (C), 141.4 (C), 128.5 (CH), 127.8 (CH), 127.6 (CH), 127.2 (CH), 125.2 (CH), 124.4 (CH), 120.1 (CH), 83.6 (C, cumyl), 67.1 (CH₂, Fmoc), 53.7 (CH, α-Met), 47.3 (CH, Fmoc), 32.4 (CH₂, β-Met), 30.0 (CH₂, γ-Met), 28.7 (CH₃, cumyl), 28.4 (CH₃, cumyl), 15.7 (CH₃, Met). *N.B.* One aromatic C not observed; **v**_{max} (neat) = 3329 (NH), 3062, 2977, 2917, 1705 (C=O), 1447, 1218, 1135, 759, 740 cm⁻¹; **MS** (ESI⁺) *m/z* 512 [M+Na]⁺; **HRMS** (ESI⁺) calcd. for C₂₉H₃₁NNaO₄S [M+Na]⁺ 512.1866, found 512.1869; **[α]**²⁹_D –0.9 (*c* 1.10, CHCl₃).


NO₂-GOx-Met-OCumyl (2i)

Following general procedure 3, **1i** (4.50 g, 9.19 mmol, 1.0 equiv), oxetan-3-one (1.18 mL, 18.4 mmol, 2.0 equiv) and nitromethane (1.40 mL, 25.7 mmol, 2.8 equiv) were combined to give, after column chromatography (SiO₂, PE/EtOAc 4:1), **2i** (1.96 g, 5.12 mmol, 56%) contaminated with traces of 2-phenyl-2-propanol (\sim 3:1 by ¹H NMR) as a sticky yellow gum. **R**_f

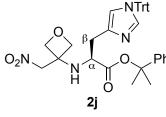
(PE/EtOAc 4:1) 0.49; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.38–7.27 (m, 5H, ArH), 4.80 (d, J = 12.8 Hz, 1H, NO₂C*H*H), 4.70 (d, J = 12.8 Hz, 1H, NO₂CH*H*), 4.63 (d, J = 7.2 Hz, 1H, OC*H*H-Ox), 4.51 (d, J = 7.2 Hz, 1H, OC*H*H-Ox), 4.45 (d, J = 7.2 Hz, 2H, 2 × OCH₂-Ox), 3.67 (d, J = 4.6 Hz, 1H, CHα-Met), 2.62–2.56 (m, 2H, CH₂ γ -Met), 2.30 (br. s, 1H, NH), 2.11 (s, 3H, CH₃, Met), 2.11–1.96 (m, 1H, C*H*H β -Met), 1.80 (s, 6H, 2 × CH₃, cumyl), 1.75–1.69 (m, 1H, CH*H* β -Met); ¹³C **NMR** (101 MHz, CDCl₃) $\delta_{\rm C}$ 174.3 (C=O), 144.8 (C), 128.6 (CH), 127.7 (CH), 124.5 (CH), 83.3 (C, cumyl), 79.2 (NO₂CH₂ or OCH₂), 78.7 (NO₂CH₂ or OCH₂), 78.5 (OCH₂), 59.6 (C, Ox), 54.8 (CH, α-Met), 33.3 (CH₂, β-Met), 30.4 (CH₂, γ -Met), 28.5 (CH₃, cumyl), 28.2 (CH₃, cumyl), 15.3 (CH₃, Met); **v**_{max} (neat) = 3366 (NH), 2979, 2919, 2880, 1726 (C=O), 1553, 1380, 1272, 1199, 1133, 1101, 824 cm⁻¹; **MS** (ESI⁺) *m/z* 405 [M+Na]⁺; **HRMS** (ESI⁺) calcd. for C₁₈H₂₆N₂NaO₅S [M+Na]⁺ 405.1455, found 405.1460; [**α**]^D_D⁹ –18.9 (*c* 1.04, CHCl₃).

Fmoc-GOx-Met-OCumyl (3i)



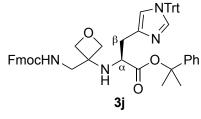
Following general procedure 4, **2i** (710 mg, 1.86 mmol, 1.0 equiv) gave, after column chromatography (SiO₂, CH₂Cl₂/EtOAc 9:1), **3i** (280 mg, 0.49 mmol, 26%) as a sticky colourless gum. Alternatively following general procedure 5, **2i** (312 mg, 0.82 mmol, 1.0 equiv) gave, after column chromatography (SiO₂, CH₂Cl₂/EtOAc 9:1), **3i** (173 mg, 0.30

mmol, 37%) as a sticky colourless gum. Rf (CH₂Cl₂/EtOAc 9:1) 0.54; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.76 (d, J = 7.4 Hz, 2H, ArH), 7.58 (d, J = 7.4 Hz, 2H, ArH), 7.44–7.27 (m, 9H, ArH), 5.36 (br. s, 1H, NH), 4.43 (d, J = 7.0 Hz, 1H, OCHH-Ox), 4.39 (d, J = 7.0 Hz, 2H, CH₂-Fmoc), 4.34 (d, J = 7.0 Hz, 1H, OCHH-Ox), 4.30 (d, J = 6.5 Hz, 1H, OCHH-Ox), 4.25 (d, J = 6.5 Hz, 1H, OCHH-Ox), 4.20 (t, J = 7.0 Hz, 1H, CH-Fmoc), 3.68 (dd, J = 13.9, 5.0 Hz, 10.0 Hz)1H, CHHGOx), 3.54 (dd, J = 9.1, 3.6 Hz, 1H, CH α -Met), 3.45 (dd, J = 13.9, 5.0 Hz, 1H, CHHGOx), 2.72-2.60 (br. m, 2H, CH₂γ-Met), 2.11 (s, 3H, CH₃, Met), 2.05-1.99 (m, 1H, CHH β -Met), 1.80 (s, 6H, 2 × CH₃, cumyl), 1.78–1.72 (m, 1H, CHH β -Met); ¹³C NMR (101 MHz, CDCl₃) δ_C 174.9 (C=O), 157.0 (C=O, Fmoc), 144.8 (C), 144.0 (C), 141.4 (C), 128.5 (CH), 127.84 (CH), 127.80 (CH), 127.6 (CH), 127.2 (CH), 125.2 (CH), 125.1 (CH), 124.4 (CH), 120.1 (CH), 83.1 (C, cumyl), 79.9 (OCH₂), 79.6 (OCH₂), 66.9 (CH₂, Fmoc), 59.6 (C, Ox), 54.5 (CH, α-Met), 47.4 (CH, Fmoc), 45.6 (CH₂, GOx), 33.1 (CH₂, β-Met), 30.6 (CH₂, γ-Met), 28.4 (CH₃, cumyl), 28.3 (CH₃, cumyl), 15.3 (CH₃, Met). N.B. Two aromatic C signals not observed; v_{max} (neat) = 3329 (NH), 3063, 2929, 2873, 1718 (C=O), 1511, 1448, 1240, 1132, 1100, 970, 759, 740, 698 cm⁻¹; **MS** (ESI⁺) m/z 575 [M+H]⁺, 597 [M+Na]⁺; **HRMS** (ESI⁺) calcd. for $C_{33}H_{38}N_2NaO_5S$ [M+Na]⁺ 597.2394, found 597.2397; $[\alpha]_D^{30}$ -8.9 (*c* 1.06, CHCl₃).


5.10 Synthesis of Fmoc-GOx-His(Trt)-OCumyl

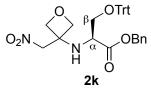
Fmoc-His(Trt)-OCumyl (1j)

Following general procedure 1, Fmoc-His(Trt)-OH (6.20 g, 10.0 mmol, 1.0 equiv) gave, after column chromatography (SiO₂, PE/EtOAc 1:1), **1j** (4.90 g, 6.64 mmol, 66%) contaminated with traces of 2-phenyl-2-propanol (~33:1 by ¹H NMR) as a white solid. **R**_f (PE/EtOAc 1:1) 0.50; **mp** 73–76 °C; ¹H **NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.75 (d, J = 7.4 Hz, 2H, ArH), 7.60 (d, J = 7.4 Hz, 2H, ArH),


7.41–7.27 (m, 15H, ArH), 7.25–7.14 (m, 4H, ArH), 7.12–7.05 (m, 6H, ArH), 6.62 (s, 1H, ArH), 6.48 (d, J = 8.1 Hz, 1H, NH), 4.62 (dd, J = 13.0, 5.2 Hz, 1H, CH α -His), 4.38–4.24 (m, 2H, CH₂-Fmoc), 4.21 (t, J = 7.5 Hz, 1H, CH-Fmoc), 3.23–2.99 (m, 2H, CH₂ β -His), 1.72 (s, 3H, CH₃, cumyl), 1.71 (s, 3H, CH₃, cumyl); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm C}$ 170.4 (C=O), 156.3 (C=O, Fmoc), 145.6 (C), 144.2 (C), 144.1 (C), 142.5 (C), 141.4 (C), 138.9 (CH), 136.5 (C), 129.9 (CH), 128.4 (CH), 128.1 (CH), 127.7 (CH), 127.20 (CH), 127.17 (CH), 125.52 (CH), 125.47 (CH), 124.4 (CH), 120.0 (CH), 119.6 (CH), 83.1 (C, cumyl), 75.4 (C, Trt), 67.3 (CH₂, Fmoc), 54.6 (CH, α -His), 47.3 (CH, Fmoc), 30.3 (CH₂, β -His), 28.7 (CH₃, cumyl), 28.4 (CH₃, cumyl). *N.B.* One aromatic C not observed; v_{max} (neat) = 3293 (NH), 3060, 2979, 1718 (C=O), 1493, 1446, 1135, 741, 699 cm⁻¹; MS (ESI⁺) m/z 738 [M+H]⁺, 760 [M+Na]⁺; HRMS (ESI⁺) calcd. for C₄₉H₄₄N₃O₄ [M+H]⁺ 738.3326, found 738.3329; [α]²⁹₂ –0.6 (*c* 1.02, CHCl₃).

Following general procedure 3, **1j** (3.69 g, 5.00 mmol, 1.0 equiv), oxetan-3-one (640 μ L, 10.0 mmol, 2.0 equiv) and nitromethane (760 μ L, 14.0 mmol, 2.8 equiv) were combined to give, after column chromatography (SiO₂, PE/EtOAc 1:1 \rightarrow 1:3), **2j** (2.14 g, 3.39 mmol, 68%) as an orange foam; **R**_f (EtOAc) 0.77; **mp** 65–69 °C; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.39 (s, 1H, ArH), 7.35–7.27

(m, 14H, ArH), 7.22 (t, J = 7.1 Hz, 1H, ArH), 7.16–7.10 (m, 5H, ArH), 6.61 (s, 1H, ArH), 4.74 (d, J = 13.2 Hz, 1H, NO₂C*H*H), 4.64 (d, J = 13.2 Hz, 1H, NO₂C*HH*), 4.46 (d, J = 7.0 Hz, 1H, OC*H*H-Ox), 4.40 (d, J = 7.2 Hz, 1H, OC*H*H-Ox), 4.37 (d, J = 7.2 Hz, 1H, OCH*H*-Ox), 4.31 (d, J = 7.0 Hz, 1H, OCH*H*-Ox), 3.83 (dd, J = 8.6, 4.0 Hz, 1H, CH α -His), 3.05 (dd, J = 14.3, 4.0 Hz, 1H, C*H*H β -His), 2.97 (dd, J = 14.3, 8.6 Hz, 1H, CH β -His), 2.52 (br. s, 1H, NH), 1.76 (s, 3H, CH₃, cumyl), 1.74 (s, 3H, CH₃, cumyl); ¹³C NMR (101 MHz, CDCl₃) δ_C 173.5 (C=O), 145.2 (C), 142.5 (C), 138.7 (CH), 136.8 (C), 129.9 (CH), 128.4 (CH), 128.2 (CH), 128.1 (CH), 127.4 (CH), 124.5 (CH), 120.0 (CH), 82.9 (C, cumyl), 79.0 (NO₂CH₂ or OCH₂), 78.8 (NO₂CH₂ or OCH₂), 78.5 (OCH₂), 75.4 (C, Trt), 59.3 (C, Ox), 56.5 (CH, α-His), 33.1 (CH₂, β-His), 28.6 (CH₃, cumyl), 28.1 (CH₃, cumyl); **v**_{max} (neat) = 3326 (NH), 3060, 2927, 2878, 1729 (C=O), 1552, 1131, 979, 747, 698 cm⁻¹; MS (ESI⁺) *m*/*z* 631 [M+H]⁺, 653 [M+Na]⁺; HRMS (ESI⁺) calcd. for C₃₈H₃₉N₄O₅ [M+H]⁺ 631.2915, found 631.2916; [α]_D³⁰ –11.4 (*c* 1.02, CHCl₃).


Fmoc-GOx-His(Trt)-OCumyl (3j)

Following general procedure 4, **2j** (1.26 g, 2.00 mmol, 1.0 equiv) gave, after column chromatography (SiO₂, CH₂Cl₂/EtOAc 1:1), **3j** (1.01 g, 1.23 mmol, 61%) as a white foam. **R**_f (CH₂Cl₂/EtOAc 1:1) 0.52; **mp** 76–80 °C; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.75 (d, J = 7.4 Hz, 2H, ArH), 7.53 (d, J = 7.4 Hz, 2H, ArH), 7.49 (s, 1H, ArH), 7.34–7.20 (m, 19H,

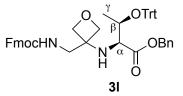
ArH), 7.16–7.00 (m, 5H, ArH), 6.63 (s, 1H, ArH), 6.60 (s, 1H, NH), 4.34 (d, J = 6.2 Hz, 1H, OC*H*H-Ox), 4.30 (d, J = 6.2 Hz, 1H, OCH*H*-Ox), 4.21 (d, J = 6.6 Hz, 4H, OCH₂-Ox, CH₂-Fmoc), 3.97 (t, J = 7.2 Hz, 1H, CH-Fmoc), 3.70 (t, J = 8.6 Hz, 1H, CHα-His), 3.66–3.58 (m, 2H, CH₂GOx), 3.07 (d, J = 14.2 Hz, 1H, C*H*Hβ-His), 2.71 (dd, J = 14.2, 10.2 Hz, 1H, CH*H*β-His), 1.78 (s, 3H, CH₃, cumyl), 1.73 (s, 3H, CH₃, cumyl); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm C}$ 173.9 (C=O), 157.2 (C=O, Fmoc), 145.1 (C), 144.20 (C), 144.17 (C), 142.4 (C), 141.3 (C), 139.0 (CH), 137.1 (C), 129.8 (CH), 128.5 (CH), 128.19 (CH), 128.16 (CH), 127.7 (CH), 127.5 (CH), 127.2 (CH), 125.4 (CH), 125.3 (CH), 124.4 (CH), 120.1 (CH), 120.0 (CH), 82.8 (C, cumyl), 80.7 (OCH₂), 80.3 (OCH₂), 66.9 (CH₂, Fmoc), 59.6 (C, Ox), 56.0 (CH, α-His), 47.3 (CH, Fmoc), 44.6 (CH₂, GOx), 32.2 (CH₂, β-His), 28.7 (CH₃, cumyl), 28.2 (CH₃, cumyl). *N.B.* One aromatic C not observed; **v**_{max} (neat) = 3324 (NH), 3060, 2928, 2869, 1716 (C=O), 1446, 1237, 1131, 974, 741 cm⁻¹; **MS** (ESI⁺) *m/z* 823 [M+H]⁺, 845 [M+Na]⁺; **HRMS** (ESI⁺) calcd. for C₅₃H₅₁N₄O₅ [M+H]⁺ 823.3854, found 823.3850; [**α**]^D_D + 3.9 (*c* 1.03, CHCl₃).

NO₂-GOx-Ser(Trt)-OBn (2k)

(40 mL) gave Fmoc-Ser(Trt)-OBn, which was used without further purification. Following general procedure 3, Fmoc-Ser(Trt)-OBn,

oxetan-3-one (1.28 mL, 20.0 mmol, 2.0 equiv) and nitromethane (1.52 mL, 28.0 mmol, 2.8 equiv) were combined to give, after column chromatography (SiO₂, PE/EtOAc 4:1 \rightarrow 2:1), 2k (1.72 g, 3.12 mmol, 31% over two steps) as a pale yellow foam. \mathbf{R}_{f} (PE/EtOAc 2:1) 0.32; **mp** 42–43 °C; ¹**H NMR** (400 MHz, CDCl₃) δ_H 7.40–7.36 (m, 6H, ArH), 7.35–7.26 (m, 14H, ArH), 5.18 (s, 2H, OCH₂Ph), 4.80 (s, 2H, NO₂CH₂), 4.58 (d, *J* = 6.9 Hz, 1H, OCHH-Ox), 4.55–4.43 (m, 3H, OCH₂-Ox, OCH*H*-Ox), 3.69 (dd, J = 8.5, 4.5 Hz, 1H, CH α -Ser), 3.44– 3.33 (m, 2H, CH₂ β -Ser), 2.76 (d, J = 9.7 Hz, 1H, NH); ¹³C NMR (126 MHz, CDCl₃) $\delta_{\rm C}$ 173.6 (C=O), 143.6 (C), 135.2 (C), 128.74 (CH), 128.70 (CH), 128.68 (CH), 128.0 (CH), 127.3 (CH), 86.9 (C, Trt), 79.0 (NO₂CH₂ or OCH₂), 78.8 (NO₂CH₂ or OCH₂), 78.7 (NO₂CH₂ or OCH₂), 67.6 (CH₂, Bn), 66.0 (CH₂, β-Ser), 59.6 (C, Ox), 56.3 (CH, α-Ser). N.B. One aromatic CH not observed; v_{max} (neat) = 3342 (NH), 2954, 2878, 1733 (C=O), 1553, 1491, 1448, 1377, 1183, 1080, 979, 746, 696 cm⁻¹; MS (ESI⁺) *m/z* 475 [M+Na]⁺, 491 [M+K]⁺; HRMS (ESI⁺) calcd. for $C_{33}H_{32}N_2NaO_6$ [M+Na]⁺ 475.2153, found 475.2147; $[\alpha]_D^{28}$ +1.2 (*c* 0.22, CHCl₃).

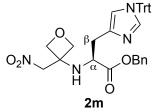
Fmoc-GOx-Ser(Trt)-OBn (3k)


FmocHN $\bigwedge_{H}^{\beta} \bigcap_{\alpha}^{OTrt}$ Following general procedure 4, **2k** (1.64 g, 2.97 mmol, 1.0 equiv) gave, after column chromatography (SiO₂, CH₂Cl₂/EtOAc 9:1 \rightarrow 4:1), **3k** (1.48 g, 1.99 mmol, 67%) as a white foam. $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂/EtOAc 9:1) 0.28; mp 73–74 °C; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.75 (d, J = 7.5 Hz, 2H, ArH),

7.56 (d, J = 6.9 Hz, 2H, ArH), 7.39 (d, J = 7.3 Hz, 8H, ArH), 7.32–7.19 (m, 16H, ArH), 5.24 (br. s, 1H, NH), 5.17 (s, 2H, OCH₂Ph), 4.45–4.33 (m, 3H, CH₂-Fmoc, OCHH-Ox), 4.31 (d, J = 6.4 Hz, 1H, OCHH-Ox), 4.27 (d, J = 6.4 Hz, 1H, OCHH-Ox), 4.24 (d, J = 6.4 Hz, 1H, OCHH-Ox), 4.19 (t, J = 6.7 Hz, 1H, CH-Fmoc), 3.63 (dd, J = 13.7, 5.7 Hz, 1H, CHHGOx), 3.53-3.50 (m, 1H, CH α -Ser), 3.43 (dd, J = 13.7, 4.5 Hz, 1H, CHHGOx), 3.40 (dd, J = 8.4, 4.8 Hz, 1H, CHHβ-Ser), 3.35 (dd, J = 8.4, 4.4 Hz, 1H, CHHβ-Ser), 2.39 (br. s, 1H, NH); ¹³C NMR (126 MHz, CDCl₃) $\delta_{\rm C}$ 174.1 (C=O), 157.0 (C=O, Fmoc), 144.1 (C), 144.0 (C), 143.6 (C), 141.4 (C), 135.2 (C), 128.8 (CH), 128.74 (CH), 128.70 (CH), 128.6 (CH), 128.1 (CH), 127.8 (CH), 127.4 (CH), 127.2 (CH), 125.2 (CH), 120.1 (CH), 87.1 (C, Trt), 79.8 (OCH₂), 79.7 (OCH₂), 67.6 (CH₂, Bn), 67.0 (CH₂, Fmoc), 66.0 (CH₂, β-Ser), 59.5 (C, Ox), 56.2 (CH, α-Ser), 47.4 (CH, Fmoc), 45.4 (CH₂, GOx). N.B. One aromatic C not observed; \mathbf{v}_{max} (neat) = 3330 (NH), 2947, 2875, 1719 (C=O), 1515, 1491, 1448, 1221, 1152, 1080, 741, 697 cm⁻¹; MS (ESI⁺) m/z 767 [M+Na]⁺, 783 [M+K]⁺; HRMS (ESI⁺) calcd. for $C_{48}H_{44}N_2NaO_6 [M+Na]^+$ 767.3092, found 767.3098; $[\alpha]_D^{29}$ +3.4 (*c* 0.50, CHCl₃).

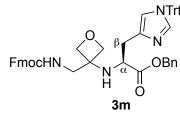
NO₂-GOx-Thr(Trt)-OBn (2l)

Following general procedure 2, Fmoc-Thr(Trt)-OH (5.84 g, 10.0 mmol, 1.0 equiv), benzyl bromide (1.19 mL, 10.0 mmol, 1.0 equiv) and Cs₂CO₃ (3.58 g, 11.0 mmol, 1.1 equiv) in DMF (40 mL) gave Fmoc-Thr(Trt)-OBn, which was used without further 21 purification. Following general procedure 3, Fmoc-Thr(Trt)-OBn, oxetan-3-one (1.28 mL, 20.0 mmol, 2.0 equiv) and nitromethane (1.52 mL, 28.0 mmol, 2.8 equiv) were combined to give, after column chromatography (SiO₂, PE/EtOAc 9:1 \rightarrow 4:1 \rightarrow 2:1), **21** (1.58 g, 2.79 mmol, 28% over two steps) as a pale yellow foam. $\mathbf{R}_{\mathbf{f}}$ (PE/EtOAc 4:1) 0.09; mp 46–47 °C; ¹H NMR (400 MHz, CDCl₃) δ_H ppm 7.45 (d, J=6.8 Hz, 6H, ArH), 7.37–7.32 (m, 3H, ArH), 7.31–7.25 (m, 11H, ArH), 5.19 (d, J = 12.0 Hz, 1H, OCHHPh), 4.99 (d, J = 12.0 Hz, 1H, OCHHPh), 4.64 (s, 2H, NO₂CH₂), 4.42 $(d, J = 6.8 \text{ Hz}, 2H, 2 \times \text{OC}H\text{H-Ox}), 4.38 (d, J = 6.8 \text{ Hz}, 1H, \text{OC}HH\text{-Ox}), 4.34 (d, J = 6.8 \text{ Hz}, 1H, \text{OC}HH\text{-Ox}), 4.34 (d, J = 6.8 \text{ Hz})$ 1H, OCHH-Ox), 3.87-3.80 (m, 1H, CHβ-Thr), 3.12 (dd, J = 10.0, 2.5 Hz, 1H, CHα-Thr), 2.67(d, J = 10.0 Hz, 1H, NH), 0.98 (d, J = 5.9 Hz, 3H, CH₃ γ -Thr); ¹³C NMR (126 MHz, CDCl₃) δ_C 174.0 (C=O), 144.8 (C), 135.2 (C), 129.1 (CH), 128.9 (CH), 128.7 (CH), 128.6 (CH), 127.8 (CH), 127.2 (CH), 87.0 (C, Trt), 78.9 (NO₂CH₂), 78.7 (OCH₂), 78.4 (OCH₂), 72.2 (CH, β-Thr), 67.6 (CH₂, Bn), 60.0 (CH, α-Thr), 59.4 (C, Ox), 17.3 (CH₃, γ-Thr); v_{max} (neat) = 3333 (NH), 2947, 2873, 1728 (C=O), 1553, 1490, 1447, 1377, 1174, 1082, 980, 746, 696 cm⁻¹; MS (ESI⁺) m/z 589 [M+Na]⁺, 605 [M+K]⁺; HRMS (ESI⁺) calcd. for C₃₄H₃₄N₂NaO₆ [M+Na]⁺ 589.2309, found 589.2306; $[\alpha]_{D}^{27}$ +11.7 (*c* 0.29, CHCl₃).


Fmoc-GOx-Thr(Trt)-OBn (3l)

Following general procedure 4, **2l** (1.45 g, 2.56 mmol, 1.0 equiv) gave, after column chromatography (SiO₂, CH₂Cl₂/EtOAc 9:1 \rightarrow 4:1), **3l** (1.16 g, 1.53 mmol, 60%) as a white foam. **R**_f (CH₂Cl₂:EtOAc 9:1) 0.37; **mp** 79–81 °C; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.80 (d, J = 7.6 Hz, 2H, ArH), 7.63 (d, J = 7.3 Hz,

2H, ArH), 7.47 (d, J = 6.7 Hz, 6H, ArH), 7.37–7.24 (m, 18H, ArH), 5.20 (d, J = 12.2 Hz, 1H, OC*H*HPh), 5.17 (br. s, 1H, NH), 4.98 (d, J = 12.2 Hz, 1H, OCH*H*Ph), 4.45 (d, J = 6.6 Hz, 2H, CH₂-Fmoc), 4.34–4.15 (m, 5H, 2 × OCH₂-Ox, CH-Fmoc), 3.87–3.80 (m, 1H, CHβ-Thr), 3.49 (dd, J = 13.4, 5.2 Hz, 1H, C*H*H-GOx), 3.34 (dd, J = 13.4, 3.9 Hz, 1H, CH*H*-GOx), 2.99 (br. s, 1H, CHα-Thr), 2.37 (br. s, 1H, NH), 1.05 (d, J = 5.5 Hz, 3H, CH₃ γ -Thr); ¹³C **NMR** (126 MHz, CDCl₃) $\delta_{\rm C}$ 174.7 (C=O), 156.9 (C=O, Fmoc), 144.7 (C), 144.1 (C), 144.0 (C), 141.5 (C), 135.2 (C), 129.1 (CH), 128.8 (CH), 128.72 (CH), 128.66 (CH), 127.8 (CH), 127.3 (CH), 127.2 (CH), 125.2 (CH), 120.1 (CH), 87.1 (C, Trt), 79.6 (OCH₂), 79.4 (OCH₂), 72.2 (CH, β -Thr), 67.5 (CH₂, Bn), 67.0 (CH₂, Fmoc), 59.9 (CH, α -Thr), 59.4 (C, Ox), 47.4 (CH, Fmoc), 45.5 (CH₂, GOx), 17.5 (CH₃, γ -Thr). *N.B.* One aromatic C and one aromatic CH signal not observed; **v**_{max} (neat) = 3345 (NH), 2942, 2873, 1720 (C=O), 1515, 1490, 1218, 1184, 1081, 972, 741, 697 cm⁻¹; **MS** (ESI⁺) *m/z* 781 [M+Na]⁺; **HRMS** (ESI⁺) calcd. for C₄₉H₄₆N₂NaO₆ [M+Na]⁺ 781.3248, found 781.3251; [α]_D²⁷ +29.5 (*c* 0.52, CHCl₃).


NO₂-GOx-His(Trt)-OBn (2m)

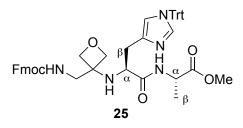
Following general procedure 2, Fmoc-His(Trt)-OH (6.20 g, 10.0 mmol, 1.0 equiv), benzyl bromide (1.19 mL, 10.0 mmol, 1.0 equiv) and Cs₂CO₃ (3.58 g, 11.0 mmol, 1.1 equiv) in DMF (40 mL) gave Fmoc-His(Trt)-OBn, which was used without further purification. Following general procedure 3, Fmoc-His(Trt)-OBn, oxetan-3-one (1.28 mL, 20.0 mmol, 2.0 equiv) and nitromethane

(1.52 mL, 28.0 mmol, 2.8 equiv) were combined to give, after column chromatography (SiO₂, PE/EtOAc $3:1\rightarrow 2:1\rightarrow 1:1\rightarrow EtOAc$), **2m** (3.84 g, 6.37 mmol, 64% over two steps) as an orange foam. R_f (EtOAc) 0.41; mp 62–64 °C; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ ppm 7.38 (s, 1H, ArH), 7.36-7.28 (m, 14H, ArH), 7.15-7.08 (m, 6H, ArH), 6.57 (s, 1H, ArH), 5.11 (d, J = 12.1 Hz, 1H, OCHHPh), 5.03 (d, J = 12.1 Hz, 1H, OCHHPh), 4.78 (d, J = 13.2 Hz, 1H, NO₂C*H*H), 4.71 (d, *J* = 13.2 Hz, 1H, NO₂CH*H*), 4.48 (d, *J* = 6.9 Hz, 1H, OC*H*H-Ox), 4.43 (d, J = 7.0 Hz, 1H, OCHH-Ox), 4.38 (d, J = 7.0 Hz, 1H, OCHH-Ox), 4.32 (d, J = 6.9 Hz, 1H, OCHH-Ox), 3.83 (br. s, 1H, CHα-His), 2.95 (dd, J = 14.2, 4.1 Hz, 1H, CHHβ-His), 2.80 (dd, J = 14.1, 8.1 Hz, 1H, CH*H* β -His), 2.64 (br. s, 1H, NH); ¹³C NMR (126 MHz, CDCl₃) $\delta_{\rm C}$ ppm 174.6 (C=O), 142.4 (C), 136.4 (C), 135.4 (C), 129.9 (CH), 128.7 (CH), 128.6 (CH), 128.21 (CH), 128.20 (CH), 120.1 (CH), 79.2 (OCH₂), 78.6 (OCH₂), 78.3 (NO₂CH₂), 75.4 (C, Trt), 67.2 (CH₂, Bn), 59.4 (C, Ox), 56.3 (CH, α-His), 32.8 (CH₂, β-His). N.B. Two aromatic CH signals not observed; v_{max} (neat) = 3332 (NH), 2946, 2872, 1724 (C=O), 1550, 1445, 1155, 981, 744, 697 cm⁻¹; MS (ESI⁺) m/z 603 [M+H]⁺, 625 [M+Na]⁺; HRMS (ESI⁺) calcd. for $C_{36}H_{35}N_4O_5 [M+H]^+ 603.2602$, found 603.2601; $[\alpha]_D^{28} -5.1$ (*c* 0.22, CHCl₃).

Fmoc-GOx-His(Trt)-OBn (3m)

Following general procedure 4, 2m (3.71 g, 6.16 mmol, (400 MHz, CDCl₃) $\delta_{\rm H}$ ppm 7.75 (d, J = 7.4 Hz, 2H, ArH), 7.55 (d, J = 7.2 Hz, 2H, ArH), 7.47 (s, 1H, ArH), 7.41–7.27 (m, 9H,

ArH), 7.26–7.20 (m, 9H, ArH), 7.12–7.04 (m, 6H, ArH), 6.78 (s, 1H, NH), 6.57 (s, 1H, ArH), 5.14 (d, J = 12.0 Hz, 1H, OCHHPh), 5.08 (d, J = 12.0 Hz, 1H, OCHHPh), 4.46–4.15 (m, 6H, $2 \times OCH_2$ -Ox, CH₂-Fmoc), 3.98 (t, J = 6.9 Hz, 1H, CH-Fmoc), 3.79 (d, J = 8.7 Hz, 1H, CH α -His), 3.68 (dd, J = 13.8, 6.1 Hz, 1H, CHHGOx), 3.61 (dd, J = 13.8, 3.0 Hz, 1H, CHHGOx), 2.99 (dd, J = 14.6, 2.2 Hz, 1H, CHHβ-His), 2.80 (dd, J = 14.6, 9.2 Hz, 1H, CHHβ-His), 1.85 (br. s, 1H, NH); ¹³C NMR (126 MHz, CDCl₃) δ_{C} ppm 175.0 (C=O), 157.3 (C=O, Fmoc), 144.21 (C), 144.16 (C), 142.3 (C), 141.4 (C), 139.0 (CH), 137.0 (C), 135.4 (C), 129.9 (CH), 129.81 (CH), 128.80 (CH), 128.7 (CH), 128.6 (CH), 128.19 (CH), 128.15 (CH), 127.7 (CH), 127.17 (CH), 127.15 (CH), 125.4 (CH), 125.3 (CH), 120.03 (CH), 119.99 (CH), 80.8 (OCH₂), 80.2 (OCH₂), 75.5 (C, Trt), 67.2 (CH₂, Bn), 66.9 (CH₂, Fmoc), 59.6 (C, Ox), 55.5 (CH, α-His), 47.3 (CH, Fmoc), 44.4 (CH₂, GOx), 32.0 (CH₂, β-His); N.B. One aromatic C not observed; v_{max} (neat) = 3331 (NH), 2947, 2870, 1716 (C=O), 1493, 1446, 1238, 1155, 974, 742, 699 cm⁻¹; MS (ESI⁺) m/z 795 [M+H]⁺, 817 [M+Na]⁺; HRMS (ESI⁺) calcd. for $C_{51}H_{46}N_4NaO_5 [M+Na]^+ 817.3360$, found 817.3358; $[\alpha]_D^{28} + 7.1$ (*c* 0.54, CHCl₃).

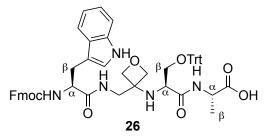

6. Peptide couplings of selected oxetane modified glycine building blocks

Fmoc-GOx-Thr(Trt)-Ala-OMe (24)

To a solution of Fmoc-GOx-Thr(Trt)-OBn (**3l**) (379 mg, 0.50 mmol, 1.0 equiv) in DMF (5.0 mL) was added 10 wt% Pd/C (38 mg, 10 wt%) and the reaction flask was evacuated, filled with nitrogen, evacuated, and placed under an atmosphere of hydrogen (balloon). The

reaction mixture was stirred at room temperature for 2 h, placed under nitrogen and filtered through a plug of Celite, which was washed with DMF (15 mL). H-Ala-OMe·HCl (140 mg, 1.00 mmol, 2.0 equiv), HATU (190 mg, 0.50 mmol, 1.0 equiv) and DIPEA (523 µL, 3.00 mmol, 5.0 equiv) were added subsequently, and the reaction mixture was stirred at room temperature for 20 h. The mixture was concentrated under reduced pressure, CH₂Cl₂ (20 mL) was added and washed with 10% citric acid (2 \times 20 mL) and saturated NaHCO₃ solution (2 \times 20 mL), dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by column chromatography (SiO₂, PE:EtOAc 1:1→EtOAc) to give tripeptide 24 (244 mg, 0.32 mmol, 65%) as a white foam. Rf (PE:EtOAc 1:1) 0.16; mp 81-83 °C; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ ppm 7.76 (d, J = 7.5 Hz, 2H, ArH), 7.59 (dd, J = 7.1, 4.3 Hz, 2H, ArH), 7.53 (d, J = 7.7 Hz, 6H, ArH), 7.39 (t, J = 7.4 Hz, 2H, ArH), 7.35–7.26 (m, 12H, ArH, NH), 5.72 (t, J = 4.7 Hz, 1H, NH), 4.52 (quint, J = 7.2 Hz, 1H, CHβ-Thr), 4.38–4.30 (m, 2H, CH₂-Fmoc), 4.20 (t, J = 7.0 Hz, 2H, CH-Fmoc, OCHH-Ox), 4.11 (d, J = 5.9 Hz, 1H, OCHH-Ox), 4.07 (d, J = 6.4 Hz, 1H, OCHH-Ox), 4.03 (d, J = 6.4 Hz, 1H, OCHH-Ox), 3.85 (quint, J = 4.9 Hz, 1H, CH α -Ala), 3.79 (s, 3H, OCH₃), 3.47 (dd, J = 13.6, 7.0 Hz, 1H, CHH-GOx), 3.03 (dd, J = 13.6, 3.4 Hz, 1H, CHH-GOx), 2.53 (d, J = 3.2 Hz, 1H, CH α -Thr), 2.39 (br. s, 1H, NH), 1.36 (d, J = 7.2 Hz, 3H, CH₃ γ -Thr), 1.19 (d, J = 6.0 Hz, 3H, CH₃ β -Ala); ¹³C NMR (126 MHz, CDCl₃) δ_C ppm 173.5 (C=O), 173.1 (C=O), 157.1 (C=O, Fmoc), 144.3 (C), 144.1 (C), 141.4 (C), 128.8 (CH), 128.3 (CH), 127.8 (CH), 127.7 (CH), 127.2 (CH), 125.4 (CH), 125.3 (CH), 120.1 (CH), 88.4 (C, Trt), 79.6 (OCH₂), 79.2 (OCH₂), 73.3 (CH, α-Ala), 67.0 (CH₂, Fmoc), 59.6 (C, Ox), 58.6 (CH, α-Thr), 52.6 (OCH₃), 48.6 (CH, β-Thr), 47.3 (CH, Fmoc), 45.5 (CH₂, GOx), 18.0 (CH₃, γ-Thr), 16.4 (CH₃, β-Ala). N.B. Two aromatic C signals not observed. v_{max} (neat) = 3332 (NH), 2948, 2874, 1718 (C=O), 1669 (C=O), 1514, 1448, 1219, 1152, 1012, 741, 706 cm⁻¹; MS (ESI⁺) m/z 776 [M+Na]⁺; HRMS (ESI⁺) calcd. for C₄₆H₄₇N₃NaO₇ [M+Na]⁺ 776.3306, found 776.3297; [**α**]_D²⁸ +13.2 (*c* 0.50, CHCl₃).

Fmoc-GOx-His(Trt)-Ala-OMe (25)



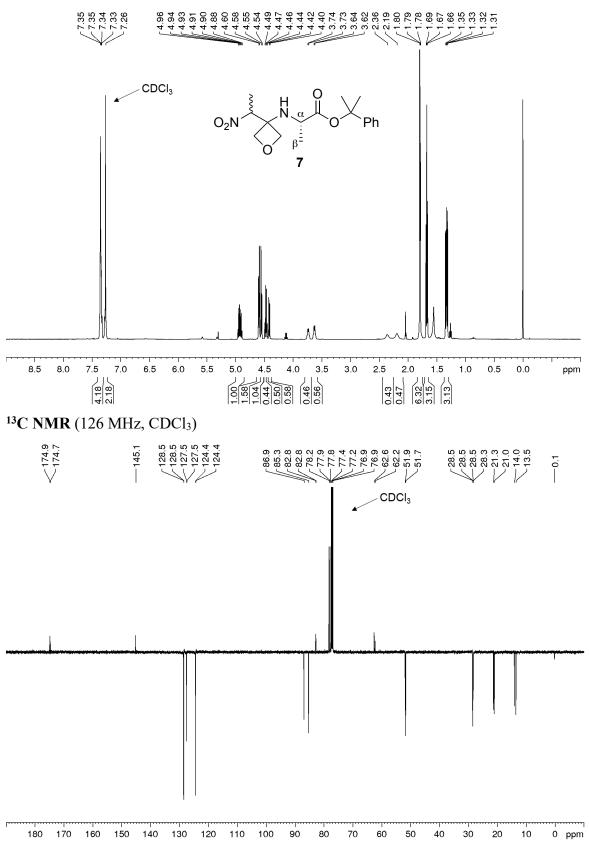
To a solution of Fmoc-GOx-His(Trt)-OBn (3m) (397 mg, 0.50 mmol, 1.0 equiv) in DMF (5.0 mL) was added 10 wt% Pd/C (40 mg, 10 wt%) and the reaction flask was evacuated, filled with nitrogen, evacuated, and placed under an atmosphere of hydrogen (balloon). The reaction mixture was stirred at room temperature for 2 h,

placed under nitrogen and filtered through a plug of Celite, which was washed with DMF (15 mL). H-Ala-OMe·HCl (140 mg, 1.00 mmol, 2.0 equiv), HATU (190 mg, 0.50 mmol,

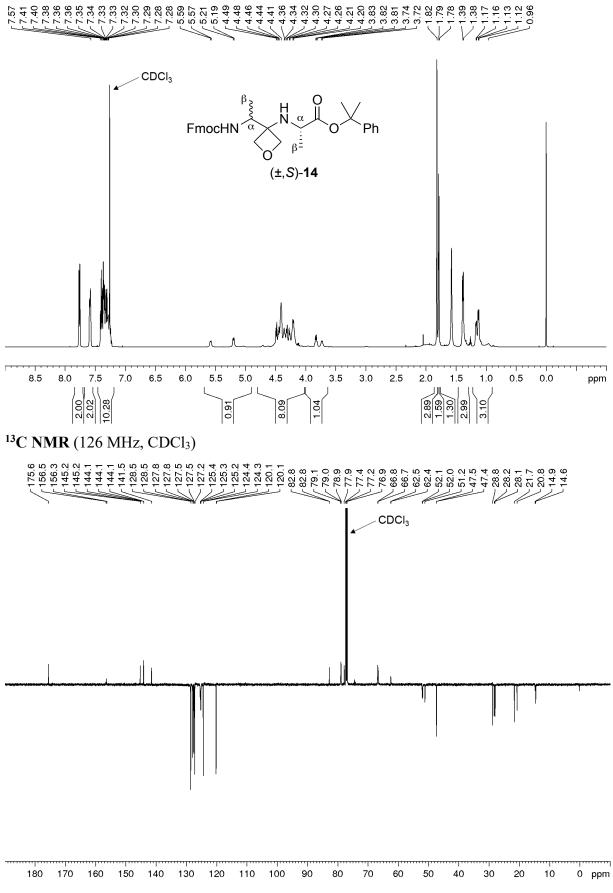
1.0 equiv) and DIPEA (523 μ L, 3.00 mmol, 5.0 equiv) were added subsequently, and the reaction mixture was stirred at room temperature for 16 h. The mixture was concentrated under reduced pressure, CH₂Cl₂ (20 mL) was added and washed with 10% citric acid (2 × 20 mL) and saturated NaHCO₃ solution (2 × 20 mL), dried over MgSO₄, filtered and concentrated *in vacuo*. The residue was purified by column chromatography (SiO₂, CH₂Cl₂/MeOH 97.5:2.5 \rightarrow 95:5) to give tripeptide **25** (221 mg, 0.28 mmol, 56%) as a pale yellow oil. **R**_f (CH₂Cl₂/MeOH 95:5) 0.16; **MS** (ESI⁺) *m/z* 790 [M+H]⁺, 812 [M+Na]⁺; **HRMS** (ESI⁺) calcd. for C₄₈H₄₈N₅O₆ [M+Na]⁺ 790.3599, found 790.3605.

Fmoc-Trp-GOx-Ser(Trt)-Ala-OH (26)

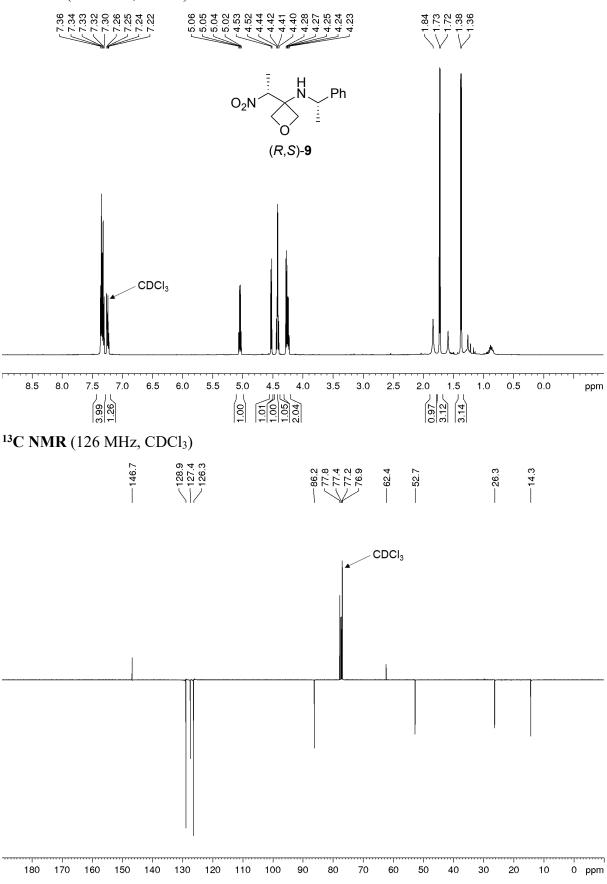
To a solution of Fmoc-GOx-Ser(Trt)-OBn (3k) (372 mg, 0.50 mmol, 5.0 equiv) in DMF (2.0 mL) was added 10 wt% Pd/C (37 mg, 10 wt%) and the reaction flask was evacuated, filled with nitrogen, evacuated, and placed under an atmosphere of hydrogen (balloon). The reaction mixture was stirred at room temperature for 1.5 h, placed under

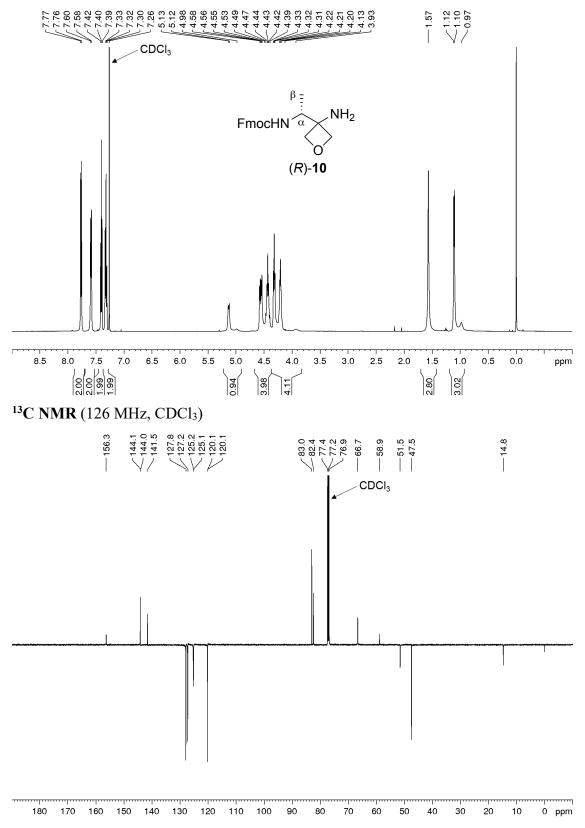

nitrogen and filtered through a plug of Celite, which was washed with DMF (8.0 mL). The filtrate of Fmoc-GOx-Ser(Trt)-OH (4k) was used for SPPS without further purification. Fmoc-Ala-2-chlorotrityl resin (192 mg, 0.10 mmol, 1.0 equiv) was placed in a 10 mL reaction vessel and the resin was pre-swollen in DMF (2.0 mL) for 30 min. The Fmoc group was deprotected with 20% piperidine in DMF (2.0 mL) for 20 min at room temperature and the resin was washed with DMF (5 \times 2.0 mL). HATU (190 mg, 0.50 mmol, 5.0 equiv) and DIPEA (174 µL, 1.00 mmol, 10 equiv) were added to the filtrate of 4k and the coupling solution was added to the resin. The coupling reaction was allowed to proceed for 2 h at room temperature under slight agitation. The resin was filtered, washed with DMF (5×2.0 mL) before the Fmoc group was removed with 20% piperidine in DMF (2.0 mL) for 20 min at room temperature. After washing the resin with DMF (5×2.0 mL), Fmoc-Trp-OH (213 mg, 0.50 mmol, 5.0 equiv) was coupled with HATU (190 mg, 0.50 mmol, 5.0 equiv), DIPEA (174 µL, 1.00 mmol, 10 equiv) in DMF (2.0 mL) for 1 h at room temperature. The resin was washed with DMF (5 \times 2.0 mL) before the Fmoc-group was removed as described before. The tetrapeptide was then cleaved from the resin with TFE in CH_2Cl_2 (1:4, 2.5 mL) for 1 h at room temperature. This was repeated twice and the combined cleavage solutions were evaporated to dryness under reduced pressure. Tetrapeptide 26 was obtained as an off-white solid (84 mg, 92 µmol) in 92% crude yield over all steps. MS (ESI⁻) m/z 910 [M–H]⁻; HRMS (ESI⁻) calcd. for C₅₅H₅₂N₅O₈ [M–H]⁻ 910.3821, found 910.3820.

7. References

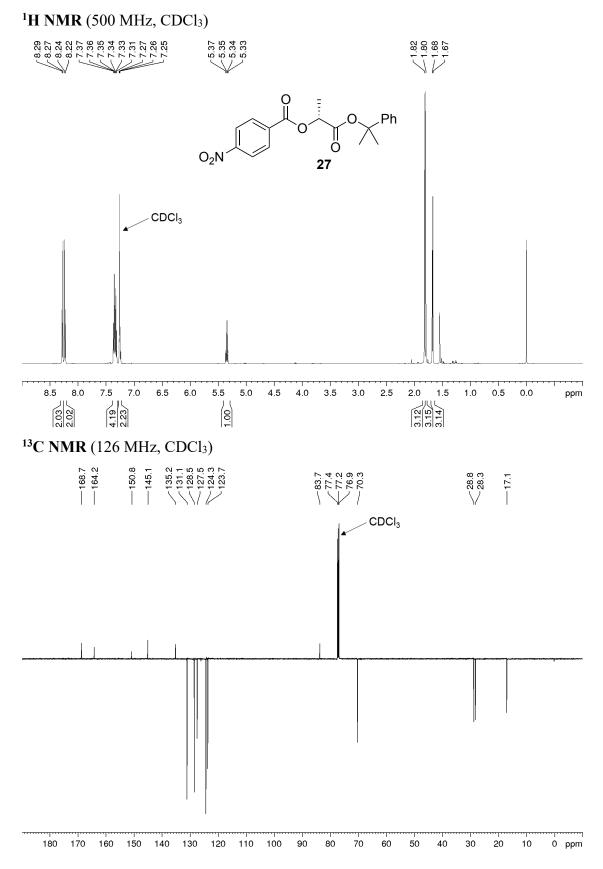

- [1] S. Roesner, G. J. Saunders, I. Wilkening, E. Jayawant, J. V. Geden, P. Kerby, A. M. Dixon, R. Notman and M. Shipman, *Chem. Sci.*, 2019, **10**, 2465–2472.
- [2] J. P. Phelan, E. J. Patel and J. A. Ellman, Angew. Chem. Int. Ed., 2014, 53, 11329–11332.
- [3] G. P. Möller, S. Müller, B. T. Wolfstädter, S. Wolfrum, D. Schepmann, B. Wünsch and E. M. Carreira, Org. Lett., 2017, 19, 2510–2513.
- [4] C. Yue, J. Thierry and P. Potier, *Tetrahedron Lett.*, 1993, 34, 323–326.

8. ¹H NMR and ¹³C NMR spectra


2-Phenylpropan-2-yl [3-((±)-1-nitroethyl)oxetan-3-yl]-L-alaninate (7)


Fmoc-L-AOx-Ala-OCumyl and Fmoc-D-AOx-Ala-OCumyl ((±,*S*)-14)

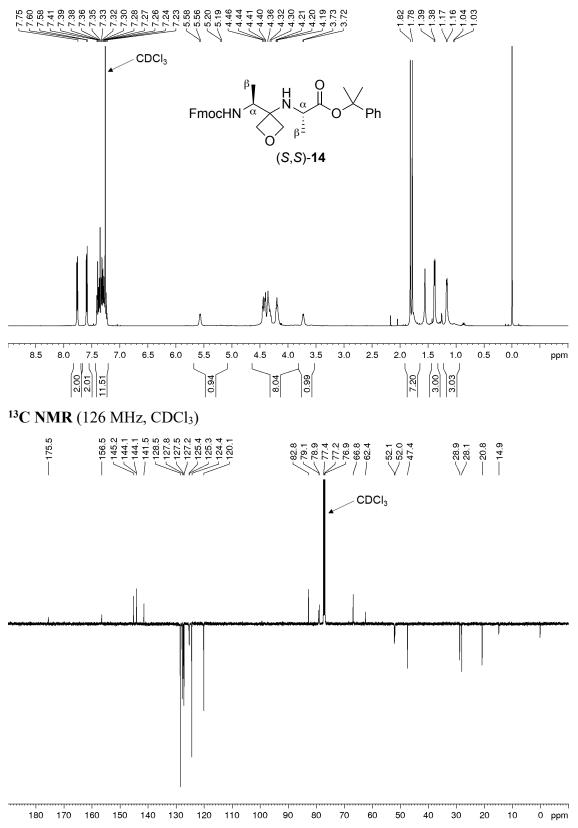
Fmoc-D-AOx-NH₂ ((*R*)-10)


2-Phenylpropan-2-yl (S)-2-hydroxypropanoate ((S)-12)

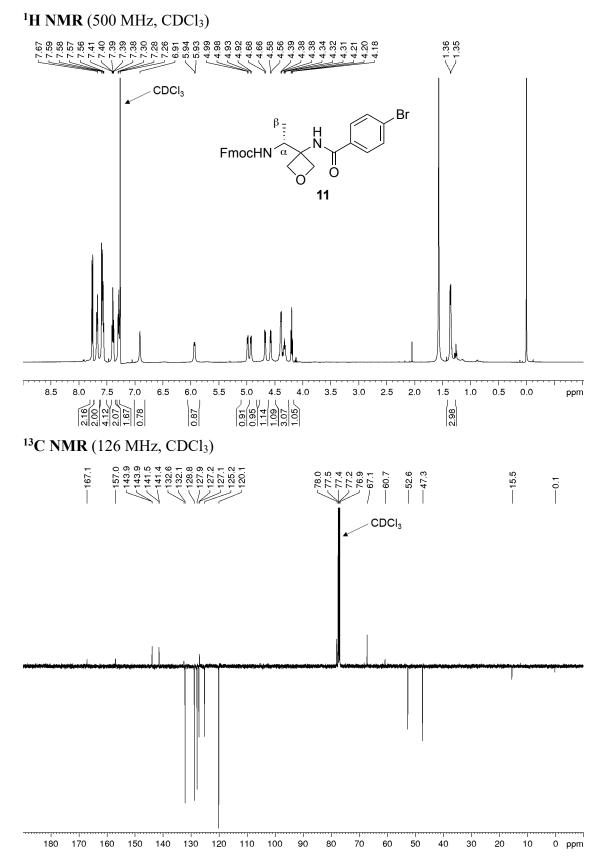
¹H NMR (500 MHz, CDCl₃)

7.55 7.53

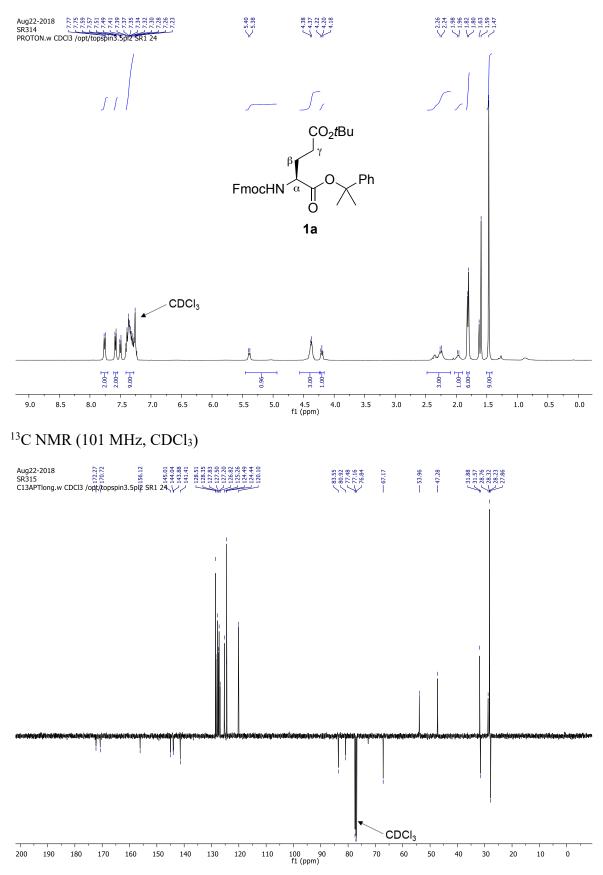
(*R*)-1-Oxo-1-[(2-phenylpropan-2-yl)oxy]propan-2-yl 4-nitrobenzoate (27)

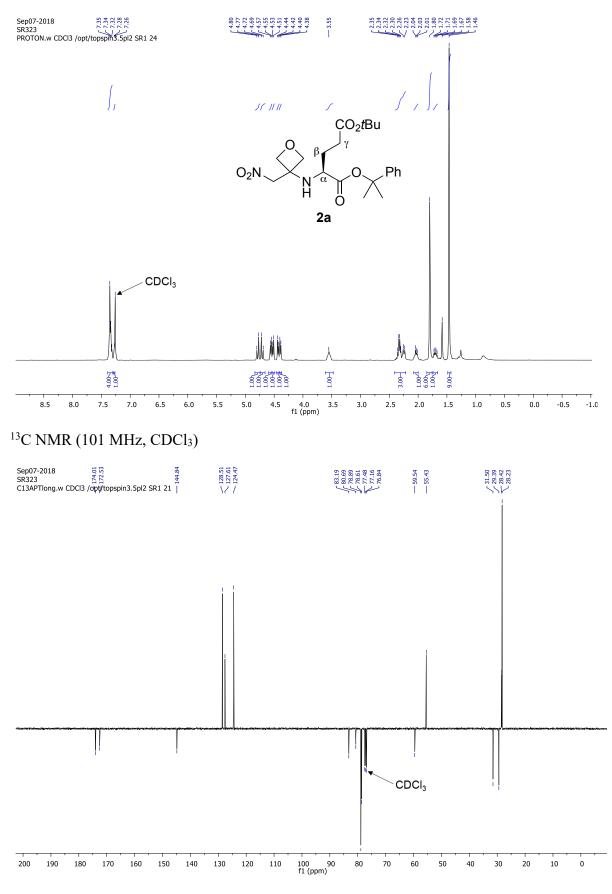


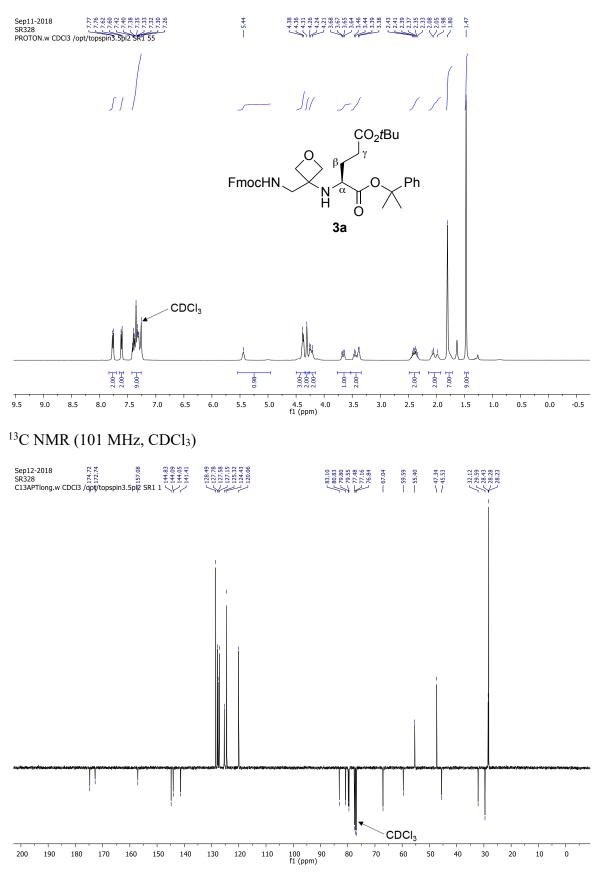
S47

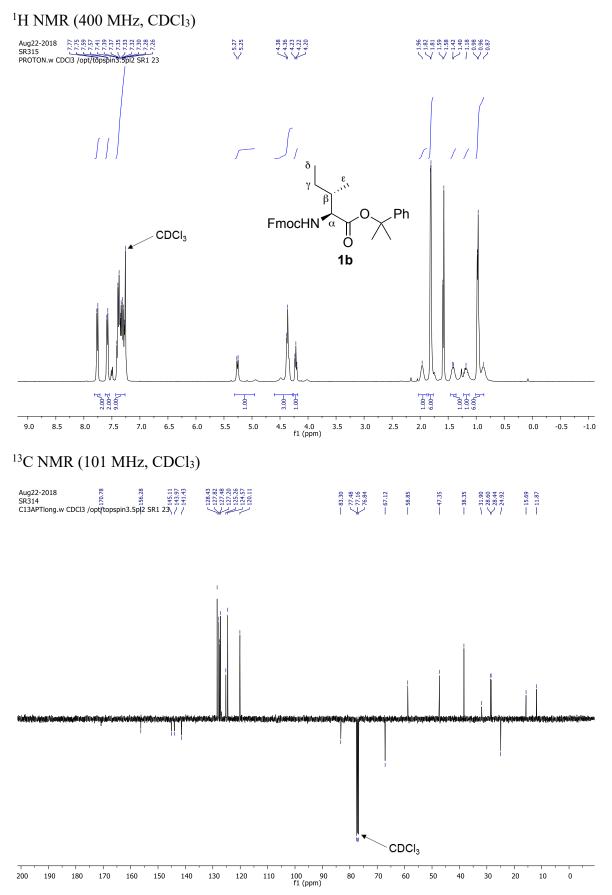

Fmoc-D-AOx-Ala-OCumyl ((R,S)-14)

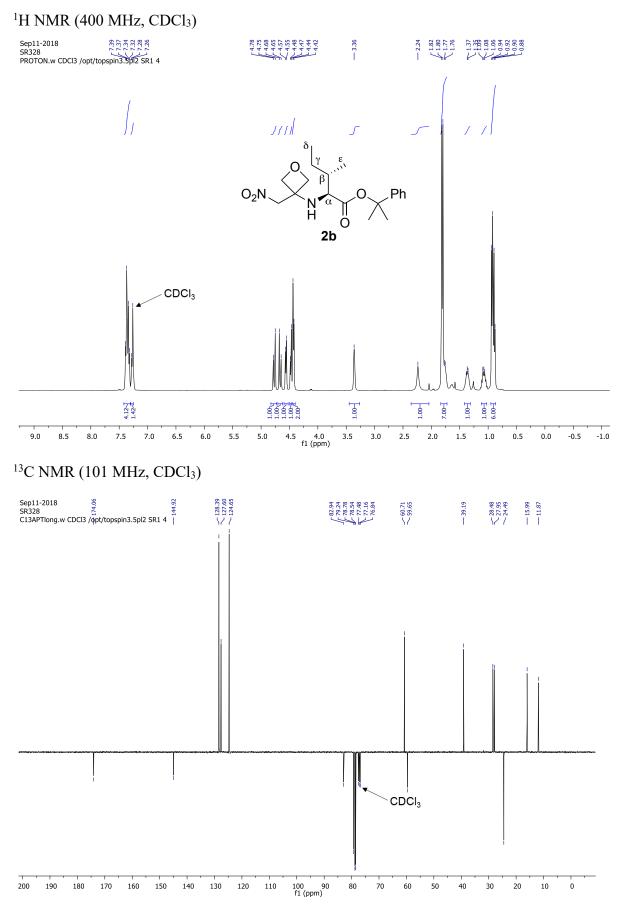
¹H NMR (500 MHz, CDCl₃) $\begin{array}{c} 7.75\\ 7.57\\ 7.57\\ 7.57\\ 7.40\\ 7.40\\ 7.36\\ 7.36\\ 7.36\\ 7.32\\$ 2.07 1.79 1.79 1.13 0.96 -5.21 -5.19 -5.03 -4.49 -4.48 -4.41 -4.32 -4.31 3.83 2 βĘ H N α FmocHN ά Ph <u>;</u> β = (R,S)-**14** 7.5 7.0 6.5 6.0 5.5 5.0 4.5 3.0 2.5 1.5 0.5 0.0 8.5 8.0 4.0 3.5 2.0 1.0 ppm 2.03 10.30 0.96 9.14 6.34 3.16 3.07 ¹³C NMR (126 MHz, CDCl₃) 156.3 145.2 144.1 144.1 144.1 144.1 144.1 141.5 127.5 82.8 79.0 77.9 77.4 77.2 76.9 66.7 66.7 66.7 ~ 52.0 ~ 51.2 ~ 47.5 -28.8 -28.1 -28.1 -28.1 -21.7 -21.7 -14.6 -14.3 0.1 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

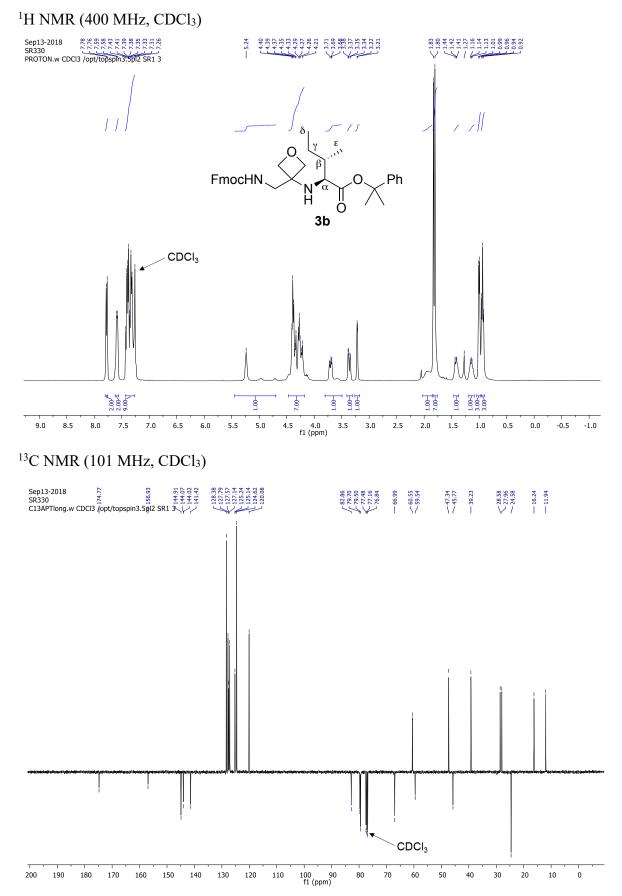

Fmoc-L-AOx-Ala-OCumyl ((S,S)-14)

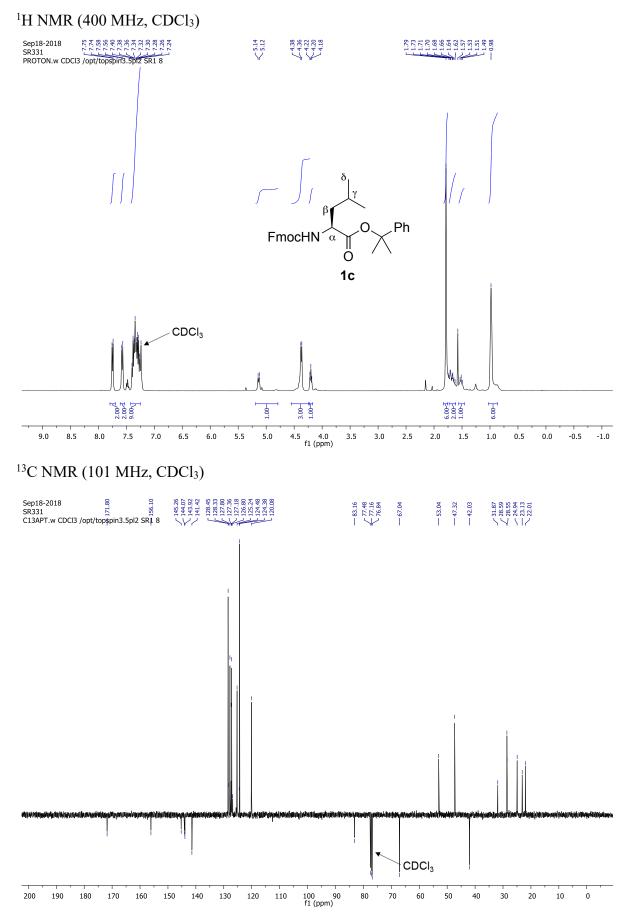

(9*H*-Fluoren-9-yl)methyl (*R*)-(1-(3-(4-bromobenzamido)oxetan-3-yl)ethyl)carbamate (11)

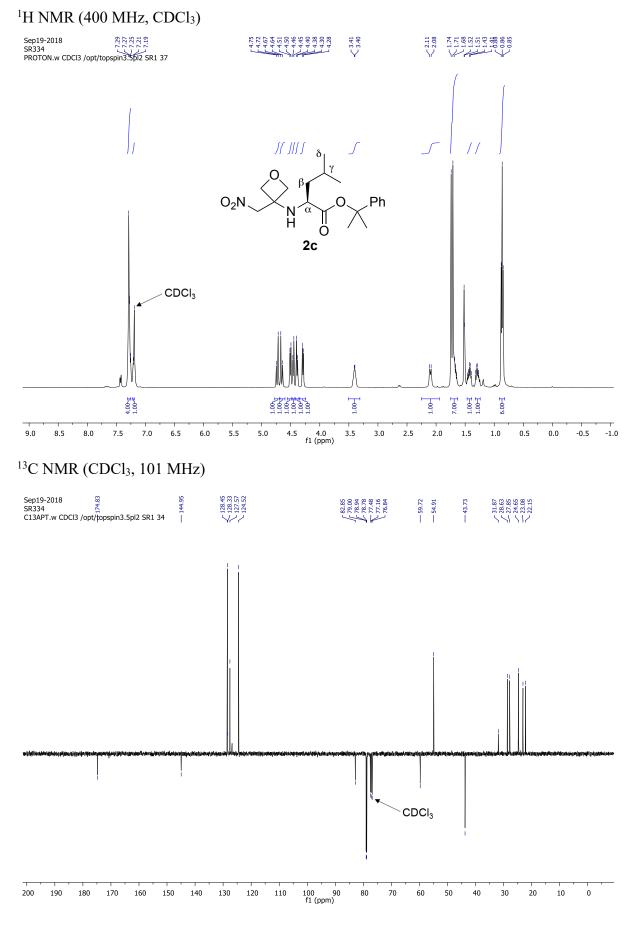

Fmoc-Glu(*t*Bu)-OCumyl (1a)

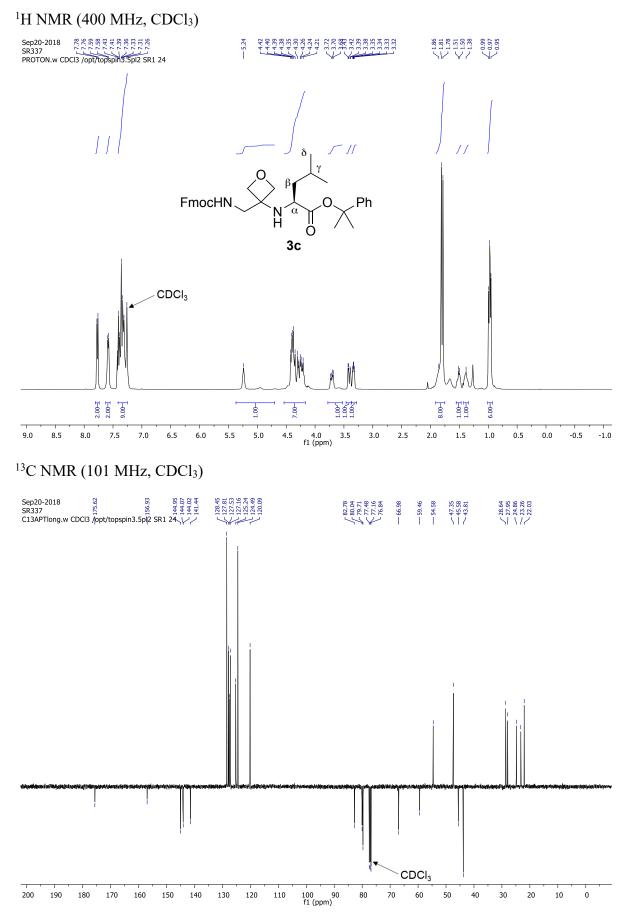

O₂N-GOx-Glu(*t*Bu)-OCumyl (2a)

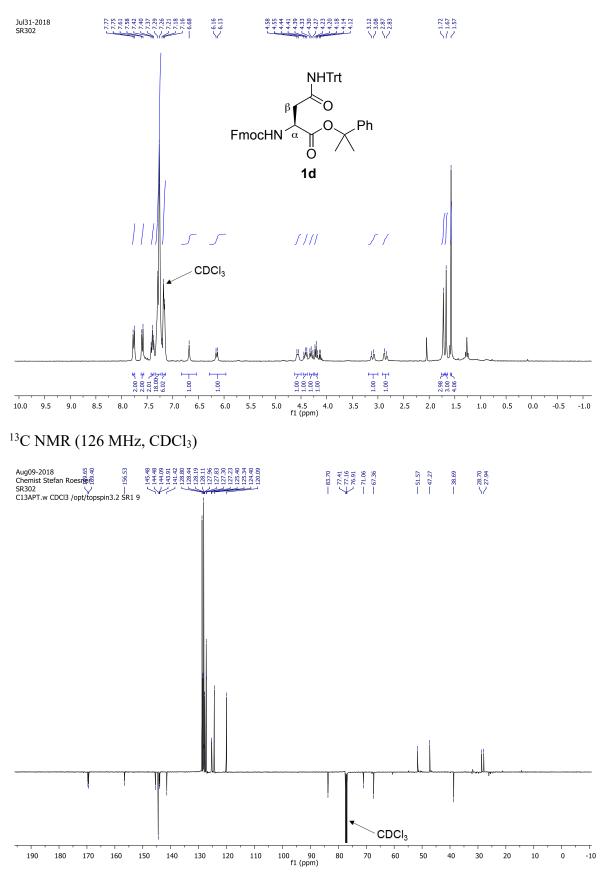

Fmoc-GOx-Glu(tBu)-OCumyl (3a)

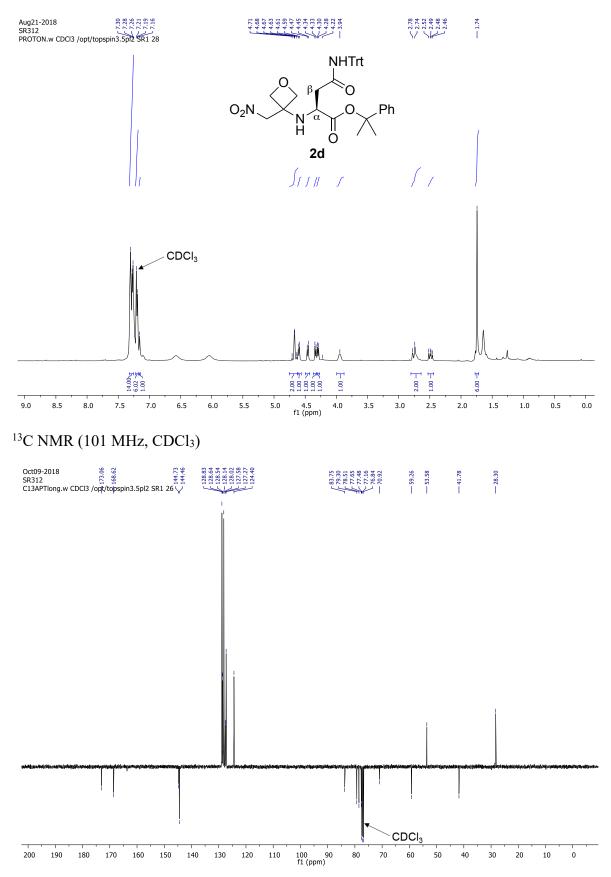

Fmoc-Ile-OCumyl (1b)

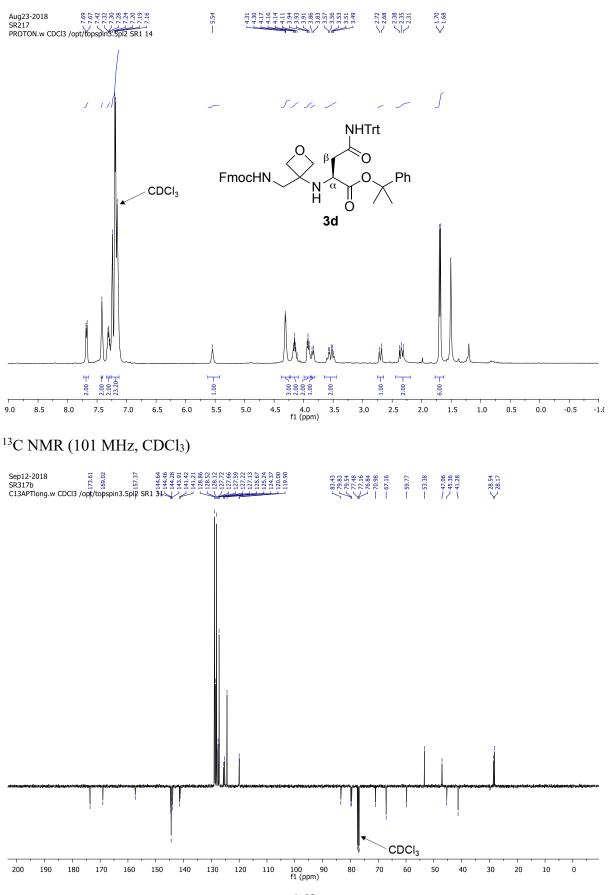

NO₂-GOx-Ile-OCumyl (2b)

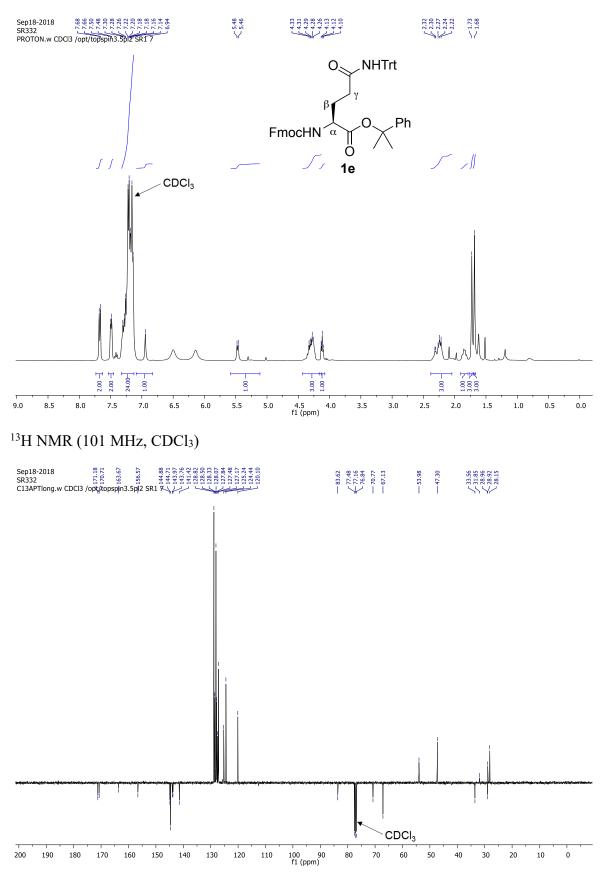

Fmoc-GOx-Ile-OCumyl (3b)

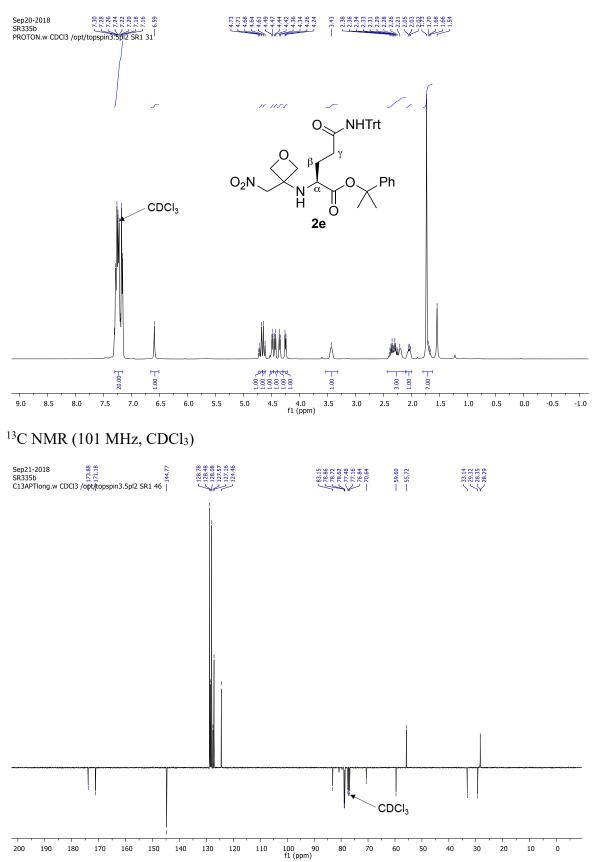

Fmoc-Leu-OCumyl (1c)

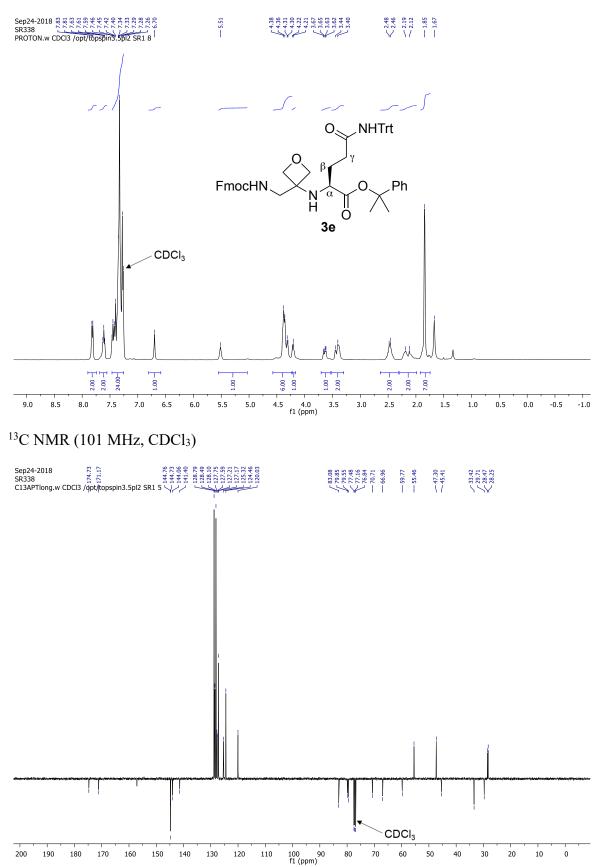

NO₂-GOx-Leu-OCumyl (2c)

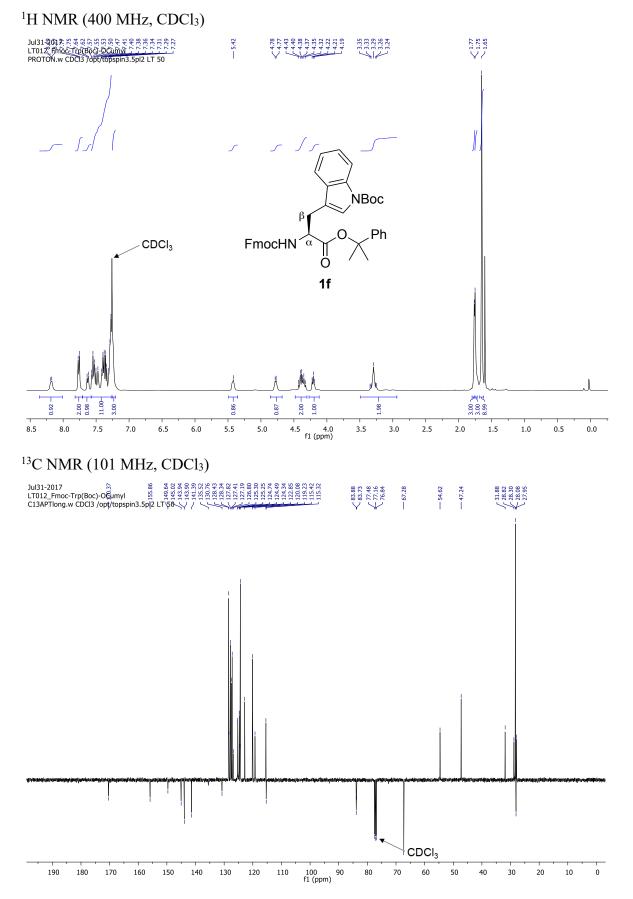

Fmoc-GOx-Leu-OCumyl (3c)

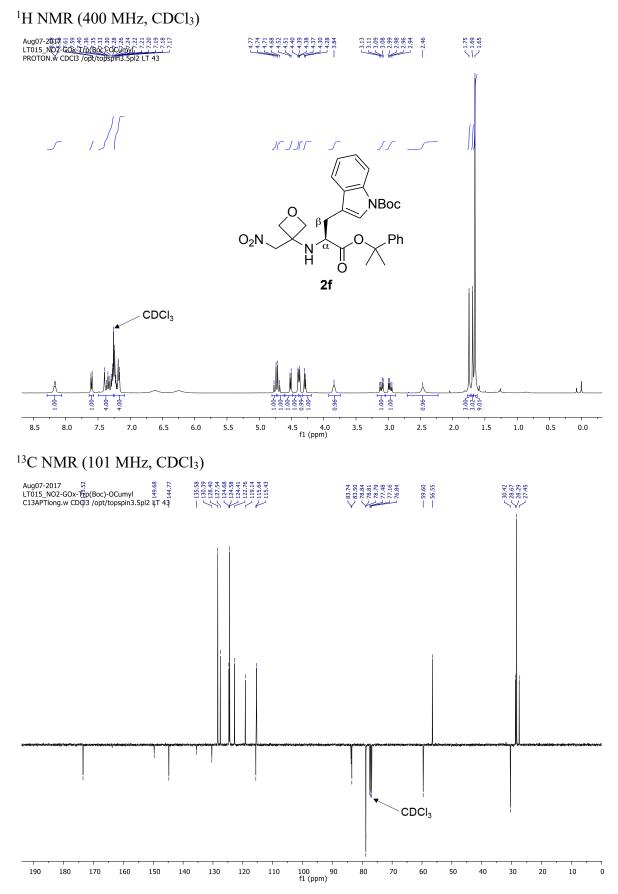

Fmoc-Asn(Trt)-OCumyl (1d)

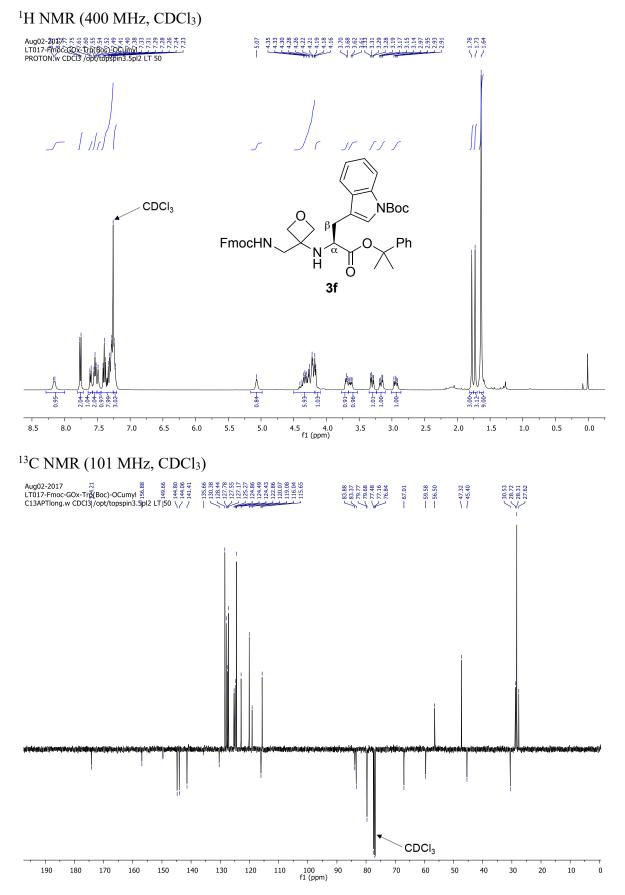

O2N-GOx-Asn(Trt)-OCumyl (2d)

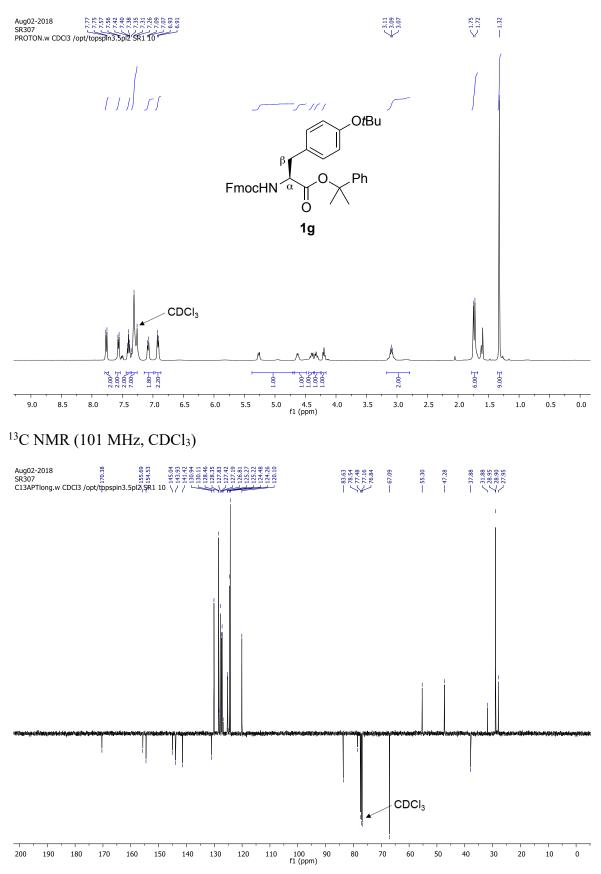

Fmoc-GOx-Asn(Trt)-OCumyl (3d)

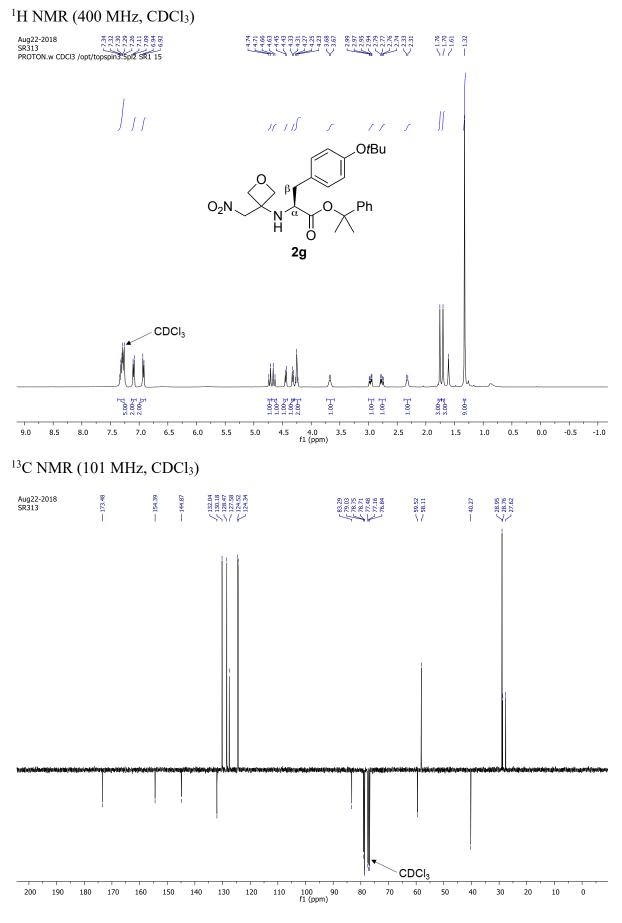

Fmoc-Gln(Trt)-OCumyl (1e)

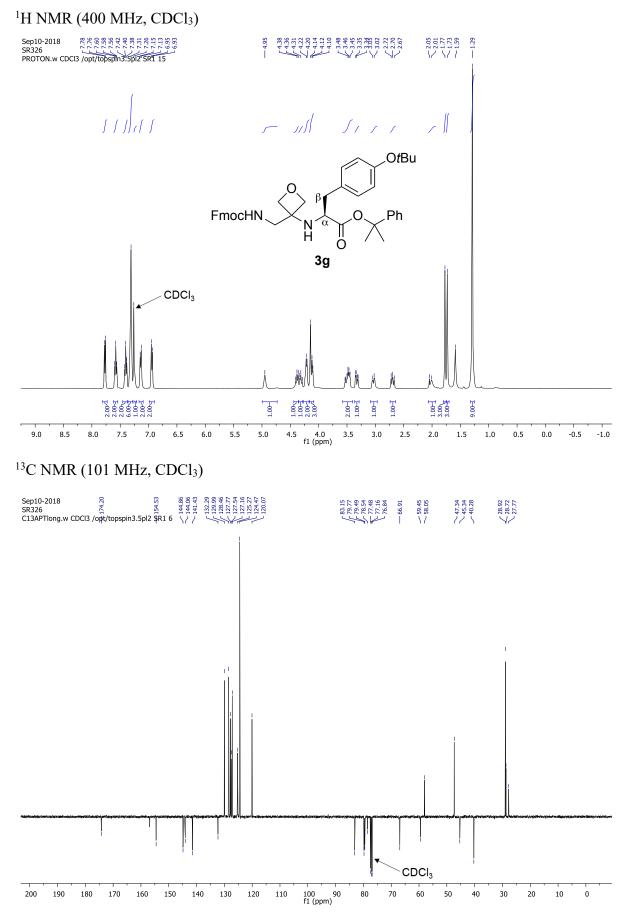

O2N-GOx-Gln(Trt)-OCumyl (2e)

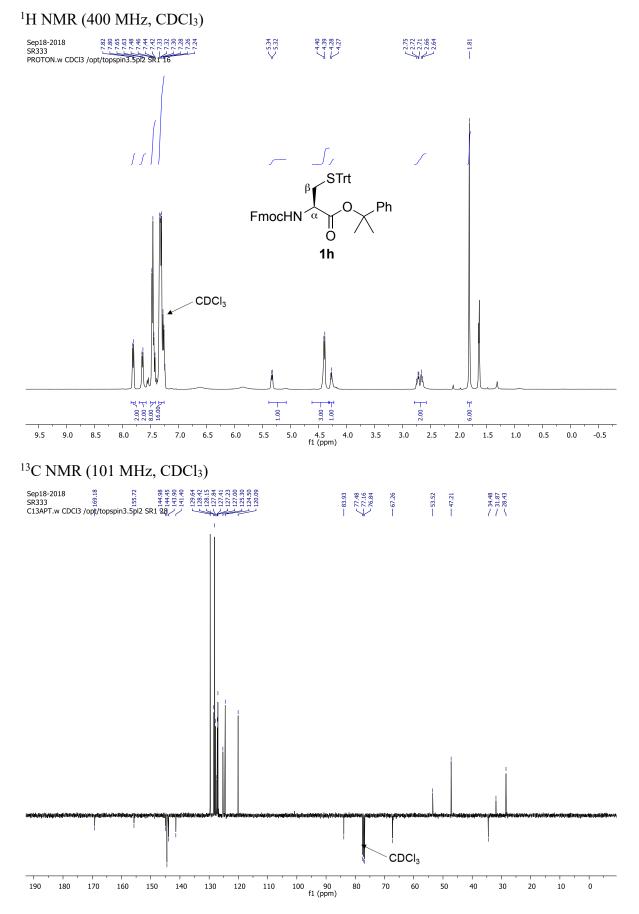

Fmoc-GOx-Gln(Trt)-OCumyl (3e)

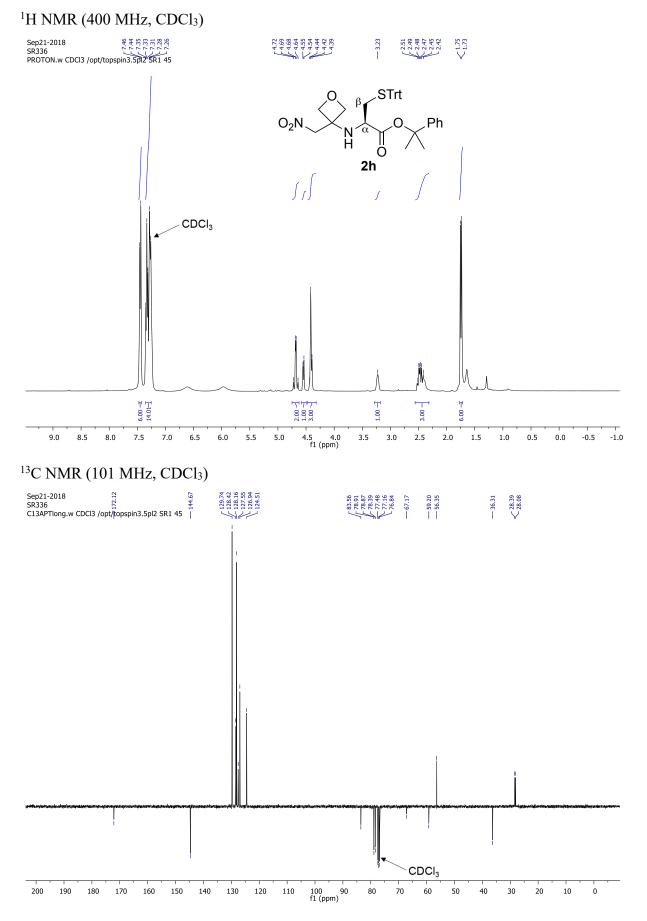

Fmoc-Trp(Boc)-OCumyl (1f)


NO₂-GOx-Trp(Boc)-OCumyl (2f)

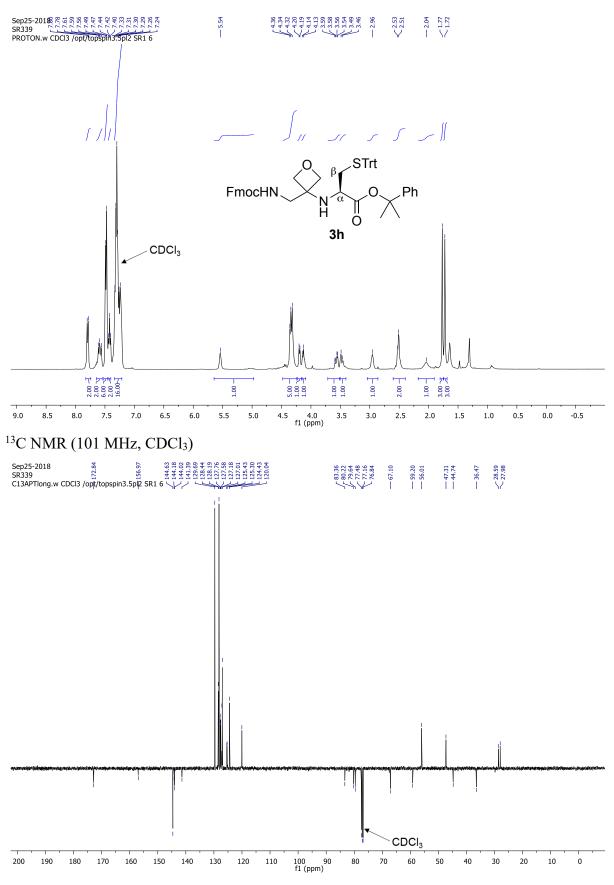

Fmoc-GOx-Trp(Boc)-OCumyl (3f)


Fmoc-Tyr(tBu)-OCumyl (1g)

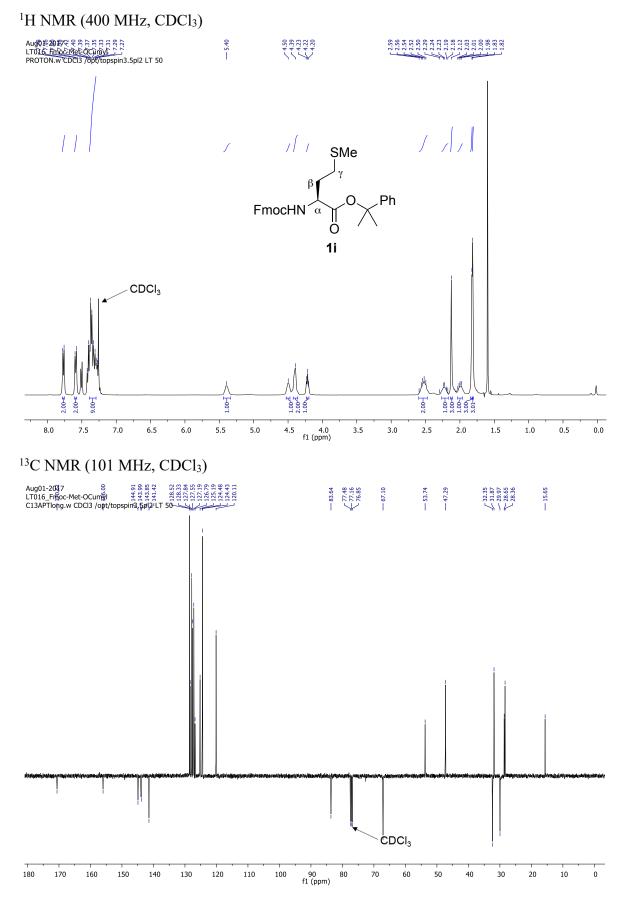

O₂N-GOx-Tyr(*t*Bu)-OCumyl (2g)


Fmoc-GOx-Tyr(tBu)-OCumyl (3g)

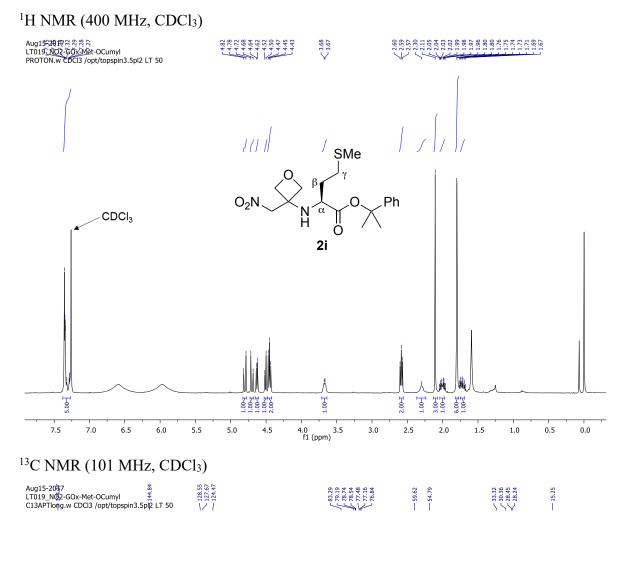
Fmoc-Cys(Trt)-OCumyl (1h)

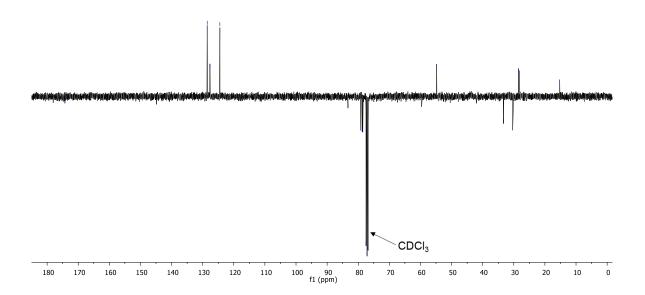


NO₂-GOx-Cys(Trt)-OCumyl (2h)

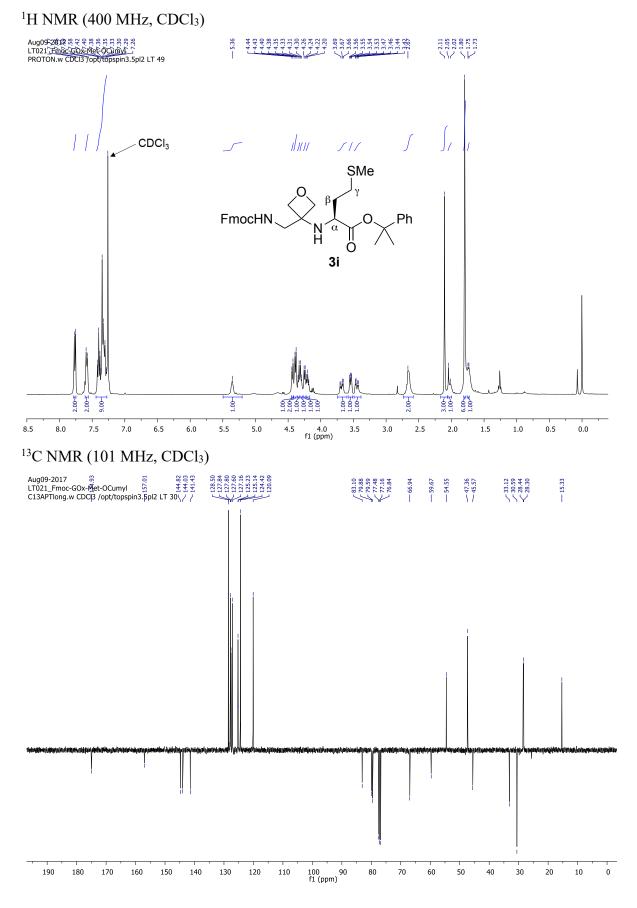


Fmoc-GOx-Cys(Trt)-OCumyl (3h)

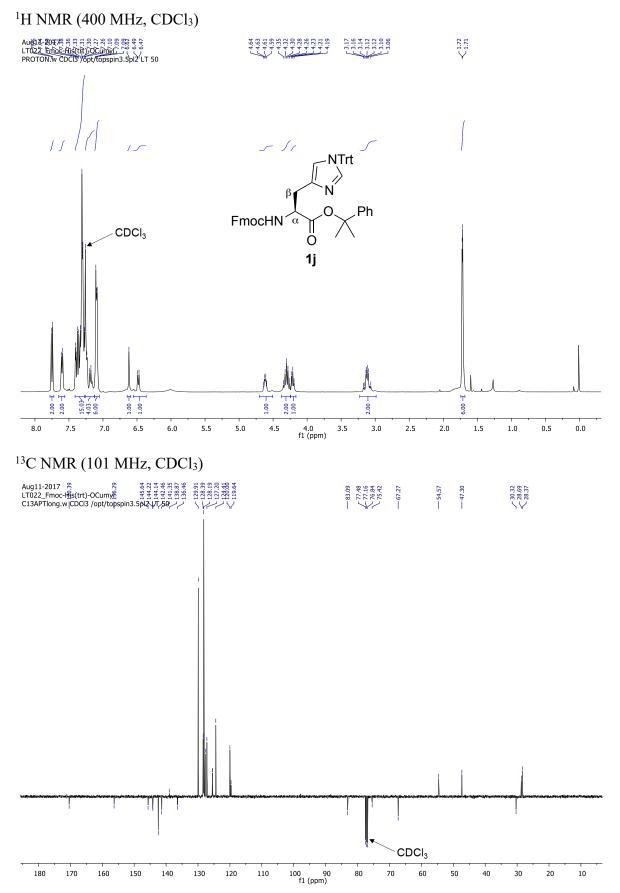

¹H NMR (400 MHz, CDCl₃)

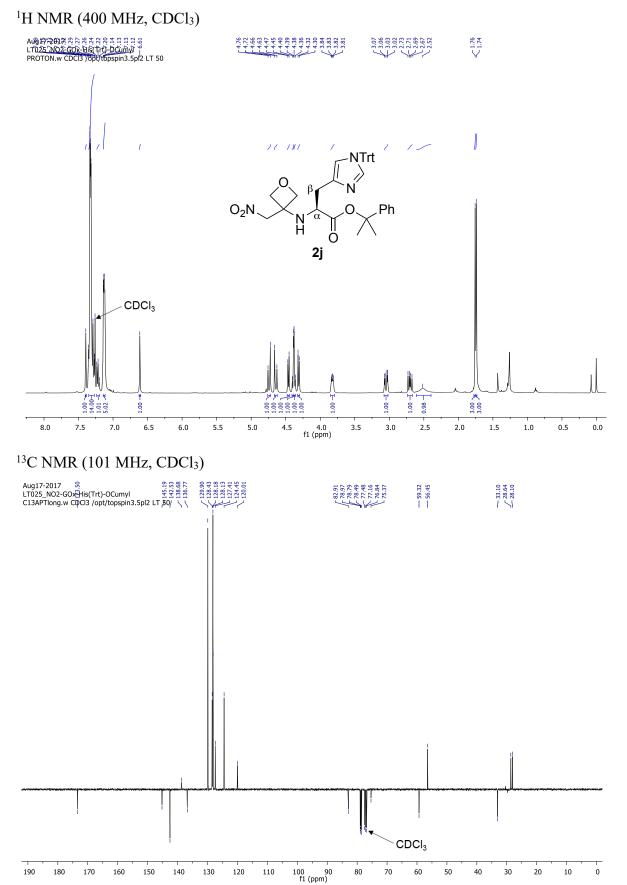


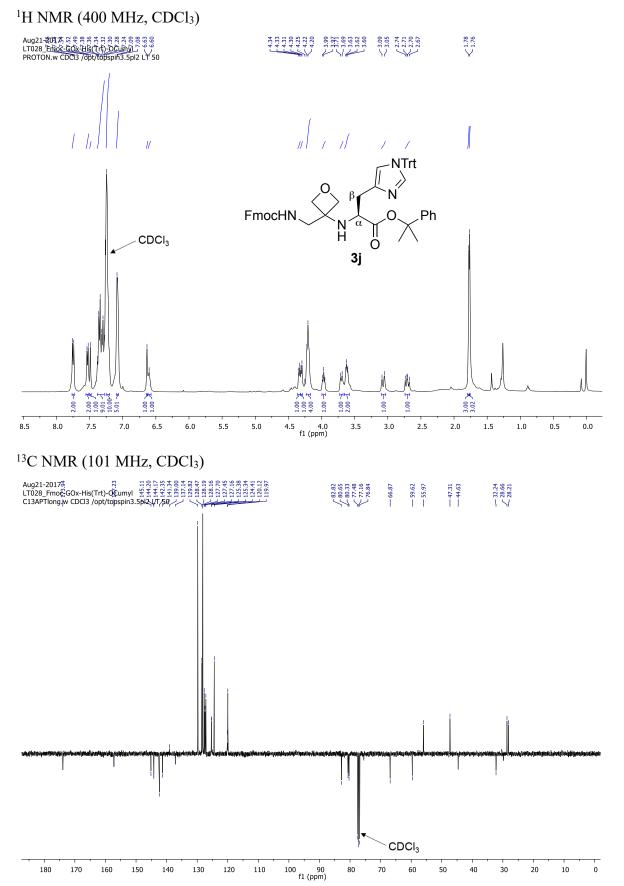
Fmoc-Met-OCumyl (1i)



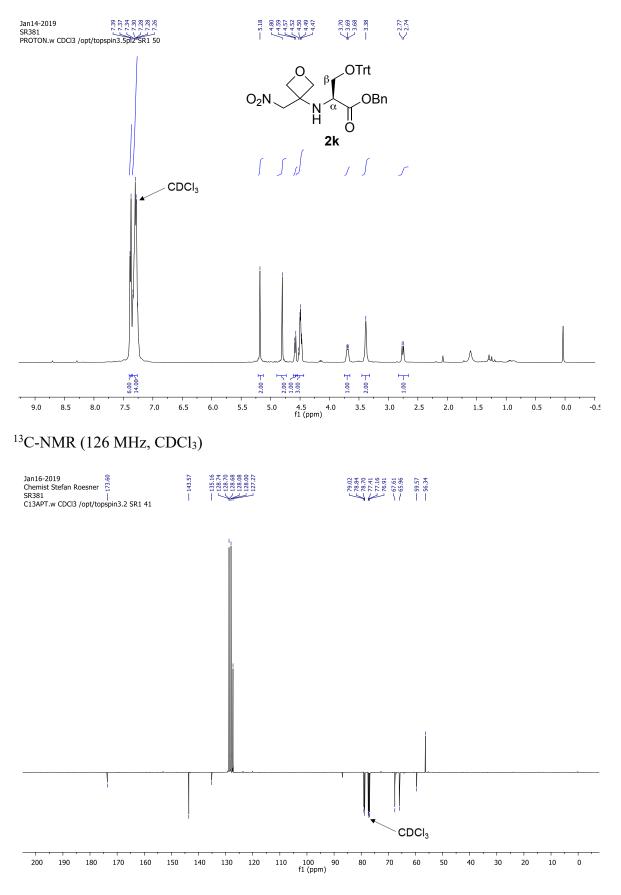
NO₂-GOx-Met-OCumyl (2i)



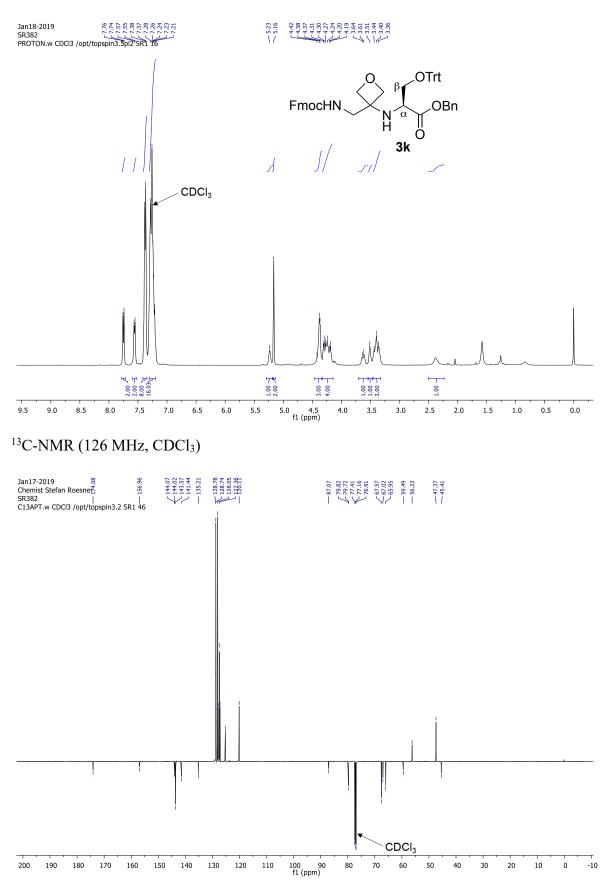

Fmoc-GOx-Met-OCumyl (3i)


Fmoc-His(Trt)-OCumyl (1j)

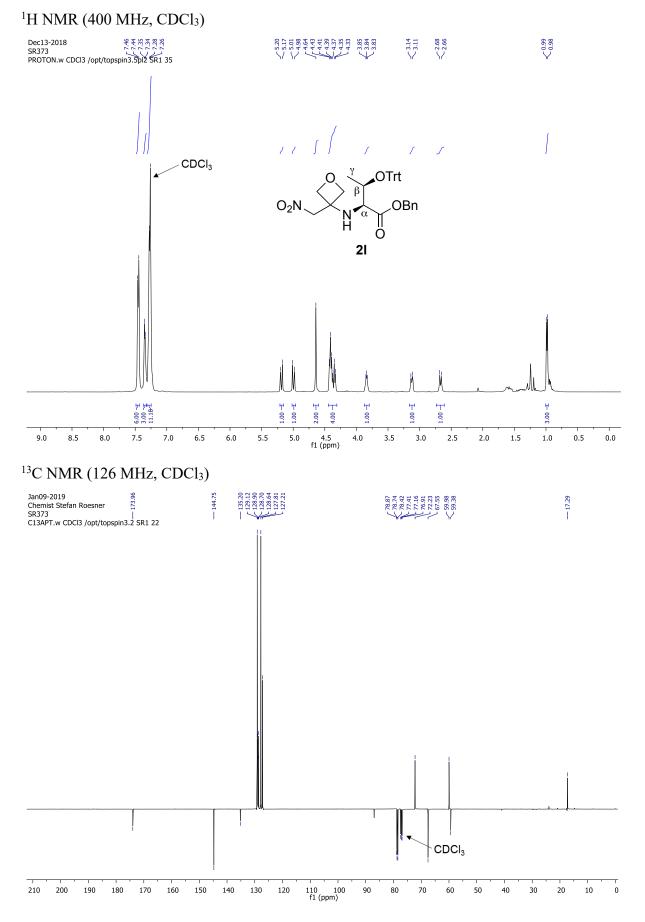
NO₂-GOx-His(Trt)-OCumyl (2j)



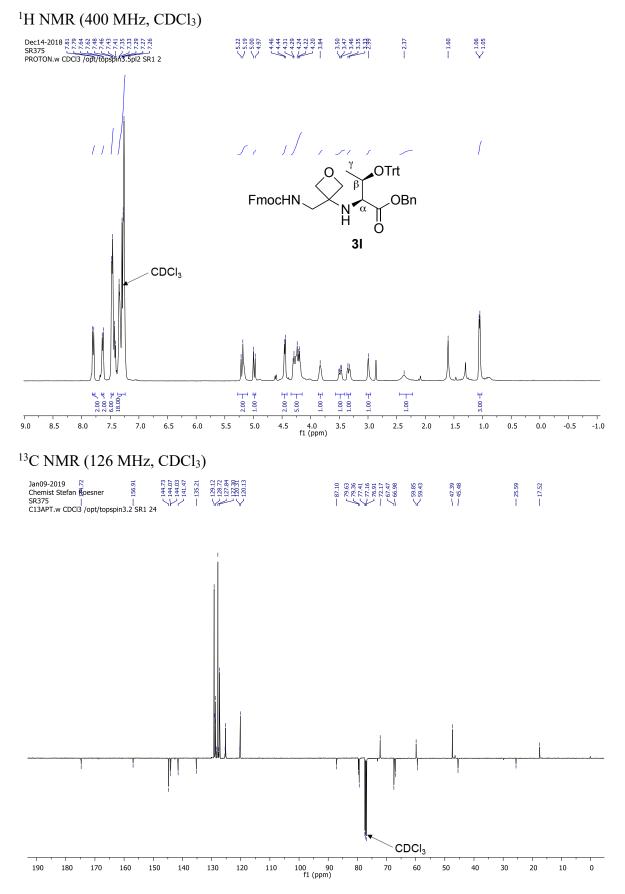
Fmoc-GOx-His(Trt)-OCumyl (3j)

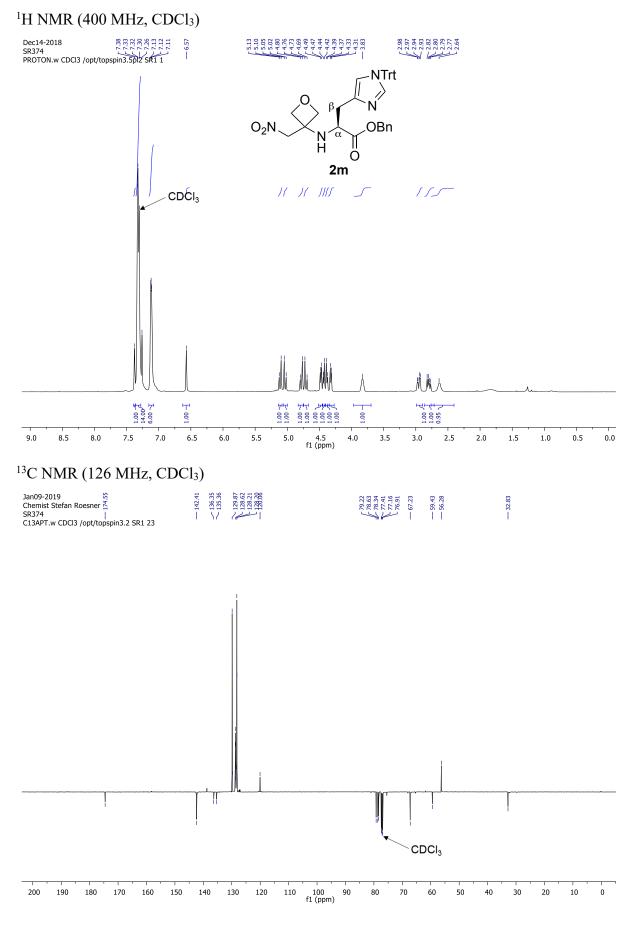

NO2-GOx-Ser(Trt)-OBn (2k)

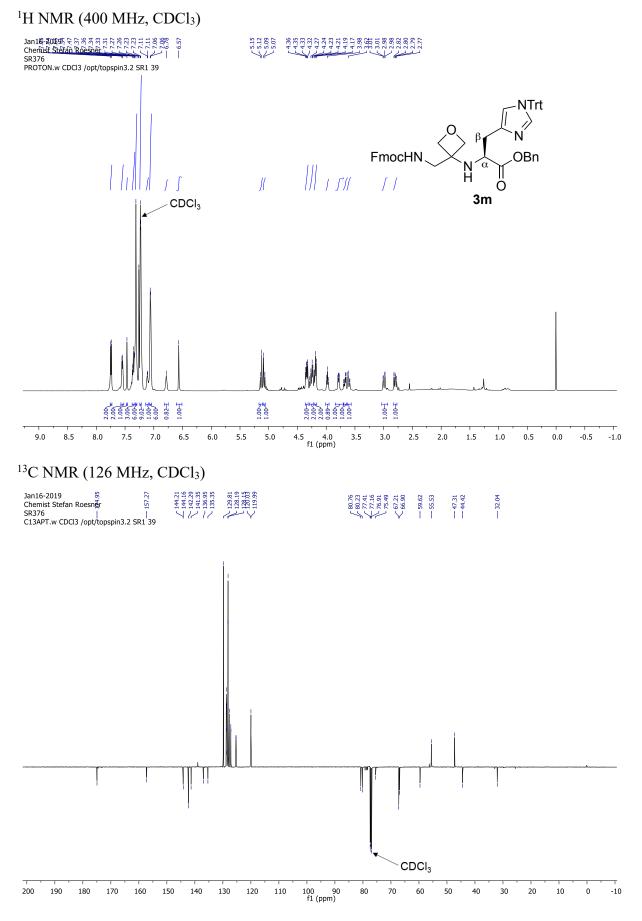
¹H-NMR (400 MHz, CDCl₃)

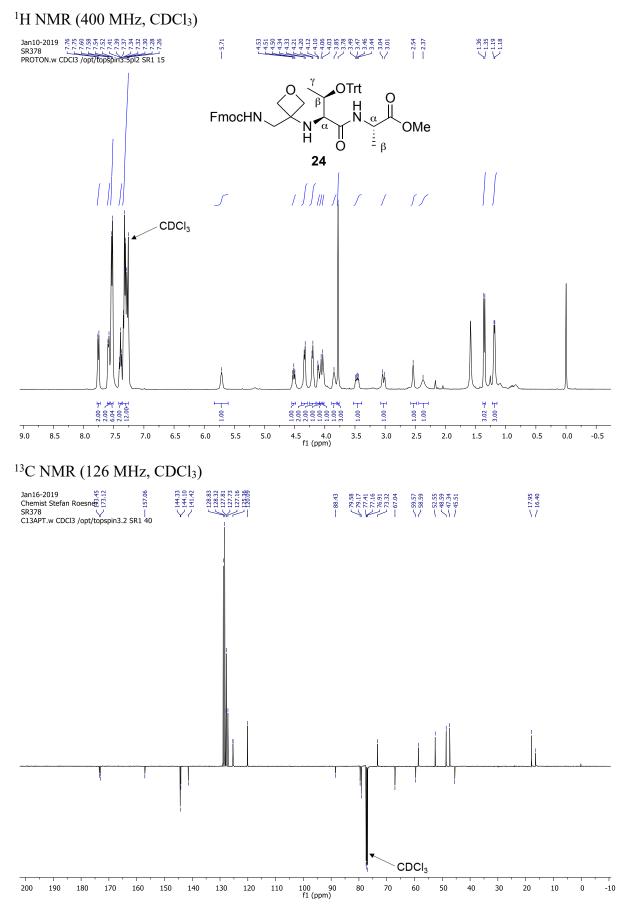


Fmoc-GOx-Ser(Trt)-OBn (3k)


¹H-NMR (400 MHz, CDCl₃)


NO₂-GOx-Thr(Trt)-OBn (2l)


Fmoc-GOx-Thr(Trt)-OBn (3l)


NO₂-GOx-His(Trt)-OBn (2m)

Fmoc-GOx-His(Trt)-OBn (3m)

Fmoc-GOx-Thr(Trt)-OBn (24)

