Supporting Information

Deprotection of benzyl unit induces 22π aromatic macrocycle of 3-oxypyripentaphyrin(0.1.1.1.0) with strong NIR absorption.

Daiki Mori, Tomoki Yoneda*, Masaaki Suzuki, Tyuji Hoshino, and Saburo Neya*

Table of Contents

1.	General Information	.S2
2.	Synthesis and Characterization	.S3
3.	NMR Spectra	S10
4.	X-ray Structural Analysis	S18
5.	Cyclic Voltammograms	S20
5.	DFT Calculation	S21
6.	References	S27

1. General Information

All reagents were of the commercial grade and were used without further purification except where noted. The spectroscopic grade dichloromethane was used as a solvent for all spectroscopic studies. Silica gel column chromatography was performed on Wakogel C-200 and C-400. Thin-layer chromatography (TLC) was carried out on aluminum sheets coated with silica gel 60 F₂₅₄ (Merck 5554). UV/Visible absorption spectra were recorded on a Shimadzu UV-3600PC spectrometer. ¹H and ¹⁹F NMR spectra were recorded on a JEOL ECZ-400 and a ECZ-600 spectrometer (operating as 399.78 MHz and 600.17 MHz for ¹H, 376.17 MHz for ¹⁹F) using tetramethylsilane(TMS) as the internal reference for ¹H (δ = 0 ppm). Hexafluorobenzene for ¹⁹F (δ = –162.9 ppm) was employed as external references. High-resolution electrospray-ionization time-of-flight mass spectroscopy (HR-ESI-TOF-MS) was recorded on a BRUKER micrOTOF model or Thermo scientific Exactive spectrometer using positive or negative mode for methanol solutions of samples.

2. Synthesis and Characterization

ethyl 3,4-dimethyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolyl)-pyrrole-2-carboxylate 4.

Scheme S1. Synthesis of 4

To a 500 mL two-necked flask purged with nitrogen gas, 2-ethoxycarbonyl-5-iodo-3,4-dimethylpyrrole **3** (24.3 g, 82.9 mmol), PdCl₂(PPh₃)₂ (1.46 g, 2.1 mmol), triethylamine (9.6 mL, 20.7 mmol), pinacolborane (24.6 mL, 168 mmol) and 330 mL of dry dioxane was placed. The resultant solution was stirred for 4 h at 95 °C oil bath. After the reaction mixture was cooled to room temperature, the reaction mixture was filtered with 200 mL of dioxane. The filtrate was evaporated to leave crude products as a brown oil. The oil was chromatographed twice on silica gel column using dichloromethane and 1:5 mixture of ethyl acetate/hexane. The obtained fraction was evaporated to leave brown solid. The solid was recrystallized with 130 mL of methanol to give ethyl 3,4-dimethyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolyl)-pyrrole-2-carboxylate **4** (17.5 g, 72 %).

¹H NMR (400 MHz, CDCl₃, 298 K): δ (ppm) = 1.31 (s, 12H, pinacol-CH₃), 1.36 (t, *J* = 7.2 Hz, 3H, - CH₂CH₃), 2.18 (s, 3H, pyrrole-CH₃), 2.26 (s, 3H, pyrrole-CH₃), 4.32 (q, 2H, *J* = 7.2 Hz, -OCH₂CH₃), 9.06 (s, 1H, NH).

¹³C NMR (98.51 MHz, CDCl₃, 298 K): δ (ppm) = 10.2, 10.5, 14.7, 60.1, 83.8, 122.9, 126.8, 131.8, 161.5. ESI-TOF-MS *m*/*z* (obsd.) = 294.1872 [M+H]⁺, (calcd) = 294.1871 for C₁₅H₂₅BNO₄⁺.

Scheme S2. Synthesis of 5

Compound **4** (8.03 g, 28.7 mmol) and 2,6-diiodopyridin-3-ol (3.95 g, 11.4 mmol) and PPh₃ (517 mg, 1.97 mmol) and PdCl₂(dppf) (700 mg, 957 µmol) in dry DMF (105 mL) was placed in 300 mL twonecked flask. The resultant solution was stirred for 10 min under an atmosphere of nitrogen at 80 °C oil bath. A solution of K₂CO₃ (3.95 g, 27 mmol) in water (21 mL) was added and heating was continued for 4 h. The reaction was quenched with 300 mL of saturated aqueous NH₄Cl and the products were extracted with a mixture of CHCl₃/THF = 10:1 (100 mL) for five times. The organic phase was washed with brine and dried over anhydrous Na₂SO₄ followed by evaporation of solvent under reduced pressure. After 40 mL of CH₂Cl₂ was added, the precipitate was collected and washed with CH₂Cl₂ to give white solids of **5** (3.0 g, 61%).

¹H NMR (400 MHz, DMSO- d_6 , 298 K): δ (ppm) = 1.31 (t, J = 7.2 Hz, 3H, -OCH₂CH₃), 1.32 (t, J = 7.2 Hz, 3H, OCH₂CH₃), 2.19 (s, 3H, -CH₃), 2.20 (s, 3H, -CH₃), 2.25 (s, 3H, -CH₃), 2.27 (s, 3H, -CH₃), 4.26 (q, J = 7.2 Hz, 2H, -OCH₂CH₃), 4.28 (q, J = 7.2 Hz, 2H, -OCH₂CH₃), 7.36 (d, J = 8.8 Hz, 1H, pyridine-H), 7.50 (d, J = 8.8 Hz, 1H, pyridine-H), 10.76 (s, 1H, NH or OH), 10.89 (s, 1H, NH or OH), 11.19 (s, 1H, NH or OH).

¹³C NMR (98.51 MHz, DMSO-*d*₆, 298 K): δ (ppm) = 10.3, 10.4, 10.4, 11.2, 14.5, 14.5, 59.4, 59.4, 117.0, 117.9, 118.0, 119.9, 120.8, 123.9, 126.0, 126.9, 130.2, 132.1, 138.2, 141.0, 149.5, 161.0, 161.0. ESI-TOF-MS *m*/*z* (obsd.) 424.1879 [M–H]⁻, (calcd) = 424.1878 for C₂₃H₂₆N₃O₅⁺.

diethyl 5,5'-(3-hydroxypyridine-2,6-diyl)bis(3,4-dimethylpyrrole-2-carboxylate) 6.

Scheme S3. Synthesis of 6.

Compound **5** (3.00 g, 7.1 mmol) in 300 mL two-necked flask was added into dry THF/DMF = 1:1 mixture (120 mL) and stirred solution was heated in N₂ atmosphere for 5 min at 80 °C oil bath to dissolve them. NaH (abt. 60%, 339 mg, 8.5 mmol) was added and heating was continued for 20 min. After that, BnBr (1.70 mL, 14.3 mmol) was added and the resulting solution was heated for further 12 h. The reaction solution was cooled to room temperature and quenched with a solution of K₂CO₃ (3.0 g 2.2 mmol) in MeOH (300 mL) and water (300 mL) on ice bath. The white precipitate is filtered was collected by filtration and washed with 200 mL of water/MeOH = 1:1 mixture. Drying the residue for 3 hours at 50 °C gave pure solids of compound **6** (3.64 g, 3.5 mmol, 99%).

¹H NMR (400 MHz, CDCl₃, 298 K): δ (ppm) = 1.21 (t, J = 7.2 Hz, 3H, -OCH₂CH₃), 1.40 (t, J = 7.2 Hz, 3H, OCH₂CH₃), 2.29 (s, 3H, -CH₃), 2.36 (s, 3H, -CH₃), 2.37 (s, 3H, -CH₃), 2.53 (s, 3H, -CH₃), 4.21 (q, J = 7.2 Hz, 2H, -OCH₂CH₃), 4.34 (q, J = 7.2 Hz, 2H, -OCH₂CH₃), 5.23 (s, 2H, -OCH₂Ph), 7.36-7.50 (m, 7H, phenyl-H and pyridyl-H), 9.88 (s, 1H, NH), 10.27 (s, 1H, NH).

¹³C NMR (98.51 MHz, CDCl₃, 298 K): δ (ppm) = 10.3, 10.4, 11.0, 12.3, 14.6, 14.6, 59.8, 60.0, 71.5, 117.8, 117.8, 118.6, 118.8, 120.5, 122.6, 127.7, 128.0, 128.5, 128.5, 128.8, 129.1, 130.8, 135.4, 140.6, 142.4, 150.0, 161.3, 161.5.

ESI-TOF-MS m/z (obsd.) = 516.2497 [M+H]⁺, (calcd) = 516.2493 for C₃₀H₃₄N₃O₅⁺

5,5'-(3-(benzyloxy)pyridine-2,6-diyl)bis(3,4-dimethyl-1H-pyrrole-2-carboxylic acid) 7.

Scheme S4. Synthesis of 7.

Compound **6** (1.80 g, 3.49 mmol) was added into EtOH (216 mL) and stirred under reflux for 5 min. A solution of NaOH (1.08 g 27 mmol) in water (54 mL) was added and refluxed for 8 h. The reaction solution was cooled to room temperature and the reaction mixture was neutralized by addition of hydrochloric acid. After addition of water (270 mL). The precipitate was collected by filtration and washed with water. Drying the resulting solid for 2 h at 50 °C gave pure compound **7** (1.61 g, 3.49 mmol, quant.).

¹H NMR (400 MHz, DMSO-*d*6, 298 K): δ (ppm) = 1.98 (s, 3H, -*CH*₃), 2.19 (s, 3H, -*CH*₃), 2.20 (s, 3H, -*CH*₃), 2.25 (s, 3H, -*CH*₃), 5.21 (s, 2H, -*CH*₂Ph), 7.32-7.42 (3H, phenyl-H), 7.47 (d, *J* = 7.6 Hz, 2H, phenyl-H), 7.58 (d, *J* = 9.0 Hz, 1H, pyridine-H), 7.66 (d, *J* = 9.0 Hz, 1H, pyridine-H), 11.15 (s, 1H, NH), 11.34 (s, 1H, NH), 12.35 (brs, 2H, COOH).

¹³C NMR (98.51 MHz, DMSO-*d*6, 298 K): δ (ppm) = 10.3, 10.4, 11.2, 70.1, 117.1, 119.0, 119.5, 119.7, 120.5, 120.9, 125.5, 126.4, 128.1, 128.1, 128.5, 129.4, 131.5, 136.3, 140.2, 142.2, 150.5, 162.7, 162.8. ESI-TOF-MS *m/z* (obsd.) = 458.1727 [M–H]⁻, (calcd) = 458.1721 for C₂₆H₂₄N₃O₅⁻

3-(benzyloxy)-2,6-bis(3,4-dimethyl-1H-pyrrol-2-yl)pyridine 8.

Scheme S5. Synthesis of 8.

Compound **7** (800 mg, 1.74 mmol) was added to a solution of KOH (2.40 g, 42.8 mmol) in dry glycerol (40 mL) and the resultant mixture was stirred in N₂ atmosphere at 180 °C for 1.5 h. After cooling to room temperature, the reaction mixture was added into 500 mL water and neutralized by addition of acetic acid (10 mL). The reaction mixture was extracted with 500mL dichloromethane and the organic phase was washed with brine and dried over anhydrous Na₂SO₄. After evaporation of solvent under reduced pressure, silica gel column chromatography using CH₂Cl₂ and recrystallization with hexane afforded compound **8** (274 mg, 42%).

¹H NMR (400 MHz, CDCl₃, 298 K): δ (ppm) = 2.09 (s, 3H, -CH₃), 2.10 (s, 3H, -CH₃), 2.29 (s, 3H, -CH₃), 2.51 (s, 3H, -CH₃), 5.15 (s, 2H, --CH₂Ph), 6.57 (d, *J* = 2.4 Hz, 1H, pyrrole-H), 6.64 (d, *J* = 2.0 Hz, 1H, pyrrole-H), 7.24 (d, *J* = 8.6 Hz, 1H, pyridine-H), 7.26 (d, *J* = 8.4 Hz, 1H, pyridine-H), 7.35-7.46 (5H, phenyl-H), 9.17 (s, 1H, NH), 9.55 (s, 1H, NH).

¹³C NMR (98.51 MHz, CDCl₃, 298 K): δ (ppm) = 10.4, 10.5, 11.2, 12.6, 71.4, 114.9, 115.8, 115.8, 116.3, 119.8, 120.3, 120.5, 120.7, 125.7, 127.8, 128.1, 128.6, 129.0, 136.3, 141.6, 143.9, 148.2. ESI-TOF-MS *m/z* (obsd.) = 372.2070 [M+H]⁺, (calcd) = 372.2070 for C₂₄H₂₆N₃O⁺.

2-benzyloxy-7,8,22,23-tetramethyl-10,15-20-tris(pentafluorophenyl)-pyripentaphyrin(0.1.1.1.0) 1

Scheme S6. Synthesis of 1.

5-Pentafluorophenyl-1,9-bis(pentafluorobenzoyl)dipyrromethene **9** (280 mg, 0.40 mmol) was reduced with NaBH₄ (303 mg, 20 eq) in a 10:1 mixture solution of THF and methanol (44 mL). After 1 h, the reaction was quenched with water (60 mL) and extracted with ethyl acetate(60 mL). The organic phase was washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure to yield di-carbinol **9'** quantitatively, which was unstable at ambient temperature and hence had to be used immediately. The di-carbinol **9'** was added to a solution of **8** (149 mg, 0.40 mmol) in CH₂Cl₂ (200 mL). After the resultant solution was stirred in N₂ atmosphere for 5 min, *p*-toluenesulfonic acid monohydrate (98.8 mg, 1.3 eq) was added and stirring was continued for 1 h. DDQ (272 mg, 3.0 eq) was added and the resulting solution was stirred for further 20 min. The reaction mixture with 200 mL of ethyl acetate was passed through a basic alumina column followed by evaporation of solvent under reduced pressure. The residue was purified twice by silica gel column chromatography using 3:1 mixture of hexane: ethyl acetate and 20:1 mixture of CH₂Cl₂: ethyl acetate. After collection of the green band, recrystallization from CH₂Cl₂/hexane afforded pure pyripentaphyrin **1** (77.2 mg, 74.5 μ mol, 19%).

¹H NMR (400 MHz, CDCl₃, 298 K): δ (ppm) = 1.69 (s, 3H, -*CH*₃), 1.77 (s, 3H, -*CH*₃), 2.18 (s, 3H, -*CH*₃), 2.57 (s, 3H, -*CH*₃), 5.06 (brs, 3H, NH, merged with protons of water), 5.37 (s, 2H, -*CH*₂-), 6.41 (d, *J* = 4.8 Hz, 1H, β -H), 6.51 (d, *J* = 6.0 Hz, 1H, β -H), 6.75 (d, *J* = 4.8 Hz, 1H, β -H), 6.80 (d, *J* = 4.8 Hz, 1H, β -H), 7.34-7.46 (5H, phenyl-H), 7.75 (d, *J* = 9.2 Hz, 1H, pyridine-H), 8.31 (d, *J* = 9.2 Hz, 1H, pyridine-H). ¹³C NMR (98.51 MHz, CDCl₃, 298 K): δ (ppm) = 10.4, 11.1, 12.0, 14.3, 72.0, 93.2, 98.6, 114.0, 119.9, 120.7, 121.3, 12-2.0, 122.3, 126.2, 127.0, 127.7, 128.3, 128.5, 128.6, 128.9, 129.2, 129.3, 129.9, 134.0, 136.0, 136.1, 138.68, 138.75, 141.8, 148.2, 150.7, 153.7, 162.8. (¹³C NMR (98.51 MHz, CDCl₃, 298 K): δ (ppm) = 10.4, 114.9, 115.8, 115.8, 116.3, 119.8, 120.3, 120.5, 120.7, 125.7, 127.8, 128.1, 128.6, 129.0, 136.3, 141.6, 143.9, 148.2. (The signals for pentafluorophenyl carbons were not clearly observed because of their complicated ¹³C–F coupling.) ¹⁹F NMR (376 MHz, CDCl₃, 298 K): δ (ppm) = -139.20 (d, J = 24 Hz, 2F, o-F), -139.59 (d, J = 24 Hz, 2F, o-F), -139.88 (d, J = 24 Hz, 2F, o-F), -154.22 (t, J = 22 Hz, 1F, p-F), -154.63 (t, J = 22 Hz, 1F, p-F), -155.35 (t, J = 22 Hz, 1F, p-F), -162.83 - -162.93 (6F, m-F). UV/Vis/NIR (CH₂Cl₂): λ_{max} [nm] (ε [M⁻¹cm⁻¹])= 348 (3.2×10⁴), 435 (3.7×10⁴), 705 (1.2×10⁴).

ESI-TOF-MS m/z (obsd.) = 1036.2133 [M+H]⁺, (calcd) = 1036.2128 for C₅₃H₂₉N₅F₁₅O₁⁺.

2-oxy-7,8,22,23-tetramethyl-10,15-20-tris(pentafluorophenyl)-pyripentaphyrin(0.1.1.1.0) 2.

Scheme S7. Synthesis of 2.

Palladium-activated carbon (Pd 10%, 5.0 mg) was added to a solution of compound **1** (25.0 mg, 24.1 μ mol) in MeOH (20 mL) and the resultant mixture was stirred in H₂ atmosphere for 15 min at room temperature. Palladium-activated carbon was filtered off and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography using 1:1 mixture of hexane/ethyl acetate. After collection of the brown band, recrystallization from CH₂Cl₂/hexane afforded pure pyripentaphyrin **2** (17.8 mg, 18.8 μ mol, 78%).

¹H NMR (400 MHz, CD₃OD, 298 K): δ (ppm) = 2.29 (s, 3H, -CH₃), 2.44 (s, 3H, -CH₃), 3.00 (s, 3H, -CH₃), 3.27 (s, 3H, -CH₃), 7.87 (1H, brs, β -H), 7.90 (1H, brs, β -H), 8.07 (d, *J* = 8.4 Hz, 1H, pyridine-H), 8.16 (1H, β -H), 8.23 (1H, β -H), 9.6 (d, *J* = 6.8 Hz, 1H, pyridine-H).

¹³C NMR spectra in CDCl₃ or methanol- d_3 were too broad or weak to analysis because of the keto-enol equilibrium and low solubility (in methanol) of **2**.

¹⁹F NMR (376 MHz, CD₃OD, 298 K): δ (ppm) = -142.79 (d, *J* = 18 Hz, 2F, o-F), -143.10 (d, *J* = 12 Hz, 2F, o-F), -143.26 (d, *J* = 24 H z, 2F, o-F), -156.08 (br, 1F, p-F), -156.32 (br, 1F, p-F), -157.95 (br, 1F, p-F), -165.64 (t, *J* = 18 Hz, 2F, *m*-F), -165.89 (t, *J* = 18 Hz, 2F, *m*-F), -166.14 (m, 2F, *m*-F).

UV/Vis (CH₂Cl₂): $\lambda_{max}[nm]$ (ϵ [M⁻¹cm⁻¹]) = 344 (3.2×10⁴), 437 (5.0×10⁴), 497 (3.2×10⁴), 519 (3.2×10⁴), 519 (3.2×10⁴), 519 (3.2×10⁴), 519 (3.2×10⁴), 519 (3.2×10⁴), 519 (3.2×10⁴), 610 (1.9×10⁴), 437 (5.0×10⁴), 502 (4.3×10⁴), 530 (5.0×10⁴), 704(2.9×10⁴), 761(1.9×10⁴), 852 (4.2×10⁴).

ESI-TOF-MS m/z (obsd.) = 946.1663 [M+H]⁺, (calcd) = 946.1691 for C₄₆H₂₂N₅F₁₅O₁⁺.

3. NMR Spectra

Fig. S1. ¹H NMR spectrum of **4** in CDCl₃ at 25 °C. * indicates CHCl₃ and TMS.

Fig. S2. 13 C NMR spectrum of 4 in CDCl₃ at 25 °C. * indicates solvent.

Fig. S3. ¹H NMR spectrum of 5 in DMSO-*d*6 at 25 °C. * indicates residual solvents.

Fig. S4. ¹³C NMR spectrum of 5 in DMSO-*d*6 at 25 °C. * indicates DMSO-*d*6.

Fig. S5. ¹H NMR spectrum of **6** in CDCI₃ at 25 °C. * indicates CHCI₃ and TMS.

Fig. S6. ^{13}C NMR spectrum of 6 in CDCl3 at 25 °C. * indicates CDCl3 and TMS.

Fig. S7. ¹H NMR spectrum of 7 in DMSO-*d*6 at 25 °C. * indicates residual solvents.

Fig. S8. ¹³C NMR spectrum of 7 in DMSO-*d*6 at 25 °C. * indicates residual DMSO-*d*6.

Fig. S9. ¹H NMR spectrum of 8 in CDCl₃ at 25 °C. * indicates CHCl₃ and TMS.

Fig. S10. ¹³C NMR spectrum of 8 in CDCl₃ at 25 °C. * indicates CDCl₃ and TMS.

Fig. S11. ¹H NMR spectrum of 1 in CDCl₃ at 25 °C. * indicates residual solvents and TMS.

Fig. S12. ¹³C{¹H} NMR spectrum of 1 in CDCI₃ at 25 °C. * indicates residual solvents and TMS.

Fig. S13. ¹⁹F NMR spectrum of 1 in CDCl₃ at 25 °C.

Fig. S14. ¹H NMR spectrum of 2 in CDCl₃ at 25 °C. * indicate residual solvents and TMS.

Fig. S15. ¹H NMR spectrum of 2 in methanol-d4 at 25 °C. * indicates residual solvents.

Fig. S16. ¹⁹F NMR spectrum of 2 in methanol-d4 at 25 °C.

3. X-Ray Crystallographic Analysis

Data for single crystal X-ray diffraction analyses were collected on a Rigaku R-AXIS RAPID diffractometer using a graphite monochromator with CuK_{α} radiation (λ = 1.54187 Å). Data collection and reduction were performed using *RAPID AUTO*. The structures for crystallography were solved by direct methods using *SHELXL97* and were refined using *SHELXL97* on *Yadokari-XG* program.

Fig. S17. Selected bond lengths of 1(left) and 2(right) shown in Å.

4. Cyclic Voltammograms

Fig. S18. Cyclic Voltammograms of a) **1** and b) **2** measured in dichloromethane using tetrabutylammonium hexafluorophosphate (0.10 M) as supporting electrolyte (E/V vs ferrocene/ferrocenium cation, scan rate 0.05 Vs⁻¹). The * peak is derived from the irreversibly reduced anion radical species.

5. DFT Calculations

All calculations were carried out using the *Gaussian 16* program.^[S1] All structures were fully optimized without any symmetry restriction. The calculations were performed by the density functional theory (DFT) method with restricted B3LYP (Becke's three-parameter hybrid exchange functionals and the Lee-Yang-Parr correlation functional) level, employing a basis set 6-31G(d) for C, H, N, O, and F. The NICS values and absolute ¹H shielding values were obtained with the GIAO method. The ¹H chemical shift values were calculated relative to CHCl₃ (δ = 7.26 ppm, absolute shielding: 24.94 ppm). The global ring centers for the NICS values were designated at the nonweighted means of the carbon and nitrogen coordinates on the peripheral positions of conjugated macrocycles. In addition, NICS values were also calculated on centers of other local cyclic structures as depicted in the figures.

	1	2(keto-form)	2(enol-form)
Total energy (kJ/mol)	-1019450	-9484740.5	-9484723.8
HOMO-KUMO gap (eV)	1.99	1.97	2.00
NICS(0) (ppm)	-0.66	-10.91	+0.73

Fig. S19. Kohn-Sham orbital diagrams of 1 of the optimized structures.

Fig. S20. Kohn-Sham orbital diagrams of keto-form of 2 of the optimized structures.

Fig. S21. Kohn-Sham orbital diagrams of enol-form of 2 of the optimized structures.

Fig. S22. NICS values at various positions and simulated chemical shifts of 1 based on the optimized structure.

Figure S23. NICS values at various positions and simulated chemical shifts of keto-form of 2 based on the optimized structure.

Figure S24. NICS values at various positions and simulated chemical shifts of enol-form of 2 based on the optimized structure.

6. References

[S1] Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, **2009**.