Ag(I)-Mediated Hydrogen Isotope Exchange of Mono-Fluorinated (Hetero)arenes

Guang-Qi Hu, En-Ci Li, Hong-Hai Zhang* and Wei Huang

Key Laborabory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 Puzhu Road, Nanjing 211816, P.R. China

iamhhzhang@njtech.edu.cn

Supporting Information

General: General: NMR spectra were recorded at 23 °C on a Varian VNMRS 300 MHz NMR spectrometer in CDCl₃ unless otherwise noted. Chemical shifts were determined relative to residual CHCl₃ (7.26 ppm) for proton, and to the CDCl₃ "triplet" at 77.23 ppm for carbon. GC-MS experiments were carried out using an Agilent GC/MS instrument consisting of a 6890N series GC and a 5973 Mass Selective Detector System. All yields reported refer to isolated yields unless otherwise indicated. All the reagents and solvents were purchased from commercial sources and used as received. The atom% deuterium incorporation was determined by both of GC-MS and ¹H NMR spectrum. Since the relative intensity was found to depend on the pulse delay, the pulse delay was adjusted to 120s to ensure complete relaxation occurred. The method to determine atom% deuterium incorporation using GC-MS is shown below.

The incorporation of deuterium into each substrate was verified by GC-MS, observing a shift in the isotope distribution in the starting material (M) to show M+1 (d_1), M+2 (d_2), etc. Data processing was performed using the following formula:

Using compound **2h** as example: isotope distribution (GC-MS): $2\% d_0$, $20\% d_1$, $78\% d_2$.

Atom% deuterium incorporation = $\left[\left(\% d_1 \ge 1\right) + \left(\% d_2 \ge 2\right)\right] / 2$

Atom% deuterium incorporation = [(20% x 1) + (78% x 2)] / 2 = 88%

Table S1: Optimization of Solvent:

F 1a	$ \begin{array}{c} H \\ + D_2O \end{array} \xrightarrow{Ag_2CO_3 / JohnPho} \\ \hline K_2CO_3 & 80^{\circ}C \\ \hline solvent \end{array} $	s F D 2a
Entry ^a	solvent	D incorpration ^b
1	DMSO (0.3 M)	5%
2	Toluene (0.3 M)	15%
3	DCM (0.3 M)	1%
4	DMF (0.3 M)	3%
5	Ethyl Acetate (0.3 M)	0%
6	DMA (0.3 M)	12%
7	1,4-dioxane (0.3 M)	2%
8	Toluene (1 M)	43%

^aThe reaction was conducted on 0.2 mmol of **1a**, 4 mmol of D_2O , 0.1 mmol of Ag_2CO_3 , 0.1 mmol of JohnPhos, 0.2 mmol of K_2CO_3 in DMSO at 80°C. ^bDetermined by GC-MS

Table S2: Optimization of the Additives:

	$\frac{H}{2} + D_2O \frac{Ag_2CO_3 / Sph}{Toluene 80^{\circ}}$ additive	$\xrightarrow{\text{os}}_{C} \xrightarrow{F} \xrightarrow{D}_{2a}$
Entry ^a	additive	D incorpration ^b
1	K ₂ CO ₃	91%
2	Na ₂ CO ₃	39%
3	Cs_2CO_3	40%
4	Li ₂ CO ₃	80%
5	CdCO ₃	73%
6	MnCO ₃	60%
7	SrCO ₃	83%
8	KHCO ₃	55%
9	BaCO ₃	85%
10	Cu ₂ (OH) ₂ CO ₃	78%

^aThe reaction was conducted on 0.2 mmol of **1a**, 2 mmol of D₂O, 0.1 mmol of Ag₂CO₃, 0.1 mmol of Sphos, 0.2 mmol of additive in 0.2 mL toluene at 80° C. ^bDetermined by GC-MS

Table S3	8: Scre	ening th	e ratio	of Ag ₂	CO ₃ a	and Sp	hos:

F 1a	$+$ $D_2O - \frac{Ag_2}{Tc}$	$_{2}CO_{3}$ / Sphos pluene 80°C K ₂ CO ₃	
Entry ^a	Ag ₂ CO ₃ (%)	Sphos (%)	D incorpration ^b
1	50	50	91%
2	50	40	80%
3	50	30	76%
4	50	20	70%
5	50	10	53%
6	40	50	50%
7	30	50	48%
8	20	50	46%
9	10	50	36%

^aThe reaction was conducted on 0.2 mmol of **1a**, 2 mmol of D₂O, Ag₂CO₃, Sphos, 0.2 mmol of K₂CO₃ in 0.2 mL Toluene at 80°C. ^bDetermined by GC-MS

General Procedure for Ag_2CO_3 Catalyzed H/D Exchange with 2-fluorobiphenyl (1a) as example: 2-fluorobiphenyl (172 mg, 1 mmol) was added to a vigorously stirred solution of silver cabonate (138 mg, 0.5 mmol), sphos (205 mg, 0.5 mmol), potassium carbonate (138 mg, 1 mmol) and D₂O (200 mg, 10 mmol) in toluene (1 mL) in the air. The reaction mixture was stirred at 90°C for 12 h. Then the reaction was quenched with saturated NH₄Cl solution. The product was extracted with dichloromethane (3 x 20 mL). The combined organic layer was washed with brine and dried over Na₂SO₄. After removal of solvents under vacuum, the crude product was purified via column chromatography.

2a: Isolated yield: 85%, yellow oil. ¹H NMR (300 MHz, CDCl₃): δ 7.64 (d, *J* = 7.8 Hz, 2 H), 7.53 (t, *J* = 7.2 Hz, 3 H), 7.47 ~ 7.37 (m, 2 H), 7.31 ~ 7.28 (m, 1 H), 7.22 (t, *J* = 9.0 Hz, **labeled**, **<u>0.10 H</u>**). ¹⁹F NMR (300 MHz, CDCl₃): -117.8 (s, 0.14 F), -118.2 (s, 0.86 F). ¹³C NMR (125 MHz, CDCl₃): 160.97, 159.00, 136.05, 130.98, 130.95, 129.26, 129.24, 129.08, 129.01, 128.63, 127.85, 124.53, 124.51, 116.38, 116.19. HRMS (ESI) *m/z*: calcd for C₁₂H₈DF⁺ ([M]⁺) 173.051; Found 173.0760. The level of deuterium incorporation was estimated: 90% from ¹H NMR; 96% from GC-MS

2b: Isolated yield: 40% (volatile liquid), yellow oil.

¹H NMR (300 MHz, CDCl₃): δ 7.63 ~ 7.56 (m, 2 H), 7.25 ~ 7.21 (m, 1 H), 7.18 (t, *J* = 9.0 Hz, **0.11 H**).

¹⁹F NMR (300 MHz, CDCl₃): -106.0 (s, 0.13 F), -106.3 (s, 0.87 F).

¹³C NMR (125 MHz, CDCl₃): 164.41, 162.35, 135.16, 133.79, 125.00, 124.89, 116.80, 116.65, 114.10, 77.42.

HRMS (ESI) *m/z*: calcd for C₇H₃DNF⁺ ([M]⁺) 122.0391; Found 122.0386.

The level of deuterium incorporation was estimated: 89% from ¹H NMR; 95% from GC-MS

2c: Isolated yield: 95%, yellow oil. ¹H NMR (300 MHz, CDCl₃): δ 7.83 (d, *J* = 8.1 Hz, 2 H), 7.61 ~ 7.44 (m, 5 H), 7.25 (t, *J* = 7.8 Hz, 1 H), 7.15 (t, *J* = 9.0 Hz, **0.11 H**).

¹⁹F NMR (300 MHz, CDCl₃): -110.9 (s, 0.13 F), -111.2 (s, 0.87 F).

¹³C NMR (125 MHz, CDCl₃): 193.55, 161.23, 159.23, 137.59, 133.54, 133.22, 133.15, 133.12, 133.06, 130.87, 130.85, 129.94, 128.61, 127.30, 127.18, 124.44, 116.50, 116.32.

HRMS (ESI) m/z: calcd for C₁₃H₈DOF⁺ ([M]⁺) 201.0700; Found 201.0706.

The level of deuterium incorporation was estimated: 89% from ¹H NMR; 95% from GC-MS

2d: Isolated yield: 90%, yellow oil.

¹H NMR (300 MHz, CDCl₃): δ 7.46 (d, J = 4.2 Hz, 2 H), 7.40 (t, J = 4.5 Hz, 2 H), 7.34 (t, J = 4.2 Hz, 1 H), 7.13 ~ 7.09 (m, **0.26 H**), 7.04 ~ 7.00 (m, **1.72 H**), 6.94 ~ 6.90 (m, 1 H).

¹⁹F NMR (300 MHz, CDCl₃): -133.8 (s, 0.24 F), -133.9 (s, 0.05 F), -134.1 (s, 0.51 F), -134.2 (s, 0.20 F).

¹³C NMR (125 MHz, CDCl₃): 154.71, 151.45, 146.88, 146.74, 136.68, 128.61, 128.09, 127.45, 124.28, 121.60, 121.50, 121.41, 116.46, 116.22, 115.98, 71.47.

HRMS (ESI) m/z: calcd for C₁₃H₉D₂OF⁺ ([M]⁺) 204.0919; Found 204.0924.

The level of deuterium incorporation was estimated: 74% (D^a) and 28% (D^b) from ¹H NMR; 57% (average) from GC-MS

2e: Isolated yield: 40% (volatile liquid), yellow oil. ¹H NMR (300 MHz, CDCl₃): δ 7.68 (d, *J* = 4.8 Hz, 2 H), 7.17 (t, *J* = 8.7 Hz, **0.13 H**). ¹⁹F NMR (300 MHz, CDCl₃): -102.5 (s, 0.09 F), -102.8 (s, 0.91 F). ¹³C NMR (125 MHz, CDCl₃): 166.22, 164.18, 134.80, 134.73, 118.19, 117.11, 116.93, 116.73, 116.53, 108.80, 108.70, 77.43. HRMS (ESI) *m/z*: calcd for C₇H₂D₂NF⁺([M]⁺) 123.0453; Found 123.0446. The level of deuterium incorporation was estimated: 93% from ¹H NMR; 90% from GC-MS

2f: Isolated yield: 92%, yellow oil. ¹H NMR (300 MHz, CDCl₃): δ 7.84 (d, *J*= 3.3 Hz, 2 H), 7.77 (d, *J*= 4.5 Hz, 2 H), 7.59 (t, *J*= 4.2 Hz, 1 H), 7.48 (t, *J*= 4.5 Hz, 2 H), 7.15 (t, *J*= 5.1 Hz, **0.09 H**). ¹⁹F NMR (300 MHz, CDCl₃): -106.1 (s, 0.10 F), -106.3 (s, 0.90 F),

¹³C NMR (125 MHz, CDCl₃): 195.34, 167.21, 163.84, 137.74, 132.76, 132.64, 132.80, 130.02, 128.52, 115.76, 115.47, 115.22.

HRMS (ESI) *m/z*: calcd for C₁₃H₇D₂OF⁺ ([M]⁺) 202.0763; Found 202.0771.

The level of deuterium incorporation was estimated: 95% from ¹H NMR; 97% from GC-MS

2g: Isolated yield: 92%, yellow oil.

¹H NMR (300 MHz, CDCl₃): δ 7.62 ~ 7.54 (m, 4 H), 7.45 (t, *J* = 7.2 Hz, 2 H), 7.38 ~ 7.33 (m, 1 H), 7.14 (t, *J* = 8.7 Hz, **0.29 H**).

¹⁹F NMR (300 MHz, CDCl₃): -115.7 (s, 0.03 F), -116.0 (s, 0.27 F), -116.3 (s, 0.69 F).

¹³C NMR (125 MHz, CDCl₃): 140.52, 129.04, 128.97, 128.85, 128.74, 127.48, 127.39, 127.25, 115.97, 115.69.

HRMS (ESI) m/z: calcd for C₁₂H₇D₂F⁺ ([M]⁺) 174.0814; Found 174.0807.

The level of deuterium incorporation was estimated: 85% from ¹H NMR; 83% from GC-MS

2h: Isolated yield: 87%, yellow oil.

¹H NMR (300 MHz, CDCl₃): δ 7.51 ~ 7.46 (m, 4 H), 7.11 (t, *J* = 8.7 Hz, <u>**0.41** H</u>), 6.98 (d, *J* = 8.7 Hz, 2 H).

¹⁹F NMR (300 MHz, CDCl₃): -116.6 (s, 0.04 F), -116.9 (s, 0.32 F), -117.1 (s, 0.64 F).

¹³C NMR (125 MHz, CDCl₃): 163.93, 159.40, 133.10, 128.47, 128.37, 128.25, 128.16, 115.88, 115.60, 114.51, 55.52.

HRMS (ESI) m/z: calcd for C₁₃H₉D₂OF⁺ ([M]⁺) 204.0919; Found 204.0930.

The level of deuterium incorporation was estimated: 80% from ¹H NMR; 88% from GC-MS.

2i: Isolated yield: 93%, yellow oil. ¹H NMR (300 MHz, CDCl₃): δ 7.51 (d, *J* = 4.9 Hz, 2 H), 7.46 (d, *J* = 6.6 Hz, 2 H), 7.10 (t, *J* = 6.6 Hz, 2 H), 6.81 (d, *J* = 6.6 Hz, 2 H), 2.99 (s, 6 H). ¹⁹F NMR (300 MHz, CDCl₃): -117.6 (s, 0.09 F), -117.9 (s, 0.37 F), -118.1 (s, 0.54 F). ¹³C NMR (125 MHz, CDCl₃): 163.04, 160.63, 150.04, 137.47, 128.42, 127.84, 127.77, 127.73, 127.69, 127.65, 115.64, 115.43, 112.92, 40.34.

HRMS (ESI) *m/z*: calcd for C₁₄H₁₂D₂NF⁺ ([M]⁺) 217.1236; Found 217.1243.

Deuterium incorporation expected at δ 7.08.

The level of deuterium incorporation was estimated: 73% from ¹H NMR; 72% from GC-MS.

2j: Isolated yield: 95%, yellow oil.

¹H NMR (300 MHz, CDCl₃): δ 7.50 ~ 7.45 (m, 4 H), 7.03 (t, *J* = 8.7 Hz, **<u>0.23 H</u>**), 6.88 (d, *J* = 8.7 Hz, 2 H), 3.83 (s, 3 H).

¹⁹F NMR (300 MHz, CDCl₃): -111.3 (s, 0.01 F), -111.6 (s, 0.18 F), -111.9 (s, 0.80 F).
¹³C NMR (125 MHz, CDCl₃): 163.94, 160.65, 159.72, 133.33, 133.23, 133.12, 133.01, 132.91,

115.72, 115.42, 115.24, 114.06, 89.05, 86.99, 55.29.

HRMS (ESI) m/z: calcd for C₁₅H₉D₂OF⁺ ([M]⁺) 228.0919; Found 228.0936.

The level of deuterium incorporation was estimated: 89% from ¹H NMR; 85% from GC-MS.

2k: Isolated yield: 90%, yellow oil.

¹H NMR (300 MHz, CDCl₃): δ 7.64 ~ 7.60 (m, 2 H), 7.48 (t, *J* = 4.2 Hz, 2 H), 7.44 ~ 7.39 (m, 3 H), 7.33 (d, *J* = 6.0 Hz, **0.62 H**), 7.07 (t, *J* = 6.0 Hz, **0.14 H**).

¹⁹F NMR (300 MHz, CDCl₃): -112.9 (s, 0.12 F), -113.2 (s, 0.62 F), -113.5 (s, 0.26 F).

¹³C NMR (125 MHz, CDCl₃): 164.87, 161.62, 143.63, 140.00, 130.17, 130.06, 128.91, 127.87, 127.13, 122.76, 114.20, 113.91.

HRMS (ESI) m/z: calcd for $C_{12}H_{18}D_2F^+([M]^+)$ 173.0751; Found 173.0740.

The level of deuterium incorporation was estimated: 86% (D^a) and 38% (D^b) from ¹H NMR; 65% (average) from GC-MS.

21: Isolated yield: 80%, yellow oil. ¹H NMR (300 MHz, DMSO-*d*₆): δ 7.65 (d, *J* = 5.1 Hz, 2 H), 7.46 (s, 2 H), 7.44 (s, **0.75 H**), 7.11 (d, *J* = 4.2 Hz, **0.28 H**), 7.03 (d, *J* = 5.1 Hz, 2 H), 3.81 (s, 3 H). ¹⁹F NMR (300 MHz, DMSO-*d*₆): -112.8 (s, 0.29 F), -113.1 (s, 0.57 F), -113.4 (s, 0.14 F). ¹³C NMR (125 MHz, DMSO-*d*₆): 164.29, 159.31, 142.33, 142.23, 131.04, 130.68, 130.58, 130.47, 127.87, 122.05, 114.35, 113.38, 113.10, 112.84, 112.55, 55.13. HRMS (ESI) *m/z*: calcd for C₁₃H₁₀DOF⁺ ([M]⁺) 203.0857; Found 203.0863. The level of deuterium incorporation was estimated: 72% (D^a) and 25% (D^b) from ¹H NMR; 52% (average) from GC-MS.

2m: Isolated yield: 86%, yellow oil.

¹H NMR (300 MHz, DMSO-*d*₆): δ 7.30 (t, *J* = 4.8 Hz, 1 H), 7.17 ~ 7.20 (m, 1 H), 7.14 ~ 7.16 (m, **0.10 H**).

¹⁹F NMR (300 MHz, DMSO-*d*₆): -116.0 (s, 0.12 F), -116.3 (s, 0.88 F).

¹³C NMR (125 MHz, DMSO-*d*₆): 159.97, 156.75, 140.00, 128.64, 128.53, 126.49, 113.89, 113.59, 110.61, 110.35, 22.00.

HRMS (ESI) *m/z*: calcd for C₇H₅DFBr⁺ ([M]⁺) 188.9700; Found 188.9703.

The level of deuterium incorporation was estimated: 90% from ¹H NMR; 85% from GC-MS.

2n: Isolated yield: 95%, yellow oil. ¹H NMR (300 MHz, DMSO-*d*₆): δ 7.91 ~ 7.99 (m, 2 H), 7.70 (d, *J* = 6.3 Hz, 1 H), 7.52 ~ 7.56 (m, 2 H), 7.40 ~ 7.45 (m, 1 H), 7.23 ~ 7.28 (m, **0.15 H**). ¹⁹F NMR (300 MHz, DMSO-*d*₆): -123.5 (s, 0.18 F), -123.8 (s, 0.82 F). ¹³C NMR (125 MHz, DMSO-*d*₆): 159.48, 159.17, 134.48, 127.65, 127.04, 126.60, 125.88, 125.76, 123.94, 122.85, 122.63, 119.74, 119.68, 109.72, 109.46. HRMS (ESI) *m/z*: calcd for C₁₀H₆DF⁺ ([M]⁺) 147.0595; Found 147.0601. The level of deuterium incorporation was estimated: 85% from ¹H NMR; 88% from GC-MS.

2o: Isolated yield: 90%, yellow oil. ¹H NMR (300 MHz, CDCl₃): δ 7.49 (d, *J* = 2.7 Hz, 4 H), 7.12 (t, *J* = 5.4 Hz, **<u>1.40 H</u>**). ¹⁹F NMR (300 MHz, CDCl₃): -115.6 (s, 0.13 F), -115.9 (s, 0.46 F), -116.1 (s, 0.41 F). ¹³C NMR (125 MHz, CDCl₃): 164.06, 160.80, 136.40, 128.62, 128.51, 128.41, 115.82, 115.54. HRMS (ESI) *m/z*: calcd for C₁₂H₄D₄F₂⁺ ([M]⁺) 194.0845; Found 194.0848. Deuterium incorporation expected at δ 7.12. The level of deuterium incorporation was estimated: 65% from ¹H NMR; 60% from GC-MS.

2p: Isolated yield: 88%, yellow oil.

¹H NMR (300 MHz, CDCl₃): δ 7.81 (d, J = 5.4 Hz, 4 H), 7.17 (t, J = 9.0 Hz, **0.37 H**).

¹⁹F NMR (300 MHz, CDCl₃): -105.9 (s, 0.30 F), -106.2 (s, 1.70 F).

¹³C NMR (125 MHz, CDCl₃): 193.74, 166.35, 164.32, 133.71, 132.38, 132.31, 115.62, 115.44, 115.20, 115.00.

HRMS (ESI) m/z: calcd for C₁₃H₄D₄OF₂⁺ ([M]⁺) 222.0794; Found 222.0802.

The level of deuterium incorporation was estimated: 91% from ¹H NMR; 94% from GC-MS.

General Procedure for Ag_2CO_3 Catalyzed H/D Exchange of nitrogen-containing monofluorinated heteroarenes: heteroarene (1 mmol) was added to a vigorously stirred solution of silver cabonate (138 mg, 0.5 mmol), sphos (205 mg, 0.5 mmol), potassium carbonate (138 mg, 1 mmol) and D₂O (200 mg, 10 mmol) in toluene (1 mL) in the air. The reaction mixture was stirred at 90°C for 12 h. Then the reaction was quenched with saturated NH₄Cl solution. The product was extracted with dichloromethane (3 x 20 mL). The combined organic layer was washed with brine and dried over Na₂SO₄. After removal of solvents under vacuum, the crude product was purified via column chromatography.

4a: Isolated yield: 90%, yellow oil.

¹H NMR (300 MHz, CDCl₃): δ 8.37 (s, 1 H), 7.91 (d, *J* = 6.3 Hz, 1 H), 7.45 (d, *J* = 8.7 Hz, 2 H), 7.00 (d, *J* = 8.7 Hz, 2 H), 6.95 (d, *J* = 3.0 Hz, **<u>0.06 H</u>**).

¹⁹F NMR (300 MHz, CDCl₃): -71.4 (s, 0.10 F), -71.6 (s, 0.90 F).

¹³C NMR (125 MHz, CDCl₃): 163.69, 161.79, 159.80, 145.35, 145.23, 139.25, 139.19, 19.15, 139.09, 134.49, 129.12, 128.11, 114.61, 109.42, 109.12, 55.35.

HRMS (ESI) *m/z*: calcd for C₁₂H₉DNOF⁺ ([M]⁺) 204.0809; Found 204.0820.

Deuterium incorporation expected at δ 6.95.

The level of deuterium incorporation was estimated: 94% from ¹H NMR; 92% from GC-MS.

4b: Isolated yield: 80%, yellow oil.

¹H NMR (300 MHz, CDCl₃): δ 8.42 (s, 1 H), 7.96 (d, *J* = 6.6 Hz, 1 H), 7.55 ~ 7.38 (m, 5 H), 6.99 (d, *J* = 5.7 Hz, **0.12 H**).

¹⁹F NMR (300 MHz, CDCl₃): -70.4 (s, 0.07 F), -70.7 (s, 0.92 F).

¹³C NMR (125 MHz, CDCl₃): 164.06, 162.16, 145.87, 145.75, 139.61, 139.55, 136.70, 134.85, 129.13, 128.31, 127.03, 109.54, 109.21.

HRMS (ESI) *m/z*: calcd for C₁₁H₇DNF⁺ ([M]⁺) 174.0704; Found 174.0713.

Deuterium incorporation expected at δ 6.99.

The level of deuterium incorporation was estimated: 88% from ¹H NMR; 83% from GC-MS.

4c: Isolated yield: 96%, yellow oil.

¹H NMR (300 MHz, CDCl₃): δ 8.20 (d, J = 3.3 Hz, 1 H), 7.57 (d, J = 5.4 Hz, 2 H), 7.34 (d, J = 3.0 Hz, 1 H), 7.06 (s, **0.45 H**), 7.00 (d, J = 5.4 Hz, 2 H), 3.85 (s, 3 H).

¹⁹F NMR (300 MHz, CDCl₃): -68.4 (s, 0.31 F), -68.6 (s, 0.69 F).

¹³C NMR (125 MHz, CDCl₃): 165.56, 163.67, 161.01, 153.52, 153.44, 153.38, 147.87, 147.75, 129.22, 128.22, 118.83, 114.64, 106.30, 106.00, 55.14.

HRMS (ESI) m/z: calcd for C₁₂H₉DNOF⁺ ([M]⁺) 204.0809; Found 204.0819.

Deuterium incorporation expected at δ 7.06.

The level of deuterium incorporation was estimated: 55% from ¹H NMR; 45% from GC-MS.

4d: Isolated yield: 53%, yellow oil. ¹H NMR (300 MHz, CDCl₃): δ 8.56 (d, J= 3.6 Hz, 1 H), 7.59 (s, 1 H), 7.34 (s, **0.03 H**). ¹⁹F NMR (300 MHz, CDCl₃): -114.9 (s, 0.02 F), -115.1 (s, 0.98 F). ¹³C NMR (125 MHz, CDCl₃): 162.30, 160.15, 146.99, 128.53, 123.11, 112.85, 77.13. HRMS (ESI) *m*/*z*: calcd for C₆H₂DN₂F⁺ ([M]⁺) 123.0343; Found 123.0340. Deuterium incorporation expected at δ 7.34. The level of deuterium incorporation was estimated: 97% from ¹H NMR; 99% from GC-MS.

4e¹: Isolated yield: 86%, yellow oil.

¹H NMR (300 MHz, DMSO- d_6): δ 8.24 ~ 8.25 (m, 1 H), 7.82 ~ 7.86 (m, <u>0.14 H</u>), 7.50 (t, J = 3.6 Hz, <u>0.35 H</u>).

¹⁹F NMR (300 MHz, DMSO-*d*₆): -111.3 (s, 0.13 F), -111.6 (s, 0.87 F).

HRMS (ESI) *m/z*: calcd for C₅HD₂NFBr⁺ ([M]⁺) 176.9558; Found 176.9566.

The level of deuterium incorporation was estimated as: 86% (D^a) and 65% (D^b) from ¹H NMR; 73% (average) from GC-MS.

4f: Isolated yield: 80%, yellow oil. ¹H NMR (300 MHz, CDCl₃): δ 8.63 (s, 1 H), 8.39 (s, <u>**0.93** H</u>), 7.53 (s, <u>**0.05** H</u>), 7.50 (d, J = 5.4 Hz, 2 H), 7.50 (d, J = 5.4 Hz, 2 H).

¹⁹F NMR (300 MHz, CDCl₃): -127.2 (s, 0.09 F), -127.4 (s, 0.66 F), -127.7 (s, 0.24 F).

¹³C NMR (125 MHz, CDCl₃): 160.73, 160.21, 158.69, 143.69, 137.80, 136.01, 135.83, 128.70, 128.30, 120.41, 120.27, 114.68, 55.35.

HRMS (ESI) *m*/*z*: calcd for C₁₂H₈D₂NOF⁺ ([M]⁺) 205.0872; Found 205.0873.

Deuterium incorporation expected at δ 8.39 and 7.53.

The level of deuterium incorporation was estimated: 95% (D^a) and 7% (D^b) from ¹H NMR; 92% (total), 46% (average) from GC-MS.

4g: Isolated yield: 50%, yellow oil.

¹H NMR (300 MHz, CDCl₃): δ 7.98 (s, <u>**0.96** H</u>), 7.31 (s, <u>**0.04** H</u>), 6.69 (s, <u>**0.65** H</u>), 3.90 (s, 3 H). ¹⁹F NMR (300 MHz, CDCl₃): -139.5 (s, 0.01 F), -139.7 (s, 0.99 F).

¹³C NMR (125 MHz, CDCl₃): 160.33, 156.33, 154.38, 133.19, 132.98, 126.14, 125.91, 111.32, 77.12, 53.67.

HRMS (ESI) *m*/*z*: calcd for C₆H₃D₃NOF⁺ ([M]⁺) 130.0622; Found 130.0617.

Deuterium incorporation expected at δ 7.98, 7.31 and 6.69.

The level of deuterium incorporation was estimated: 96% (D^a), 35% (D^b) and 4% (D^c) from ¹H NMR; 125% (total), 42% (average) from GC-MS.

4h: Isolated yield: 89%, yellow oil. ¹H NMR (300 MHz, DMSO-*d*6): δ 8.87 (d, *J* = 2.1 Hz, 1 H), 8.34 (d, *J* = 6.3 Hz, <u>0.72 H</u>), 7.72 (d, *J* = 6.3 Hz, 1 H), 7.48 ~ 7.56 (m, <u>2.16 H</u>). ¹SE NMP (200 MHz, DMSO, *d*(): 125.8 (a, 0.21 E), 126.2 (a, 0.78 E).

¹⁹F NMR (300 MHz, DMSO-*d*6): -125.8 (s, 0.21 F), -126.2 (s, 0.78 F).

¹³C NMR (125 MHz, DMSO-*d*6): 158.84, 155.46, 150.68, 135.88, 135.84, 129.51, 126.51, 126.42, 126.31, 123.94, 123.88, 122.39, 122.28, 113.62, 113.38.

HRMS (ESI) *m/z*: calcd for C₉H₄D₂NF⁺ ([M]⁺) 149.0610; Found 149.0619.

The level of deuterium incorporation was estimated as: 84% (D^a) and 28% (D^b) from ¹H NMR; 68% (average) from GC-MS.

4i: Isolated yield: 86%, yellow oil. ¹H NMR (300 MHz, CDCl₃): δ 8.65 (s, **0.33 H**), 8.40 ~ 8.39 (m, 2 H), 7.49 ~ 7.48 (m, 3 H). ¹⁹F NMR (300 MHz, CDCl₃): -140.5 (s, 0.03 F), -140.8 (s, 0.23 F), -141.0 (s, 0.74 F). ¹³C NMR (125 MHz, CDCl₃): 161.08, 157.72, 155.57, 144.99, 144.83, 144.63, 144.43, 136.66, 130.60, 128.63, 128.11. HRMS (ESI) *m/z*: calcd for C₁₀H₅D₂N₂F⁺ ([M]⁺) 176.0719; Found 176.0719. Deuterium incorporation expected at δ 8.65. The level of deuterium incorporation was estimated as: 84% from ¹H NMR; 76% from GC-MS.

4j: Isolated yield: 93%, yellow oil. ¹H NMR (300 MHz, CDCl₃): δ 8.20 (s, <u>**0.16** H</u>), 3.76 ~ 3.71 (m, 4 H). ¹⁹F NMR (300 MHz, CDCl₃): -156.1 (s, 0.03 F), -156.3 (s, 0.27 F), -156.5 (s, 0.70 F). ¹³C NMR (125 MHz, CDCl₃): 158.98, 153.39, 150.09, 145.27, 144.99, 66.70, 44.79. HRMS (ESI) *m/z*: calcd for C₈H₈D₂N₃OF⁺ ([M]⁺) 185.0933; Found 185.0946. Deuterium incorporation expected at δ 8.20. The level of deuterium incorporation was estimated as: 92% from ¹H NMR; 88% from GC-MS.

4k: Isolated yield: 80%, yellow oil.

¹H NMR (300 MHz, DMSO-*d*6): δ 7.97 (d, *J* = 1.8 Hz, <u>**0.08** H</u>), 7.95 (q, *J* = 3.6 Hz, 1 H), 7.38 (t, *J* = 6.6 Hz, 1 H).

¹⁹F NMR (300 MHz, DMSO-*d*6): -114.2 (s, 0.11 F), -114.5 (s, 0.89 F).

¹³C NMR (125 MHz, DMSO-*d*6): 161.50, 158.17, 152.37, 147.22, 136.86, 136.70, 123.82, 123.69, 115.49, 115.27, 109.03, 108.68.

HRMS (ESI) *m/z*: calcd for C₇H₂DNFSCl⁺ ([M]⁺) 187.9722; Found 187.926.

The level of deuterium incorporation was estimated as: 92% from ¹H NMR; 80% from GC-MS.

41: Isolated yield: 90%, yellow oil. ¹H NMR (300 MHz, CDCl₃): δ 8.65 ~ 8.67 (m, 1 H), 7.96 (d, *J* = 4.2 Hz, 2 H), 7.70 ~ 7.74 (m, 1 H), 7.64 ~ 7.66 (m, 1 H), 7.19 ~ 7.22 (m, 1 H), 7.14 (t, *J* = 6.6 Hz, **0.41 H**). ¹⁹F NMR (300 MHz, CDCl₃): -113.0 (s, 0.02 F), -113.3 (s, 0.23 F), -113.6 (s, 0.75 F). ¹³C NMR (125 MHz, CDCl₃): 164.78, 162.34, 156.53, 149.69, 136.86, 136.80, 128.81, 128.70, 128.63, 122.13, 120.31, 115.84, 115.63, 115.60, 115.38, 115.35, 115.13. HRMS (ESI) *m/z*: calcd for C₁₄H₆D₂NF⁺ ([M]⁺) 175.0766; Found 175.0767. The level of deuterium incorporation was estimated as: 80% from ¹H NMR; 86% from GC-MS.

4m: Isolated yield: 96%, yellow oil.

¹H NMR (300 MHz, CDCl₃): δ 8.62 (d, J = 4.5 Hz, 1 H), 7.92 (t, J = 7.5 Hz, **<u>0.64 H</u>**), 7.66 (d, J = 3.9 Hz, 2 H), 7.16 (dd, J_1 = 4.5 Hz, J_2 = 8.7 Hz, 1 H), 6.92 (t, J = 8.4 Hz, **<u>0.07 H</u>**), 6.82 (dd, J_1 = 9.0 Hz, J_2 = 11.4 Hz, **<u>0.07 H</u>**).

¹⁹F NMR (300 MHz, CDCl₃): -109.4 (s, 0.10 F), -109.7 (s, 0.87 F), -112.9 (s, 0.04 F), -113.2 (s, 1.00 F).

¹³C NMR (125 MHz, CDCl₃): 164.18, 164.09, 162.19, 162.09, 161.60, 161.51, 159.59, 159.50, 152.52, 149.74, 136.44, 132.05, 132.01, 131.97, 131.94, 124.20, 124.13, 123.80, 123.72, 122.38, 104.51, 104.31, 104.11, 103.90.

HRMS (ESI) *m/z*: calcd for C₁₁H₄D₃NF₂⁺ ([M]⁺) 194.0735; Found 194.0742.

The level of deuterium incorporation was estimated as: 93% (D^a), 93% (D^b) and 36% (D^c) from ¹H NMR; 86% (average) from GC-MS.

Procedure for synthesis of D-iloperidone: iloperidone (426 mg, 1 mmol) was added to a vigorously stirred solution of silver cabonate (138 mg, 0.5 mmol), sphos (205 mg, 0.5 mmol), potassium carbonate (138 mg, 1 mmol) and D₂O (200 mg, 10 mmol) in toluene (1 mL) in the air. The reaction mixture was stirred at 90°C for 12 h. Then the reaction was quenched with saturated NH₄Cl solution. The product was extracted with dichloromethane (3 x 20 mL). The combined organic layer was washed with brine and dried over Na₂SO₄. After removal of solvents under vacuum, the crude product was purified via column chromatography.

6a: Isolated yield: 80%

¹H NMR (300 MHz, CDCl₃): δ 7.66 (d, J = 3.9 Hz, **0.44 H**), 7.53 (dd, J_1 = 1.5 Hz, J_2 = 6.0 Hz, 1 H), 7.50 (d, J = 1.5 Hz, 1 H), 7.22 (d, J = 6.3 Hz, **0.08 H**), 7.01 ~ 7.05 (m, **0.09 H**), 6.91 (d, J = 6.3 Hz, 1 H), 4.17 (t, J = 5.1 Hz, 2 H), 3.90 (s, 3 H), 3.04 ~ 3.07 (m, 3 H), 2.57 (t, J = 5.1 Hz, 2 H), 2.51 (s, **0.33 H**), 2.02 ~ 2.19 (m, 8 H).

¹⁹F NMR (300 MHz, CDCl₃): -109.7 (s, 0.19 F), -110.0 (s, 0.81 F).

¹³C NMR (125 MHz, CDCl₃): 196.33, 165.20, 161.79, 160.57, 152.43, 148.82, 129.96, 122.70, 121.96, 121.81, 110.84, 110.08, 66.92, 55.55, 54.59, 53.08, 34.09, 30.10, 26.14.

HRMS (ESI) m/z: calcd for C₂₄H₂₁D₆N₂O₄F⁺ ([M]⁺) 432.2331; Found 432.2354.

The level of deuterium incorporation was estimated as: 92% (D^a), 56% (D^b), 92% (D^c) and 90% (D^d) from ¹H NMR; 90% (average) from GC-MS.

F H	+ D_2O Ag ₂ CO ₃ / Sphos Toluene 90°C		F	+ $D_2O \xrightarrow{Ag_2CO_3 / Sphos}$ Toluene 90°C	
1a	K ₂ CO ₃	2a	2a	K ₂ CO ₃	1a
Entry ^a	time (hours)	D incorpration ^b	Entry ^a	time (hours)	H incorpration ^b
1	1	26%	1	1	23%
2	6	78%	2	6	63%
3	12	100%	3	12	84%

Scheme S1: Kinetic Isotope Effect Study

^aThe reaction was conducted on 0.3 mmol of **1a**, D₂O, 50 mol % of Ag₂CO₃, 50 mol % of Sphos, 1 equiv of K₂CO₃ in 1 mL of Toluene at 90°C. ^bDetermined by GC-MS

^aThe reaction was conducted on 0.3 mmol of **2a**, H_2O , 50 mol % of Ag_2CO_3 , 50 mol % of Sphos, 1 equiv of K_2CO_3 in 1 mL of Toluene at 90°C. ^bDetermined by GC-MS

Reactions to incorporate deuterium were carried out following "General Procedure for Ag_2CO_3 Catalyzed H/D Exchange with 2-fluorobiphenyl (1a) as example", using 2-fluorobiphenyl (172 mg, 1 mmol) as model substrate.

Reactions to incorporate hydrogen were carried out following the same procedure as above, using H_2O instead of D_2O as reagent.

The deuterium/hydrogen incorporation was assigned by GC-Ms result of small aliquots of organic phase of the reaction mixture sampled at different time.

Procedure for Ag₂CO₃ Catalyzed H/D Exchange with TEMPO as additive: 2-fluorobiphenyl (1 mmol) was added to a vigorously stirred solution of silver cabonate (138 mg, 0.5 mmol), Sphos (205 mg, 0.5 mmol) and potassium carbonate (138 mg, 1 mmol) in toluene (1 mL) in the air. Then TEMPO (2 mmol) was added to the solution. The reaction mixture was stirred at 90°C for 12 h. Then the reaction was quenched with saturated NH₄Cl solution. The product was extracted with dichloromethane (3 x 20 mL). The combined organic layer was washed with brine and dried over Na₂SO₄. After removal of solvents under vacuum, the crude product was determined by ¹H NMR as 94%, which suggested that a mechanism involving free radicals should be ruled out.

Reference:

1. Queguiner, M. M. G. Tetrahedron 1986, 42, 2253-2262.

Proton, Fluorine and Carbon NMR Spectra:

-140.52 -140.52 -140.52 -128.95 -128.95 -127.39 -127.39 -115.97 -115.69

----40.68

-164.87-161.62-161.62-161.62-143.63-143.63-143.03-130.04-122.78-122.78-122.78-122.78-122.78-122.78-122.78-122.78-122.78-122.78

-16.406 -16.620 -136.40 <128.62 <2128.62 <213.641 <115.82

--163.069 --161.079 --161.079 -161.079 -1139.015 -1349.015 -1349.015 -

-165.56-63.267 -53.267 -53.3457 -53.3457 -113.33 -114.64 -

-55.34

Zi6481 26438 76231 -16231 -15653 -14976 -13691 -13691 -13691 -12213 -12213 -12213 -12213 -12213 -12213 -12531 -11563

