Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

Live-cell Imaging of Lipid Droplets by Solvatochromic Styrylcoumarin Derivatives

Palash Jana#‡, Aravintha Siva^{†‡}, Virupakshi Soppina^{†*} and Sriram Kanvah^{#*}

[#]Department of Chemistry, Indian Institute of Technology Gandhinagar,

Palaj, Gandhinagar 382355, India.

e-mail: <u>sriram@iitgn.ac.in</u>, <u>kanvah@gatech.edu</u>

[†]Department of Biological Engineering, Indian Institute of Technology Gandhinagar

Palaj Gandhinagar 382355

e-mail: vsoppina@iitgn.ac.in, vsoppina@gmail.com

‡ Equal Contribution

Table-S1: Some known structures that were used for imaging lipid droplets

	3 steps + synthesis of starting materials.	λ_{abs} 599 nm, λ_{em} 789 nm (DMSO)	5μΜ	Dyes Pigments 171 (2019) 107718
	1 step,	λ_{abs} .403nm, λ_{em} 520nm	2μΜ	Anal. Chem. 2019, 91, 1928–1935
	2 steps; Coupling Reaction	λ_{abs} . 405nm, λ_{em} . 520nm	10µM	J. Mater. Chem. B , 2014, 2 , 2013-2019
	3 steps; Heck Couling and synthesis of starting materials	λ_{abs} . 380nm, λ_{em} 620nm	5μΜ	Chem. Sci., 2017 ,8, 5440- 5446
OHC N N C C C C C C C C C C C C C C C C C	5 steps with Heck reaction	λ_{abs} . 383 nm, λ_{em} 470 nm.	100μΜ	Chem. Asian J. 2017, 12, 2501 – 2509

HONN	2 steps	λ_{abs} 380nm, λ_{em} 595nm	7.5μΜ	ACS Appl. Mater. Interfaces 2016, 8, 16, 10193- 10200
	3 steps,	λ_{abs} 450nm, λ_{em} 705nm	10μΜ	Chem. Commun., 2016, 52 , 5957- 5960
	4 steps, 65% yield	λ_{abs} 384nm, λ_{em} 578nm	12μΜ	J. Org. Chem. 2019, 84, 5535–5547
	4 steps and synthesis of starting materials– 8.5% yield	$\begin{array}{c} \lambda_{abs} \hspace{0.1cm} 405, \hspace{0.1cm} \lambda_{em} \\ 540 nm \end{array}$	2μΜ	Analyst, 2019, 144, 1608– 1621
	3 steps	$\begin{array}{l} \lambda_{abs} 395 \text{ nm}, \\ \lambda_{em} 560 \text{ nm} \end{array}$	0.5 μΜ	Chem. Sci., 2019, 10, 9009–9016
	3 steps 85% yield	$\begin{array}{c} \lambda_{abs} \ 485nm, \\ \lambda_{em} \ 580nm \end{array}$	0.2 μΜ	This work
	3 step 90% yield	λ_{abs} 512nm, λ_{em} 605nm	0.2 μΜ	This work

Highlights

- **1.** Easy synthetic steps with high yields
- 2. Coumarin and pyridine functionality provides greater biocompatibility

- 3. Nanomolar concentration of probes used for live cell lipid droplet imaging
- 4. High photostability with red emission

Fig S1: Effect of surfactant (CTAB) concentration on the emission of C-1 and J-1. With increase in concentration, notable emission intensity shifts were noted along with distinct color changes indicating localization preferences.

Fig S2: Effect of pH on the emission of C-1 and J-1 (C-1 Ex.wl 450 nm and J-1 Ex Wl 510 nm)

Supporting Information

3-(7-Diethylamino-2-oxo-2*H*-chromen-3-yl)-2-pyridin-4-yl-acrylonitrile (C-1)

Yield 85 %, (110 mg) ¹H-NMR (500 MHz, CDCl₃) δ (ppm): 8.81 (s, 1H), 8.66–8.65 (d, 2H), 8.09 (s, 1H), 7.56–7.55 (d, 2H), 7.44–7.42 (d, 1H), 6.66–6.64 (d, 1H), 6.50 (s, 1H), 3.50–3.45 (q, 4H), 1.27–1.24 (t, 6H). ¹³C-NMR (125 MHz, DMSO-*d*₆): δ (ppm) 160.69, 157.59, 153.36, 148.30, 143.71, 132.27, 120.81, 117.33, 112, 111, 108.37, 97.13, 55.38, 45.04, 31.16, 22.65, 12.88 HRMS (ESI-Q-TOF): C₂₁H₂₃N₂O₂ [M + H]⁺: cal. *m/z* 346.1585, found, *m/z* 346.1593 (error 2.3ppm)

3-(10-Oxo-2,3,5,6-tetrahydro-1*H*,4*H*,10*H*-11-oxa-3*a*-aza-benzo[*de*]anthracen-9-yl)-2-pyridin-4-yl-acrylonitrile (J-1)

Yield 90%. ¹H-NMR (500 MHz, CDCl₃) δ (ppm): 8.81 (s, 1H), 8.67–8.66 (d, 2H), 8.2 (s, 1H), 7.68–7.67 (d, 2H), 7.68–7.67 (d, 2H), 7.0 (s, 1H), 3.43–3.40 (t, 4H), 2.94–2.92 (m, 2H), 2.83–2.80 (m, 2H), 2.04–2.02 (t, 4H) ¹³C-NMR (125 MHz, CDCl₃): δ (ppm) 161.92, 152.24, 150.14, 148.54, 142.17, 138.53, 127.40, 119.78, 119.61, 117.76, 111.23, 108.54, 106.31,104.90, 96.14, 50.42, 27.38, 21.16, 20.19, 19.99. HRMS (ESI-Q-TOF): C₂₁H₂₃N₂O₂ [M+ H]⁺: cal. *m/z* 370.1598, found, *m/z* 370.1601 (error 0.8pm)

¹H-NMR spectrum of compound C-1

¹H-NMR spectrum of compound J-1

¹³C-NMR spectrum of compound J-1

HRMS spectrum of compound C-1

JULO	IIT, GN	07-Mar-202019:57:19
IIT_GN_Mix_27_02_2020_036 907 (5.511)		1: TOF MS ES+
100-	370.1601	1.62e5
-		
-		
8*		
-		
	371.1653	
-		
	1	
0- <u>huuluuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu</u>	annailliannanananananananananananananana	460 470 490 400 500 540
210 200 200 300 310 320 330 340 350 3	0 370 360 390 400 410 420 430 440 450	400 470 400 490 300 310

HRMS spectrum of compound J-1