Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

SUPPORTING INFORMATION

Mn-Catalysed Photoredox Hydroxytrifluoromethylation of Aliphatic

Alkenes Using CF₃SO₂Na

Wenhao Long, Pengcheng Lian, Jingjing Li, Xiaobing Wan*

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and

Materials Science, Soochow University, Suzhou 215123, P. R. China

Email: wanxb@suda.edu.cn

List of Contents

General information	S2
General procedures for synthesis of 3	S2
Trapping of trifluoromethyl radical	S2
The details for the photoreaction apparatus	
Optimization of the reaction conditions	S4
UV-visible absorption spectrum	
Compound characterizations	
Spectroscopic data for products	S14

General information

All manipulations were carried out under air atmosphere. All solvents should be dried by activated molecular sieves. White LED model E27 was purchased from Philips. Green and blue LED models were also model E27 and purchased from Shanghai Hongye Optoelectronics Technology Co., Ltd.. Column chromatography was generally performed on silica gel (300-400 mesh) and reactions were monitored by thin layer chromatography (TLC) using UV light to visualize the course of the reactions. The ¹H NMR (400 MHz), ¹³C NMR (100 MHz), ¹⁹F NMR (376 MHz) data were recorded using CDCl₃ as solvent at room temperature. The chemical shifts (δ) are reported in ppm and coupling constants (*J*) in Hz. ¹H NMR spectra was recorded with tetramethylsilane (δ = 0.00 ppm) as internal reference; ¹³C NMR spectra was recorded with CDCl₃ (δ = 77.00 ppm) as internal reference. IR and HRMS, were performed by the Stateauthorized Analytical Center in Soochow University.

General procedures for synthesis of 3

To a 25 mL dry Schlenk tube equipped with a magnetic stirring bar was charged with sodium trifluoromethanesulfinate (0.8 mmol) and Mn(acac)₃ (0.02 mmol). Then anhydrous 1,4-dioxane (3 mL) and acetone (1 mL) were added and alkene 1 (0.2 mmol) were added via syringe. The mixture was stirred under an air atmosphere by irradiation of 40 W blue LED for 24 h. After the reaction was complete, the organic layer concentrated under vacuum. The residue was purified with silica gel column chromatography to provide the desired product.

Trapping of trifluoromethyl radical

The details for the photoreaction apparatus

The reaction equipment includes a magnetic stirrer, a cooling device-fan, a reaction tank, a light source and temperature measuring device-thermometer. We use air bags as a source of air for reaction.

Optimization of the reaction conditions

Table S1. Optimization of the reaction solvents

enty	solvent / mL	yield ^b
1	1,4-Dioxane(4.0)	62%
2	acetone(4.0)	< 5
3	DCE(4.0)	< 5
4	DMSO(4.0)	< 5
5	Isopropyl alcohol(4.0)	< 5
6	HFIP(4.0)	< 5
7	EA(4.0)	60%
8	CH ₃ NO _{2(4.0)}	56%
9	Toluene(4.0)	< 5
10	1,4-Dioxane/Toluene(2.0/2.0)	< 5
11	1,4-Dioxane/DCE(2.0/2.0)	66%
12	1,4-Dioxane/Isopropyl alcohol(2.0/2.0)	< 5
13	1,4-Dioxane/EA(2.0/2.0)	67%
14	1,4-Dioxane/CH ₃ NO ₂ (2.0/2.0)	64%
15	1,4-Dioxane/HFIP(2.0/2.0)	< 5
16	1,4-Dioxane/acetone(2.0/2.0)	71%
17	1,4-Dioxane/acetone(3.0/1.0)	80%
18	1,4-Dioxane/acetone(1.0/3.0)	39%
^a Reaction conditions: 1a (0.2 mmol) 2 (0.8 mmol) Mn(acac). (0.02 mmol, 10 mol%), solvent (4.0 mL), in air at 26 oc for 24 h with 40 W blue LED		

^aReaction conditions: 1a (0.2 mmol), 2 (0.8 mmol), Mn(acac)₃ (0.02 mmol), 10 mol%), solvent (4.0 mL), in air at 26 °C for 24 h with 40 W blue LED. ^bIsolated yields.

Table S2. Optimization of the light sources

UV-visible absorption spectrum

 $0.02 \text{ mmol of } Mn(acac)_3 \text{ in } 3 \text{ mL } 1,4\text{-dioxane and } 1 \text{ mL acetone was tested the UV-visible absorption spectrum. The result was as follows.}$

Compound characterizations

5,5,5-trifluoro-3-hydroxypentyl 4-(tert-butyl)benzoate (3a)

petroleum ether/ ethylacetate = 5:1, colorless oil, 80% yield (51.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.97-7.94 (m, 2H), 7.47-7.45 (m, 2H), 4.65-4.59 (m, 1H), 4.42-4.37 (m, 1H), 4.20-4.14 (m, 1H), 2.99 (s, 1H), 2.52-2.19 (m, 2H), 2.08-1.97 (m, 1H), 1.93-1.85 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 157.0, 129.5, 126.9, 126.1, (q, *J* = 276 Hz), 124.8, 63.0 (q, *J* = 3 Hz), 61.0, 41.1 (q, *J* = 27 Hz), 36.3, 35.1, 31.0. ¹⁹F NMR (376 MHz, CDCl₃) δ = -63.44 (s, 3F). HRMS (ESI-TOF): Anal. Calcd. For C₁₆H₂₁F₃O₃+Na⁺: 341.1335, Found: 341.1346. IR (neat, cm⁻¹): v 3446, 2966, 1701, 1609, 1458, 1275, 1190, 1121, 1018.

5,5,5-trifluoro-3-hydroxypentyl benzoate (3b)

petroleum ether/ ethylacetate = 5:1, colorless oil, 75% yield (39.4 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.04-8.02 (m, 2H), 7.60-7.56 (m, 1H), 7.47-7.43 (m, 2H), 4.68-4.62 (m, 1H), 4.44-4.39 (m, 1H), 4.21-4.16 (m, 1H), 2.70 (s, 1H), 2.47-2.23 (m, 2H), 2.07-1.99 (m, 1H), 1.95-1.87 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 133.2, 129.8, 129.6, 128.5, 126.1 (q, *J* = 276 Hz), 63.0 (q, *J* = 3 Hz), 61.2, 41.2 (q, *J* = 27 Hz), 36.3. ¹⁹F NMR (376 MHz, CDCl₃) δ = -63.45 (s, 3F). HRMS (ESI-TOF): Anal. Calcd. For C₁₂H₁₃F₃O₃+Na⁺: 285.0709, Found: 285.0701. IR (neat, cm⁻¹): v 3463, 2963, 1716, 1602, 1453, 1387, 1272, 1146, 1070.

5,5,5-trifluoro-3-hydroxypentyl 4-fluorobenzoate (3c)

petroleum ether/ ethylacetate = 5:1, colorless oil, 76% yield (42.6 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.06-8.03 (m, 2H), 7.14-7.10 (m, 2H), 4.66-4.60 (m, 1H), 4.44-4.38 (m, 1H), 4.20-4.15 (m, 1H), 2.65 (s, 1H), 2.49-2.23 (m, 2H), 2.06-1.98 (m, 1H), 1.95-1.86 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 165.3 (d, *J* = 137 Hz), 132.2 (d, *J* = 9 Hz), 126.1 (q, *J* = 276 Hz), 126.0 (d, *J* = 3 Hz), 115.6 (d, *J* = 22 Hz), 63.0 (q, *J* = 3 Hz), 61.3, 41.2 (q, *J* = 26 Hz), 36.2. ¹⁹F NMR (376 MHz, CDCl₃) δ = -63.47 (s, 3F), -105.10 (s, 1F). HRMS (ESI-TOF): Anal. Calcd. For C₁₂H₁₂F₄O₃+Na⁺: 303.0615, Found: 303.0619. IR (neat, cm⁻¹): v 3481, 2963, 1715, 1603, 1508, 1270, 1115.

5,5,5-trifluoro-3-hydroxypentyl 4-chlorobenzoate (3d)

petroleum ether/ ethylacetate = 5:1, colorless oil, 71% yield (42.2 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.6 Hz, 2H), 7.42 (d, *J* = 8.6 Hz, 2H), 4.66-4.60 (m, 1H), 4.44-4.39 (m, 1H), 4.20-4.15 (m, 1H), 2.63 (s, 1H), 2.47-2.23 (m, 2H), 2.06-1.98 (m, 1H), 1.95-1.87 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 166.1, 139.7, 130.9, 128.8, 128.8, 126.1 (q, *J* = 276 Hz), 63.0 (q, *J* = 3 Hz), 61.5, 41.2 (q, *J* = 27 Hz), 36.2. ¹⁹F NMR (376 MHz, CDCl₃) δ = -63.46 (s, 3F). HRMS (ESI-TOF): Anal. Calcd. For C₁₂H₁₂³⁵ClF₃O₃+Na⁺: 319.0319, Found: 319.0325; Anal. Calcd. For C₁₂H₁₂³⁷ClF₃O₃+Na⁺: 321.0290, Found: 321.0301. IR (neat, cm⁻¹): v 3463, 2961, 1716, 1595, 1489, 1401, 1270, 1117, 1091, 1014.

5,5,5-trifluoro-3-hydroxypentyl 4-methoxybenzoate (3e)

petroleum ether/ ethylacetate = 5:1, colorless oil, 82% yield (48.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.9 Hz, 2H), 6.92 (d, *J* = 8.9 Hz, 2H), 4.65-4.59 (m, 1H), 4.39-4.34 (m, 1H), 4.16 (s, 1H), 3.86 (s, 3H), 2.88 (s, 1H), 2.40-2.22 (m, 2H), 2.05-1.97 (m, 1H), 1.92-1.84 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 163.6, 131.7, 126.2 (q, *J* = 275 Hz), 120.8, 113.7, 63.0 (q, *J* = 3 Hz), 60.9, 55.4, 41.1 (q, *J* = 26 Hz), 36.4. ¹⁹F NMR (376 MHz, CDCl₃) δ = -63.45 (s, 3F). HRMS (ESI-TOF): Anal. Calcd. For C₁₃H₁₅F₃O₄+Na⁺: 315.0815, Found: 315.0809. IR (neat, cm⁻¹): v 3467, 2922, 1708, 1605, 1512, 1250, 1102, 1025.

5,5,5-trifluoro-3-hydroxypentyl 3-nitrobenzoate (3f)

petroleum ether/ ethylacetate = 3:1, yellow oil, 77% yield (47.4 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.85-8.84 (m, 1H), 8.45-8.35 (m, 2H), 7.70-7.66 (m, 1H), 4.72-4.65 (m, 1H), 4.54-4.49 (m, 1H), 4.23-4.18 (m, 1H), 2.56 (s, 1H), 2.47-2.26 (m, 2H), 2.12-2.04 (m, 1H), 2.01-1.92 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 164.8, 148.3, 135.3, 131.6, 129.7, 127.6, 126.1 (q, *J* = 275 Hz), 124.6, 62.9 (q, *J* = 3 Hz), 62.2, 41.3 (q, *J* = 27 Hz), 36.0. ¹⁹F NMR (376 MHz, CDCl₃) δ = -63.44 (s, 3F). HRMS (ESI-TOF): Anal. Calcd. For C₁₂H₁₂F₃NO₅+Na⁺: 330.0560, Found: 330.0558. IR (neat, cm⁻¹): v 3343, 2963, 1720, 1528, 1345, 1244, 1129, 1065.

5,5,5-trifluoro-3-hydroxypentyl 2-methylbenzoate (3g)

petroleum ether/ ethylacetate = 5:1, colorless oil, 81% yield (44.8 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.90-7.88 (m, 1H), 7.43-7.40 (m, 1H), 7.27-7.23 (m, 2H), 4.65-4.59 (m, 1H), 4.41-4.36 (m, 1H), 4.20-4.15 (m, 1H), 2.68 (s, 1H), 2.59 (s, 3H), 2.47-2.22 (m, 2H), 2.06-1.97 (m, 1H), 1.94-1.86 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 140.3, 132.2, 131.8, 130.5, 129.2, 126.2 (q, *J* = 275 Hz), 125.8, 63.1 (q, *J* = 3 Hz), 61.0, 41.2 (q, *J* = 27 Hz), 36.3, 21.7. ¹⁹F NMR (376 MHz, CDCl₃) δ = -63.47 (s, 3F). HRMS (ESI-TOF): Anal. Calcd. For C₁₃H₁₅F₃O₃+Na⁺: 299.0866, Found: 299.0874. IR (neat, cm⁻¹): v 3511, 2960, 1700, 1451, 1245, 1131, 1065.

5,5,5-trifluoro-3-hydroxypentyl [1,1'-biphenyl]-2-carboxylate (3h)

petroleum ether/ ethylacetate = 5:1, colorless oil, 80% yield (54.2 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.83-7.81 (m, 1H), 7.56-7.52 (m, 1H), 7.42-7.32 (m, 7H), 4.23-4.11 (m, 2H), 3.59-3.51 (m, 1H), 2.19-1.95 (m, 3H), 1.50-1.46 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 142.1, 141.7, 131.4, 130.9, 130.6, 129.9, 128.4, 128.2, 127.3, 127.1, 126.1 (q, *J* = 276 Hz), 62.5 (q, *J* = 3 Hz), 61.0, 41.0 (q, *J* = 27 Hz), 35.4. ¹⁹F NMR (376 MHz, CDCl₃) δ = -63.33 (s, 3F). HRMS (ESI-TOF): Anal. Calcd. For C₁₈H₁₇F₃O₃+Na⁺: 361.1022, Found: 361.1023. IR (neat, cm⁻¹): v 3482, 2962, 1714, 1385, 1249, 1123.

2-(5,5,5-trifluoro-3-hydroxypentyl)isoindoline-1,3-dione (3i)

petroleum ether/ ethylacetate = 5:1, white solid, 80% yield (46.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.88-7.86 (m, 2H), 7.76-7.74 (m, 2H), 4.02-3.85 (m, 3H), 3.29 (d, *J* = 4.5 Hz, 1H), 2.46-2.32 (m, 1H), 2.21-2.14 (m, 1H), 1.92-1.74 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 134.2, 131.8, 126.0 (q, *J* = 275 Hz), 123.5, 62.9 (q, *J* = 3 Hz), 40.8 (q, *J* = 27 Hz), 36.0, 34.0. ¹⁹F NMR (376 MHz, CDCl₃) δ = -63.48 (s, 3F). HRMS (ESI-TOF): Anal. Calcd. For C₁₃H₁₂F₃NO₃+Na⁺: 310.0661, Found: 310.0667. IR (neat, cm⁻¹): v 3462, 2943, 1681, 1375, 1261, 1140, 1008.

5,5,5-trifluoro-3-hydroxypentyl furan-2-carboxylate (3j)

petroleum ether/ ethylacetate = 5:1, colorless oil, 63% yield (31.8 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 0.8 Hz, 1H), 7.20 (d, J = 3.5 Hz, 1H), 6.53-6.52 (m, 1H), 4.65–4.59 (m, 1H), 4.43–4.37 (m, 1H), 4.20–4.15 (m, 1H), 2.69 (d, J = 4.5 Hz, 1H), 2.44–2.25 (m, 2H), 2.07-1.97 (m, 1H), 1.95-1.1.85 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 158.9, 146.6, 144.2, 126.1 (q, J = 277 Hz), 118.4, 112.0, 63.1 (q, J = 3 Hz), 61.3, 41.1 (q, J = 27 Hz), 36.1. ¹⁹F NMR (376 MHz, CDCl₃) δ = -63.48 (s, 3F). HRMS (ESI-TOF): Anal. Calcd. For C₁₀H₁₁F₃O₄+Na⁺: 275.0502, Found: 275.0499. IR (neat, cm⁻¹): v 3446, 2928, 1717, 1474, 1298, 1148.

5,5,5-trifluoro-3-hydroxypentyl thiophene-2-carboxylate (3k)

petroleum ether/ ethylacetate = 5:1, colorless oil, 79% yield (42.4 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.81-7.80 (m, 1H), 7.59-7.57 (m, 1H), 7.12-7.10 (m, 1H), 4.63-4.56 (m, 1H), 4.42-4.36 (m, 1H), 4.20-4.16 (m, 1H), 2.79(s, 1H), 2.44-2.26 (m, 2H), 2.04-1.97 (m, 1H), 1.93-1.85 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 162.6, 133.8, 133.2, 132.8, 127.9, 126.2 (q, *J* = 275 Hz), 63.0 (q, *J* = 3 Hz), 61.4, 41.2 (q, *J* = 27 Hz), 36.2. ¹⁹F NMR (376 MHz, CDCl₃) δ = -63.46 (s, 3F). HRMS (ESI-TOF): Anal. Calcd. For C₁₀H₁₁F₃O₃S+Na⁺: 291.0273, Found: 291.0269. IR (neat, cm⁻¹): v 3446, 1707, 1419, 1264, 1150, 1098.

5,5,5-trifluoro-3-hydroxypentyl 2-naphthoate (31)

petroleum ether/ ethylacetate = 4:1, colorless oil, 52% yield (32.5 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.58 (s, 1H), 8.04-7.86 (m, 4H), 7.59-7.52 (m, 2H), 4.73-4.67 (m, 1H), 4.50–4.44 (m, 1H), 4.25-4.20 (m, 1H), 2.80 (d, *J* = 4.3 Hz, 1H), 2.47-2.28 (m, 2H), 2.11-2.03 (m, 1H), 1.99-1.90 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 135.6, 132.4, 131.2, 129.3, 128.4, 128.3, 127.8, 127.0, 126.7, 126.2 (q, *J* = 275 Hz), 125.1, 63.1 (q, *J* = 3 Hz), 61.4, 41.2 (q, *J* = 26 Hz), 36.3. ¹⁹F NMR (376 MHz, CDCl₃) δ = -63.40 (s, 3F). HRMS (ESI-TOF): Anal. Calcd. For C₁₆H₁₅F₃O₃+Na⁺: 335.0866, Found: 335.0862. IR (neat, cm⁻¹): v 3463, 2925, 1713, 1468, 1278, 1128, 1098.

S-(5,5,5-trifluoro-3-hydroxypentyl) benzothioate (3m)

petroleum ether/ ethylacetate = 5:1, pure yellow oil, 63% yield (35.1 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.99-7.96 (m, 2H), 7.61-7.57 (m, 1H), 7.48-7.44 (m, 1H), 4.11-4.06 (m, 1H), 3.36-3.29 (m, 1H), 3.19-3.12 (m, 1H), 3.03 (d, *J* = 4.3 Hz, 1H), 2.42-2.21 (m, 2H), 1.97-1.78 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 193.2, 136.6, 133.7, 128.7, 127.3, 126.2 (q, *J* = 276 Hz), 64.0 (q, *J* = 3 Hz), 40.9 (q, *J* = 27 Hz), 37.2, 24.8. ¹⁹F NMR (376 MHz, CDCl₃) δ = -63.41 (s, 3F). HRMS (ESI-TOF): Anal. Calcd. For C₁₂H₁₃F₃O₂S+Na⁺: 301.0481, Found: 301.0479. IR (neat, cm⁻¹): v 3446, 2926, 1660, 1448, 1206, 1109.

5,5,5-trifluoro-3-hydroxypentyl 5-bromo-2-chlorobenzoate (3n)

petroleum ether/ ethylacetate = 4:1, pure yellow solid, 81% yield (60.9 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 2.4 Hz, 1H), 7.56-7.53 (m, 1H), 7.32 (d, *J* = 8.6 Hz, 1H), 4.64-4.58 (m, 1H), 4.49-4.44 (m, 1H), 4.25-4.20 (m, 1H), 2.59 (s, 1H), 2.38-2.23 (m, 2H), 2.04-1.99 (m, 1H), 1.96-1.88 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 135.6, 134.1, 132.5, 132.5, 131.3, 126.1 (q, *J* = 275 Hz), 120.2, 64.0 (q, *J* = 3 Hz), 62.3, 41.2 (q, *J* = 27 Hz), 35.9. ¹⁹F NMR (376 MHz, CDCl₃) δ = -63.44 (s, 3F). HRMS (ESI-TOF): Anal. Calcd. For C₁₂H₁₁⁷⁹Br³⁵Cl F₃O₃+Na⁺:396.9424, Found: 396.9432; Anal. Calcd. For C₁₂H₁₁⁸¹Br³⁵ClF₃O₃+Na⁺: 398.9404, Found: 398.9422; Anal. Calcd. For C₁₂H₁₁⁸¹Br³⁷Cl F₃O₃+Na⁺: 400.9374, Found: 400.9391. IR (neat, cm⁻¹): v 3446, 2926, 1660, 1448, 1206, 1109.

4,4,4-trifluoro-2-hydroxy-2-methylbutyl 4-(tert-butyl)benzoate (30)

petroleum ether/ ethylacetate = 5:1, colorless oil, 79% yield (50.3 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.99-7.97 (m, 2H), 7.50-7.47 (m, 2H), 4.33-4.26 (m, 2H), 2.57-2.46 (m, 2H), 1.46 (s, 3H), 1.34 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 157.3, 129.6, 126.6, 125.8, (q, *J* = 276 Hz), 125.5, 70.6, 69.8 (q, *J* = 2 Hz), 41.9 (q, *J* = 27 Hz), 35.1, 31.0, 24.3. ¹⁹F NMR (376 MHz, CDCl₃) δ = -60.40 (s, 3F). HRMS (ESI-TOF): Anal. Calcd. For C₁₆H₂₁F₃O₃+Na⁺: 341.1335, Found: 341.1330. IR (neat, cm⁻¹): v 3446, 2944, 1701, 1620, 1458, 1275, 1190, 1127.

4,4,4-trifluoro-2-hydroxy-2-methylbutyl 4-bromobenzoate (3p)

petroleum ether/ ethylacetate = 5:1, colorless oil, 80% yield (54.6 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 8.6 Hz, 2H), 7.60 (d, *J* = 8.6 Hz, 2H), 4.44–4.18 (m, 2H), 2.64-2.34 (m, 3H), 1.46 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 131.9, 131.1, 128.7, 128.3, 125.7 (q, *J* = 276 Hz), 70.8, 69.7 (q, *J* = 2 Hz), 42.00 (q, *J* = 27 Hz), 24.4. ¹⁹F NMR (376 MHz, CDCl₃) δ = -60.38 (s, 3F). HRMS (ESI-TOF): Anal. Calcd. For C₁₂H₁₂⁷⁹Br F₃O₃+Na⁺: 362.9814, Found: 362.9818; Anal. Calcd. For C₁₂H₁₂⁸¹Br F₃O₃+Na⁺: 364.9794, Found: 364.9816. IR (neat, cm⁻¹): v 3473, 2926, 1719, 1283, 1241, 1144, 1121, 731.

2-(4,4,4-trifluoro-2-hydroxy-2-methylbutyl)isoindoline-1,3-dione (3q)

petroleum ether/ ethylacetate = 4:1, white solid, 73% yield (42.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.90-7.88 (m, 2H), 7.78-7.76 (m, 2H), 3.87 (s, 2H), 3.16 (s, 1H), 2.43 (q, *J* = 11.2 Hz, 2H), 1.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.2, 134.5, 131.7, 125.8 (q, *J* = 276 Hz), 123.7, 71.0 (q, *J* = 2 Hz), 48.1, 43.3 (q, *J* = 27 Hz), 25.1. ¹⁹F NMR (376 MHz, CDCl₃) δ = -59.91 (s, 3F). HRMS (ESI-TOF): Anal. Calcd. For C₁₃H₁₂F₃NO₃+Na⁺: 310.0661, Found: 310.0669. IR (neat, cm⁻¹): υ 3464, 2966, 1703, 1315, 1262, 1100, 993, 732.

4,4,4-trifluoro-2-hydroxy-2-methylbutyl thiophene-2-carboxylate (3r)

petroleum ether/ ethylacetate = 5:1, colorless oil, 80% yield (43.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.85-7.84 (m, 1H), 7.61-7.60 (m, 1H), 7.14-7.12 (m, 1H), 4.31-4.24 (m, 2H), 2.49 (q, *J* = 11.3 Hz, 3H), 1.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.9, 134.0, 133.0, 132.7, 128.0, 125.7 (q, *J* = 276 Hz), 70.7, 69.7 (q, *J* = 2 Hz), 41.9 (q, *J* = 27 Hz), 24.3. ¹⁹F NMR (376 MHz, CDCl₃) δ = -60.39 (s, 3F). HRMS (ESI-TOF): Anal. Calcd. For C₁₀H₁₁F₃O₃S+Na⁺: 291.0273, Found: 291.0279. IR (neat, cm⁻¹): υ 3479, 2984, 1710, 1591, 1258, 1099, 1012, 755, 731.

4,4,4-trifluoro-2-hydroxy-2-methylbutyl 2-naphthoate (3s)

petroleum ether/ ethylacetate = 5:1, colorless oil, 61% yield (38.1 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.60 (s, 1H), 8.05-8.02 (m, 1H), 7.96 (d, *J* = 8.0 Hz, 1H), 7.90-7.87 (m, 2H), 7.63-7.53 (m, 2H), 4.41-4.34 (m, 2H), 2.59-2.51 (m, 3H), 1.50 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 135.6, 132.4, 131.3, 129.3, 128.5, 128.3, 127.7, 126.8, 126.6, 126.1 (q, *J* = 276 Hz), 125.0, 70.9, 69.8 (q, *J* = 2 Hz), 42.0 (q, *J* = 27 Hz), 24.4. ¹⁹F NMR (376 MHz, CDCl₃) δ = -60.28 (s, 3F). HRMS (ESI-TOF): Anal. Calcd. For C₁₆H₁₅F₃O₃+Na⁺: 335.0866, Found: 335.0876. IR (neat, cm⁻¹): v 3466, 2984, 1704, 1631, 1370, 1260, 1094.

7,7,7-trifluoro-5-hydroxyheptyl 4-(tert-butyl)benzoate (3t)

petroleum ether/ ethylacetate = 5:1, colorless oil, 66% yield (45.8 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.6 Hz, 2H), 7.45 (d, *J* = 8.6 Hz, 2H), 4.33 (t, *J* = 6.5 Hz, 2H), 4.08-3.99 (m, 1H), 2.35-2.20 (m, 2H), 2.08 (s, 1H), 1.86-1.73 (m, 2H), 1.69-1.48 (m, 4H), 1.34 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 156.6, 129.4, 126.4 (q, *J* = 216 Hz), 125.3, 62.9 (q, *J* = 3 Hz), 64.4, 41.2 (q, *J* = 26 Hz), 36.7, 35.0, 31.1, 28.5, 21.8. ¹⁹F NMR (376 MHz, CDCl₃) δ = -63.47 (s, 3F). HRMS (ESI-TOF): Anal. Calcd. For C₁₈H₂₅F₃O₃+Na⁺: 369.1648, Found: 369.1655. IR (neat, cm⁻¹): v 3447, 2958, 1716, 1271, 1118, 1016.

7,7,7-trifluoro-5-hydroxyheptyl 4-bromobenzoate (3u)

petroleum ether/ ethylacetate = 4:1, colorless oil, 65% yield (48.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.6 Hz, 2H), 7.58 (d, *J* = 8.6 Hz, 2H), 4.33 (t, *J* = 6.5 Hz, 2H), 4.07-4.02 (m, 1H), 2.35 -2.21 (m, 2H), 2.00 (d, *J* = 4.2 Hz, 1H), 1.84-1.77 (m, 2H), 1.69-1.49 (m, 4H).¹³C NMR (100 MHz, CDCl₃) δ 165.9, 131.7, 131.0, 129.2, 128., 126.4 (q, *J* = 276 Hz), 65.9 (q, *J* = 3 Hz), 64.9, 41.2 (q, *J* = 26 Hz), 36.6, 28.4, 21.8. ¹⁹F NMR (376 MHz, CDCl₃) δ = -60.48 (s, 3F). HRMS (ESI-TOF): Anal. Calcd. For C₁₄H₁₆⁷⁹Br F₃O₃+Na⁺: 391.0127, Found: 391.0128; Anal. Calcd. For C₁₄H₁₆⁸¹Br F₃O₃+Na⁺: 393.0107, Found: 393.0111. IR (neat, cm⁻¹): v 3460, 2943, 1700, 1473, 1245, 1113.

7,7,7-trifluoro-5-hydroxyheptyl 4-nitrobenzoate (3v)

petroleum ether/ ethylacetate = 3:1, yellow oil, 71% yield (47.7 mg). ¹H NMR (400 MHz, CDCl3) δ 8.31-8.28 (m, 2H), 8.22-8.19 (m, 2H), 4.40 (t, *J* = 6.6 Hz, 2H), 4.11-4.01 (m, 1H), 2.35-2.22 (m, 2H), 1.98 (s, 1H), 1.91-1.79 (m, 2H), 1.72-1.49 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 150.5, 135.6, 130.6, 126.4 (q, *J* = 275 Hz), 123.5, 65.9 (q, *J* = 3 Hz), 65.6, 41.3 (q, *J* = 26 Hz), 36.5, 28.4, 21.8. ¹⁹F NMR (376 MHz, CDCl₃) δ = -63.48 (s, 3F). HRMS (ESI-TOF): Anal. Calcd. For C₁₄H₁₆F₃NO₅+Na⁺: 358.0873, Found: 358.0880. IR (neat, cm⁻¹): v 3345, 2965, 1723, 1524, 1341, 1240, 1122, 1061.

7,7,7-trifluoro-5-hydroxyheptyl 2-iodobenzoate (3w)

petroleum ether/ ethylacetate = 5:1, colorless oil, 60% yield (50.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.00-7.98 (m, 1H), 7.79-7.76 (m, 1H), 7.43-7.39 (m, 1H), 7.17-7.13 (m, 1H), 4.36 (t, *J* = 6.5 Hz, 2H), 4.04 (s, 1H), 2.35-2.21 (m, 2H), 1.97 (s, 1H), 1.87-1.79 (m, 2H), 1.68-1.56 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 166.7,141.2, 135.4, 132.6, 130.8, 127.9, 126.4 (q, *J* = 275 Hz), 93.9, 65.9 (q, *J* = 3 Hz), 65.4, 41.2 (q, *J* = 26 Hz), 36.6, 28.3, 21.8. ¹⁹F NMR (376 MHz, CDCl₃) δ = -60.38 (s, 3F).HRMS (ESI-TOF): Anal. Calcd. For C₁₄H₁₆F₃IO₃+Na⁺: 438.9988, Found: 438.9978. IR (neat, cm⁻¹): v 3464, 2948, 1713, 1269, 1103, 1085, 757, 729.

5,5,5-trifluoro-3-hydroxypentyl pivalate (3x)

petroleum ether/ ethylacetate = 5:1, colorless oil, 15% yield (7.3 mg). ¹H NMR (400 MHz, CDCl₃) δ 4.34-4.28 (m, 1H), 4.15-4.10 (m, 1H), 4.05-3.99 (m, 1H), 3.07 (s, 1H), 2.38-2.13 (m, 2H), 1.89-1.71 (m, 2H), 1.17 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 179.1, 126.1 (q, *J* = 275 Hz), 62.9 (q, *J* = 3 Hz), 60.7, 41.0 (q, *J* = 26 Hz), 38.7, 36.1, 27.0. ¹⁹F NMR (376 MHz, CDCl₃) δ = -63.69 (s, 3F). HRMS (ESI-TOF): Anal. Calcd. For C₁₀H₁₇F₃O₃+H⁺: 243.1203, Found: 243.1206. IR (neat, cm⁻¹): v 2975, 1709, 1282, 1252, 1145, 864, 669.

Spectroscopic data for products

¹³C NMR Spectrum of Compound **3a**

¹H NMR Spectrum of Compound **3b**

¹⁹F NMR Spectrum of Compound **3b**

¹H NMR Spectrum of Compound **3d**

¹⁹F NMR Spectrum of Compound **3d**

¹³C NMR Spectrum of Compound **3e**

¹H NMR Spectrum of Compound **3f**

¹⁹F NMR Spectrum of Compound **3f**

¹³C NMR Spectrum of Compound **3g**

 $^1\mathrm{H}$ NMR Spectrum of Compound $\mathbf{3h}$

¹⁹F NMR Spectrum of Compound **3h**

¹⁹F NMR Spectrum of Compound **3**j

¹³C NMR Spectrum of Compound **3**k

¹⁹F NMR Spectrum of Compound **31**

¹³C NMR Spectrum of Compound **3m**

¹H NMR Spectrum of Compound **3n**

¹⁹F NMR Spectrum of Compound **3n**

¹H NMR Spectrum of Compound **3p**

¹⁹F NMR Spectrum of Compound **3p**

¹³C NMR Spectrum of Compound **3**q

¹H NMR Spectrum of Compound **3r**

¹⁹F NMR Spectrum of Compound **3r**

¹³C NMR Spectrum of Compound **3s**

¹H NMR Spectrum of Compound **3t**

¹⁹F NMR Spectrum of Compound **3**t

 $^1\mathrm{H}$ NMR Spectrum of Compound 3v

¹⁹F NMR Spectrum of Compound **3v**

¹³C NMR Spectrum of Compound **3**w

¹H NMR Spectrum of Compound **3**x

¹⁹F NMR Spectrum of Compound **3**x